Patents by Inventor Zhongkai Shi

Zhongkai Shi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160175428
    Abstract: Disclosed and claimed is a method of non-invasive immunization in an animal and/or a method of inducing a systemic immune response or systemic therapeutic response to a gene product. The skin of the animal is contacted with a non-replicative vector chosen from the group of bacterium, virus, and fungus, wherein the vector comprises and expresses a nucleic acid molecule encoding the gene product, in an amount effective to induce the response.
    Type: Application
    Filed: December 28, 2015
    Publication date: June 23, 2016
    Inventors: De-Chu C. Tang, Zhongkai Shi, Kent Rigby van Kampen
  • Patent number: 9248177
    Abstract: Disclosed and claimed is a method of non-invasive immunization in an animal and/or a method of inducing a systemic immune response or systemic therapeutic response to a gene product. The skin of the animal is contacted with a non-replicative vector chosen from the group of bacterium, virus, and fungus, wherein the vector comprises and expresses a nucleic acid molecule encoding the gene product, in an amount effective to induce the response.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: February 2, 2016
    Assignee: UAB Research Foundation
    Inventors: De-Chu C. Tang, Zhongkai Shi, Kent Rigby van Kampen
  • Publication number: 20140112951
    Abstract: Disclosed and claimed is a method of non-invasive immunization in an animal and/or a method of inducing a systemic immune response or systemic therapeutic response to a gene product. The skin of the animal is contacted with a non-replicative vector chosen from the group of bacterium, virus, and fungus, wherein the vector comprises and expresses a nucleic acid molecule encoding the gene product, in an amount effective to induce the response.
    Type: Application
    Filed: August 7, 2013
    Publication date: April 24, 2014
    Applicant: UAB RESEARCH FOUNDATION
    Inventors: De-Chu C. Tang, Zhongkai Shi, Kent Rigby van Kampen
  • Patent number: 6716823
    Abstract: Disclosed and claimed are methods of non-invasive genetic immunization in an animal and/or methods of inducing a systemic immune or therapeutic response in an animal, products therefrom and uses for the methods and products therefrom. The methods can include contacting skin of the animal with a vector in an amount effective to induce the systemic immune or therapeutic response in the animal. The vector can include and express an exogenous nucleic acid molecule encoding an epitope or gene product of interest. The systemic immune response can be to or from the epitope or gene product. The nucleic acid molecule can encode an epitope of interest and/or an antigen of interest and/or a nucleic acid molecule that stimulates and/or modulates an immunological response and/or stimulates and/or modulates expression, e.g., transcription and/or translation, such as transcription and/or translation of an endogenous and/or exogenous nucleic acid molecule; e.g.
    Type: Grant
    Filed: March 23, 2000
    Date of Patent: April 6, 2004
    Assignee: The UAB Research Foundation
    Inventors: De-chu C. Tang, Donald H. Marks, David T. Curiel, Zhongkai Shi
  • Patent number: 6706693
    Abstract: The present invention provides a method of inducing an immune response in a non-invasive mode, comprising the step of: contacting skin of an individual in need of such treatment topically by applying to said skin an immunologically effective concentration of a genetic vector encoding a gene of interest. Also provided is a method of inducing an anti-tumor immune response in an animal in need of such treatment, comprising the step of: contacting skin of said animal topically by applying to said skin an immunologically effective concentration of a vector encoding a gene which encodes an antigen which induces an anti-tumor effect in said animal following administration. The genetic vector may include adenovirus recombinants, DNA/adenovirus complexes, DNA/liposome complexes, or any other vectors capable of expressing transgenes. Topical application of geneticvectors may preferably include a device as designed therein.
    Type: Grant
    Filed: January 3, 2000
    Date of Patent: March 16, 2004
    Assignee: The UAB Research Foundation
    Inventors: De-chu Tang, Donald H. Marks, David T. Curiel, Zhongkai Shi
  • Publication number: 20040009936
    Abstract: Disclosed and claimed are methods of non-invasive immunization and drug delivery in an animal and/or methods of inducing a systemic immune or therapeutic response in an animal following topical application of non-replicative vectors, products therefrom and uses for the methods and products therefrom. Also disclosed and claimed are methods of non-invasive immunization and drug delivery in an animal and/or a method of inducing a systemic immune response or systemic therapeutic response to a gene product comprising contacting skin of the animal with cell-free extracts in an amount effective to induce the response, wherein the extracts are prepared by filtration of disrupted cells, wherein the cell comprises and expresses a nucleic acid molecule. Preferably, the cell is temporarily disrupted by sonication, remaining intact and viable after the sonication.
    Type: Application
    Filed: January 16, 2003
    Publication date: January 15, 2004
    Inventors: De-chu C. Tang, Zhongkai Shi, Kent Rigby van Kampen
  • Publication number: 20030125278
    Abstract: The present invention relates to techniques of skin-targeted non-invasive gene delivery to elicit immune responses and uses thereof. The invention further relates to methods of non-invasive genetic immunization in an animal and/or methods of inducing a systemic immune or therapeutic response in an animal following topical application of vectors, products therefrom and uses for the methods and products therefrom. The methods can include contacting skin of the animal with a vector in an amount effective to induce the systemic immune or therapeutic response in the animal as well as such a method further including disposing the vector in and/or on the delivery device. The vector can be gram negative bacteria, preferably Salmonella and most preferably Salmonella typhimurium.
    Type: Application
    Filed: January 18, 2002
    Publication date: July 3, 2003
    Inventors: De-Chu C. Tang, Donald H. Marks, David T. Curiel, Zhongkai Shi, Kent Rigby van Kampen
  • Publication number: 20030045492
    Abstract: The present invention relates to techniques of skin-targeted non-invasive gene delivery to elicit immune responses and uses thereof. The invention further relates to methods of non-invasive genetic immunization in an animal and/or methods of inducing a systemic immune or therapeutic response in an animal following topical application of vectors, products therefrom and uses for the methods and products therefrom. The methods can include contacting skin of the animal with a vector in an amount effective to induce the systemic immune or therapeutic response in the animal as well as such a method further including disposing the vector in and/or on the delivery device. The vector can be gram negative bacteria, preferably Salmonella and most preferably Salmonella typhimurium.
    Type: Application
    Filed: April 5, 2002
    Publication date: March 6, 2003
    Inventors: De-Chu C. Tang, Zhongkai Shi, Kent Rigby van Kampen
  • Patent number: 6348450
    Abstract: Disclosed and claimed are methods of non-invasive genetic immunization in an animal and/or methods of inducing a systemic immune or therapeutic response in an animal, products therefrom and uses for the methods and products therefrom. The methods can include contacting skin of the animal with a vector in an amount effective to induce the systemic immune or therapeutic response in the animal. The vector can include and express an exogenous nucleic acid molecule encoding an epitope or gene product of interest. The systemic immune response can be to or from the epitope or gene product. The nucleic acid molecule can encode an epitope of interest and/or an antigen of interest and/or a nucleic acid molecule that stimulates and/or modulates an immunological response and/or stimulates and/or modulates expression, e.g., transcription and/or translation, such as transcription and/or translation of an endogenous and/or exogenous nucleic acid molecule; e.g.
    Type: Grant
    Filed: May 3, 2000
    Date of Patent: February 19, 2002
    Assignee: The UAB Research Foundation
    Inventors: De-chu C. Tang, Donald H. Marks, David T. Curiel, Zhongkai Shi, Kent Rigby van Kampen