Patents by Inventor Zhongping Liao
Zhongping Liao has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11670712Abstract: A semiconductor device structure can include: (i) a first semiconductor layer having dopants of a first type; (ii) a second semiconductor layer having the dopants of the first type on the first semiconductor layer, where the second semiconductor layer is lightly-doped relative to the first semiconductor layer; (iii) first and second column regions spaced from each other in the second semiconductor layer, where the second column region is arranged between two of the first column regions; and (iv) first and second first sub-column regions laterally arranged in the second column region, where a doping concentration of the first sub-column region decreases in a direction from the first column region to the second sub-column region, and where a doping concentration of the second sub-column region decreases in a direction from the first column region to the first sub-column region.Type: GrantFiled: July 2, 2021Date of Patent: June 6, 2023Assignee: Silergy Semiconductor Technology (Hangzhou) LTDInventor: Zhongping Liao
-
Publication number: 20210336053Abstract: A semiconductor device structure can include: (i) a first semiconductor layer having dopants of a first type; (ii) a second semiconductor layer having the dopants of the first type on the first semiconductor layer, where the second semiconductor layer is lightly-doped relative to the first semiconductor layer; (iii) first and second column regions spaced from each other in the second semiconductor layer, where the second column region is arranged between two of the first column regions; and (iv) first and second first sub-column regions laterally arranged in the second column region, where a doping concentration of the first sub-column region decreases in a direction from the first column region to the second sub-column region, and where a doping concentration of the second sub-column region decreases in a direction from the first column region to the first sub-column region.Type: ApplicationFiled: July 2, 2021Publication date: October 28, 2021Inventor: Zhongping Liao
-
Patent number: 11088274Abstract: A semiconductor device structure can include: (i) a first semiconductor layer having dopants of a first type; (ii) a second semiconductor layer having the dopants of the first type on the first semiconductor layer, where the second semiconductor layer is lightly-doped relative to the first semiconductor layer; (iii) first and second column regions spaced from each other in the second semiconductor layer, where the second column region is arranged between two of the first column regions; and (iv) first and second first sub-column regions laterally arranged in the second column region, where a doping concentration of the first sub-column region decreases in a direction from the first column region to the second sub-column region, and where a doping concentration of the second sub-column region decreases in a direction from the first column region to the first sub-column region.Type: GrantFiled: September 24, 2015Date of Patent: August 10, 2021Assignee: Silergy Semiconductor Technology (Hangzhou) LTDInventor: Zhongping Liao
-
Patent number: 10686058Abstract: A method of manufacturing a trench MOSFET can include: forming an epitaxial semiconductor layer having a first doping type on a semiconductor substrate; forming a trench extending from a first surface of the epitaxial semiconductor layer to an internal portion of the epitaxial semiconductor layer; forming a first insulating layer and a shield conductor occupying a lower portion of said trench, where the first insulating layer is located on a lower sidewall surface and a bottom surface of the trench and separates the shield conductor from the epitaxial semiconductor layer; forming a second insulating layer covering a top surface of said shield conductor, where the second insulating layer is patterned by using a hard mask; forming a gate dielectric layer and a gate conductor occupying an upper portion of the trench; and forming a body region, a source region, and a drain electrode.Type: GrantFiled: October 2, 2018Date of Patent: June 16, 2020Assignee: Silergy Semiconductor Technology (Hangzhou) LTDInventors: Jinyong Cai, Zhongping Liao
-
Patent number: 10573712Abstract: The present disclosure relates to a super-junction structure, a method for manufacturing the super-junction structure and a semiconductor device including the super-junction structure. The super-junction structure includes an epitaxy layer of a first doping type and a plurality of first pillar regions of a second doping type which are formed in the epitaxy layer and are separated from each other. Each of the first pillar regions has a doping concentration that decreases from bottom to top. A portion of the epitaxy layer between adjacent ones of the first pillar regions is a second pillar region. The first pillar regions and the second pillar region are arranged alternatively to form the super-junction structure. The first pillar regions are characterized by the doping concentration that decreases from bottom to top so that the super-junction structure has a relatively high breakdown voltage and a relatively low on resistance.Type: GrantFiled: January 17, 2018Date of Patent: February 25, 2020Assignee: SILERGY SEMICONDUCTOR TECHNOLOGY (HANGZHOU) LTD.Inventors: He Sun, Zhongping Liao
-
Patent number: 10290715Abstract: A semiconductor device can include: a substrate having a semiconductor material; a plurality of semiconductor layers of a first conductivity type, and being sequentially stacked on the substrate, where a doping concentration of the semiconductor layers successively increases from bottom to top; a trench that extends from the surface of a topmost semiconductor layer into a bottommost semiconductor layer of the semiconductor layers; a plurality of field plates that correspond to the semiconductor layers, each field plate being located in a portion of the trench that corresponds to one of the semiconductor layers; and a trench pad located in a bottom and a sidewall of the trench, and being filled each space between two adjacent field plates, where the thickness of the trench pad between each field plate and corresponding semiconductor layer sequentially decreases from the bottom to the top.Type: GrantFiled: January 15, 2018Date of Patent: May 14, 2019Assignee: Silergy Semiconductor Technology (Hangzhou) LTDInventors: Jinyong Cai, Zhongping Liao
-
Publication number: 20190109216Abstract: A method of manufacturing a trench MOSFET can include: forming an epitaxial semiconductor layer having a first doping type on a semiconductor substrate; forming a trench extending from a first surface of the epitaxial semiconductor layer to an internal portion of the epitaxial semiconductor layer; forming a first insulating layer and a shield conductor occupying a lower portion of said trench, where the first insulating layer is located on a lower sidewall surface and a bottom surface of the trench and separates the shield conductor from the epitaxial semiconductor layer; forming a second insulating layer covering a top surface of said shield conductor, where the second insulating layer is patterned by using a hard mask; forming a gate dielectric layer and a gate conductor occupying an upper portion of the trench; and forming a body region, a source region, and a drain electrode.Type: ApplicationFiled: October 2, 2018Publication date: April 11, 2019Inventors: Jinyong Cai, Zhongping Liao
-
Publication number: 20180212027Abstract: A semiconductor device can include: a substrate having a semiconductor material; a plurality of semiconductor layers of a first conductivity type, and being sequentially stacked on the substrate, where a doping concentration of the semiconductor layers successively increases from bottom to top; a trench that extends from the surface of a topmost semiconductor layer into a bottommost semiconductor layer of the semiconductor layers; a plurality of field plates that correspond to the semiconductor layers, each field plate being located in a portion of the trench that corresponds to one of the semiconductor layers; and a trench pad located in a bottom and a sidewall of the trench, and being filled each space between two adjacent field plates, where the thickness of the trench pad between each field plate and corresponding semiconductor layer sequentially decreases from the bottom to the top.Type: ApplicationFiled: January 15, 2018Publication date: July 26, 2018Inventors: Jinyong Cai, Zhongping Liao
-
Publication number: 20180158900Abstract: The present disclosure relates to a super-junction structure, a method for manufacturing the super-junction structure and a semiconductor device including the super-junction structure. The super-junction structure includes an epitaxy layer of a first doping type and a plurality of first pillar regions of a second doping type which are formed in the epitaxy layer and are separated from each other. Each of the first pillar regions has a doping concentration that decreases from bottom to top. A portion of the epitaxy layer between adjacent ones of the first pillar regions is a second pillar region. The first pillar regions and the second pillar region are arranged alternatively to form the super-junction structure. The first pillar regions are characterized by the doping concentration that decreases from bottom to top so that the super-junction structure has a relatively high breakdown voltage and a relatively low on resistance.Type: ApplicationFiled: January 17, 2018Publication date: June 7, 2018Inventors: He Sun, Zhongping Liao
-
Patent number: 9905636Abstract: The present disclosure relates to a super-junction structure, a method for manufacturing the super-junction structure and a semiconductor device including the super-junction structure. The super-junction structure includes an epitaxy layer of a first doping type and a plurality of first pillar regions of a second doping type which are formed in the epitaxy layer and are separated from each other. Each of the first pillar regions has a doping concentration that decreases from bottom to top. A portion of the epitaxy layer between adjacent ones of the first pillar regions is a second pillar region. The first pillar regions and the second pillar region are arranged alternatively to form the super-junction structure. The first pillar regions are characterized by the doping concentration that decreases from bottom to top so that the super-junction structure has a relatively high breakdown voltage and a relatively low on resistance.Type: GrantFiled: September 1, 2015Date of Patent: February 27, 2018Assignee: SILERGY SEMICONDUCTOR TECHNOLOGY (HANGZHOU) LTD.Inventors: He Sun, Zhongping Liao
-
Publication number: 20160118493Abstract: A semiconductor device structure can include: (i) a first semiconductor layer having dopants of a first type; (ii) a second semiconductor layer having the dopants of the first type on the first semiconductor layer, where the second semiconductor layer is lightly-doped relative to the first semiconductor layer; (iii) first and second column regions spaced from each other in the second semiconductor layer, where the second column region is arranged between two of the first column regions; and (iv) first and second first sub-column regions laterally arranged in the second column region, where a doping concentration of the first sub-column region decreases in a direction from the first column region to the second sub-column region, and where a doping concentration of the second sub-column region decreases in a direction from the first column region to the first sub-column region.Type: ApplicationFiled: September 24, 2015Publication date: April 28, 2016Inventor: Zhongping Liao
-
Publication number: 20160064478Abstract: The present disclosure relates to a super-junction structure, a method for manufacturing the super-junction structure and a semiconductor device including the super-junction structure. The super-junction structure includes an epitaxy layer of a first doping type and a plurality of first pillar regions of a second doping type which are formed in the epitaxy layer and are separated from each other. Each of the first pillar regions has a doping concentration that decreases from bottom to top. A portion of the epitaxy layer between adjacent ones of the first pillar regions is a second pillar region. The first pillar regions and the second pillar region are arranged alternatively to form the super-junction structure. The first pillar regions are characterized by the doping concentration that decreases from bottom to top so that the super-junction structure has a relatively high breakdown voltage and a relatively low on resistance.Type: ApplicationFiled: September 1, 2015Publication date: March 3, 2016Inventors: He Sun, Zhongping Liao
-
Patent number: 9245977Abstract: In one embodiment, a method of making a VDMOS transistor can include: (i) etching an oxide layer formed on a surface of an epitaxial structure to define an active region of the VDMOS; (ii) injecting and diffusing a first dopant into the active region to form a doping region; (iii) forming a gate oxide layer on the active region; (iv) depositing polysilicon on the gate oxide layer, and etching the polysilicon to form a gate; (v) injecting a second dopant at an end of the gate to form a source, where the first and second dopants have opposite types; (vi) forming a contact hole adjacent to the gate, and injecting a third dopant into the contact hole, where the first and third dopants have a same type; (vii) depositing and etching aluminum on a chip surface; and (viii) coating the aluminum and chip surface with a passivation layer.Type: GrantFiled: February 19, 2014Date of Patent: January 26, 2016Assignee: Silergy Semiconductor Technology (Hangzhou) LTDInventor: Zhongping Liao
-
Patent number: 9018062Abstract: In one embodiment, a method of making a super-junction MOS transistor in a wafer can include: (i) forming a first doping layer having a high doping concentration; (ii) forming a second doping layer on the first doping layer, wherein a doping concentration of the second doping layer is less than a doping concentration of the first doping layer; (iii) forming a third doping layer on the second doping layer, wherein the third doping layer comprises an intrinsic layer; (iv) etching through the third doping layer and partially through the second doping layer to form trenches; and (v) filling the trenches to form pillar structures.Type: GrantFiled: February 3, 2014Date of Patent: April 28, 2015Assignee: Silergy Semiconductor Technology (Hangzhou) Ltd.Inventor: Zhongping Liao
-
Patent number: 8963217Abstract: In one embodiment, a wafer structure configured for a power device can include: (i) a first doping layer having a high doping concentration; (ii) a second doping layer on the first doping layer, where a doping concentration of the second doping layer is less than the high doping concentration; and (iii) a third doping layer on the second doping layer, where a doping concentration of the third doping layer is greater than the doping concentration of the second doping layer. For example, the power device can be part of a switching voltage regulator.Type: GrantFiled: February 3, 2014Date of Patent: February 24, 2015Assignee: Silergy Semiconductor Technology (Hangzhou) LtdInventor: Zhongping Liao
-
Publication number: 20140284703Abstract: In one embodiment, a method of making a VDMOS transistor can include: (i) etching an oxide layer formed on a surface of an epitaxial structure to define an active region of the VDMOS; (ii) injecting and diffusing a first dopant into the active region to form a doping region; (iii) forming a gate oxide layer on the active region; (iv) depositing polysilicon on the gate oxide layer, and etching the polysilicon to form a gate; (v) injecting a second dopant at an end of the gate to form a source, where the first and second dopants have opposite types; (vi) forming a contact hole adjacent to the gate, and injecting a third dopant into the contact hole, where the first and third dopants have a same type; (vii) depositing and etching aluminum on a chip surface; and (viii) coating the aluminum and chip surface with a passivation layer.Type: ApplicationFiled: February 19, 2014Publication date: September 25, 2014Applicant: Silergy Semiconductor Technology (Hangzhou) LTDInventor: Zhongping Liao
-
Publication number: 20140252554Abstract: In one embodiment, a wafer structure configured for a power device can include: (i) a first doping layer having a high doping concentration; (ii) a second doping layer on the first doping layer, where a doping concentration of the second doping layer is less than the high doping concentration; and (iii) a third doping layer on the second doping layer, where a doping concentration of the third doping layer is greater than the doping concentration of the second doping layer. For example, the power device can be part of a switching voltage regulator.Type: ApplicationFiled: February 3, 2014Publication date: September 11, 2014Applicant: Silergy Semiconductor Technology (Hangzhou) LTDInventor: Zhongping Liao
-
Publication number: 20140252456Abstract: In one embodiment, a semiconductor device can include: (i) a first doped pillar region having a doping concentration that sequentially increases from bottom to top in a vertical direction; (ii) second doped pillar regions arranged on either side of the first doped pillar region in a horizontal direction; and (iii) where sidewalls of the second doped pillar regions form sides of an inverted trapezoidal structure.Type: ApplicationFiled: February 5, 2014Publication date: September 11, 2014Applicant: Silergy Semiconductor Technology (Hangzhou) LTDInventor: Zhongping Liao
-
Publication number: 20140252553Abstract: In one embodiment, a method of making a super-junction MOS transistor in a wafer can include: (i) forming a first doping layer having a high doping concentration; (ii) forming a second doping layer on the first doping layer, wherein a doping concentration of the second doping layer is less than a doping concentration of the first doping layer; (iii) forming a third doping layer on the second doping layer, wherein the third doping layer comprises an intrinsic layer; (iv) etching through the third doping layer and partially through the second doping layer to form trenches; and (v) filling the trenches to form pillar structures.Type: ApplicationFiled: February 3, 2014Publication date: September 11, 2014Applicant: Silergy Semiconductor Technology (Hangzhou) LTDInventor: Zhongping Liao