Patents by Inventor Zilong Wen

Zilong Wen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7339039
    Abstract: Receptor recognition factors exist that recognizes the specific cell receptor to which a specific ligand has been bound, and that may thereby signal and/or initiate the binding of the transcription factor to the DNA site. The receptor recognition factor is in one instance, a part of a transcription factor, and also may interact with other transcription factors to cause them to activate and travel to the nucleus for DNA binding. The receptor recognition factor appears to be second-messenger-independent in its activity, as overt perturbations in second messenger concentrations are of no effect. The concept of the invention is illustrated by the results of studies conducted With interferon (IFN)-stimulated gene transcription, and particularly, the activation caused by both IFN? and IFN?. Specific DNA and amino acid sequences for various human and murine receptor recognition factors are provided, as are polypeptide fragments of two of the ISGF-3 genes, and antibodies have also been prepared and tested.
    Type: Grant
    Filed: June 7, 2001
    Date of Patent: March 4, 2008
    Assignee: The Rockfeller University
    Inventors: James E. Darnell, Jr., Christian W. Schindler, Xin-Yuan Fu, Zilong Wen, Zhong Zhong
  • Patent number: 7060682
    Abstract: Receptor recognition factors exist that recognizes the specific cell receptor to which a specific ligand has been bound, and that may thereby signal and/or initiate the binding of the transcription factor to the DNA site. The receptor recognition factor is in one instance, a part of a transcription factor, and also may interact with other transcription factors to cause them to activate and travel to the nucleus for DNA binding. The receptor recognition factor appears to be second-messenger-independent in its activity, as overt perturbations in second messenger concentrations are of no effect. The concept of the invention is illustrated by the results of studies conducted with interferon (IFN)-stimulated gene transcription, and particularly, the activation caused by both IFN? and IFN?. Specific DNA and amino acid sequences for various human and murine receptor recognition factors are provided, as are polypeptide fragments of two of the ISGF-3 genes, and antibodies have also been prepared and tested.
    Type: Grant
    Filed: August 12, 2003
    Date of Patent: June 13, 2006
    Assignee: The Rockefeller University
    Inventors: James E. Darnell, Jr., Christian W. Schindler, Xin-Yuan Fu, Zilong Wen, Zhong Zhong
  • Publication number: 20050079543
    Abstract: Receptor recognition factors exist that recognizes the specific cell receptor to which a specific ligand has been bound, and that may thereby signal and/or initiate the binding of the transcription factor to the DNA site. The receptor recognition factor is in one instance, a part of a transcription factor, and also may interact with other transcription factors to cause them to activate and travel to the nucleus for DNA binding. The receptor recognition factor appears to be second-messenger-independent in its activity, as overt perturbations in second messenger concentrations are of no effect. The concept of the invention is illustrated by the results of studies conducted with interferon (IFN)-stimulated gene transcription, and particularly, the activation caused by both IFN? and IFN?. Specific DNA and amino acid sequences for various human and murine receptor recognition factors are provided, as are polypeptide fragments of two of the ISGF-3 genes, and antibodies have also been prepared and tested.
    Type: Application
    Filed: August 12, 2003
    Publication date: April 14, 2005
    Inventors: James Darnell, Christian Schindler, Xin-Yuan Fu, Zilong Wen, Zhong Zhong
  • Publication number: 20040058318
    Abstract: Receptor recognition factors exist that recognizes the specific cell receptor to which a specific ligand has been bound, and that may thereby signal and/or initiate the binding of the transcription factor to the DNA site. The receptor recognition factor is in one instance, a part of a transcription factor, and also may interact with other transcription factors to cause them to activate and travel to the nucleus for DNA binding. The receptor recognition factor appears to be second-messenger-independent in its activity, as overt perturbations in second messenger concentrations are of no effect. The concept of the invention is illustrated by the results of studies conducted With interferon (IFN)-stimulated gene transcription, and particularly, the activation caused by both IFN&agr; and IFN&ggr;. Specific DNA and amino acid sequences for various human and murine receptor recognition factors are provided, as are polypeptide fragments of two of the ISGF-3 genes, and antibodies have also been prepared and tested.
    Type: Application
    Filed: June 7, 2001
    Publication date: March 25, 2004
    Inventors: James E. Darnell, Christian W. Schindler, Xin-Yuan Fu, Zilong Wen, Zhong Zhong
  • Patent number: 6605442
    Abstract: Receptor recognition factors exist that recognizes the specific cell receptor to which a specific ligand has been bound, and that may thereby signal and/or initiate the binding of the transcription factor to the DNA site. The receptor recognition factor is in one instance, a part of a transcription factor, and also may interact with other transcription factors to cause them to activate and travel to the nucleus for DNA binding. The receptor recognition factor appears to be second-messenger-independent in its activity, as overt perturbations in second messenger concentrations are of no effect. The concept of the invention is illustrated by the results of studies conducted with interferon (IFN)-stimulated gene transcription, and particularly, the activation caused by both IFN&agr; and IFN&ggr;. Specific DNA and amino acid sequences for various human and murine receptor recognition factors are provided, as are polypeptide fragments of two of the ISGF-3 genes, and antibodies have also been prepared and tested.
    Type: Grant
    Filed: March 11, 1994
    Date of Patent: August 12, 2003
    Assignee: The Rockefeller University
    Inventors: James E. Darnell, Jr., Christian W. Schindler, Xin-Yuan Fu, Zilong Wen, Zhong Zhong
  • Patent number: 6338949
    Abstract: Receptor recognition factors exist that recognizes the specific cell receptor to which a specific ligand has been bound, and that may thereby signal and/or initiate the binding of the transcription factor to the DNA site. The receptor recognition factor is in one instance, a part of a transcription factor, and also may interact with other transcription factors to cause them to activate and travel to the nucleus for DNA binding. The receptor recognition factor appears to be second-messenger-independent in its activity, as overt perturbations in second messenger concentrations are of no effect. The concept of the invention is illustrated by the results of studies conducted with interferon (IFN)-stimulated gene transcription, and particularly, the activation caused by both IFN&agr; and IFN&ggr;. Specific DNA and amino acid sequences for various human and murine receptor recognition factors are provided, as are polypeptide fragments of two of the ISGF-3 genes, and antibodies have also been prepared and tested.
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: January 15, 2002
    Assignee: The Rockefeller University
    Inventors: James E. Darnell, Jr., Christian W. Schindler, Xin-Yuan Fu, Zilong Wen, Zhong Zhong
  • Patent number: 6124118
    Abstract: Receptor recognition factors exist that recognizes the specific cell receptor to which a specific ligand has been bound, and that may thereby signal and/or initiate the binding of the transcription factor to the DNA site. The receptor recognition factor is in one instance, a part of a transcription factor, and also may interact with other transcription factors to cause them to activate and travel to the nucleus for DNA binding. The receptor recognition factor appears to be second-messenger-independent in its activity, as overt perturbations in second messenger concentrations are of no effect. The concept of the invention is illustrated by the results of studies conducted with interferon (IFN)-stimulated gene transcription, and particularly, the activation caused by both IFN.alpha. and IFN.gamma..
    Type: Grant
    Filed: October 10, 1997
    Date of Patent: September 26, 2000
    Assignee: The Rockfeller University
    Inventors: James E. Darnell, Jr., Christian W. Schindler, Xin-Yuan Fu, Zilong Wen, Zhong Zhong
  • Patent number: 6030808
    Abstract: Receptor recognition factors exist that recognizes the specific cell receptor to which a specific ligand has been bound, and that may thereby signal and/or initiate the binding of the transcription factor to the DNA site. The receptor recognition factor is in one instance, a part of a transcription factor, and also may interact with other transcription factors to cause them to activate and travel to the nucleus for DNA binding. The receptor recognition factor appears to be second-messenger-independent in its activity, as overt perturbations in second messenger concentrations are of no effect. The concept of the invention is illustrated by the results of studies conducted with interferon (IFN)-stimulated gene transcription, and particularly, the activation caused by both IFN.alpha. and IFN-.gamma..
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: February 29, 2000
    Assignee: The Rockefeller University
    Inventors: James E. Darnell, Jr., Christian W. Schindler, Xin-Yuan Fu, Zilong Wen, Zhong Zhong
  • Patent number: 6013475
    Abstract: Receptor recognition factors exist that recognizes the specific cell receptor to which a specific ligand has been bound, and that may thereby signal and/or initiate the binding of the transcription factor to the DNA site. The receptor recognition factor is in one instance, a part of a transcription factor, and also may interact with other transcription factors to cause them to activate and travel to the nucleus for DNA binding. The receptor recognition factor appears to be second-messenger-independent in its activity, as overt perturbations in second messenger concentrations are of no effect. The concept of the invention is illustrated by the results of studies conducted with interferon (IFN)-stimulated gene transcription, and particularly, the activation caused by both IFN.alpha. and IFN.gamma..
    Type: Grant
    Filed: October 23, 1997
    Date of Patent: January 11, 2000
    Assignee: The Rockfeller University
    Inventors: James E. Darnell, Jr., Christian W. Schindler, Xin-Yuan Fu, Zilong Wen, Zhong Zhong
  • Patent number: 5976835
    Abstract: Receptor recognition factors exist that recognizes the specific cell receptor to which a specific ligand has been bound, and that may thereby signal and/or initiate the binding of the transcription factor to the DNA site. The receptor recognition factor is in one instance, a part of a transcription factor, and also may interact with other transcription factors to cause them to activate and travel to the nucleus for DNA binding. The receptor recognition factor appears to be second-messenger-independent in its activity, as overt perturbations in second messenger concentrations are of no effect. The concept of the invention is illustrated by the results of studies conducted with interferon (IFN)-stimulated gene transcription, and particularly, the activation caused by both IFN.alpha. and IFN-.gamma..
    Type: Grant
    Filed: March 19, 1997
    Date of Patent: November 2, 1999
    Assignee: The Rockefeller University
    Inventors: James E. Darnell, Jr., Christian W. Schindler, Xin-Yuan Fu, Zilong Wen, Zhong Zhong
  • Patent number: 5883228
    Abstract: The present invention relates generally to intracellular receptor recognition proteins or factors, termed Signal Transducers and Activators of Transcription (STAT), to methods and compositions utilizing such factors, and to the antibodies reactive toward them, in assays and for diagnosing, preventing and/or treating cellular debilitation, derangement or dysfunction. More particularly, the present invention relates to particular functional domains of molecules that exhibit both receptor recognition and message delivery via DNA binding in receptor-ligand specific manner, i.e., that directly participate both in the interaction with the ligand-bound receptor at the cell surface and in the activity of transcription in the nucleus as a DNA binding protein. The invention likewise relates to the antibodies and other entities that are specific to the functional domain of a STAT protein and that would thereby selectively modulate its activity.
    Type: Grant
    Filed: May 6, 1997
    Date of Patent: March 16, 1999
    Assignee: The Rockefeller University
    Inventors: James E. Darnell, Jr., Zilong Wen, Curt M. Horvath, Zhong Zhong
  • Patent number: 5716622
    Abstract: The present invention relates generally to intracellular receptor recognition proteins or factors, termed Signal Transducers and Activators of Transcription (STAT), to methods and compositions utilizing such factors, and to the antibodies reactive toward them, in assays and for diagnosing, preventing and/or treating cellular debilitation, derangement or dysfunction. More particularly, the present invention relates to particular functional domains of molecules that exhibit both receptor recognition and message delivery via DNA binding in receptor-ligand specific manner, i.e., that directly participate both in the interaction with the ligand-bound receptor at the cell surface and in the activity of transcription in the nucleus as a DNA binding protein. The invention likewise relates to the antibodies and other entities that are specific to the functional domain of a STAT protein and that would thereby selectively modulate its activity.
    Type: Grant
    Filed: January 6, 1995
    Date of Patent: February 10, 1998
    Assignee: The Rockefeller University
    Inventors: James E. Darnell, Jr., Zilong Wen, Curt M. Horvath, Zhong Zhong