Patents by Inventor Zhongzhi Tang

Zhongzhi Tang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240132391
    Abstract: A laminate includes a first glass article having a first thickness, a first annealing point (TA1), and a first softening point (TS1), a second glass article having a second thickness, a second annealing point (TA2), and a second softening point (TS2), and an interlayer disposed between the first glass article and the second glass article. The first thickness is greater than the second thickness, the second annealing point (TA2) is less than or equal to the first annealing point (TA1), and the second softening point (TS2) is greater than the first softening point (TS1).
    Type: Application
    Filed: December 29, 2023
    Publication date: April 25, 2024
    Inventors: Douglas Dale Bressler, Rebecca Marie Connors, Sinue Gomez, Timothy Michael Gross, Shane David Seyler, Jason Scott Stewart, Zhongzhi Tang, Lisa Anne Tietz Moore
  • Publication number: 20240090151
    Abstract: A method for making a cover plate, a cover plate and an electronic device. The method for making the cover plate includes: disposing a light-shielding material on a periphery of a first light-transmitting material and a periphery of a second light-transmitting material; squeezing the first light-transmitting material, the second light-transmitting material and the light-shielding material to obtain a composite rod material; and treating the composite rod material to obtain the cover plate.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Applicant: GUANGDONG OPPO MOBILE TELECOMMUNICATIONS CORP., LTD.
    Inventors: Feng XU, Zimei YANG, Zhongzhi TANG, Jianwen LIN, Yingchao WU
  • Publication number: 20240083810
    Abstract: The present disclosure relates to a glass-ceramic dental prosthesis and a method for preparing the same. The glass-ceramic dental prosthesis has a metal ion-reinforced surface. An area of the metal ion-reinforced surface is smaller than an entire surface area of the glass-ceramic dental prosthesis. A concentration of a reinforcing metal ion on the metal ion-reinforced surface is C1 %. A concentration of the reinforcing metal ion on an other surface region of the glass-ceramic dental prosthesis is C2 %. C1 is greater than C2.
    Type: Application
    Filed: June 2, 2023
    Publication date: March 14, 2024
    Inventors: Zhongzhi TANG, Honglin LIU
  • Patent number: 11897804
    Abstract: A laminate includes a first glass article having a first thickness, a first annealing point, and a first softening point, a second glass article having a second thickness, a second annealing point, and a second softening point, and an interlayer disposed between the first glass article and the second glass article. The first thickness is greater than the second thickness, the second annealing point is less than or equal to the first annealing point, and the second softening point is greater than the first softening point.
    Type: Grant
    Filed: April 12, 2019
    Date of Patent: February 13, 2024
    Assignee: Corning Incorporated
    Inventors: Douglas Dale Bressler, Rebecca Marie Connors, Sinue Gomez, Timothy Michael Gross, Shane David Seyler, Jason Scott Stewart, Zhongzhi Tang, Lisa Anne Tietz Moore
  • Patent number: 11878936
    Abstract: A glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t) of about 3 millimeters or less (e.g., about 1 millimeter or less), and a stress profile, wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than about 0.7·t to t, comprise a tangent with a slope having an absolute value greater than about 0.1 MPa/micrometer. In some embodiments, the glass-based article includes a non-zero metal oxide concentration that varies along at least a portion of the thickness (e.g., 0·t to about 0.3·t) and a maximum central tension of less than about 71.5/?(t) (MPa). In some embodiments, the concentration of metal oxide or alkali metal oxide decreases from the first surface to a point between the first surface and the second surface and increases from the point to the second surface. The concentration of the metal oxide may be about 0.05 mol % or greater or about 0.
    Type: Grant
    Filed: September 27, 2022
    Date of Patent: January 23, 2024
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Guangli Hu, Rostislav Vatchev Roussev, Charlene Marie Smith, Zhongzhi Tang, Steven Alvin Tietje
  • Publication number: 20230348322
    Abstract: Embodiments of a glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t) of about 3 millimeters or less (e.g., about 1 millimeter or less), and a stress profile, wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than about 0.7·t up to t, comprise a tangent with a slope having an absolute value greater than about 0.1 MPa/micrometer, are disclosed. In some embodiments, the glass-based article includes a non-zero metal oxide concentration that varies along at least a portion of the thickness (e.g., 0·t to about 0.3·t) and a maximum central tension in the range from about 80 MPa to about 100 MPa. In some embodiments, the concentration of metal oxide or alkali metal oxide decreases from the first surface to a value at a point between the first surface and the second surface and increases from the value to the second surface. The concentration of the metal oxide may be about 0.
    Type: Application
    Filed: June 21, 2023
    Publication date: November 2, 2023
    Inventors: Matthew John Dejneka, Sinue Gomez, Guangli Hu, Charlene Marie Smith, Zhongzhi Tang, Steven Alvin Tietje
  • Publication number: 20230211585
    Abstract: Embodiments of this disclosure pertain to a strengthened glass article including a first surface and a second surface opposing the first surface defining a thickness (t) of about less than about 1.1 mm, a compressive stress layer extending from the first surface to a depth of compression (DOC) of about 0.1·t or greater, such that when the glass article fracture, it breaks into a plurality of fragments having an aspect ratio of about 5 or less. In some embodiments, the glass article exhibits an equibiaxial flexural strength of about 20 kgf or greater, after being abraded with 90-grit SiC particles at a pressure of 25 psi for 5 seconds. Devices incorporating the glass articles described herein and methods for making the same are also disclosed.
    Type: Application
    Filed: March 13, 2023
    Publication date: July 6, 2023
    Inventors: Steven Edward DeMartino, Michelle Dawn Fabian, Jeffrey Todd Kohli, Jennifer Lynn Lyon, Charlene Marie Smith, Zhongzhi Tang
  • Patent number: 11691913
    Abstract: Embodiments of a glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t) of about 3 millimeters or less (e.g., about 1 millimeter or less), and a stress profile, wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than about 0.7·t up to t, comprise a tangent with a slope having an absolute value greater than about 0.1 MPa/micrometer, are disclosed. In some embodiments, the glass-based article includes a non-zero metal oxide concentration that varies along at least a portion of the thickness (e.g., 0·t to about 0.3·t) and a maximum central tension in the range from about 80 MPa to about 100 MPa. In some embodiments, the concentration of metal oxide or alkali metal oxide decreases from the first surface to a value at a point between the first surface and the second surface and increases from the value to the second surface. The concentration of the metal oxide may be about 0.
    Type: Grant
    Filed: March 16, 2022
    Date of Patent: July 4, 2023
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Sinue Gomez, Guangli Hu, Charlene Marie Smith, Zhongzhi Tang, Steven Alvin Tietje
  • Publication number: 20230174422
    Abstract: A strengthened glass having a stress profile that differs from error-function and parabolic profiles. Stress relaxation and thermal annealing/diffusion effects, which occur at longer ion exchange and/or anneal times increase the depth of compression of the surface layer. A method of achieving these effects is also provided.
    Type: Application
    Filed: February 2, 2023
    Publication date: June 8, 2023
    Inventors: Matthew John Dejneka, Pascale Oram, Rostislav Vatchev Roussev, Vitor Marino Schneider, Charlene Marie Smith, Zhongzhi Tang
  • Publication number: 20230097645
    Abstract: A glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t) of about 3 millimeters or less (e.g., about 1 millimeter or less), and a stress profile, wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than about 0.7·t to t, comprise a tangent with a slope having an absolute value greater than about 0.1 MPa/micrometer. In some embodiments, the glass-based article includes a non-zero metal oxide concentration that varies along at least a portion of the thickness (e.g., 0·t to about 0.3·t) and a maximum central tension of less than about 71.5/?(t) (MPa). In some embodiments, the concentration of metal oxide or alkali metal oxide decreases from the first surface to a point between the first surface and the second surface and increases from the point to the second surface. The concentration of the metal oxide may be about 0.05 mol % or greater or about 0.
    Type: Application
    Filed: September 27, 2022
    Publication date: March 30, 2023
    Inventors: Timothy Michael Gross, Guangli Hu, Rostislav Vatchev Roussev, Charlene Marie Smith, Zhongzhi Tang, Steven Alvin Tietje
  • Patent number: 11613103
    Abstract: Embodiments of this disclosure pertain to a strengthened glass article including a first surface and a second surface opposing the first surface defining a thickness (t) of about less than about 1.1 mm, a compressive stress layer extending from the first surface to a depth of compression (DOC) of about 0.1·t or greater, such that when the glass article fracture, it breaks into a plurality of fragments having an aspect ratio of about 5 or less. In some embodiments, the glass article exhibits an equibiaxial flexural strength of about 20 kgf or greater, after being abraded with 90-grit SiC particles at a pressure of 25 psi for 5 seconds. Devices incorporating the glass articles described herein and methods for making the same are also disclosed.
    Type: Grant
    Filed: February 28, 2020
    Date of Patent: March 28, 2023
    Assignee: Corning Incorporated
    Inventors: Steven Edward DeMartino, Michelle Dawn Fabian, Jeffrey Todd Kohli, Jennifer Lynn Lyon, Charlene Marie Smith, Zhongzhi Tang
  • Patent number: 11584684
    Abstract: A strengthened glass having a stress profile that differs from error-function and parabolic profiles. Stress relaxation and thermal annealing/diffusion effects, which occur at longer ion exchange and/or anneal times increase the depth of compression of the surface layer. A method of achieving these effects is also provided.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: February 21, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Matthew John Dejneka, Pascale Oram, Rostislav Vatchev Roussev, Vitor Marino Schneider, Charlene Marie Smith, Zhongzhi Tang
  • Patent number: 11572302
    Abstract: A glass pharmaceutical package having a glass composition of 68.00 mol % to 81.00 mol % SiO2, from 4.00 mol % to 11.00 mol % Al2O3, from 0.10 mol % to 16.00 mol % Li2O, from 0.10 mol % to 12.00 mol % Na2O, from 0.00 mol % to 5.00 mol % K2O, from 0.10 mol % to 8.00 mol % MgO, from 0.10 mol % to 5.00 mol % CaO, from 0.00 mol % to 0.20 mol % fining agent. The glass pharmaceutical package is delamination resistant, and has class 1 or class 2 chemical durability in acid, base, and water. The glass pharmaceutical package may have a surface compressive stress of at least 350 MPa.
    Type: Grant
    Filed: April 1, 2020
    Date of Patent: February 7, 2023
    Assignee: CORNING INCORPORATED
    Inventors: Steven Edward DeMartino, Nadja Teresia Lönnroth, Lina Ma, Robert Anthony Schaut, Charlene Marie Smith, Zhongzhi Tang, Jamie Todd Westbrook
  • Patent number: 11567382
    Abstract: A terminal is provided, and the terminal includes a housing, a front screen, a circuit board, and a power supply. The front screen is disposed on the housing, both the circuit board and the power supply are disposed inside the housing, and the power supply is connected to the circuit board. The front screen includes a toughened glass, a color changing layer, and a display screen that are sequentially stacked. The color changing layer is connected to the circuit board, and can change a color when receiving power supply. The color changing layer is disposed in the front screen, and may change a color when receiving the power supply from the circuit board. The color changing layer is configured to change only a color and cannot display a complex image, and power consumption of the color changing layer is far less than that of the display screen.
    Type: Grant
    Filed: September 17, 2021
    Date of Patent: January 31, 2023
    Assignee: HUAWEI TECHNOLOGIES CO., LTD.
    Inventors: Zhongzhi Tang, Zhen He, Ming Cai, Heshuai Si, Banghong Hu
  • Publication number: 20230015444
    Abstract: A glass-based article may include from about 45 mol. % to about 80 mol. % SiO2; from about 0 mol. % to about 10 mol. % Na2O; less than about 5 mol. % K2O; a non-zero amount of Al2O; and. an amorphous phase and a crystalline phase. The article may further in include a stress profile comprising a surface compressive stress (CS) and a maximum central tension (CT). A ratio of Li2O (mol. %) to R2O (mol. %) in the article is from about 0.5 to about 1, where R2O is the sum of Li2O, Na2O, and K2O in the article. CT may be greater than or equal to about 50 MPa and less than about 100 MPa. CS may be greater than 2.0·CT. A depth of compression (DOC) of the stress profile may be greater than or equal to 0.14·t and less than or equal to 0.25·t, where t is the thickness of the article.
    Type: Application
    Filed: August 30, 2022
    Publication date: January 19, 2023
    Applicant: CORNING INCORPORATED
    Inventors: Guangli Hu, Charlene Marie Smith, Zhongzhi Tang, Steven Alvin Tietje
  • Publication number: 20220356113
    Abstract: A pre-fractured glass laminate that includes: a glass substrate comprising a thickness, a pair of opposed primary surfaces, a compressive stress region, a central tension (CT) region and a plurality of cracks; a second phase comprising a polymer or a cured resin within the plurality of cracks; a backing layer; and an interlayer disposed between one of the primary surfaces of the substrate and the backing layer. The compressive stress region extends from each of the primary surfaces to a first selected depth in the substrate. Further, the plurality of cracks is located in the CT region.
    Type: Application
    Filed: July 22, 2022
    Publication date: November 10, 2022
    Inventors: Matthew John Dejneka, Zhongzhi Tang
  • Patent number: 11472734
    Abstract: A glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t) of about 3 millimeters or less (e.g., about 1 millimeter or less), and a stress profile, wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than about 0.7·t to t, comprise a tangent with a slope having an absolute value greater than about 0.1 MPa/micrometer. In some embodiments, the glass-based article includes a non-zero metal oxide concentration that varies along at least a portion of the thickness (e.g., 0·t to about 0.3·t) and a maximum central tension of less than about 71.5/?(t) (MPa). In some embodiments, the concentration of metal oxide or alkali metal oxide decreases from the first surface to a point between the first surface and the second surface and increases from the point to the second surface. The concentration of the metal oxide may be about 0.05 mol % or greater or about 0.
    Type: Grant
    Filed: September 28, 2020
    Date of Patent: October 18, 2022
    Assignee: Corning Incorporated
    Inventors: Timothy Michael Gross, Guangli Hu, Rostislav Vatchev Roussev, Charlene Marie Smith, Zhongzhi Tang, Steven Alvin Tietje
  • Patent number: 11465937
    Abstract: A glass-based article may include from about 45 mol. % to about 80 mol. % SiO2; from about 0 mol. % to about 10 mol. % Na2O; less than about 5 mol. % K2O; a non-zero amount of Al2O; and an amorphous phase and a crystalline phase. The article may further in include a stress profile comprising a surface compressive stress (CS) and a maximum central tension (CT). A ratio of Li2O (mol. %) to R2O (mol. %) in the article is from about 0.5 to about 1, where R2O is the sum of Li2O, Na2O, and K2O in the article. CT may be greater than or equal to about 50 MPa and less than about 100 MPa. CS may be greater than 2.0·CT. A depth of compression (DOC) of the stress profile may be greater than or equal to 0.14·t and less than or equal to 0.25·t, where t is the thickness of the article.
    Type: Grant
    Filed: January 13, 2021
    Date of Patent: October 11, 2022
    Assignee: Corning Incorporated
    Inventors: Guangli Hu, Charlene Marie Smith, Zhongzhi Tang, Steven Alvin Tietje
  • Patent number: 11459270
    Abstract: Embodiments of a glass-based article including a first surface and a second surface opposing the first surface defining a thickness (t) of about 3 millimeters or less (e.g., about 1 millimeter or less), and a stress profile, wherein all points of the stress profile between a thickness range from about 0·t up to 0.3·t and from greater than 0.7·t, comprise a tangent that is less than about ?0.1 MPa/micrometers or greater than about 0.1 MPa/micrometers, are disclosed. In some embodiments, the glass-based article includes a non-zero metal oxide concentration that varies along at least a portion of the thickness (e.g., 0·t to about 0.3·t). In some embodiments, the concentration of metal oxide or alkali metal oxide decreases from the first surface to a point between the first surface and the second surface and increases from the point to the second surface. The concentration of the metal oxide may be about 0.05 mol % or greater or about 0.5 mol % or greater throughout the thickness.
    Type: Grant
    Filed: March 31, 2020
    Date of Patent: October 4, 2022
    Assignee: Corning Incorporated
    Inventors: Guangli Hu, Charlene Marie Smith, Zhongzhi Tang, Steven Alvin Tietje
  • Patent number: 11401210
    Abstract: A pre-fractured glass laminate that includes: a glass substrate comprising a thickness, a pair of opposed primary surfaces, a compressive stress region, a central tension (CT) region and a plurality of cracks; a second phase comprising a polymer or a cured resin within the plurality of cracks; a backing layer; and an interlayer disposed between one of the primary surfaces of the substrate and the backing layer. The compressive stress region extends from each of the primary surfaces to a first selected depth in the substrate. Further, the plurality of cracks is located in the CT region.
    Type: Grant
    Filed: October 8, 2018
    Date of Patent: August 2, 2022
    Assignee: Corning Incorporated
    Inventors: Matthew John Dejneka, Zhongzhi Tang