Patents by Inventor Ziad Burbar

Ziad Burbar has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11974866
    Abstract: A computer-implemented method for determining scan parameters includes receiving a set of input parameters. An average single per block for a nuclear imaging scanner having a predetermined field-of-view (FOV) is determined based on the input parameters and at least one scan parameter is determined based on the average single per block for the nuclear imaging scanner.
    Type: Grant
    Filed: October 1, 2019
    Date of Patent: May 7, 2024
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Ziad Burbar, Inki Hong, Stefan B. Siegel
  • Patent number: 11864862
    Abstract: A framework for power management. The framework includes at least one power distribution board disposed within a radio-frequency (RF) cabin of a medical imaging system and coupled to an external reference clock. The power distribution board may include a clock circuit that generates one or more output clock signals based on a reference clock signal from the external reference clock. One or more switching regulators may be coupled to the clock circuit. The one or more switching regulators may be synchronized to the one or more output clock signals and provide power to one or more endpoint loads.
    Type: Grant
    Filed: September 11, 2020
    Date of Patent: January 9, 2024
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Andrew Philip Moor, Nan Zhang, Martin Judenhofer, Ziad Burbar
  • Publication number: 20230346325
    Abstract: A lighting arrangement for a medical imaging system having a cylindrical wall that forms a tunnel that receives a patient to be scanned. The lighting arrangement includes a light transmitting section aligned on a longitudinal axis of the imaging system wherein the light transmitting section forms a part of the tunnel. The lighting arrangement also includes a reflector section that is radially outside the light transmitting section. In addition, the lighting arrangement includes at least one lighting device located between the reflector section and light transmitting section wherein the lighting device emits light that is reflected by the reflector section onto the light transmitting section and wherein the light is then transmitted through the light transmitting section and into the tunnel to circumferentially illuminate the tunnel.
    Type: Application
    Filed: July 10, 2023
    Publication date: November 2, 2023
    Inventors: Ziad Burbar, James L. Corbeil, Jeffrey Bostrom, James Williams, Michael Dulude, Keith Gerlach
  • Patent number: 11793474
    Abstract: A lighting arrangement for a medical imaging system having a cylindrical wall that forms a tunnel that receives a patient to be scanned. The lighting arrangement includes a transparent wall section formed in the wall, wherein the transparent wall section extends along a transparent portion of a wall circumference. The imaging system also includes a lighting device located adjacent an outer surface of the transparent wall section. The lighting device extends along a device portion of a wall circumference corresponding to the transparent portion wherein light emitted by the lighting device is transmitted through the transparent wall section in a direction orthogonal to a longitudinal axis of the tunnel to circumferentially illuminate the tunnel. In addition, a system status is indicated by a color of light emitted by the LEDs. Further, light emitted by the lighting device varies in intensity to indicate a changing count rate.
    Type: Grant
    Filed: March 23, 2023
    Date of Patent: October 24, 2023
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Ziad Burbar, James L. Corbeil, Jeffrey Bostrom, James Williams
  • Publication number: 20230255573
    Abstract: A patient handling system (PHS) for a medical imaging system having a tunnel that extends through at least one scanning portion of the system. The PHS includes a first moveable pedestal that supports a detachable first pallet that includes a first patient. The first pedestal moves the first pallet through the tunnel to enable scanning of the first patient. The PHS also includes a second moveable pedestal located at a tunnel exit. The second pedestal attaches to the first pallet as the first pallet moves through the tunnel and the first pedestal subsequently detaches from the first pallet. The second pedestal then moves away from the tunnel exit to remove the first pallet from the tunnel. A second patient to be scanned is simultaneously prepared for scanning on a second pallet as the first pallet is moved through the tunnel in order to increase patient throughput through system.
    Type: Application
    Filed: November 13, 2020
    Publication date: August 17, 2023
    Inventors: Ziad Burbar, Inki Hong, James L. Corbeil
  • Publication number: 20230218252
    Abstract: A fluid coolant system for a gantry of a medical imaging apparatus cools scalable detector electronic assemblies (DEAs) within the gantry. Each DEA includes therein a first chill plate for cooling detector elements and a second chill plate for cooling electronic components and power supplies. Coolant flow cascades sequentially through the first chill plate and then through the second chill plate. Plural DEAs in an interconnected chain cascade coolant in sequence through all their first chill plates, before cascading the coolant through all their second chill plates. A matrix of the scalable DEAs are circumferentially and axially oriented within the imaging system's gantry, for any axial length scanning field of the imaging apparatus.
    Type: Application
    Filed: June 23, 2021
    Publication date: July 13, 2023
    Inventors: Ziad Burbar, John Keller, Andrew Philip Moor, James L. Corbeil
  • Publication number: 20230218253
    Abstract: A fluid coolant system for a gantry of a medical imaging apparatus cools scalable detector electronic assemblies (DEAs) within the gantry. Each DEA includes within its modular housing a first chill plate thermally conductively coupled to cooling detector elements therein and a separate, second chill plate thermally conductively coupled to other electronic components therein, such as electronic circuit boards and/or power supplies. In some embodiments, the first chill plate is oriented between the detector elements and the second chill plate, for thermally isolating the detector elements from other heat dissipating components within the DEA. In some embodiments, coolant flow cascades sequentially through the first chill plate and then through the second chill plate.
    Type: Application
    Filed: June 23, 2021
    Publication date: July 13, 2023
    Inventors: Ziad Burbar, John Keller, Andrew Philip Moor, James L. Corbeil
  • Publication number: 20230218246
    Abstract: A lighting arrangement for a medical imaging system having a cylindrical wall that forms a tunnel that receives a patient to be scanned. The lighting arrangement includes a transparent wall section formed in the wall, wherein the transparent wall section extends along a transparent portion of a wall circumference. The imaging system also includes a lighting device located adjacent an outer surface of the transparent wall section. The lighting device extends along a device portion of a wall circumference corresponding to the transparent portion wherein light emitted by the lighting device is transmitted through the transparent wall section in a direction orthogonal to a longitudinal axis of the tunnel to circumferentially illuminate the tunnel. In addition, a system status is indicated by a color of light emitted by the LEDs. Further, light emitted by the lighting device varies in intensity to indicate a changing count rate.
    Type: Application
    Filed: March 23, 2023
    Publication date: July 13, 2023
    Inventors: Ziad Burbar, James L. Corbeil, Jeffrey Bostrom, James Williams
  • Publication number: 20230210486
    Abstract: A gantry cooling system of a diagnostic medical imaging apparatus transfers apparatus-generated heat, such as gantry heat, to a solid material heatsink, via a circulating-fluid coolant conduit. In some embodiments, the heatsink is incorporated in the ground or within the building structure housing the apparatus.
    Type: Application
    Filed: July 20, 2020
    Publication date: July 6, 2023
    Inventors: John Keller, James L. Corbeil, Ziad Burbar, Stefan Siegel
  • Patent number: 11647971
    Abstract: A lighting arrangement for a medical imaging system having a cylindrical wall that forms a tunnel that receives a patient to be scanned. The lighting arrangement includes a transparent wall section formed in the wall, wherein the transparent wall section extends along a transparent portion of a wall circumference. The imaging system also includes a lighting device located adjacent an outer surface of the transparent wall section. The lighting device extends along a device portion of a wall circumference corresponding to the transparent portion wherein light emitted by the lighting device is transmitted through the transparent wall section in a direction orthogonal to a longitudinal axis of the tunnel to circumferentially illuminate the tunnel. In addition, a system status is indicated by a color of light emitted by the LEDs. Further, light emitted by the lighting device varies in intensity to indicate a changing count rate.
    Type: Grant
    Filed: October 21, 2020
    Date of Patent: May 16, 2023
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Ziad Burbar, James L. Corbeil, Jeffrey Bostrom, James Williams
  • Publication number: 20220409155
    Abstract: Provided is a PET scanner system having a PET scanner gantry that is configured for delivering a uniformly distributed cooling air to a plurality of detectors housed in the PET scanner gantry. The PET scanner gantry includes a cooling air delivery manifold that includes a patient tunnel portion; and a front funnel portion. The front funnel portion includes an annular interior wall defining an entry opening of the patient tunnel portion; and an air plenum has an annular structure for carrying a flow of pressurized cooling air received from a remote source supplements the pressurized cooling air with a supply of ambient air and directs it to the plurality of detectors.
    Type: Application
    Filed: May 19, 2020
    Publication date: December 29, 2022
    Inventors: John Keller, James L. Corbeil, Ziad Burbar
  • Patent number: 11474265
    Abstract: For positron emission tomography (PET) detector gain stabilization despite temperature variation, an open loop gain control based on temperature establishes a baseline gain despite possible temperature variation. The baseline gain is then adjusted with a more sensitive closed-loop (e.g., peak tracking) approach for dealing with temperature. By combining both types of gain control to deal with temperature, the advantages of both are provided while avoiding disadvantages of either approach by itself.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: October 18, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Mikhail Musienko, Ziad Burbar
  • Publication number: 20220309652
    Abstract: Disclosed herein are novel techniques that address blurriness in medical images resulting from motion of a rigid body, such as a patient, relative to the medical scanning equipment by using a motion-correction algorithm for 3D medical images using to two-dimensional projections.
    Type: Application
    Filed: October 4, 2019
    Publication date: September 29, 2022
    Inventors: Inki Hong, Ziad Burbar, Paul Schleyer
  • Publication number: 20220296180
    Abstract: A computer-implemented method for determining scan parameters includes receiving a set of input parameters. An average single per block for a nuclear imaging scanner having a predetermined field-of-view (FOV) is determined based on the input parameters and at least one scan parameter is determined based on the average single per block for the nuclear imaging scanner.
    Type: Application
    Filed: October 1, 2019
    Publication date: September 22, 2022
    Inventors: Ziad Burbar, Inki Hong, Stefan B. Siegel
  • Publication number: 20220291402
    Abstract: A PET imaging system includes a gantry having a patient tunnel and a first detector unit and a second detector unit housed inside the gantry, each including a plurality of detector elements in a helical arrangement around an axial axis of the imaging system. Each of the detector elements in the second detector unit is spaced apart from a corresponding detector element in the first detector unit by an axial gap. Each detector element has an axial position. Each of the first and second detector units has its detector elements arranged so that a set of the detector elements is positioned such that each detector element in the set is offset from an adjacent detector element in the detector unit such that a maximum difference between axial positions of detector elements in each detector unit is less than or equal to the axial gap.
    Type: Application
    Filed: February 14, 2020
    Publication date: September 15, 2022
    Inventors: Stefan B. Siegel, Ziad Burbar, Inki Hong
  • Publication number: 20220287670
    Abstract: A method for performing a partial scan of a patient using a PET/CT system includes receiving a selection of a region of interest for scanning and performing a CT scan over a region of interest with the PET/CT system to acquire raw CT data. The raw CT data is reconstructed into one or more CT images. The PET/CT system is configured to limit data collection to the region of interest. A PET scan limited to a region of interest is performed with the PET/CT system to acquire raw PET data. The raw PET data is reconstructed into one or more PET images of the region of interest.
    Type: Application
    Filed: January 10, 2020
    Publication date: September 15, 2022
    Inventors: Ziad Burbar, Inki Hong, Stefan B. Siegel
  • Publication number: 20220262048
    Abstract: A system and method include association of imaging event data to one of a plurality of bins based on a time associated with the imaging event data, determination that the time periods of a first bin and the time periods of a second bin are adjacent-in-time, determination of whether a spatial characteristic of the imaging event data of the first bin is within a predetermined threshold of the spatial characteristic of the imaging event data of the second bin, and, based on the determination, reconstruction of one or more images based on the imaging event data of the first bin and the second bin.
    Type: Application
    Filed: October 10, 2019
    Publication date: August 18, 2022
    Inventors: Inki Hong, Ziad Burbar, Paul Schleyer
  • Patent number: 11375966
    Abstract: A medical imaging and/or radiotherapy apparatus incorporates a display for projecting a visible image to a patient lying on a patient table. A projector that projects the visible image moves in tandem with the patient table, so that it appears relatively motionless to the patient. In exemplary embodiments, the projector projects the visible image within a patient tunnel of the medical apparatus, including in some embodiments, an extended field of view medical imaging apparatus. In other exemplary embodiments, the projector projects the visible image on a screen above the patient table of a tunnel-less medical apparatus. The projector remains outside the imaging line of response of detectors within the imaging field or outside of the radiotherapy beam zone, to avoid potential degradation of the captured diagnostic image or degradation of the radiotherapy beam.
    Type: Grant
    Filed: October 23, 2020
    Date of Patent: July 5, 2022
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Ziad Burbar, Inki Hong, Stefan B. Siegel, Joel Karp
  • Publication number: 20220125395
    Abstract: A medical imaging and/or radiotherapy apparatus incorporates a display for projecting a visible image to a patient lying on a patient table. A projector that projects the visible image moves in tandem with the patient table, so that it appears relatively motionless to the patient. In exemplary embodiments, the projector projects the visible image within a patient tunnel of the medical apparatus, including in some embodiments, an extended field of view medical imaging apparatus. In other exemplary embodiments, the projector projects the visible image on a screen above the patient table of a tunnel-less medical apparatus. The projector remains outside the imaging line of response of detectors within the imaging field or outside of the radiotherapy beam zone, to avoid potential degradation of the captured diagnostic image or degradation of the radiotherapy beam.
    Type: Application
    Filed: October 23, 2020
    Publication date: April 28, 2022
    Inventors: Ziad Burbar, Inki Hong, Stefan B. Siegel, Joel Karp
  • Publication number: 20220117565
    Abstract: A lighting arrangement for a medical imaging system having a cylindrical wall that forms a tunnel that receives a patient to be scanned. The lighting arrangement includes a transparent wall section formed in the wall, wherein the transparent wall section extends along a transparent portion of a wall circumference. The imaging system also includes a lighting device located adjacent an outer surface of the transparent wall section. The lighting device extends along a device portion of a wall circumference corresponding to the transparent portion wherein light emitted by the lighting device is transmitted through the transparent wall section in a direction orthogonal to a longitudinal axis of the tunnel to circumferentially illuminate the tunnel. In addition, a system status is indicated by a color of light emitted by the LEDs. Further, light emitted by the lighting device varies in intensity to indicate a changing count rate.
    Type: Application
    Filed: October 21, 2020
    Publication date: April 21, 2022
    Inventors: Ziad Burbar, James L. Corbeil, Jeffrey Bostrom, James Williams