Patents by Inventor Zhong Luo
Zhong Luo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250127232Abstract: An atomizer and an electronic atomizing device are provided. The atomizer includes an outer wall and an atomizing core assembly. The outer wall defines a first liquid inlet. The atomizing core assembly is at least partially arranged inside the outer wall, and includes a sleeve. The sleeve defines a plurality of fluid passage holes. The sleeve is at least partially arranged radially inside the outer wall, and configured to jointly define a capillary gap with the outer wall. Each of the first liquid inlet and the fluid passage holes is connected to the capillary gap, and define a fluid path from any of the plurality of fluid passage holes directly through the capillary gap to the first liquid inlet.Type: ApplicationFiled: December 15, 2024Publication date: April 24, 2025Applicant: SHENZHEN SMOORE TECHNOLOGY LIMITEDInventors: Chaoyong BIE, Haidong ZHU, Aping ZHOU, Yisong WEI, Wei LI, Zhong LUO
-
Patent number: 12168091Abstract: An atomizer, a liquid storage assembly thereof and an electron atomizing device are disclosed. The atomizer includes an atomizing core assembly having a liquid inlet. The liquid storage assembly includes a housing defining a liquid storage cavity and a first assembling hole, wherein the first assembling hole is configured to receive an end of an atomizing core assembly; an inner wall arranged in the liquid storage cavity, configured to sleeve around the atomizing core assembly, wherein a capillary gap is defined between the inner wall and an outer wall of the atomizing core assembly, and the capillary gap is configured to guide liquid in the liquid storage cavity to pass through the liquid inlet.Type: GrantFiled: April 22, 2021Date of Patent: December 17, 2024Assignee: SHENZHEN SMOORE TECHNOLOGY LIMITEDInventors: Chaoyong Bie, Haidong Zhu, Aping Zhou, Yisong Wei, Wei Li, Zhong Luo
-
Publication number: 20240329361Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a circuit assembly. The movable assembly is configured to connect an optical element, the movable assembly is movable relative to the fixed assembly, and the optical element has an optical axis. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The circuit assembly includes a plurality of circuits and is affixed to the fixed assembly.Type: ApplicationFiled: June 7, 2024Publication date: October 3, 2024Inventors: Sin-Hong LIN, Yung-Ping YANG, Wen-Yen HUANG, Yu-Cheng LIN, Kun-Shih LIN, Chao-Chang HU, Yung-Hsien YEH, Mao-Kuo HSU, Chih-Wei WENG, Ching-Chieh HUANG, Chih-Shiang WU, Chun-Chia LIAO, Chia-Yu CHANG, Hung-Ping CHEN, Wei-Zhong LUO, Wen-Chang LIN, Shou-Jen LIU, Shao-Chung CHANG, Chen-Hsin HUANG, Meng-Ting LIN, Yen-Cheng CHEN, I-Mei HUANG, Yun-Fei WANG, Wei-Jhe SHEN
-
Patent number: 12032224Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a circuit assembly. The movable assembly is configured to connect an optical element, the movable assembly is movable relative to the fixed assembly, and the optical element has an optical axis. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The circuit assembly includes a plurality of circuits and is affixed to the fixed assembly.Type: GrantFiled: February 23, 2023Date of Patent: July 9, 2024Assignee: TDK TAIWAN CORP.Inventors: Sin-Hong Lin, Yung-Ping Yang, Wen-Yen Huang, Yu-Cheng Lin, Kun-Shih Lin, Chao-Chang Hu, Yung-Hsien Yeh, Mao-Kuo Hsu, Chih-Wei Weng, Ching-Chieh Huang, Chih-Shiang Wu, Chun-Chia Liao, Chia-Yu Chang, Hung-Ping Chen, Wei-Zhong Luo, Wen-Chang Lin, Shou-Jen Liu, Shao-Chung Chang, Chen-Hsin Huang, Meng-Ting Lin, Yen-Cheng Chen, I-Mei Huang, Yun-Fei Wang, Wei-Jhe Shen
-
Publication number: 20230400264Abstract: A metal heat exchanger tube having integral fins formed on the tube outside. The fins have a fin foot, fin flanks and a fin tip, and the fin foot protrudes radially from the tube wall. The tube includes a channel with a channel base and spaced-apart additional structures dividing the channel between the fins into segments and limiting fluid flow in the channel during operation. First additional structures are radially outwardly directed projections each with an end surface located between the channel base and the fin tip. Cavities in the form of second additional structures are disposed at the location of the projections between an end surface and the fin tip such that the cavities lie laterally on the fin flank and are open in the axial direction.Type: ApplicationFiled: October 7, 2021Publication date: December 14, 2023Inventors: Achim GOTTERBARM, Manfred KNAB, Ronald LUTZ, Zhong LUO, Jianying CAO
-
Patent number: 11821816Abstract: The present invention provides a test device for a quasi zero stiffness isolator, and belongs to the technical field of vibration response tests of isolators. The device comprises a negative stiffness adjusting mechanism, a positive stiffness adjusting mechanism, and a beam-damping block mechanism. The negative stiffness adjusting mechanism and the positive stiffness adjusting mechanism are connected successively and installed on a beam-mass block system. The test device for the quasi zero stiffness isolator can realize smooth longitudinal vibration of a tested system, and can also flexibly adjust the positive stiffness value and the negative stiffness value of an overall mechanism. The present invention is suitable for a vibration model test of the quasi zero stiffness isolator, and solves the problems of complicated use method, impossibility of flexible adjustment of mechanism stiffness and complicated replacement process of stiffness elements in the device for the existing quasi zero stiffness isolator.Type: GrantFiled: September 4, 2019Date of Patent: November 21, 2023Assignee: NORTHEASTERN UNIVERSITYInventors: Zhong Luo, Yue Qiu, Yunpeng Zhu, Guixin Han, Fei Wang, Qingwen Yu
-
Patent number: 11814290Abstract: A method for the synthesis of carbon nanotubes from natural rubber, including providing a first material, the first material may include natural rubber or derivatives thereof, thermally decomposing the first material at a first temperature into an intermediate material, contacting the intermediate material with a catalyst, treating the intermediate material in contact with the catalyst at a second temperature, for forming carbon nanotubes. Adjusting an average characteristic of resulting nanotubes, including carrying out the synthesis method as a reference method and for decreasing the average diameter of the nanotube: decreasing the second temperature and/or decreasing the reaction time and/or increasing the concentration of H2 in the forming gas in relation to the reference method. Or, for increasing the average diameter of the nanotube: increasing the second temperature and/or increasing the reaction time and/or decreasing the concentration of H2 in the forming gas in relation to the reference method.Type: GrantFiled: September 27, 2018Date of Patent: November 14, 2023Assignee: Agency for Science, Technology and ResearchInventors: Ming Lin, Yuanting Karen Tang, Hui Teng Casandra Chai, Ziyi Zhong, Ji Zhong Luo
-
Patent number: 11733085Abstract: Weigh-in-motion sensors comprise a beam including a plate with a load-bearing surface, and a tube portion including a base wall and a cover and defining a cavity therebetween. A sensing package is disposed within the cavity and is under pre-load with the cover and the base wall. The sensing package comprises a piezoelectric element. The base wall includes an aperture extending from a mounting surface to the cavity. The aperture includes a fastener therein to secure the sensing package within the cavity. The fastener is sized having a cross-section dimension taken through a center axis of the fastener that is greater than that of a cross-section dimension of the piezoelectric element taken along the fastener center axis. In an example, the fastener has a cross-section dimension sized about 10 percent or greater in dimension than that of the respective cross-section dimension of the piezoelectric element.Type: GrantFiled: February 10, 2021Date of Patent: August 22, 2023Assignees: TE CONNECTIVITY SOLUTIONS GMBH, MEASUREMENT SPECIALTIES (CHINA) LTD.Inventors: Michael Pedrick, Shenghua Liu, Benxiang Wang, Ling Qiu, Zhong Luo, Weixing Fu
-
Publication number: 20230204901Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a circuit assembly. The movable assembly is configured to connect an optical element, the movable assembly is movable relative to the fixed assembly, and the optical element has an optical axis. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The circuit assembly includes a plurality of circuits and is affixed to the fixed assembly.Type: ApplicationFiled: February 23, 2023Publication date: June 29, 2023Inventors: Sin-Hong LIN, Yung-Ping YANG, Wen-Yen HUANG, Yu-Cheng LIN, Kun-Shih LIN, Chao-Chang HU, Yung-Hsien YEH, Mao-Kuo HSU, Chih-Wei WENG, Ching-Chieh HUANG, Chih-Shiang WU, Chun-Chia LIAO, Chia-Yu CHANG, Hung-Ping CHEN, Wei-Zhong LUO, Wen-Chang LIN, Shou-Jen LIU, Shao-Chung CHANG, Chen-Hsin HUANG, Meng-Ting LIN, Yen-Cheng CHEN, I-Mei HUANG, Yun-Fei WANG, Wei-Jhe SHEN
-
Publication number: 20230204903Abstract: An optical system is provided, including a first movable part for connecting an optical element; a first base, wherein the first movable part is movable relative to the first base; and a first driving assembly for driving the movable part to move relative to the first base. The optical system further includes a light quantity control mechanism for controlling the quantity of light entering the optical element. The light quantity control mechanism further includes a base seat and a light quantity control assembly at least partially movable relative to the base seat. The optical system further includes a second driving assembly for controlling the light quantity control assembly.Type: ApplicationFiled: March 3, 2023Publication date: June 29, 2023Inventors: Yi-Ho CHEN, Chen-Hsin HUANG, Chao-Chang HU, Chen-Chi KUO, Ying-Jen WANG, Ya-Hsiu WU, Sin-Jhong SONG, Che-Hsiang CHIU, Kuen-Wang TSAI, Mao-Kuo HSU, Tun-Ping HSUEH, I-Hung CHEN, Chun-Chia LIAO, Wei-Zhong LUO, Wen-Chang LIN
-
Publication number: 20230157361Abstract: A composite liquid guide cotton for a vaporizer includes: at least one heat resistant layer, at least one first isolation layer, at least one rapid liquid guide layer, and at least one second isolation layer that are stacked in sequence. The heat resistant layer contacts a heating body and comprises a high-temperature resistant material. A liquid guide rate of the rapid liquid guide layer is higher than a liquid guide rate of the first isolation layer and the second isolation layer.Type: ApplicationFiled: November 16, 2022Publication date: May 25, 2023Inventors: Junfeng LIAO, Zhanggui LAN, Zhihua WEN, Zhong LUO
-
Patent number: 11630282Abstract: An optical element driving mechanism includes a fixed portion, a movable portion, a driving assembly, and a circuit assembly. The movable portion is connected to the optical element and is movable relative to the fixed portion. The driving assembly drives the movable portion to move relative to the fixed portion. The circuit assembly is connected to the driving assembly. The driving assembly is electrically connected to an external circuit via the circuit assembly.Type: GrantFiled: October 23, 2020Date of Patent: April 18, 2023Assignee: TDK TAIWAN CORP.Inventors: Yi-Ho Chen, Chen-Hsin Huang, Chao-Chang Hu, Chen-Chi Kuo, Ying-Jen Wang, Ya-Hsiu Wu, Sin-Jhong Song, Che-Hsiang Chiu, Kuen-Wang Tsai, Mao-Kuo Hsu, Tun-Ping Hsueh, I-Hung Chen, Chun-Chia Liao, Wei-Zhong Luo, Wen-Chang Lin
-
Patent number: 11619800Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a circuit assembly. The movable assembly is configured to connect an optical element, the movable assembly is movable relative to the fixed assembly, and the optical element has an optical axis. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The circuit assembly includes a plurality of circuits and is affixed to the fixed assembly.Type: GrantFiled: October 9, 2020Date of Patent: April 4, 2023Assignee: TDK TAIWAN CORP.Inventors: Sin-Hong Lin, Yung-Ping Yang, Wen-Yen Huang, Yu-Cheng Lin, Kun-Shih Lin, Chao-Chang Hu, Yung-Hsien Yeh, Mao-Kuo Hsu, Chih-Wei Weng, Ching-Chieh Huang, Chih-Shiang Wu, Chun-Chia Liao, Chia-Yu Chang, Hung-Ping Chen, Wei-Zhong Luo, Wen-Chang Lin, Shou-Jen Liu, Shao-Chung Chang, Chen-Hsin Huang, Meng-Ting Lin, Yen-Cheng Chen, I-Mei Huang, Yun-Fei Wang, Wei-Jhe Shen
-
Publication number: 20220403851Abstract: A speed control method of direct current motor fans is revealed. The method used for starting and speed adjustment of the DC motor fan according to a temperature signal includes the following steps. First using a first voltage to start a DC motor fan during a start period and the first voltage is larger than the lowest voltage required for keeping the DC motor fan rotating. Then provide the DC motor fan with the lowest voltage which keeps the DC motor fan rotating during a low-load period after the start period. When a temperature represented by the temperature signal reaches a preset heat dissipation temperature range, a working voltage is adjusted proportionally and linearly according to the temperature signal for speed adjustment of the DC motor fan. The present method has advantages of high starting torque, noise cancellation, energy-saving, and low cost.Type: ApplicationFiled: May 20, 2022Publication date: December 22, 2022Inventors: Guo-Chuan Liu, Yong-hai Wang, Jin-zhong Luo, Tsung-Yen Tsa
-
Publication number: 20210386941Abstract: An atomizer, a liquid storage assembly thereof and an electron atomizing device are disclosed. The atomizer includes an atomizing core assembly having a liquid inlet. The liquid storage assembly includes a housing defining a liquid storage cavity and a first assembling hole, wherein the first assembling hole is configured to receive an end of an atomizing core assembly; an inner wall arranged in the liquid storage cavity, configured to sleeve around the atomizing core assembly, wherein a capillary gap is defined between the inner wall and an outer wall of the atomizing core assembly, and the capillary gap is configured to guide liquid in the liquid storage cavity to pass through the liquid inlet.Type: ApplicationFiled: April 22, 2021Publication date: December 16, 2021Inventors: Chaoyong BIE, Haidong ZHU, Aping ZHOU, Yisong WEI, Wei LI, Zhong LUO
-
Publication number: 20210255028Abstract: Weigh-in-motion sensors comprise a beam including a plate with a load-bearing surface, and a tube portion including a base wall and a cover and defining a cavity therebetween. A sensing package is disposed within the cavity and is under pre-load with the cover and the base wall. The sensing package comprises a piezoelectric element. The base wall includes an aperture extending from a mounting surface to the cavity. The aperture includes a fastener therein to secure the sensing package within the cavity. The fastener is sized having a cross-section dimension taken through a center axis of the fastener that is greater than that of a cross-section dimension of the piezoelectric element taken along the fastener center axis. In an example, the fastener has a cross-section dimension sized about 10 percent or greater in dimension than that of the respective cross-section dimension of the piezoelectric element.Type: ApplicationFiled: February 10, 2021Publication date: August 19, 2021Applicants: Measurement Specialties, Inc., Measurement Specialties (China) Ltd.Inventors: Michael Pedrick, Shenghua Liu, Benxiang Wang, Ling Qiu, Zhong Luo, Weixing Fu
-
Publication number: 20210131911Abstract: The present invention provides a test device for a quasi zero stiffness isolator, and belongs to the technical field of vibration response tests of isolators. The device comprises a negative stiffness adjusting mechanism, a positive stiffness adjusting mechanism, and a beam-damping block mechanism. The negative stiffness adjusting mechanism and the positive stiffness adjusting mechanism are connected successively and installed on a beam-mass block system. The test device for the quasi zero stiffness isolator can realize smooth longitudinal vibration of a tested system, and can also flexibly adjust the positive stiffness value and the negative stiffness value of an overall mechanism. The present invention is suitable for a vibration model test of the quasi zero stiffness isolator, and solves the problems of complicated use method, impossibility of flexible adjustment of mechanism stiffness and complicated replacement process of stiffness elements in the device for the existing quasi zero stiffness isolator.Type: ApplicationFiled: September 4, 2019Publication date: May 6, 2021Inventors: Zhong LUO, Yue QIU, Yunpeng ZHU, Guixin HAN, Fei WANG, Qingwen YU
-
Publication number: 20210124144Abstract: An optical element driving mechanism includes a fixed portion, a movable portion, a driving assembly, and a circuit assembly. The movable portion is connected to the optical element and is movable relative to the fixed portion. The driving assembly drives the movable portion to move relative to the fixed portion. The circuit assembly is connected to the driving assembly. The driving assembly is electrically connected to an external circuit via the circuit assembly.Type: ApplicationFiled: October 23, 2020Publication date: April 29, 2021Inventors: Yi-Ho CHEN, Chen-Hsin HUANG, Chao-Chang HU, Chen-Chi KUO, Ying-Jen WANG, Ya-Hsiu WU, Sin-Jhong SONG, Che-Hsiang CHIU, Kuen-Wang TSAI, Mao-Kuo HSU, Tun-Ping HSUEH, I-Hung CHEN, Chun-Chia LIAO, Wei-Zhong LUO, Wen-Chang LIN
-
Publication number: 20210109314Abstract: An optical element driving mechanism is provided and includes a fixed assembly, a movable assembly, a driving assembly and a circuit assembly. The movable assembly is configured to connect an optical element, the movable assembly is movable relative to the fixed assembly, and the optical element has an optical axis. The driving assembly is configured to drive the movable assembly to move relative to the fixed assembly. The circuit assembly includes a plurality of circuits and is affixed to the fixed assembly.Type: ApplicationFiled: October 9, 2020Publication date: April 15, 2021Inventors: Sin-Hong LIN, Yung-Ping YANG, Wen-Yen HUANG, Yu-Cheng LIN, Kun-Shih LIN, Chao-Chang HU, Yung-Hsien YEH, Mao-Kuo HSU, Chih-Wei WENG, Ching-Chieh HUANG, Chih-Shiang WU, Chun-Chia LIAO, Chia-Yu CHANG, Hung-Ping CHEN, Wei-Zhong LUO, Wen-Chang LIN, Shou-Jen LIU, Shao-Chung CHANG, Chen-Hsin HUANG, Meng-Ting LIN, Yen-Cheng CHEN, I-Mei HUANG, Yun-Fei WANG, Wei-Jhe SHEN
-
Publication number: 20210009422Abstract: A carbon purification method (10) and a carbon product are provided. The carbon purification method (10) includes providing (12) a carbon product having a catalyst content and/or impurities, performing (14) a hydrothermal acid digestion operation on the carbon product in an acid to dissolve the catalyst content and/or the impurities, and performing (16) a filtering operation to separate the dissolved catalyst content and/or the dissolved impurities from the carbon product.Type: ApplicationFiled: March 25, 2019Publication date: January 14, 2021Applicant: Agency for Science, Technology and ResearchInventors: Ming Lin, Yuanting Karen Tang, Hui Teng Casandra Chai, Ziyi Zhong, Ji Zhong Luo