Patents by Inventor Zhong Lin Wang

Zhong Lin Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11962296
    Abstract: Disclosed herein is a flexible sensing interface, comprising: a sensor, comprising: a core; an inner electrode in the form of a conductive material in contact with the core; an inner dielectric material substantially encasing the inner electrode; an outer electrode in the form of a conductive material in contact with the inner dielectric material and in electrical communication with the inner electrode; and an outer dielectric material substantially encasing the outer electrode; wherein the inner dielectric material and the outer dielectric material comprise an elastic material. Also disclosed herein are systems and methods for making and using the same.
    Type: Grant
    Filed: August 21, 2019
    Date of Patent: April 16, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Seyedeh Fereshteh Shahmiri, Chaoyu Chen, Gregory D. Abowd, Shivan Mittal, Thad Eugene Starner, Yi-Cheng Wang, Zhong Lin Wang, Dingtian Zhang, Steven L. Zhang, Anandghan Waghmare
  • Patent number: 11664744
    Abstract: An apparatus including a first member including a first electrode, a second member coupled to the first member about an axis, including a second electrode, and a surface layer between the first electrode and the second electrode, the second member is rotatable with respect to the axis by an energy flow to change triboelectric charges on the electrodes, and to affect a flow of electrons between the electrodes. A self-powered sensor for detecting a chemical including a generator having an electrode, and a superhydrophobic surface layer for receiving an energy flow carrying triboelectric charges, the surface layer includes a TiO2 layer with nanostructures, and a power indicator indicative of whether the chemical is present based on power output of the triboelectric generator, the energy flow is a solution flow, the solution comprising the chemical and water, and the chemical removes at least one triboelectric charge from the water.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: May 30, 2023
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong Lin Wang, Zong-Hong Lin, Gang Cheng
  • Patent number: 11647340
    Abstract: A vibration transducer for sensing vibrations includes a first flexible triboelectric member, a second flexible triboelectric member, a plurality of attachment points, a first electrode and a second electrode. The first flexible triboelectric member includes a first triboelectric layer and a material being on a first position on a triboelectric series. A conductive layer is deposited on the second side thereof. The second flexible triboelectric member includes a second triboelectric layer and a material being on a second position on the triboelectric series that is different from the first position on the triboelectric series. The second triboelectric member is adjacent to the first flexible triboelectric member. When the first triboelectric member comes into and out of contact with the second triboelectric member as a result of the vibrations, a triboelectric potential difference having a variable intensity corresponding to the vibrations can be sensed between the first and second triboelectric members.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: May 9, 2023
    Assignee: Georgia Tech Research Corporation
    Inventors: Nivedita Arora, Gregory D. Abowd, Mohit Gupta, Diego Osorio, Seyedeh Fereshteh Shahmiri, Thad Eugene Starner, Yi-Cheng Wang, Zhengjun Wang, Zhong Lin Wang, Steven L Zhang, Peter McAughan, Qiuyue Xue, Dhruva Bansal, Ryan Bahr, Emmanouil Tentzeris
  • Patent number: 11569432
    Abstract: An apparatus comprising a substrate, one or more nanowire pillars, each having a base portion and a tip portion, a first electrode connected to the tip portions of the one or more nanowire pillars, an internal hollow cavity positioned between the substrate and the first electrode, such that at least a portion of each of the one or more nanowire pillars extend through the internal hollow cavity, and a second electrode proximate the first side of the substrate. High-performance broadband photodetectors and other optoelectronics for converting light to electricity with enhanced absorption and carrier collection.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: January 31, 2023
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong Lin Wang, Haiyang Zou
  • Publication number: 20210320657
    Abstract: Disclosed herein is a flexible sensing interface, comprising: a sensor, comprising: a core; an inner electrode in the form of a conductive material in contact with the core; an inner dielectric material substantially encasing the inner electrode; an outer electrode in the form of a conductive material in contact with the inner dielectric material and in electrical communication with the inner electrode; and an outer dielectric material substantially encasing the outer electrode; wherein the inner dielectric material and the outer dielectric material comprise an elastic material. Also disclosed herein are systems and methods for making and using the same.
    Type: Application
    Filed: August 21, 2019
    Publication date: October 14, 2021
    Inventors: Seyedeh Fereshteh Shahmiri, Chaoyu Chen, Gregory D. Abowd, Shivan Mittal, Thad Eugene Starner, Yi-Cheng Wang, Zhong Lin Wang, Dingtian Zhang, Steven L. Zhang, Anandghan Waghmare
  • Publication number: 20210288194
    Abstract: An exemplary embodiment of the present disclosure provides an alternating current (AC) generator comprising a substrate comprising a first material abutting a second material and forming an interface, wherein the first material comprises a first electrode and the second material comprises a second electrode in electrical communication with the first electrode, and wherein the substrate is configured to generate AC when the interface is exposed to periodic light stimulation.
    Type: Application
    Filed: March 16, 2021
    Publication date: September 16, 2021
    Inventors: Zhong Lin Wang, Haiyang Zou
  • Publication number: 20210281955
    Abstract: A vibration transducer for sensing vibrations includes a first flexible triboelectric member, a second flexible triboelectric member, a plurality of attachment points, a first electrode and a second electrode. The first flexible triboelectric member includes a first triboelectric layer and a material being on a first position on a triboelectric series. A conductive layer is deposited on the second side thereof. The second flexible triboelectric member includes a second triboelectric layer and a material being on a second position on the triboelectric series that is different from the first position on the triboelectric series. The second triboelectric member is adjacent to the first flexible triboelectric member. When the first triboelectric member comes into and out of contact with the second triboelectric member as a result of the vibrations, a triboelectric potential difference having a variable intensity corresponding to the vibrations can be sensed between the first and second triboelectric members.
    Type: Application
    Filed: January 18, 2021
    Publication date: September 9, 2021
    Inventors: Nivedita Arora, Gregory D. Abowd, Mohit Gupta, Diego Osorio, Seyedeh Fereshteh Shahmiri, Thad Eugene Starner, Yi-Cheng Wang, Zhengjun Wang, Zhong Lin Wang, Steven L Zhang, Peter McAughan, Qiuyue Xue, Dhruva Bansal, Ryan Bahr, Emmanouil Tentzeris
  • Publication number: 20210226115
    Abstract: An apparatus comprising a substrate, one or more nanowire pillars, each having a base portion and a tip portion, a first electrode connected to the tip portions of the one or more nanowire pillars, an internal hollow cavity positioned between the substrate and the first electrode, such that at least a portion of each of the one or more nanowire pillars extend through the internal hollow cavity, and a second electrode proximate the first side of the substrate. High-performance broadband photodetectors and other optoelectronics for converting light to electricity with enhanced absorption and carrier collection.
    Type: Application
    Filed: November 16, 2020
    Publication date: July 22, 2021
    Inventors: Zhong Lin Wang, Haiyang Zou
  • Patent number: 11025176
    Abstract: An exemplary embodiment of the present invention provides an optical communication system. The optical communication system can comprise a self-powered sensor and an optical array. The self-powered sensor can be configured to receive a mechanical input and generate an electrical signal corresponding to the mechanical input. The optical array can be configured to receive the electrical signal and generate an optical output. The optical output can correspond to the mechanical input.
    Type: Grant
    Filed: March 12, 2020
    Date of Patent: June 1, 2021
    Assignee: Georgia Tech Research Corporation
    Inventors: Wenbo Ding, Zhong Lin Wang, Changsheng Wu, Yunlong Zi
  • Patent number: 10932063
    Abstract: A vibration transducer for sensing vibrations includes a first flexible triboelectric member, a second flexible triboelectric member, a plurality of attachment points, a first electrode and a second electrode. The first flexible triboelectric member includes a first triboelectric layer and a material being on a first position on a triboelectric series. A conductive layer is deposited on the second side thereof. The second flexible triboelectric member includes a second triboelectric layer and a material being on a second position on the triboelectric series that is different from the first position on the triboelectric series. The second triboelectric member is adjacent to the first flexible triboelectric member. When the first triboelectric member comes into and out of contact with the second triboelectric member as a result of the vibrations, a triboelectric potential difference having a variable intensity corresponding to the vibrations can be sensed between the first and second triboelectric members.
    Type: Grant
    Filed: May 29, 2019
    Date of Patent: February 23, 2021
    Assignee: Georgia Tech Research Corporation
    Inventors: Nivedita Arora, Gregory D. Abowd, Mohit Gupta, Diego Osorio, Seyedeh Fereshteh Shahmiri, Thad Eugene Starner, Yi-Cheng Wang, Zhengjun Wang, Zhong Lin Wang, Steven L Zhang, Peter McAughan, Qiuyue Xue, Dhruva Bansal, Ryan Bahr, Emmanouil Tentzeris
  • Publication number: 20200295675
    Abstract: An exemplary embodiment of the present invention provides an optical communication system. The optical communication system can comprise a self-powered sensor and an optical array. The self-powered sensor can be configured to receive a mechanical input and generate an electrical signal corresponding to the mechanical input. The optical array can be configured to receive the electrical signal and generate an optical output. The optical output can correspond to the mechanical input.
    Type: Application
    Filed: March 12, 2020
    Publication date: September 17, 2020
    Inventors: Wenbo Ding, Zhong Lin Wang, Changsheng Wu, Yunlong Zi
  • Publication number: 20200266045
    Abstract: An ion pulse generator (100) includes a triboelectric generator (110), an ion emitter (132) and a conductive surface (134). The triboelectric generator (110) includes a first electrode (114), a spaced apart second electrode (120) and a first triboelectric layer (116). The triboelectric generator (110) generates a predetermined amount of charge as a result of relative movement of the first triboelectric layer (116). The ion emitter (132) is electrically coupled to the first electrode (114). The conductive surface (134) is electrically coupled to the second electrode (120) and is spaced apart from the ion emitter (132) at a predetermined distance. Generation of the predetermined amount of charge causes formation of ions between the ion emitter (132) and the conductive surface (134).
    Type: Application
    Filed: September 12, 2017
    Publication date: August 20, 2020
    Inventors: Anyin Liu, Facundo Martin Fernandez, Zhong Lin Wang, Yunlong Zi
  • Patent number: 10630207
    Abstract: A triboelectric generator includes a first triboelectric member, which includes a first conductive layer and an insulating triboelectric material layer disposed on the first conductive layer. The triboelectric material layer includes a first material having a first position on a triboelectric series. An elastic member, disposed against the triboelectric material layer of the triboelectric member and includes a second conductive material, has an elasticity that results in the elastic member being deformed when compressed and returning to an original non-deformed shape after being compressed. The second conductive material has a second position on the triboelectric series. A first load is coupled to the first conductive layer and with the second conductive material so that when a force compresses the elastic member charges will flow between the first conductive layer and the second conductive layer through the load.
    Type: Grant
    Filed: August 14, 2019
    Date of Patent: April 21, 2020
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong Lin Wang, Xiaonan Wen, Weiqing Yang
  • Publication number: 20200067426
    Abstract: An apparatus including a first member including a first electrode, a second member coupled to the first member about an axis, including a second electrode, and a surface layer between the first electrode and the second electrode, the second member is rotatable with respect to the axis by an energy flow to change triboelectric charges on the electrodes, and to affect a flow of electrons between the electrodes. A self-powered sensor for detecting a chemical including a generator having an electrode, and a superhydrophobic surface layer for receiving an energy flow carrying triboelectric charges, the surface layer includes a TiO2 layer with nanostructures, and a power indicator indicative of whether the chemical is present based on power output of the triboelectric generator, the energy flow is a solution flow, the solution comprising the chemical and water, and the chemical removes at least one triboelectric charge from the water.
    Type: Application
    Filed: August 28, 2019
    Publication date: February 27, 2020
    Inventors: Zhong Lin Wang, Zong-Hong Lin, Gang Cheng
  • Patent number: 10541358
    Abstract: A hybrid generator using a thermoelectric generation and a piezoelectric generation are provided. The hybrid generator includes first and second insulating layers spaced apart from each other; a thermoelectric structure disposed between the first and second insulating layers; a first electrode disposed on the second insulating layer; a piezoelectric structure disposed on the first electrode; a third insulating layer disposed on the piezoelectric structure; and a second electrode disposed on the third insulating layer.
    Type: Grant
    Filed: June 28, 2016
    Date of Patent: January 21, 2020
    Assignees: SAMSUNG ELECTRONICS CO., LTD., GEORGIA TECH RESEARCH CORPORATION
    Inventors: Young-jun Park, Zhong-lin Wang, Sang-min Lee
  • Publication number: 20190372482
    Abstract: A triboelectric generator includes a first triboelectric member, which includes a first conductive layer and an insulating triboelectric material layer disposed on the first conductive layer. The triboelectric material layer includes a first material having a first position on a triboelectric series. An elastic member, disposed against the triboelectric material layer of the triboelectric member and includes a second conductive material, has an elasticity that results in the elastic member being deformed when compressed and returning to an original non-deformed shape after being compressed. The second conductive material has a second position on the triboelectric series. A first load is coupled to the first conductive layer and with the second conductive material so that when a force compresses the elastic member charges will flow between the first conductive layer and the second conductive layer through the load.
    Type: Application
    Filed: August 14, 2019
    Publication date: December 5, 2019
    Inventors: Zhong Lin Wang, Xiaonan Wen, Weiqing Yang
  • Publication number: 20190373375
    Abstract: A vibration transducer for sensing vibrations includes a first flexible triboelectric member, a second flexible triboelectric member, a plurality of attachment points, a first electrode and a second electrode. The first flexible triboelectric member includes a first triboelectric layer and a material being on a first position on a triboelectric series. A conductive layer is deposited on the second side thereof. The second flexible triboelectric member includes a second triboelectric layer and a material being on a second position on the triboelectric series that is different from the first position on the triboelectric series. The second triboelectric member is adjacent to the first flexible triboelectric member. When the first triboelectric member comes into and out of contact with the second triboelectric member as a result of the vibrations, a triboelectric potential difference having a variable intensity corresponding to the vibrations can be sensed between the first and second triboelectric members.
    Type: Application
    Filed: May 29, 2019
    Publication date: December 5, 2019
    Inventors: Nivedita Arora, Gregory D. Abowd, Mohit Gupta, Diego Osorio, Seyedeh Fereshteh Shahmiri, Thad Eugene Starner, Yi-Cheng Wang, Zhengjun Wang, Zhong Lin Wang, Steven L Zhang, Peter McAughan, Qiuyue Xue, Dhruva Bansal, Ryan Bahr, Emmanouil Tentzeris
  • Patent number: 10439517
    Abstract: A generator for harvesting energy from flowing water is disclosed. The generator harvests electrostatic energy as well as mechanical kinetic energy from the flowing water. In one aspect, the generator includes a plurality of blades arranged in a radially outward fashion. Each blade includes an electrode and a surface layer for receiving flowing water carrying triboelectric charges. The flowing water affects a flow of electrons between the electrode and ground. In another aspect, the generator includes a first member with a first electrode, and a second member coupled to the first member about an axis. The second member includes a second electrode, and a surface layer between the first electrode and the second electrode. The second member is rotatable with respect to the axis to change triboelectric charges on the electrodes, and to affect a flow of electrons between the electrodes.
    Type: Grant
    Filed: January 26, 2016
    Date of Patent: October 8, 2019
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong Lin Wang, Zong-Hong Lin, Gang Cheng
  • Patent number: 10425018
    Abstract: A triboelectric generator includes a first triboelectric member, which includes a first conductive layer and an insulating triboelectric material layer disposed on the first conductive layer. The triboelectric material layer includes a first material having a first position on a triboelectric series. An elastic member, disposed against the triboelectric material layer of the triboelectric member and includes a second conductive material, has an elasticity that results in the elastic member being deformed when compressed and returning to an original non-deformed shape after being compressed. The second conductive material has a second position on the triboelectric series. A first load is coupled to the first conductive layer and with the second conductive material so that when a force compresses the elastic member charges will flow between the first conductive layer and the second conductive layer through the load.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: September 24, 2019
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong Lin Wang, Xiaonan Wen, Weiqing Yang
  • Patent number: 10367431
    Abstract: A triboelectric generator includes a first contact charging member and a second contact charging member. The first contact charging member includes a first contact layer and a conductive electrode layer. The first contact layer includes a material that has a triboelectric series rating indicating a propensity to gain electrons due to a contacting event. The conductive electrode layer is disposed along the back side of the contact layer. The second contact charging member is spaced apart from and disposed oppositely from the first contact charging member. It includes an electrically conductive material layer that has a triboelectric series rating indicating a propensity to lose electrons when contacted by the first contact layer during the contacting event. The electrically conductive material acts as an electrode. A mechanism maintains a space between the first contact charging member and the second contact charging member except when a force is applied thereto.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: July 30, 2019
    Assignee: Georgia Tech Research Corporation
    Inventors: Zhong Lin Wang, Sihong Wang, Long Lin, Guang Zhu, Zong-Hong Lin