Patents by Inventor Zia Yassinzadeh

Zia Yassinzadeh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10363021
    Abstract: Vascular closure devices and methods for closing a blood vessel puncture site disposed at a distal end of a tissue tract are described. A combination of the body's own natural mechanism with chemical and/or biological agents is relied upon to accelerate the hemostatic process. Included are steps of introducing a closure device through the tissue tract and deploying an expansible member at a distal end of the device within the blood vessel to occlude the puncture site. A sealing member disposed proximal the expansible member is then displaced by retracting and tensioning a coil spring so as to expose a chemical and/or biological region or release region of the device. The retraction and tensioning of the coil spring is limited by a coupling member. Exposure of blood and tissue to the chemical and/or biological sealing member promotes the clotting processing to accelerate the occlusion process in the tract.
    Type: Grant
    Filed: February 3, 2017
    Date of Patent: July 30, 2019
    Assignee: Cardiva Medical, Inc.
    Inventors: Zia Yassinzadeh, Jeffrey I. Weitz, Alan Stafford
  • Patent number: 10327747
    Abstract: Apparatus for sealing a vascular wall penetration disposed at the end of the tissue tract comprises a shaft, an occlusion element, a hemostatic implant, and a protective sleeve. The apparatus is deployed through the tissue tract with the occlusion element temporarily occluding the vascular wall penetration and inhibiting backbleeding therethrough. The hemostatic implant, which will typically be a biodegradable polymer such as collagen carrying an anti-proliferative agent or coagulation promoter, will then be deployed from the sealing apparatus and left in place to enhance closure of the vascular wall penetration with minimum scarring. The implant may be radiopaque to allow observation before release.
    Type: Grant
    Filed: August 15, 2016
    Date of Patent: June 25, 2019
    Assignee: Cardiva Medical, Inc.
    Inventors: Zia Yassinzadeh, Delfin Pelayo
  • Publication number: 20190167241
    Abstract: Multiple vascular wall penetrations are formed and sealed in a single blood vessel, typically a vein, for performing cardiac and other catheter-based procedures. Access sheaths are placed in two or more tissue tracts each having a vascular wall penetration at a distal end and into a lumen of the blood vessel. A catheter is advanced though each of the access sheaths to perform a therapeutic or diagnostic procedure. A vascular closure device is introduced through each access sheath, typically sequentially, and an occlusion element at a distal end of the device is deployed against an inner wall of the blood vessel in a manner so that the adjacent access sheath does not interfere or overlap with the deployed occlusion element. The vascular penetration at the distal end in that tissue tract may then be sealed prior to using another vascular closure device to seal a caudally adjacent vascular wall penetration.
    Type: Application
    Filed: June 7, 2018
    Publication date: June 6, 2019
    Inventors: Zia Yassinzadeh, John L. Russell, Justin L. Ballotta
  • Patent number: 10130347
    Abstract: The present invention advantageously provides devices, systems, and methods for percutaneous access and closure of vascular puncture sites. In an embodiment, the device for enhancing the hemostasis of a puncture site in a body lumen or tract comprises a catheter having one tubular member having a proximal end and a distal end with one inner lumen extending between at least a longitudinal portion of the catheter tubular member. The one tubular member includes external and internal tubular bodies each having proximal and distal ends. At least one of the external and the internal tubular bodies is longitudinally movable with respect to the other. An expansible member with proximal and distal ends is disposed on the distal end of the one tubular member. The distal end of the expansible member is connected to the distal end of internal tubular body and with its proximal end connected to the distal end of external tubular body.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: November 20, 2018
    Assignee: Cardiva Medical, Inc.
    Inventor: Zia Yassinzadeh
  • Publication number: 20180221006
    Abstract: Apparatus for sealing a vascular wall penetration disposed at the end of the tissue tract comprises a shaft, an optional occlusion element, a hydratable hemostatic implant, and a protective sleeve. The apparatus is deployed through the tissue tract with the occlusion element optionally occluding the vascular wall penetration and inhibiting backbleeding therethrough. The hydratable hemostatic implant, which will typically be a biodegradable polymer such as collagen carrying an anti-proliferative agent or coagulation promoter, will then be deployed from the sealing apparatus by retracting the protective sleeve and left in place to enhance closure of the vascular wall penetration with minimum scarring. The hydratable implant will be protected from premature hydration and swelling by a soluble plug covering the implant's distal end prior to sleeve retraction.
    Type: Application
    Filed: March 13, 2018
    Publication date: August 9, 2018
    Inventor: Zia YASSINZADEH
  • Publication number: 20170202546
    Abstract: Vascular closure devices and methods for closing a blood vessel puncture site disposed at a distal end of a tissue tract are described. A combination of the body's own natural mechanism with chemical and/or biological agents is relied upon to accelerate the hemostatic process. Included are steps of introducing a closure device through the tissue tract and deploying an expansible member at a distal end of the device within the blood vessel to occlude the puncture site. A sealing member disposed proximal the expansible member is then displaced by retracting and tensioning a coil spring so as to expose a chemical and/or biological region or release region of the device. The retraction and tensioning of the coil spring is limited by a coupling member. Exposure of blood and tissue to the chemical and/or biological sealing member promotes the clotting processing to accelerate the occlusion process in the tract.
    Type: Application
    Filed: February 3, 2017
    Publication date: July 20, 2017
    Inventors: Zia YASSINZADEH, Jeffrey I. WEITZ, Alan STAFFORD
  • Patent number: 9597066
    Abstract: Drug eluting vascular closure devices and methods for closing a blood vessel puncture site disposed at a distal end of a tissue tract are described. The devices and methods rely on a combination of the body's own natural mechanism to achieve hemostasis with chemical and/or biological agents to accelerate the hemostatic process. One method includes the steps of introducing a closure device through the tissue tract and deploying an expansible member at a distal end of the device within the blood vessel to occlude the puncture site. A chemical and/or biological sealing member disposed proximal the expansible member is then displaced so as to expose a chemical and/or biological region or release region of the device. At least one chemical and/or biological agent is thereafter released from the device and into the tissue tract to accelerate the occlusion process in the tract.
    Type: Grant
    Filed: September 9, 2015
    Date of Patent: March 21, 2017
    Assignee: CARDIVA MEDICAL, INC.
    Inventors: Zia Yassinzadeh, Jeffrey I. Weitz, Alan Stafford
  • Publication number: 20160345946
    Abstract: Apparatus for sealing a vascular wall penetration disposed at the end of the tissue tract comprises a shaft, an occlusion element, a hemostatic implant, and a protective sleeve. The apparatus is deployed through the tissue tract with the occlusion element temporarily occluding the vascular wall penetration and inhibiting backbleeding therethrough. The hemostatic implant, which will typically be a biodegradable polymer such as collagen carrying an anti-proliferative agent or coagulation promoter, will then be deployed from the sealing apparatus and left in place to enhance closure of the vascular wall penetration with minimum scarring. The implant may be radiopaque to allow observation before release.
    Type: Application
    Filed: August 15, 2016
    Publication date: December 1, 2016
    Inventors: Zia Yassinzadeh, Delfin Pelayo
  • Publication number: 20160324513
    Abstract: The present invention advantageously provides devices, systems, and methods for percutaneous access and closure of vascular puncture sites. In an embodiment, the device for enhancing the hemostasis of a puncture site in a body lumen or tract comprises a catheter having one tubular member having a proximal end and a distal end with one inner lumen extending between at least a longitudinal portion of the catheter tubular member. The one tubular member includes external and internal tubular bodies each having proximal and distal ends. At least one of the external and the internal tubular bodies is longitudinally movable with respect to the other. An expansible member with proximal and distal ends is disposed on the distal end of the one tubular member. The distal end of the expansible member is connected to the distal end of internal tubular body and with its proximal end connected to the distal end of external tubular body.
    Type: Application
    Filed: July 22, 2016
    Publication date: November 10, 2016
    Inventor: Zia Yassinzadeh
  • Patent number: 9439637
    Abstract: Apparatus for sealing a vascular wall penetration disposed at the end of the tissue tract comprises a shaft, an occlusion element, a hemostatic implant, and a protective sleeve. The apparatus is deployed through the tissue tract with the occlusion element temporarily occluding the vascular wall penetration and inhibiting backbleeding therethrough. The hemostatic implant, which will typically be a biodegradable polymer such as collagen carrying an anti-proliferative agent or coagulation promoter, will then be deployed from the sealing apparatus and left in place to enhance closure of the vascular wall penetration with minimum scarring. The implant may be radiopaque to allow observation before release.
    Type: Grant
    Filed: November 14, 2014
    Date of Patent: September 13, 2016
    Assignee: Cardiva Medical, Inc.
    Inventors: Zia Yassinzadeh, Delfin Pelayo
  • Publication number: 20160256142
    Abstract: A system for sealing a large penetration in the wall of a femoral artery comprises an occlusion catheter and an applicator. An access catheter may further be provided in order to facilitate introduction of the occlusion catheter. The occlusion catheter is introduced through a contralateral penetration, advanced over the aortic bifurcation, and an occlusion element on the occlusion catheter is positioned at the large diameter penetration. The occlusion element is then inflated to temporarily seal the large penetration while blood perfusion past the occlusion element is provided by the catheter. A sealing material, such as a tissue adhesive or other hemostatic agent is then introduced into a tissue tract above the large diameter penetration in order to seal the penetration. The occlusion element may be left in place while the sealing material has time to set, cure or otherwise form a permanent seal of the large penetration. The occlusion catheter and all access sheaths may then be removed from the patient.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 8, 2016
    Inventor: Zia Yassinzadeh
  • Publication number: 20160249897
    Abstract: Drug eluting vascular closure devices and methods for closing a blood vessel puncture site disposed at a distal end of a tissue tract are described. The devices and methods rely on a combination of the body's own natural mechanism to achieve hemostasis with chemical and/or biological agents to accelerate the hemostatic process. One method includes the steps of introducing a closure device through the tissue tract and deploying an expansible member at a distal end of the device within the blood vessel to occlude the puncture site. A chemical and/or biological sealing member disposed proximal the expansible member is then displaced so as to expose a chemical and/or biological region or release region of the device. At least one chemical and/or biological agent is thereafter released from the device and into the tissue tract to accelerate the occlusion process in the tract.
    Type: Application
    Filed: September 9, 2015
    Publication date: September 1, 2016
    Inventors: Zia YASSINZADEH, Jeffrey I. WEITZ, Alan STAFFORD
  • Patent number: 9427221
    Abstract: The present invention advantageously provides devices, systems, and methods for percutaneous access and closure of vascular puncture sites. In an embodiment, the device for enhancing the hemostasis of a puncture site in a body lumen or tract comprises a catheter having one tubular member having a proximal end and a distal end with one inner lumen extending between at least a longitudinal portion of the catheter tubular member. The one tubular member includes external and internal tubular bodies each having proximal and distal ends. At least one of the external and the internal tubular bodies is longitudinally movable with respect to the other. An expansible member with proximal and distal ends is disposed on the distal end of the one tubular member. The distal end of the expansible member is connected to the distal end of internal tubular body and with its proximal end connected to the distal end of external tubular body.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: August 30, 2016
    Assignee: Cardiva Medical, Inc.
    Inventor: Zia Yassinzadeh
  • Patent number: 9370347
    Abstract: A system for sealing a large penetration in the wall of a femoral artery comprises an occlusion catheter and an applicator. An access catheter may further be provided in order to facilitate introduction of the occlusion catheter. The occlusion catheter is introduced through a contralateral penetration, advanced over the aortic bifurcation, and an occlusion element on the occlusion catheter is positioned at the large diameter penetration. The occlusion element is then inflated to temporarily seal the large penetration while blood perfusion past the occlusion element is provided by the catheter. A sealing material, such as a tissue adhesive or other hemostatic agent is then introduced into a tissue tract above the large diameter penetration in order to seal the penetration. The occlusion element may be left in place while the sealing material has time to set, cure or otherwise form a permanent seal of the large penetration. The occlusion catheter and all access sheaths may then be removed from the patient.
    Type: Grant
    Filed: January 28, 2011
    Date of Patent: June 21, 2016
    Assignee: Cardiva Medical, Inc.
    Inventor: Zia Yassinzadeh
  • Patent number: 9179897
    Abstract: Drug eluting vascular closure devices and methods for closing a blood vessel puncture site disposed at a distal end of a tissue tract are described. The devices and methods rely on a combination of the body's own natural mechanism to achieve hemostasis with chemical and/or biological agents to accelerate the hemostatic process. One method includes the steps of introducing a closure device through the tissue tract and deploying an expansible member at a distal end of the device within the blood vessel to occlude the puncture site. A chemical and/or biological sealing member disposed proximal the expansible member is then displaced so as to expose a chemical and/or biological region or release region of the device. At least one chemical and/or biological agent is thereafter released from the device and into the tissue tract to accelerate the occlusion process in the tract.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: November 10, 2015
    Assignee: CARDIVA MEDICAL, INC.
    Inventors: Zia Yassinzadeh, Jeffrey I. Weitz, Alan Stafford
  • Publication number: 20150209019
    Abstract: The present invention provides devices, systems, and methods for percutaneously sealing a puncture site in tissue tracts and vessels in human or animal bodies. One system includes a locating assembly that is used to locate the puncture site and can also provide temporary hemostasis when the system is used for closing a vessel puncture. The system also includes a compression assembly comprising a tubular member with a balloon on a distal end thereof. This balloon is at a fixed distance from the locator tip which locates the balloon outside the vessel wall at a predetermined distance. Inflation of this balloon causes forward elongation of the balloon which compresses subcutaneous tissue between the distal tip of the balloon and the vessel wall. This tissue compression against the puncture site is the mechanism that provides hemostasis.
    Type: Application
    Filed: April 13, 2015
    Publication date: July 30, 2015
    Inventor: Zia Yassinzadeh
  • Patent number: 9017374
    Abstract: The present invention provides devices, systems, and methods for percutaneously sealing a puncture site in tissue tracts and vessels in human or animal bodies. One system includes a locating assembly that is used to locate the puncture site and can also provide temporary hemostasis when the system is used for closing a vessel puncture. The system also includes a compression assembly comprising a tubular member with a balloon on a distal end thereof. This balloon is at a fixed distance from the locator tip which locates the balloon outside the vessel wall at a predetermined distance. Inflation of this balloon causes forward elongation of the balloon which compresses subcutaneous tissue between the distal tip of the balloon and the vessel wall. This tissue compression against the puncture site is the mechanism that provides hemostasis.
    Type: Grant
    Filed: April 9, 2004
    Date of Patent: April 28, 2015
    Assignee: Cardiva Medical, Inc.
    Inventor: Zia Yassinzadeh
  • Publication number: 20150073472
    Abstract: Apparatus for sealing a vascular wall penetration disposed at the end of the tissue tract comprises a shaft, an occlusion element, a hemostatic implant, and a protective sleeve. The apparatus is deployed through the tissue tract with the occlusion element temporarily occluding the vascular wall penetration and inhibiting backbleeding therethrough. The hemostatic implant, which will typically be a biodegradable polymer such as collagen carrying an anti-proliferative agent or coagulation promoter, will then be deployed from the sealing apparatus and left in place to enhance closure of the vascular wall penetration with minimum scarring. The implant may be radiopaque to allow observation before release.
    Type: Application
    Filed: November 14, 2014
    Publication date: March 12, 2015
    Inventors: Zia Yassinzadeh, Delfin Pelayo
  • Patent number: 8911472
    Abstract: Apparatus for sealing a vascular wall penetration disposed at the end of the tissue tract comprises a shaft, an occlusion element, a hemostatic implant, and a protective sleeve. The apparatus is deployed through the tissue tract with the occlusion element temporarily occluding the vascular wall penetration and inhibiting backbleeding therethrough. The hemostatic implant, which will typically be a biodegradable polymer such as collagen carrying an anti-proliferative agent or coagulation promoter, will then be deployed from the sealing apparatus and left in place to enhance closure of the vascular wall penetration with minimum scarring. The implant may be radiopaque to allow observation before release.
    Type: Grant
    Filed: April 20, 2012
    Date of Patent: December 16, 2014
    Assignee: Cardiva Medical, Inc.
    Inventors: Zia Yassinzadeh, Delfin Pelayo
  • Patent number: 8747435
    Abstract: Drug eluting vascular closure devices and methods for closing a blood vessel puncture site disposed at a distal end of a tissue tract are described. The devices and methods rely on a combination of the body's own natural mechanism to achieve hemostasis with bio-chemical agents to accelerate the hemostatic process. One method includes the steps of introducing a closure device through the tissue tract and deploying an expansible member at a distal end of the device within the blood vessel to occlude the puncture site. A bio-chemical sealing member disposed proximal the expansible member is then displaced so as to expose a bio-chemical region or release region of the device. At least one bio-chemical agent is thereafter released from the device and into the tissue tract to accelerate the occlusion process in the tract.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: June 10, 2014
    Assignee: Cardiva Medical, Inc.
    Inventor: Zia Yassinzadeh