Patents by Inventor Ziqiu Xue

Ziqiu Xue has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9829352
    Abstract: Distributions of a Brillouin frequency shift and a Rayleigh frequency shift in optical fibers set up in a material are measured from scattered waves of pulse laser light entered into the optical fibers, and distributions of pressure, temperature, and strain of the material along the optical fibers at a measurement time point are analyzed using coefficients that are inherent to the set up optical fibers and correlate pressure, temperature, and strain of material with the Brillouin frequency shift and the Rayleigh frequency shift.
    Type: Grant
    Filed: August 7, 2013
    Date of Patent: November 28, 2017
    Assignees: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH, NEUBREX CO., LTD.
    Inventors: Ziqiu Xue, Yoshiaki Yamauchi, Kinzo Kishida
  • Patent number: 9557196
    Abstract: In an optical fiber cable that includes an optical fiber core for measuring pressure and a multilayer armor cable for measuring temperature, an annular clearance space having a desired thickness is formed between the optical fiber core and the multilayer armor cable and fixing members for fixing the optical fiber core and the multilayer armor cable are provided at predetermined intervals in the axial direction of the optical fiber cable.
    Type: Grant
    Filed: April 3, 2014
    Date of Patent: January 31, 2017
    Assignees: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH, NEUBREX CO., LTD.
    Inventors: Ziqiu Xue, Kinzo Kishida, Yoshiaki Yamauchi, Shinzo Suzaki
  • Patent number: 9360304
    Abstract: Under a known pressure is externally applied to a reference member to which an optical fiber is fixed, test light is allowed to enter the optical fiber, and at least one of a reference Brillouin measurement for determining a reference Brillouin frequency shift amount based on the Brillouin scattering phenomenon, and a reference Rayleigh measurement for determining a reference Rayleigh frequency shift amount based on the Rayleigh scattering phenomenon is performed. A Brillouin measurement coefficient or a Rayleigh measurement coefficient is determined from these calculation results. An optical fiber is fixed to a sample member, the volumetric change of which is unknown, and the same sample Brillouin measurement or sample Rayleigh measurement is performed to determine the frequency shift amount. The volumetric change of the sample member is determined from the sample Brillouin or the sample Rayleigh frequency shift amount, and from the Brillouin or the Rayleigh measurement coefficient.
    Type: Grant
    Filed: August 10, 2012
    Date of Patent: June 7, 2016
    Assignees: RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR TH, NEUBREX CO., LTD.
    Inventors: Ziqiu Xue, Yoshiaki Yamauchi, Kinzo Kishida
  • Publication number: 20160116308
    Abstract: In an optical fiber cable that includes an optical fiber core for measuring pressure and a multilayer armor cable for measuring temperature, an annular clearance space having a desired thickness is formed between the optical fiber core and the multilayer armor cable and fixing members for fixing the optical fiber core and the multilayer armor cable are provided at predetermined intervals in the axial direction of the optical fiber cable.
    Type: Application
    Filed: April 3, 2014
    Publication date: April 28, 2016
    Applicants: NEUBREX CO., LTD., RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH
    Inventors: Ziqiu XUE, Kinzo KISHIDA, Yoshiaki YAMAUCHI, Shinzo SUZAKI
  • Patent number: 9279313
    Abstract: There are provided a carbon dioxide storage apparatus and a carbon dioxide storage method which, through direct injection of carbon dioxide into an underground brine aquifer, can store carbon dioxide efficiently in the brine aquifer. A filter formed of, for example, grindstone is provided at a tip portion of an injection well. A pumping apparatus pumps carbon dioxide stored in a carbon dioxide tank. The pumping apparatus feeds carbon dioxide from the carbon dioxide tank into the injection well by means of a pump. In the pumping apparatus, carbon dioxide is held within a predetermined pressure range and a predetermined temperature range. Carbon dioxide is fed through the injection well, and is injected into a brine aquifer. Carbon dioxide injected into the brine aquifer assumes the form of microbubbles.
    Type: Grant
    Filed: December 15, 2014
    Date of Patent: March 8, 2016
    Assignee: TOKYO GAS CO., LTD.
    Inventors: Hiromichi Kameyama, Susumu Nishio, Ziqiu Xue, Toshifumi Matsuoka
  • Publication number: 20150219443
    Abstract: Under a known pressure is externally applied to a reference member to which an optical fiber is fixed, test light is allowed to enter the optical fiber, and at least one of a reference Brillouin measurement for determining a reference Brillouin frequency shift amount based on the Brillouin scattering phenomenon, and a reference Rayleigh measurement for determining a reference Rayleigh frequency shift amount based on the Rayleigh scattering phenomenon is performed. A Brillouin measurement coefficient or a Rayleigh measurement coefficient is determined from these calculation results. An optical fiber is fixed to a sample member, the volumetric change of which is unknown, and the same sample Brillouin measurement or sample Rayleigh measurement is performed to determine the frequency shift amount. The volumetric change of the sample member is determined from the sample Brillouin or the sample Rayleigh frequency shift amount, and from the Brillouin or the Rayleigh measurement coefficient.
    Type: Application
    Filed: August 10, 2012
    Publication date: August 6, 2015
    Applicants: NEUBREX CO., LTD., RESEARCH INSTITUTE OF INNOVATIVE TECHNOLOGY FOR THE EARTH
    Inventors: Ziqiu Xue, Yoshiaki Yamauchi, Kinzo Kishida
  • Publication number: 20150211900
    Abstract: Distributions of a Brillouin frequency shift and a Rayleigh frequency shift in optical fibers set up in a material are measured from scattered waves of pulse laser light entered into the optical fibers, and distributions of pressure, temperature, and strain of the material along the optical fibers at a measurement time point are analyzed using coefficients that are inherent to the set up optical fibers and correlate pressure, temperature, and strain of material with the Brillouin frequency shift and the Rayleigh frequency shift.
    Type: Application
    Filed: August 7, 2013
    Publication date: July 30, 2015
    Inventors: Ziqiu Xue, Yoshiaki Yamauchi, Kinzo Kishida
  • Publication number: 20150122476
    Abstract: There are provided a carbon dioxide storage apparatus and a carbon dioxide storage method which, through direct injection of carbon dioxide into an underground brine aquifer, can store carbon dioxide efficiently in the brine aquifer. A filter formed of, for example, grindstone is provided at a tip portion of an injection well. A pumping apparatus pumps carbon dioxide stored in a carbon dioxide tank. The pumping apparatus feeds carbon dioxide from the carbon dioxide tank into the injection well by means of a pump. In the pumping apparatus, carbon dioxide is held within a predetermined pressure range and a predetermined temperature range. Carbon dioxide is fed through the injection well, and is injected into a brine aquifer. Carbon dioxide injected into the brine aquifer assumes the form of microbubbles.
    Type: Application
    Filed: December 15, 2014
    Publication date: May 7, 2015
    Inventors: Hiromichi KAMEYAMA, Susumu NISHIO, Ziqiu XUE, Toshifumi MATSUOKA
  • Patent number: 8998532
    Abstract: A carbon dioxide tank (3) is connected to a pump device (5). The pump device (5) is joined and connected with an infusion well (9), which is a tubular body. The infusion well (9) extends downward beneath the ground (7) and is provided so as to reach a saltwater aquifer (11). Part of the infusion well (9) forms a horizontal well (10) in a substantially horizontal direction. In other words, the horizontal well (10) is a location in which part of the infusion well (9) is formed in a substantially horizontal direction within a saltwater aquifer (11). The horizontal well (10) is provided with filters (13), which are porous members. For the filters (13), for example, a fired member in which ceramic particles are mixed with a binder that binds those particles can be used. Moreover, if the hole diameter for the filters (13) is small, microbubbles with a smaller diameter can be generated.
    Type: Grant
    Filed: March 26, 2012
    Date of Patent: April 7, 2015
    Assignee: Tokyo Gas Co., Ltd.
    Inventors: Ziqiu Xue, Susumu Nishio, Hiromichi Kameyama, Koji Yoshizaki
  • Patent number: 8939223
    Abstract: There are provided a carbon dioxide storage apparatus and a carbon dioxide storage method which, through direct injection of carbon dioxide into an underground brine aquifer, can store carbon dioxide efficiently in the brine aquifer. A filter formed of, for example, grindstone is provided at a tip portion of an injection well. A pumping apparatus pumps carbon dioxide stored in a carbon dioxide tank. The pumping apparatus feeds carbon dioxide from the carbon dioxide tank into the injection well by means of a pump. In the pumping apparatus, carbon dioxide is held within a predetermined pressure range and a predetermined temperature range. Carbon dioxide is fed through the injection well, and is injected into a brine aquifer. Carbon dioxide injected into the brine aquifer assumes the form of microbubbles.
    Type: Grant
    Filed: August 11, 2010
    Date of Patent: January 27, 2015
    Assignee: Tokyo Gas Co., Ltd.
    Inventors: Hiromichi Kameyama, Susumu Nishio, Ziqiu Xue, Toshifumi Matsuoka
  • Patent number: 8684085
    Abstract: A filter (13) is provided at a tip portion of an injection well (9). A pumping apparatus (5) pumps carbon dioxide stored in a carbon dioxide tank (3). The pumping apparatus (5) feeds carbon dioxide from the carbon dioxide tank (3) into the injection well (9) by means of a pump. In the pumping apparatus, the pressure and temperature of carbon dioxide are maintained at respective predetermined levels or higher by means of a pressure regulation valve, a temperature regulator, etc., whereby carbon dioxide enters a supercritical state. The carbon dioxide having entered a supercritical state is fed in the direction of arrow A through the injection well (9), passes through the filter (13) provided at an end portion of the injection well (9), and is injected into a brine aquifer (11). Carbon dioxide injected into the brine aquifer (11) assumes the form of microbubbles.
    Type: Grant
    Filed: August 12, 2009
    Date of Patent: April 1, 2014
    Assignee: Tokyo Gas Co., Ltd.
    Inventors: Hiromichi Kameyama, Susumu Nishio, Ziqiu Xue, Toshifumi Matsuoka
  • Publication number: 20140072369
    Abstract: A carbon dioxide tank (3) is connected to a pump device (5). The pump device (5) is joined and connected with an infusion well (9), which is a tubular body. The infusion well (9) extends downward beneath the ground (7) and is provided so as to reach a saltwater aquifer (11). Part of the infusion well (9) forms a horizontal well (10) in a substantially horizontal direction. In other words, the horizontal well (10) is a location in which part of the infusion well (9) is formed in a substantially horizontal direction within a saltwater aquifer (11). The horizontal well (10) is provided with filters (13), which are porous members. For the filters (13), for example, a fired member in which ceramic particles are mixed with a binder that binds those particles can be used. Moreover, if the hole diameter for the filters (13) is small, microbubbles with a smaller diameter can be generated.
    Type: Application
    Filed: March 26, 2012
    Publication date: March 13, 2014
    Applicant: TOKYO GAS CO., LTD.
    Inventors: Ziqiu Xue, Susumu Nishio, Hiromichi Kameyama, Koji Yoshizaki
  • Publication number: 20120118586
    Abstract: There are provided a carbon dioxide storage apparatus and a carbon dioxide storage method which, through direct injection of carbon dioxide into an underground brine aquifer, can store carbon dioxide efficiently in the brine aquifer. A filter formed of, for example, grindstone is provided at a tip portion of an injection well. A pumping apparatus pumps carbon dioxide stored in a carbon dioxide tank. The pumping apparatus feeds carbon dioxide from the carbon dioxide tank into the injection well by means of a pump. In the pumping apparatus, carbon dioxide is held within a predetermined pressure range and a predetermined temperature range. Carbon dioxide is fed through the injection well, and is injected into a brine aquifer. Carbon dioxide injected into the brine aquifer assumes the form of microbubbles.
    Type: Application
    Filed: August 11, 2010
    Publication date: May 17, 2012
    Applicant: TOKYO GAS CO., LTD.
    Inventors: Hiromichi Kameyama, Susumu Nishio, Ziqiu Xue, Toshifumi Matsuoka
  • Publication number: 20110139455
    Abstract: A filter (13) is provided at a tip portion of an injection well (9). A pumping apparatus (5) pumps carbon dioxide stored in a carbon dioxide tank (3). The pumping apparatus (5) feeds carbon dioxide from the carbon dioxide tank (3) into the injection well (9) by means of a pump. In the pumping apparatus, the pressure and temperature of carbon dioxide are maintained at respective predetermined levels or higher by means of a pressure regulation valve, a temperature regulator, etc., whereby carbon dioxide enters a supercritical state. The carbon dioxide having entered a supercritical state is fed in the direction of arrow A through the injection well (9), passes through the filter (13) provided at an end portion of the injection well (9), and is injected into a brine aquifer (11). Carbon dioxide injected into the brine aquifer (11) assumes the form of microbubbles.
    Type: Application
    Filed: August 12, 2009
    Publication date: June 16, 2011
    Applicant: TOKYO GAS CO., LTD.
    Inventors: Hiromichi Kameyama, Susumu Nishio, Ziqiu Xue, Toshifumi Matsuoka