Patents by Inventor Ziyan Xu

Ziyan Xu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10224418
    Abstract: Aspects of the present disclosure include fabricating integrated circuit (IC) structures using a boron etch-stop layer, and IC structures with a boron-rich region therein. Methods of forming an IC structure according to the present disclosure can include: growing a conductive epitaxial layer on an upper surface of a semiconductor element; forming a boron etch-stop layer directly on an upper surface of the conductive epitaxial layer; forming an insulator on the boron etch-stop layer; forming an opening within the insulator to expose an upper surface of the boron etch-stop layer; annealing the boron etch-stop layer to drive boron into the conductive epitaxial layer, such that the boron etch-stop layer becomes a boron-rich region; and forming a contact to the boron-rich region within the opening, such that the contact is electrically connected to the semiconductor element through at least the conductive epitaxial layer.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: March 5, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chengwen Pei, Xusheng Wu, Ziyan Xu
  • Patent number: 10181468
    Abstract: An asymmetric transistor may be used for controlling a memory cell. The asymmetric transistor may include at least one gate stack having bottom to top: a gate dielectric layer having a planar upper surface and a uniform thickness extending atop the entirety of the device channel, a dielectric threshold voltage adjusting element including: a sloped dielectric element located on the planar upper surface of the gate dielectric layer, and a sidewall dielectric layer extending from the sloped dielectric element along a first sidewall of the opening space, and a gate conductor located atop an upper surface of the sloped dielectric element and along a side of the sidewall dielectric layer. The dielectric threshold voltage adjusting element creates a threshold voltage that is lower in a writing mode than in a storage mode of the memory cell.
    Type: Grant
    Filed: October 31, 2016
    Date of Patent: January 15, 2019
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Ziyan Xu, Chengwen Pei, Xusheng Wu
  • Publication number: 20180366562
    Abstract: The disclosure is directed to methods of forming an integrated circuit structure and a related structure. One method may include: forming a gate structure over a fin, the fin being formed over a substrate and the gate structure defining a channel region beneath the gate structure within the fin; forming a notch within the fin and beneath the channel region by laterally etching the fin on opposing sides of the channel region; forming a rare-earth oxide (REO) within the notch and extending along a top surface of the fin outside of the notch; and forming a source region and a drain region on opposing sides of the channel region and over the REO that is disposed along the top surface of the fin.
    Type: Application
    Filed: June 20, 2017
    Publication date: December 20, 2018
    Inventors: Xusheng Wu, Chengwen Pei, Ziyan Xu
  • Patent number: 9972621
    Abstract: A method of forming straight and narrow fins in the channel region and the resulting device are provided. Embodiments include forming Si fins separated by STI regions; recessing the STI regions to reveal the Si fins; forming a nitride layer over the STI regions and the Si fins; forming an OPL over the nitride layer between the Si fins; recessing the OPL to expose portions of the nitride layer over the Si fins; removing exposed portions of the nitride layer; removing the OPL; forming an oxide layer over exposed portions of the Si fins; forming a dummy gate over the nitride layer and the oxide layer perpendicular to the Si fins and surrounded by an ILD; removing the dummy gate and the oxide layer forming a cavity; thinning the Si fins in the cavity; and forming a RMG in the cavity.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: May 15, 2018
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Xusheng Wu, Chengwen Pei, Ziyan Xu
  • Publication number: 20180122795
    Abstract: An asymmetric transistor may be used for controlling a memory cell. The asymmetric transistor may include at least one gate stack having bottom to top: a gate dielectric layer having a planar upper surface and a uniform thickness extending atop the entirety of the device channel, a dielectric threshold voltage adjusting element including: a sloped dielectric element located on the planar upper surface of the gate dielectric layer, and a sidewall dielectric layer extending from the sloped dielectric element along a first sidewall of the opening space, and a gate conductor located atop an upper surface of the sloped dielectric element and along a side of the sidewall dielectric layer. The dielectric threshold voltage adjusting element creates a threshold voltage that is lower in a writing mode than in a storage mode of the memory cell.
    Type: Application
    Filed: October 31, 2016
    Publication date: May 3, 2018
    Inventors: Ziyan Xu, Chengwen Pei, Xusheng Wu
  • Publication number: 20180061969
    Abstract: Aspects of the present disclosure include fabricating integrated circuit (IC) structures using a boron etch-stop layer, and IC structures with a boron-rich region therein. Methods of forming an IC structure according to the present disclosure can include: growing a conductive epitaxial layer on an upper surface of a semiconductor element; forming a boron etch-stop layer directly on an upper surface of the conductive epitaxial layer; forming an insulator on the boron etch-stop layer; forming an opening within the insulator to expose an upper surface of the boron etch-stop layer; annealing the boron etch-stop layer to drive boron into the conductive epitaxial layer, such that the boron etch-stop layer becomes a boron-rich region; and forming a contact to the boron-rich region within the opening, such that the contact is electrically connected to the semiconductor element through at least the conductive epitaxial layer.
    Type: Application
    Filed: October 25, 2017
    Publication date: March 1, 2018
    Inventors: Chengwen Pei, Xusheng Wu, Ziyan Xu
  • Patent number: 9870942
    Abstract: A method includes providing a semiconductor structure having a silicon mandrel layer, a hardmask stack and a dielectric layer. A 1st portion and a 2nd portion of the mandrel layer are doped with a 1st concentration and a 2nd greater concentration of dopant respectively. 1st and 2nd mandrels are patterned into the 1st and 2nd portions of the mandrel layer respectively. The 1st and 2nd mandrels are oxidized in the same thermal oxidation process to form 1st oxidation spacers on sidewalls of the 1st mandrels and 2nd oxidation spacers on sidewalls of the 2nd mandrels. The 2nd oxidation spacers have a thickness that is greater than a thickness of the 1st oxidation spacers. The 1st and 2nd oxidation spacers are utilized to form 1st and 2nd metal lines respectively in the dielectric layer. The 1st and 2nd metal lines have a different thickness.
    Type: Grant
    Filed: January 19, 2017
    Date of Patent: January 16, 2018
    Assignee: GLOBALFOUNDRIES Inc.
    Inventors: Xusheng Wu, Ziyan Xu, Chengwen Pei
  • Patent number: 9842913
    Abstract: Aspects of the present disclosure include fabricating integrated circuit (IC) structures using a boron etch-stop layer, and IC structures with a boron-rich region therein. Methods of forming an IC structure according to the present disclosure can include: growing a conductive epitaxial layer on an upper surface of a semiconductor element; forming a boron etch-stop layer directly on an upper surface of the conductive epitaxial layer; forming an insulator on the boron etch-stop layer; forming an opening within the insulator to expose an upper surface of the boron etch-stop layer; annealing the boron etch-stop layer to drive boron into the conductive epitaxial layer, such that the boron etch-stop layer becomes a boron-rich region; and forming a contact to the boron-rich region within the opening, such that the contact is electrically connected to the semiconductor element through at least the conductive epitaxial layer.
    Type: Grant
    Filed: May 18, 2016
    Date of Patent: December 12, 2017
    Assignee: GLOBALFOUNDRIES INC.
    Inventors: Chengwen Pei, Xusheng Wu, Ziyan Xu
  • Publication number: 20170338329
    Abstract: Aspects of the present disclosure include fabricating integrated circuit (IC) structures using a boron etch-stop layer, and IC structures with a boron-rich region therein. Methods of forming an IC structure according to the present disclosure can include: growing a conductive epitaxial layer on an upper surface of a semiconductor element; forming a boron etch-stop layer directly on an upper surface of the conductive epitaxial layer; forming an insulator on the boron etch-stop layer; forming an opening within the insulator to expose an upper surface of the boron etch-stop layer; annealing the boron etch-stop layer to drive boron into the conductive epitaxial layer, such that the boron etch-stop layer becomes a boron-rich region; and forming a contact to the boron-rich region within the opening, such that the contact is electrically connected to the semiconductor element through at least the conductive epitaxial layer.
    Type: Application
    Filed: May 18, 2016
    Publication date: November 23, 2017
    Inventors: Chengwen Pei, Xusheng Wu, Ziyan Xu
  • Patent number: D923518
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: June 29, 2021
    Assignee: BYD COMPANY LIMITED
    Inventors: Yubo Lian, Wolfgang Josef Egger, Wenquan Tang, Yuncheng Zhang, Ziyan Xu, Shuaizhi Chen