Patents by Inventor Zigmund R. Camacho

Zigmund R. Camacho has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110215458
    Abstract: A semiconductor wafer has a plurality of semiconductor die. First and second conductive layers are formed over opposing surfaces of the semiconductor die, respectively. Each semiconductor die constitutes a WLCSP. A TSV is formed through the WLCSP. A semiconductor component is mounted to the WLCSP. The first semiconductor component is electrically connected to the first conductive layer. A first bump is formed over the first conductive layer, and a second bump is formed over the second conductive layer. An encapsulant is deposited over the first bump and first semiconductor component. A second semiconductor component is mounted to the first bump. The second semiconductor component is electrically connected to the first semiconductor component and WLCSP through the first bump and TSV. A third semiconductor component is mounted to the first semiconductor component, and a fourth semiconductor component is mounted to the third semiconductor component.
    Type: Application
    Filed: March 4, 2010
    Publication date: September 8, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Zigmund R. Camacho, Dioscoro A. Merilo, Lionel Chien Hui Tay
  • Publication number: 20110204512
    Abstract: A semiconductor package includes a carrier strip having a die cavity and bump cavities. A semiconductor die is mounted in the die cavity of the carrier strip. In one embodiment, the semiconductor die is mounted using a die attach adhesive. In one embodiment, a top surface of the first semiconductor die is approximately coplanar with a top surface of the carrier strip proximate to the die cavity. A metal layer is disposed over the carrier strip to form a package bump and a plated interconnect between the package bump and a contact pad of the first semiconductor die. An underfill material is disposed in the die cavity between the first semiconductor die and a surface of the die cavity. A passivation layer is disposed over the first semiconductor die and exposes a contact pad of the first semiconductor die. An encapsulant is disposed over the carrier strip.
    Type: Application
    Filed: May 5, 2011
    Publication date: August 25, 2011
    Applicant: STATS ChipPAC, LTD.
    Inventors: Zigmund R. Camacho, Dioscoro A. Merilo, Lionel Chien Hui Tay, Jose A. Caparas
  • Patent number: 7964450
    Abstract: A semiconductor package includes a carrier strip having a die cavity and a plurality of bump cavities. A semiconductor die is mounted in the die cavity of the carrier strip using a die attach adhesive. In one embodiment, a top surface of the semiconductor die is approximately coplanar with a top surface of the carrier strip proximate to the die cavity. Underfill material is deposited into the die cavity between the semiconductor die and a surface of the die cavity. In one embodiment, a passivation layer is deposited over the semiconductor die, and a portion of the passivation layer is etched to expose a contact pad of the semiconductor die. A metal layer is deposited over the package. The metal layer forms a package bump and a plated interconnect between the package bump and the contact pad of the semiconductor die. Encapsulant is deposited over the semiconductor package.
    Type: Grant
    Filed: May 23, 2008
    Date of Patent: June 21, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Dioscoro A. Merilo, Lionel Chien Hui Tay, Jose A. Caparas
  • Publication number: 20110140263
    Abstract: A PiP semiconductor device has an inner known good semiconductor package. In the semiconductor package, a first via is formed in a temporary carrier. A first conductive layer is formed over the carrier and into the first via. The first conductive layer in the first via forms a conductive bump. A first semiconductor die is mounted to the first conductive layer. A first encapsulant is deposited over the first die and carrier. The semiconductor package is mounted to a substrate. A second semiconductor die is mounted to the first conductive layer opposite the first die. A second encapsulant is deposited over the second die and semiconductor package. A second via is formed in the second encapsulant to expose the conductive bump. A second conductive layer is formed over the second encapsulant and into the second via. The second conductive layer is electrically connected to the second die.
    Type: Application
    Filed: December 10, 2009
    Publication date: June 16, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Zigmund R. Camacho, Frederick R. Dahilig, Lionel Chien Hui Tay
  • Patent number: 7960815
    Abstract: A semiconductor package includes a leadframe. A first lead finger has a lower portion, a connecting portion extending vertically upward from the lower portion, and a substantially flat, top portion. The top portion forms a top terminal lead structure. A second lead finger is electrically connected to the first lead finger. A portion of the second lead finger forms a bottom terminal lead structure. A portion of the second lead finger corresponds to a bottom surface of the semiconductor package. A surface of the substantially flat, top portion corresponds to a top surface of the semiconductor package.
    Type: Grant
    Filed: March 5, 2009
    Date of Patent: June 14, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Henry D. Bathan, Jose Alvin Santos Caparas, Lionel Chien Hui Tay
  • Publication number: 20110101524
    Abstract: A semiconductor device includes a semiconductor die having contact pads disposed over a surface of the semiconductor die, a die attach adhesive layer disposed under the semiconductor die, and an encapsulant material disposed around and over the semiconductor die. The semiconductor device further includes bumps disposed in the encapsulant material around a perimeter of the semiconductor die. The bumps are partially enclosed by the encapsulant material. The semiconductor device further comprises first vias disposed in the encapsulant. The first vias expose surfaces of the contact pads. The semiconductor device further includes a first redistribution layer (RDL) disposed over the encapsulant and in the first vias, and a second RDL disposed under the encapsulant material and the die attach adhesive layer. The first RDL electrically connects each contact pad of the semiconductor die to one of the bumps, and the second RDL is electrically connected to one of the bumps.
    Type: Application
    Filed: January 6, 2011
    Publication date: May 5, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Zigmund R. Camacho, Lionel Chien Hui Tay, Henry D. Bathan, Jeffrey D. Punzalan
  • Publication number: 20110049662
    Abstract: A semiconductor device includes a carrier and semiconductor die having an optically active region. The semiconductor die is mounted to the carrier to form a separation between the carrier and the semiconductor die. The semiconductor device further includes a passivation layer disposed over a surface of the semiconductor die and a glass layer disposed over a surface of the passivation layer. The passivation layer has a clear portion for passage of light to the optically active region of the semiconductor die. The semiconductor device further includes an encapsulant disposed over the carrier within the separation to form an expansion region around a periphery of the semiconductor die, a first via penetrating the expansion region, glass layer, and passivation layer, a second via penetrating the glass layer and passivation layer to expose a contact pad on the semiconductor die, and a conductive material filling the first and second vias.
    Type: Application
    Filed: November 8, 2010
    Publication date: March 3, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Zigmund R. Camacho, Henry D. Bathan, Lionel Chien Hui Tay, Arnel Senosa Trasporto
  • Publication number: 20110037168
    Abstract: A semiconductor device has a conductive via formed around a perimeter of the semiconductor die. First and second conductive layers are formed on opposite sides of the semiconductor die and thermally connected to the conductive via. An insulating layer is formed over the semiconductor die. Openings in the insulating layer expose the first conductive layer and a thermal dissipation region of semiconductor die. A thermal via is formed through the insulating layer to the first conductive layer. A thermally conductive layer is formed over the thermal dissipation region and thermal via. A thermal conduction path is formed from the thermal dissipation region through the thermally conductive layer, thermal via, first conductive layer, conductive via, and second conductive layer. The thermal conduction path terminates in an external thermal ground point. The thermally conductive layer provides shielding for electromagnetic interference.
    Type: Application
    Filed: October 25, 2010
    Publication date: February 17, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Lionel Chien Hui Tay, Govindiah G. Badakere, Zigmund R. Camacho
  • Patent number: 7888181
    Abstract: A semiconductor device is made by providing a metal substrate for supporting the semiconductor device. Solder bumps are connected to the substrate. In one embodiment, a conductive material is deposited over the substrate and is reflowed to form the solder bumps. A semiconductor die is mounted to the substrate using a die attach adhesive. The semiconductor die has a plurality of contact pads formed over a surface of the semiconductor die. An encapsulant material is deposited over the solder bumps and the semiconductor die. The encapsulant is etched to expose the contact pads of the semiconductor die. A first redistribution layer (RDL) is formed over the encapsulant to connect each contact pad of the semiconductor die to one of the solder bumps. The substrate is removed to expose the die attach adhesive and a bottom surface of the solder bumps.
    Type: Grant
    Filed: September 22, 2008
    Date of Patent: February 15, 2011
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Lionel Chien Hui Tay, Henry D. Bathan, Jeffrey D. Punzalan
  • Publication number: 20110024903
    Abstract: A semiconductor die has active circuits formed on its active surface. Contact pads are formed on the active surface of the semiconductor die and coupled to the active circuits. A die extension region is formed around a periphery of the semiconductor die. Conductive through hole vias (THV) are formed in the die extension region. A wafer level conductive plane or ring is formed on a center area of the active surface. The conductive plane or ring is connected to a first contact pad to provide a first power supply potential to the active circuits, and is electrically connected to a first conductive THV. A conductive ring is formed partially around a perimeter of the conductive plane or ring and connected to a second contact pad for providing a second power supply potential to the active circuits. The conductive ring is electrically connected to a second THV.
    Type: Application
    Filed: October 15, 2010
    Publication date: February 3, 2011
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Guruprasad G. Badakere, Zigmund R. Camacho, Lionel Chien Hui Tay
  • Publication number: 20100320588
    Abstract: A semiconductor device is made by mounting a prefabricated heat spreader frame over a temporary substrate. The heat spreader frame includes vertical bodies over a flat plate. A semiconductor die is mounted to the heat spreader frame for thermal dissipation. An encapsulant is deposited around the vertical bodies and semiconductor die while leaving contact pads on the semiconductor die exposed. The encapsulant can be deposited using a wafer level direct/top gate molding process or wafer level film assist molding process. An interconnect structure is formed over the semiconductor die. The interconnect structure includes a first conductive layer formed over the semiconductor die, an insulating layer formed over the first conductive layer, and a second conductive layer formed over the first conductive layer and insulating layer. The temporary substrate is removed, dicing tape is applied to the heat spreader frame, and the semiconductor die is singulated.
    Type: Application
    Filed: June 22, 2009
    Publication date: December 23, 2010
    Applicant: STATS ChipPAC, Ltd.
    Inventors: Frederick R. Dahilig, Zigmund R. Camacho, Lionel Chien Hui Tay, Dioscoro A. Merilo
  • Publication number: 20100314780
    Abstract: A semiconductor device is made by forming a first conductive layer over a first temporary carrier having rounded indentations. The first conductive layer has a non-linear portion due to the rounded indentations. A bump is formed over the non-linear portion of the first conductive layer. A semiconductor die is mounted over the carrier. A second conductive layer is formed over a second temporary carrier having rounded indentations. The second conductive layer has a non-linear portion due to the rounded indentations. The second carrier is mounted over the bump. An encapsulant is deposited between the first and second temporary carriers around the first semiconductor die. The first and second carriers are removed to leave the first and second conductive layers. A conductive via is formed through the first conductive layer and encapsulant to electrically connect to a contact pad on the first semiconductor die.
    Type: Application
    Filed: June 12, 2009
    Publication date: December 16, 2010
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Zigmund R. Camacho, Dioscoro A. Merilo, Jairus L. Pisigan, Frederick R. Dahilig
  • Patent number: 7851246
    Abstract: A semiconductor package has a semiconductor die with an optically active region which converts light to an electrical signal. An expansion region is formed around the semiconductor die. A through hole via (THV) is formed in the expansion region. Conductive material is deposited in the THV. A passivation layer is formed over the semiconductor die. The passivation layer allows for passage of light to the optically active region of the semiconductor die. A glass layer is applied to the passivation layer. A first RDL is electrically connected between the THV and a contact pad of the semiconductor die. Additional RDLs are formed on a front and back side of the semiconductor die. An under bump metallization (UBM) layer is formed over and electrically connected to the intermediate conduction layer. Solder material is deposited on the UBM and reflowed to form a solder bump.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: December 14, 2010
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Zigmund R. Camacho, Lionel Chien Hui Tay, Henry D. Bathan, Arnel Senosa Trasporto
  • Patent number: 7842607
    Abstract: A semiconductor device has a conductive via formed around a perimeter of the semiconductor die. First and second conductive layers are formed on opposite sides of the semiconductor die and thermally connected to the conductive via. An insulating layer is formed over the semiconductor die. A portion of the insulating layer is removed to expose the first conductive layer and a thermal dissipation region of semiconductor die. A thermal via is formed through the insulating layer to the first conductive layer. A thermally conductive layer is formed over the thermal dissipation region and thermal via. A thermal conduction path is formed from the thermal dissipation region through the thermally conductive layer, thermal via, first conductive layer, conductive via, and second conductive layer. The thermal conduction path terminates in an external thermal ground point. The thermally conductive layer provides shielding for electromagnetic interference.
    Type: Grant
    Filed: July 15, 2008
    Date of Patent: November 30, 2010
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Lionel Chien Hui Tay, Guruprasad G. Badakere, Zigmund R. Camacho
  • Patent number: 7838395
    Abstract: A semiconductor die has active circuits formed on its active surface. Contact pads are formed on the active surface of the semiconductor die and coupled to the active circuits. A die extension region is formed around a periphery of the semiconductor die. Through hole vias (THV) are formed in the die extension region. A conductive plane or ring is formed in a center area on the active surface of the semiconductor die. The conductive plane or ring is coupled to a first contact pad for providing a first power supply potential to the active circuits. The conductive plane or ring is electrically connected to a first THV. A conductive ring is formed partially around a perimeter of the conduction plane or ring. The conductive ring is coupled to a second contact pad for providing a second power supply potential to the active circuits. The conductive ring is electrically connected to a second THV.
    Type: Grant
    Filed: December 6, 2007
    Date of Patent: November 23, 2010
    Assignee: STATS ChipPAC, Ltd.
    Inventors: Guruprasad G. Badakere, Zigmund R. Camacho, Lionel Chien Hui Tay
  • Publication number: 20100289131
    Abstract: A semiconductor device is made by forming first and interconnect structures over a first semiconductor die. A third interconnect structure is formed in proximity to the first die. A second semiconductor die is mounted over the second and third interconnect structures. An encapsulant is deposited over the first and second die and first, second, and third interconnect structures. A backside of the second die is substantially coplanar with the first interconnect structure and a backside of the first semiconductor die is substantially coplanar with the third interconnect structure. The first interconnect structure has a height which is substantially the same as a combination of a height of the second interconnect structure and a thickness of the second die. The third interconnect structure has a height which is substantially the same as a combination of a height of the second interconnect structure and a thickness of the first die.
    Type: Application
    Filed: May 18, 2009
    Publication date: November 18, 2010
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Henry D. Bathan, Zigmund R. Camacho, Jairus L. Pisigan
  • Publication number: 20100140751
    Abstract: A semiconductor device is made from a semiconductor wafer containing semiconductor die separated by a peripheral region. A conductive via-in-via structure is formed in the peripheral region or through an active region of the device to provide additional tensile strength. The conductive via-in-via structure includes an inner conductive via and outer conductive via separated by insulating material. A middle conductive via can be formed between the inner and outer conductive vias. The inner conductive via has a first cross-sectional area adjacent to a first surface of the semiconductor device and a second cross-sectional area adjacent to a second surface of the semiconductor device. The outer conductive via has a first cross-sectional area adjacent to the first surface of the semiconductor device and a second cross-sectional area adjacent to the second surface of the semiconductor device. The first cross-sectional area is different from the second cross-sectional area.
    Type: Application
    Filed: December 10, 2008
    Publication date: June 10, 2010
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Lionel Chien Hui Tay, Jianmin Fang, Zigmund R. Camacho
  • Publication number: 20100078834
    Abstract: A semiconductor device is made by forming solder bumps on a first side of a semiconductor wafer. A protective layer is formed on a second side of the semiconductor wafer opposite the first side. The protective layer can be adhesive paste, laminated film, spin-coated resin, epoxy based elastomer, organic rubbery material, polystyrene, polyethylene terephthalate, or other polymer material. The semiconductor wafer is singulated into semiconductor die. The semiconductor die is mounted to a carrier. A molding compound is formed around the semiconductor die. The protective layer provides stress relief for the semiconductor die. The protective layer is removed from the semiconductor die. The protective layer can provide a thermal dissipation, in which case it is made with metal or polymer-based material with a filler such as alumina, zinc oxide, silicon dioxide, silver, aluminum, and aluminum nitride.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Henry D. Bathan, Zigmund R. Camacho, Jairus L. Pisigan
  • Publication number: 20100072618
    Abstract: A semiconductor device is made by providing a metal substrate for supporting the semiconductor device. Solder bumps are connected to the substrate. In one embodiment, a conductive material is deposited over the substrate and is reflowed to form the solder bumps. A semiconductor die is mounted to the substrate using a die attach adhesive. The semiconductor die has a plurality of contact pads formed over a surface of the semiconductor die. An encapsulant material is deposited over the solder bumps and the semiconductor die. The encapsulant is etched to expose the contact pads of the semiconductor die. A first redistribution layer (RDL) is formed over the encapsulant to connect each contact pad of the semiconductor die to one of the solder bumps. The substrate is removed to expose the die attach adhesive and a bottom surface of the solder bumps.
    Type: Application
    Filed: September 22, 2008
    Publication date: March 25, 2010
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Zigmund R. Camacho, Lionel Chien Hui Tay, Henry D. Bathan, Jeffrey D. Punzalan
  • Publication number: 20100072599
    Abstract: A semiconductor device is made by forming solder bumps over a copper carrier. Solder capture indentations are formed in the copper carrier to receive the solder bumps. A semiconductor die is mounted to the copper carrier using a die attach adhesive. The semiconductor die has contact pads formed over its active surface. An encapsulant is deposited over the copper carrier, solder bumps, and semiconductor die. A portion of the encapsulant is removed to expose the solder bumps and contact pads. A conductive layer is formed over the encapsulant to connect the solder bumps and contact pads. The conductive layer operates as a redistribution layer to route electrical signals from the solder bumps to the contact pads. The copper carrier is removed. An insulating layer is formed over the conductive layer and encapsulant. A plurality of semiconductor devices can be stacked and electrically connected through the solder bumps.
    Type: Application
    Filed: March 24, 2009
    Publication date: March 25, 2010
    Applicant: STATS CHIPPAC, LTD.
    Inventors: Zigmund R. Camacho, Lionel Chien Hui Tay, Henry D. Bathan, Dioscoro A. Merilo, Jeffrey D. Punzalan