Patents by Inventor Zijie XUAN

Zijie XUAN has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240103523
    Abstract: A system and method for real world autonomous vehicle trajectory simulation may include: receiving training data from a data collection system; obtaining ground truth data corresponding to the training data; performing a training phase to train a plurality of trajectory prediction models; and performing a simulation or operational phase to generate a vicinal scenario for each simulated vehicle in an iteration of a simulation. Vicinal scenarios may correspond to different locations, traffic patterns, or environmental conditions being simulated. Vehicle intention data corresponding to a data representation of various types of simulated vehicle or driver intentions.
    Type: Application
    Filed: December 12, 2023
    Publication date: March 28, 2024
    Inventors: Xing SUN, Wutu LIN, Liu LIU, Kai-Chieh MA, Zijie XUAN, Yufei ZHAO
  • Publication number: 20240085900
    Abstract: A system and method for autonomous vehicle control to minimize energy cost are disclosed. A particular embodiment includes: generating a plurality of potential routings and related vehicle motion control operations for an autonomous vehicle to cause the autonomous vehicle to transit from a current position to a desired destination; generating predicted energy consumption rates for each of the potential routings and related vehicle motion control operations using a vehicle energy consumption model; scoring each of the plurality of potential routings and related vehicle motion control operations based on the corresponding predicted energy consumption rates; selecting one of the plurality of potential routings and related vehicle motion control operations having a score within an acceptable range; and outputting a vehicle motion control output representing the selected one of the plurality of potential routings and related vehicle motion control operations.
    Type: Application
    Filed: November 15, 2023
    Publication date: March 14, 2024
    Inventors: Xing SUN, Wutu LIN, Liu LIU, Kai-Chieh MA, Zijie XUAN, Yufei ZHAO
  • Patent number: 11892846
    Abstract: A prediction-based system and method for trajectory planning of autonomous vehicles are disclosed.
    Type: Grant
    Filed: August 28, 2020
    Date of Patent: February 6, 2024
    Assignee: TUSIMPLE, INC.
    Inventors: Xiaomin Zhang, Yilun Chen, Guangyu Li, Xing Sun, Wutu Lin, Liu Liu, Kai-Chieh Ma, Zijie Xuan, Yufei Zhao
  • Patent number: 11886183
    Abstract: A system and method for autonomous vehicle control to minimize energy cost are disclosed. A particular embodiment includes: generating a plurality of potential routings and related vehicle motion control operations for an autonomous vehicle to cause the autonomous vehicle to transit from a current position to a desired destination; generating predicted energy consumption rates for each of the potential routings and related vehicle motion control operations using a vehicle energy consumption model; scoring each of the plurality of potential routings and related vehicle motion control operations based on the corresponding predicted energy consumption rates; selecting one of the plurality of potential routings and related vehicle motion control operations having a score within an acceptable range; and outputting a vehicle motion control output representing the selected one of the plurality of potential routings and related vehicle motion control operations.
    Type: Grant
    Filed: June 17, 2022
    Date of Patent: January 30, 2024
    Assignee: TUSIMPLE, INC.
    Inventors: Xing Sun, Wutu Lin, Liu Liu, Kai-Chieh Ma, Zijie Xuan, Yufei Zhao
  • Publication number: 20240028040
    Abstract: Techniques are described to determine parameters and/or values for a control model that can be used to operate an autonomous vehicle, such as an autonomous semi-trailer truck. For example, a method of obtaining a data-driven model for autonomous driving may include obtaining data associated with a first set of variables that characterize movements of an autonomous vehicle over time and commands provided to the autonomous vehicle over time, determining, using at least the first set of data, non-zero values and an associated second set of variables that describe a control model used to perform an autonomous driving operation of the autonomous vehicle, and calculating values for a feedback controller that describes a transfer function used to perform the autonomous driving operation of the autonomous vehicle driven on a road.
    Type: Application
    Filed: September 28, 2023
    Publication date: January 25, 2024
    Inventors: Yujia WU, Zijie XUAN, Arda KURT
  • Publication number: 20240004386
    Abstract: Systems and methods for dynamic predictive control of autonomous vehicles are disclosed. In one aspect, an in-vehicle control system for a semi-truck includes one or more control mechanisms configured to control movement of the semi-truck and a processor. The system further includes computer-readable memory in communication with the processor and having stored thereon computer-executable instructions to cause the processor to receive a desired trajectory and a vehicle status of the semi-truck, determine a dynamic model of the semi-truck based on the desired trajectory and the vehicle status, determine at least one quadratic program (QP) problem based on the dynamic model, generate at least one control command for controlling the semi-truck by solving the at least one QP problem, and provide the at least one control command to the one or more control mechanisms.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: Aaron Havens, Jun Chen, Yujia Wu, Haoming Sun, Zijie Xuan, Arda Kurt
  • Patent number: 11853072
    Abstract: A system and method for real world autonomous vehicle trajectory simulation may include: receiving training data from a data collection system; obtaining ground truth data corresponding to the training data; performing a training phase to train a plurality of trajectory prediction models; and performing a simulation or operational phase to generate a vicinal scenario for each simulated vehicle in an iteration of a simulation. Vicinal scenarios may correspond to different locations, traffic patterns, or environmental conditions being simulated. Vehicle intention data corresponding to a data representation of various types of simulated vehicle or driver intentions.
    Type: Grant
    Filed: September 1, 2022
    Date of Patent: December 26, 2023
    Assignee: TUSIMPLE, INC.
    Inventors: Xing Sun, Wutu Lin, Liu Liu, Kai-Chieh Ma, Zijie Xuan, Yufei Zhao
  • Patent number: 11853071
    Abstract: A data-driven prediction-based system and method for trajectory planning of autonomous vehicles are disclosed. A particular embodiment includes: generating a first suggested trajectory for an autonomous vehicle; generating predicted resulting trajectories of proximate agents using a prediction module; scoring the first suggested trajectory based on the predicted resulting trajectories of the proximate agents; generating a second suggested trajectory for the autonomous vehicle and generating corresponding predicted resulting trajectories of proximate agents, if the score of the first suggested trajectory is below a minimum acceptable threshold; and outputting a suggested trajectory for the autonomous vehicle wherein the score corresponding to the suggested trajectory is at or above the minimum acceptable threshold.
    Type: Grant
    Filed: April 14, 2020
    Date of Patent: December 26, 2023
    Assignee: TUSIMPLE, INC.
    Inventors: Xing Sun, Wutu Lin, Liu Liu, Kai-Chieh Ma, Zijie Xuan, Yufei Zhao
  • Publication number: 20230373483
    Abstract: A system and method for adaptive cruise control with proximate vehicle detection are disclosed. The example embodiment can be configured for: receiving input object data from a subsystem of a host vehicle, the input object data including distance data and velocity data relative to detected target vehicles; detecting the presence of any target vehicles within a sensitive zone in front of the host vehicle, to the left of the host vehicle, and to the right of the host vehicle; determining a relative speed and a separation distance between each of the detected target vehicles relative to the host vehicle; and generating a velocity command to adjust a speed of the host vehicle based on the relative speeds and separation distances between the host vehicle and the detected target vehicles to maintain a safe separation between the host vehicle and the target vehicles.
    Type: Application
    Filed: July 31, 2023
    Publication date: November 23, 2023
    Inventors: Wutu LIN, Liu LIU, Zijie Xuan, Xing SUN, Kai-Chieh MA, Yufei ZHAO
  • Patent number: 11809185
    Abstract: Systems and methods for dynamic predictive control of autonomous vehicles are disclosed. In one aspect, an in-vehicle control system for a semi-truck includes one or more control mechanisms configured to control movement of the semi-truck and a processor. The system further includes computer-readable memory in communication with the processor and having stored thereon computer-executable instructions to cause the processor to receive a desired trajectory and a vehicle status of the semi-truck, determine a dynamic model of the semi-truck based on the desired trajectory and the vehicle status, determine at least one quadratic program (QP) problem based on the dynamic model, generate at least one control command for controlling the semi-truck by solving the at least one QP problem, and provide the at least one control command to the one or more control mechanisms.
    Type: Grant
    Filed: June 2, 2022
    Date of Patent: November 7, 2023
    Assignee: TUSIMPLE, INC.
    Inventors: Aaron Havens, Jun Chen, Yujia Wu, Haoming Sun, Zijie Xuan, Arda Kurt
  • Patent number: 11809193
    Abstract: Techniques are described to determine parameters and/or values for a control model that can be used to operate an autonomous vehicle, such as an autonomous semi-trailer truck. For example, a method of obtaining a data-driven model for autonomous driving may include obtaining data associated with a first set of variables that characterize movements of an autonomous vehicle over time and commands provided to the autonomous vehicle over time, determining, using at least the first set of data, non-zero values and an associated second set of variables that describe a control model used to perform an autonomous driving operation of the autonomous vehicle, and calculating values for a feedback controller that describes a transfer function used to perform the autonomous driving operation of the autonomous vehicle driven on a road.
    Type: Grant
    Filed: July 21, 2020
    Date of Patent: November 7, 2023
    Assignee: TUSIMPLE, INC.
    Inventors: Yujia Wu, Zijie Xuan, Arda Kurt
  • Patent number: 11753008
    Abstract: A system and method for adaptive cruise control with proximate vehicle detection are disclosed. The example embodiment can be configured for: receiving input object data from a subsystem of a host vehicle, the input object data including distance data and velocity data relative to detected target vehicles; detecting the presence of any target vehicles within a sensitive zone in front of the host vehicle, to the left of the host vehicle, and to the right of the host vehicle; determining a relative speed and a separation distance between each of the detected target vehicles relative to the host vehicle; and generating a velocity command to adjust a speed of the host vehicle based on the relative speeds and separation distances between the host vehicle and the detected target vehicles to maintain a safe separation between the host vehicle and the target vehicles.
    Type: Grant
    Filed: July 28, 2020
    Date of Patent: September 12, 2023
    Assignee: TUSIMPLE, INC.
    Inventors: Wutu Lin, Liu Liu, Zijie Xuan, Xing Sun, Kai-Chieh Ma, Yufei Zhao
  • Publication number: 20230063989
    Abstract: A system and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles are disclosed.
    Type: Application
    Filed: November 9, 2022
    Publication date: March 2, 2023
    Inventors: Xing SUN, Yufei ZHAO, Wutu LIN, Zijie XUAN, Liu LIU, Kai-Chieh MA
  • Publication number: 20230004165
    Abstract: A system and method for real world autonomous vehicle trajectory simulation may include: receiving training data from a data collection system; obtaining ground truth data corresponding to the training data; performing a training phase to train a plurality of trajectory prediction models; and performing a simulation or operational phase to generate a vicinal scenario for each simulated vehicle in an iteration of a simulation. Vicinal scenarios may correspond to different locations, traffic patterns, or environmental conditions being simulated. Vehicle intention data corresponding to a data representation of various types of simulated vehicle or driver intentions.
    Type: Application
    Filed: September 1, 2022
    Publication date: January 5, 2023
    Inventors: Xing SUN, Wutu LIN, Liu LIU, Kai-Chieh MA, Zijie XUAN, Yufei ZHAO
  • Patent number: 11500387
    Abstract: A system and method for providing multiple agents for decision making, trajectory planning, and control for autonomous vehicles are disclosed. A particular embodiment includes: partitioning a multiple agent autonomous vehicle control module for an autonomous vehicle into a plurality of subsystem agents, the plurality of subsystem agents including a deep computing vehicle control subsystem and a fast response vehicle control subsystem; receiving a task request from a vehicle subsystem; dispatching the task request to the deep computing vehicle control subsystem or the fast response vehicle control subsystem based on the content of the task request or a context of the autonomous vehicle; causing execution of the deep computing vehicle control subsystem or the fast response vehicle control subsystem by use of a data processor to produce a vehicle control output; and providing the vehicle control output to a vehicle control subsystem of the autonomous vehicle.
    Type: Grant
    Filed: August 12, 2020
    Date of Patent: November 15, 2022
    Assignee: TUSIMPLE, INC.
    Inventors: Xing Sun, Yufei Zhao, Wutu Lin, Zijie Xuan, Liu Liu, Kai-Chieh Ma
  • Publication number: 20220317680
    Abstract: A system and method for autonomous vehicle control to minimize energy cost are disclosed. A particular embodiment includes: generating a plurality of potential routings and related vehicle motion control operations for an autonomous vehicle to cause the autonomous vehicle to transit from a current position to a desired destination; generating predicted energy consumption rates for each of the potential routings and related vehicle motion control operations using a vehicle energy consumption model; scoring each of the plurality of potential routings and related vehicle motion control operations based on the corresponding predicted energy consumption rates; selecting one of the plurality of potential routings and related vehicle motion control operations having a score within an acceptable range; and outputting a vehicle motion control output representing the selected one of the plurality of potential routings and related vehicle motion control operations.
    Type: Application
    Filed: June 17, 2022
    Publication date: October 6, 2022
    Inventors: Xing SUN, Wutu LIN, Liu LIU, Kai-Chieh MA, Zijie XUAN, Yufei ZHAO
  • Publication number: 20220291687
    Abstract: Systems and methods for dynamic predictive control of autonomous vehicles are disclosed. In one aspect, an in-vehicle control system for a semi-truck includes one or more control mechanisms configured to control movement of the semi-truck and a processor. The system further includes computer-readable memory in communication with the processor and having stored thereon computer-executable instructions to cause the processor to receive a desired trajectory and a vehicle status of the semi-truck, determine a dynamic model of the semi-truck based on the desired trajectory and the vehicle status, determine at least one quadratic program (QP) problem based on the dynamic model, generate at least one control command for controlling the semi-truck by solving the at least one QP problem, and provide the at least one control command to the one or more control mechanisms.
    Type: Application
    Filed: June 2, 2022
    Publication date: September 15, 2022
    Inventors: Aaron Havens, Jun Chen, Yujia Wu, Haoming Sun, Zijie Xuan, Arda Kurt
  • Patent number: 11435748
    Abstract: A system and method for real world autonomous vehicle trajectory simulation may include: receiving training data from a data collection system; obtaining ground truth data corresponding to the training data; performing a training phase to train a plurality of trajectory prediction models; and performing a simulation or operational phase to generate a vicinal scenario for each simulated vehicle in an iteration of a simulation. Vicinal scenarios may correspond to different locations, traffic patterns, or environmental conditions being simulated. Vehicle intention data corresponding to a data representation of various types of simulated vehicle or driver intentions.
    Type: Grant
    Filed: July 15, 2020
    Date of Patent: September 6, 2022
    Assignee: TUSIMPLE, INC.
    Inventors: Xing Sun, Wutu Lin, Liu Liu, Kai-Chieh Ma, Zijie Xuan, Yufei Zhao
  • Patent number: 11372403
    Abstract: Systems and methods for dynamic predictive control of autonomous vehicles are disclosed. In one aspect, an in-vehicle control system for a semi-truck includes one or more control mechanisms configured to control movement of the semi-truck and a processor. The system further includes computer-readable memory in communication with the processor and having stored thereon computer-executable instructions to cause the processor to receive a desired trajectory and a vehicle status of the semi-truck, determine a dynamic model of the semi-truck based on the desired trajectory and the vehicle status, determine at least one quadratic program (QP) problem based on the dynamic model, generate at least one control command for controlling the semi-truck by solving the at least one QP problem, and provide the at least one control command to the one or more control mechanisms.
    Type: Grant
    Filed: November 5, 2018
    Date of Patent: June 28, 2022
    Assignee: TUSIMPLE, INC.
    Inventors: Aaron Havens, Jun Chen, Yujia Wu, Haoming Sun, Zijie Xuan, Arda Kurt
  • Publication number: 20220197283
    Abstract: A system and method for using human driving patterns to manage speed control for autonomous vehicles are disclosed. A particular embodiment includes: generating data corresponding to desired human driving behaviors; training a human driving model module using a reinforcement learning process and the desired human driving behaviors; receiving a proposed vehicle speed control command; determining if the proposed vehicle speed control command conforms to the desired human driving behaviors by use of the human driving model module; and validating or modifying the proposed vehicle speed control command based on the determination.
    Type: Application
    Filed: March 9, 2022
    Publication date: June 23, 2022
    Inventors: Wutu LIN, Liu LIU, Xing SUN, Kai-Chieh MA, Zijie XUAN, Yufei ZHAO