Patents by Inventor Zhou Wei

Zhou Wei has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240109955
    Abstract: Disclosed are antigen binding polypeptides and antigen binding polypeptide complexes (e.g., antibodies and antigen binding fragments thereof) having certain structural and/or functional features. Also disclosed are polynucleotides and vectors encoding such polypeptides and polypeptide complexes; host cells, pharmaceutical compositions and kits containing such polypeptides and polypeptide complexes; and methods of using such polypeptides and polypeptide complexes.
    Type: Application
    Filed: June 30, 2023
    Publication date: April 4, 2024
    Inventors: Juan LI, Chi-Jen WEI, Ronnie R. WEI, Zhi-Yong YANG, John R. MASCOLA, Gary J. NABEL, John MISASI, Amarendra PEGU, Lingshu WANG, Tongqing ZHOU, Misook CHOE, Olamide K. OLONINIYI, Bingchun ZHAO, Yi ZHANG, Eun Sung YANG, Man CHEN, Kwanyee LEUNG, Wei SHI, Nancy J. SULLIVAN, Peter D. KWONG, Richard A. KOUP, Barney S. GRAHAM, Peng HE
  • Publication number: 20230168201
    Abstract: The present disclosure relates to a surface-enhanced Raman spectroscopy complex probe capable of effectively detecting a catecholamine compound even at extremely low concentrations. The complex probe includes a nanolaminate including a nanogap and metal nanoparticles. In this case, the nanolaminate and the metal nanoparticles are modified to a compound that may be bound to each functional group included in catecholamine, and thus, catecholamine included in an analyte is doubly recognized by the complex probe. In addition, since a hotspot emitting a strong SERS signal is formed by a nanogap included in a nanolaminate, it is possible to effectively detect a catecholamine compound even at extremely low concentrations.
    Type: Application
    Filed: January 28, 2022
    Publication date: June 1, 2023
    Inventors: Eun-Ah YOU, Zhou WEI, Wonil NAM, Wansun KIM
  • Patent number: 11482387
    Abstract: A membrane circuit board includes a first film substrate, a second film substrate, an insulating spacer substrate and a waterproof structure. The first circuit layer is installed on the first film substrate. A second circuit layer is installed on the second film substrate. The insulating spacer substrate arranged between the first film substrate and the second film substrate. The first circuit layer is arranged between the first film substrate and the insulating spacer substrate. The second circuit layer is arranged between the second film substrate and the insulating spacer substrate. The waterproof structure includes a first welding layer and a second welding layer. The first welding layer is arranged between the first film substrate and the insulating spacer substrate. The second welding layer is arranged between the second film substrate and the insulating spacer substrate.
    Type: Grant
    Filed: September 24, 2020
    Date of Patent: October 25, 2022
    Assignee: PRIMAX ELECTRONICS LTD.
    Inventors: Liu-Bing Cai, Li-Xiong Deng, Fu-Zhou Wei, Li-Qiang Chen, Xiao-Ping Wang
  • Publication number: 20220068575
    Abstract: A membrane circuit board includes a first film substrate, a second film substrate, an insulating spacer substrate and a waterproof structure. The first circuit layer is installed on the first film substrate. A second circuit layer is installed on the second film substrate. The insulating spacer substrate arranged between the first film substrate and the second film substrate. The first circuit layer is arranged between the first film substrate and the insulating spacer substrate. The second circuit layer is arranged between the second film substrate and the insulating spacer substrate. The waterproof structure includes a first welding layer and a second welding layer. The first welding layer is arranged between the first film substrate and the insulating spacer substrate. The second welding layer is arranged between the second film substrate and the insulating spacer substrate.
    Type: Application
    Filed: September 24, 2020
    Publication date: March 3, 2022
    Inventors: Liu-Bing Cai, Li-Xiong Deng, Fu-Zhou Wei, Li-Qiang Chen, Xiao-Ping Wang
  • Patent number: 11034426
    Abstract: An underwater propulsion apparatus includes a motor and a control system for controlling the motor. The control system includes a remote controller and a motor driving device, wirelessly communicating with the remote controller. The motor driving device includes a communication repeater module and a motor driving module. The communication repeater module is configured for detecting interruptions or non-receipt of a wireless signal transmitted by the remote controller. Wireless signals to the motor driving module are transmitted by the remote controller to the communication repeater module. The motor driving module is configured for receiving the wireless signal, and outputs a driving signal for driving the motor according to the wireless signal, the motor driving module shutting down when no signal is received.
    Type: Grant
    Filed: July 23, 2019
    Date of Patent: June 15, 2021
    Assignee: Guangdong ePropulsion Technology Limited
    Inventors: Guo-Jian Liang, Zhi-Zhou Wei, Yan-Li Zhong, Shi-Zheng Tao, Xiao-Kang Wan
  • Publication number: 20190344874
    Abstract: An underwater propulsion apparatus includes a motor and a control system for controlling the motor. The control system includes a remote controller and a motor driving device, wirelessly communicating with the remote controller. The motor driving device includes a communication repeater module and a motor driving module. The communication repeater module is configured for detecting interruptions or non-receipt of a wireless signal transmitted by the remote controller. Wireless signals to the motor driving module are transmitted by the remote controller to the communication repeater module. The motor driving module is configured for receiving the wireless signal, and outputs a driving signal for driving the motor according to the wireless signal, the motor driving module shutting down when no signal is received.
    Type: Application
    Filed: July 23, 2019
    Publication date: November 14, 2019
    Inventors: GUO-JIAN LIANG, ZHI-ZHOU WEI, YAN-LI ZHONG, SHI-ZHENG TAO, XIAO-KANG WAN
  • Patent number: 8637973
    Abstract: A microelectronic component package includes a plurality of electrical leads which are coupled to a microelectronic component and which have exposed lengths extending outwardly beyond a peripheral edge of an encapsulant. A plurality of terminals may be positioned proximate a terminal face of the encapsulant and these terminals may be electrically coupled to the same leads. This can facilitate connection of the microelectronic component to a substrate using the leads as a conventional leaded package. The terminals, however, can facilitate stacking of the leaded package with one or more additional microelectronic components, e.g., a BGA package.
    Type: Grant
    Filed: March 27, 2007
    Date of Patent: January 28, 2014
    Assignee: Micron Technology, Inc.
    Inventors: Eng Meow Koon, Low Siu Waf, Chan Min Yu, Chia Yong Poo, Ser Bok Leng, Zhou Wei
  • Publication number: 20120287773
    Abstract: A method of alarm management in a communications system having a number of Femto base stations (110), the method comprising the steps of: detecting disruption of a communication link between a Femto base station and a management system (120) via which alarms are communicated; blocking the sending of alarms by the Femto base station; generating a report representative of the accumulation of alarms; detecting re-establishment of the communication link; sending the report to the management system; and reporting alarms to the management system on the basis of the report.
    Type: Application
    Filed: December 10, 2009
    Publication date: November 15, 2012
    Applicant: NOKIA SIEMENS NETWORKS OY
    Inventors: Yi Zang, Zhou Wei Hua, Shun Liang Zhang, Christian Markwart
  • Patent number: 8008126
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Grant
    Filed: November 24, 2009
    Date of Patent: August 30, 2011
    Assignee: Micron Technology, Inc.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Publication number: 20100068851
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Application
    Filed: November 24, 2009
    Publication date: March 18, 2010
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Patent number: 7679179
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Grant
    Filed: November 30, 2007
    Date of Patent: March 16, 2010
    Assignee: Micron Technology, Inc.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Patent number: 7528477
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: May 5, 2009
    Assignee: Micron Technology, Inc.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Publication number: 20080067675
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Application
    Filed: November 30, 2007
    Publication date: March 20, 2008
    Applicant: MICRON TECHNOLOGY, INC.
    Inventors: Boon Jeung, Chia Poo, Low Waf, Eng Koon, Chua Kwang, Huang Wu, Neo Loo, Zhou Wei
  • Publication number: 20080067642
    Abstract: A microelectronic component package includes a plurality of electrical leads which are coupled to a microelectronic component and which have exposed lengths extending outwardly beyond a peripheral edge of an encapsulant. A plurality of terminals may be positioned proximate a terminal face of the encapsulant and these terminals may be electrically coupled to the same leads. This can facilitate connection of the microelectronic component to a substrate using the leads as a conventional leaded package. The terminals, however, can facilitate stacking of the leaded package with one or more additional microelectronic components, e.g., a BGA package.
    Type: Application
    Filed: March 27, 2007
    Publication date: March 20, 2008
    Applicant: Micron Technology, Inc.
    Inventors: Eng Koon, Low Waf, Chan Yu, Chia Poo, Ser Leng, Zhou Wei
  • Patent number: 7276387
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Grant
    Filed: September 7, 2005
    Date of Patent: October 2, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Boon Suan Jeung, Chia Yong Poo, Low Siu Waf, Eng Meow Koon, Chua Swee Kwang, Huang Shuang Wu, Neo Yong Loo, Zhou Wei
  • Publication number: 20070222053
    Abstract: The invention includes methods of forming semiconductor interconnect structures. A substrate is provided having metal bumps associated with contact pads. A plate having a plurality of cavities containing solder is provided. The metal bumps are inserted into the cavities. The invention includes methods of forming surface-mounting structures. A wafer having a plurality of dies is provided. Each die has contact pads with associated projecting metal bumps. A plate is provided having a pattern of solder-filled cavities corresponding to a layout of the contact pads. The metal bumps are inserted into the cavities and the solder is reflowed to form metal-cored solder bumps. The invention includes constructions such as integrated circuitry chips, wafers and chip package assemblies having a plurality of interconnect structures. The interconnect structures comprise a metal core within an outer solder bump, and are electrically and physically associated with contact pads.
    Type: Application
    Filed: May 16, 2006
    Publication date: September 27, 2007
    Inventors: Zhou Wei, Chia Poo
  • Patent number: 7195957
    Abstract: A microelectronic component package includes a plurality of electrical leads which are coupled to a microelectronic component and which have exposed lengths extending outwardly beyond a peripheral edge of an encapsulant. A plurality of terminals may be positioned proximate a terminal face of the encapsulant and these terminals may be electrically coupled to the same leads. This can facilitate connection of the microelectronic component to a substrate using the leads as a conventional leaded package. The terminals, however, can facilitate stacking of the leaded package with one or more additional microelectronic components, e.g., a BGA package.
    Type: Grant
    Filed: August 19, 2004
    Date of Patent: March 27, 2007
    Assignee: Micron Technology, Inc.
    Inventors: Eng Meow Koon, Low Siu Waf, Chan Min Yu, Chia Yong Poo, Ser Bok Leng, Zhou Wei
  • Publication number: 20060014319
    Abstract: Systems and methods for packaging integrated circuit chips in castellation wafer level packaging are provided. The active circuit areas of the chips are coupled to castellation blocks and, depending on the embodiment, input/output pads. The castellation blocks and input/output pads are encapsulated and held in place by an encapsulant. When the devices are being fabricated, the castellation blocks and input/output pads are sawed through. If necessary, the wafer portion on which the devices are fabricated may be thinned. The packages may be used as a leadless chip carrier package or may be stacked on top of one another. When stacked, the respective contacts of the packages are preferably coupled. Data may be written to, and received from, packaged chips when a chip is activated. Chips may be activated by applying the appropriate signal or signals to the appropriate contact or contacts.
    Type: Application
    Filed: July 14, 2005
    Publication date: January 19, 2006
    Inventors: Boon Jeung, Chia Poo, Low Waf, Eng Koon, Chua Kwang, Huang Wu, Neo Loo, Zhou Wei
  • Patent number: D962641
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: September 6, 2022
    Inventors: Zhou Wei, Xiao Qiang
  • Patent number: D984391
    Type: Grant
    Filed: January 21, 2020
    Date of Patent: April 25, 2023
    Inventors: Chan Chun Wai, Zhou Wei Feng