Patents by Inventor Zi-Kui Liu

Zi-Kui Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11462402
    Abstract: Molecular-beam epitaxy (MBE) and more particularly suboxide MBE (S-MBE) and related structures are disclosed. S-MBE is disclosed that includes the use of a molecular beam of a suboxide that may be subsequently oxidized in a single step reaction to form an oxide film. By way of example, for a gallium oxide (Ga2O3) film, a molecular beam including a suboxide of gallium (Ga2O) may be provided. S-MBE may be performed in adsorption-controlled regimes where there is an excess of source material containing species in order to promote high growth rates for oxide films with improved crystallinity. Source mixtures for providing molecular beams of suboxides are disclosed that include mixtures of a particular element and an oxide of the element in ratios that promote such adsorption-controlled growth regimes. Related structures include oxide films having increased thickness with reduced crystal defects, including single polymorph films of gallium oxide.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: October 4, 2022
    Assignees: Cornell University, The Penn State Research Foundation
    Inventors: Patrick Vogt, Darrell G. Schlom, Felix V. E. Hensling, Kathy Azizie, Zi-Kui Liu, Brandon J. Bocklund, Shun-Li Shang
  • Publication number: 20220122843
    Abstract: Molecular-beam epitaxy (MBE) and more particularly suboxide MBE (S-MBE) and related structures are disclosed. S-MBE is disclosed that includes the use of a molecular beam of a suboxide that may be subsequently oxidized in a single step reaction to form an oxide film. By way of example, for a gallium oxide (Ga2O3) film, a molecular beam including a suboxide of gallium (Ga2O) may be provided. S-MBE may be performed in adsorption-controlled regimes where there is an excess of source material containing species in order to promote high growth rates for oxide films with improved crystallinity. Source mixtures for providing molecular beams of suboxides are disclosed that include mixtures of a particular element and an oxide of the element in ratios that promote such adsorption-controlled growth regimes. Related structures include oxide films having increased thickness with reduced crystal defects, including single polymorph films of gallium oxide.
    Type: Application
    Filed: October 21, 2020
    Publication date: April 21, 2022
    Inventors: Patrick Vogt, Darrell G. Schlom, Felix V. E. Hensling, Kathy Azizie, Zi-Kui Liu, Brandon J. Bocklund, Shun-Li Shang
  • Patent number: 7090889
    Abstract: Boride thin films of conducting and superconducting materials are formed on silicon by a process which combines physical vapor deposition with chemical vapor deposition. Embodiments include forming boride films, such as magnesium diboride, on silicon substrates by physically generating magnesium vapor in a deposition chamber and introducing a boron containing precursor into the chamber which combines with the magnesium vapor to form a thin boride film on the silicon substrates.
    Type: Grant
    Filed: February 24, 2004
    Date of Patent: August 15, 2006
    Assignee: The Penn State Research Foundation
    Inventors: Zi-Kui Liu, Zhi-Jie Liu, Xiaoxing Xi
  • Publication number: 20040234785
    Abstract: Boride thin films of conducting and superconducting materials are formed on silicon by a process which combines physical vapor deposition with chemical vapor deposition. Embodiments include forming boride films, such as magnesium diboride, on silicon substrates by physically generating magnesium vapor in a deposition chamber and introducing a boron containing precursor into the chamber which combines with the magnesium vapor to form a thin boride film on the silicon substrates.
    Type: Application
    Filed: February 24, 2004
    Publication date: November 25, 2004
    Inventors: Zi-Kui Liu, Zhi-Jie Liu, Xiaoxing Xi
  • Patent number: 6797341
    Abstract: Thin films of conducting and superconducting materials are formed by a process which combines physical vapor deposition with chemical vapor deposition. Embodiments include forming boride films, such as magnesium diboride, in high purity with superconducting properties on substrates typically used in the semiconductor industry by physically generating magnesium vapor in a deposition chamber and introducing a boron containing precursor into the chamber which combines with the magnesium vapor to form a thin boride film on the substrate.
    Type: Grant
    Filed: March 25, 2003
    Date of Patent: September 28, 2004
    Assignee: Penn State Research Foundation
    Inventors: Xianghui Zeng, Alexej Pogrebnyakov, Xiaoxing Xi, Joan M. Redwing, Zi-Kui Liu, Darrell G. Schlom
  • Publication number: 20030219911
    Abstract: Thin films of conducting and superconducting materials are formed by a process which combines physical vapor deposition with chemical vapor deposition. Embodiments include forming boride films, such as magnesium diboride, in high purity with superconducting properties on substrates typically used in the semiconductor industry by physically generating magnesium vapor in a deposition chamber and introducing a boron containing precursor into the chamber which combines with the magnesium vapor to form a thin boride film on the substrate.
    Type: Application
    Filed: March 25, 2003
    Publication date: November 27, 2003
    Inventors: Xianghui Zeng, Alexej Pogrebnyakov, Xiaoxing Xi, Joan M. Redwing, Zi-Kui Liu, D. G. Schlom