Patents by Inventor Zohar Montekyo

Zohar Montekyo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8526528
    Abstract: A communication terminal includes first and second transmitters, which are coupled to produce respective first and second Radio Frequency (RF) signals that are phase-shifted with respect to one another by a beamforming phase offset, and to transmit the RF signals toward a remote communication terminal. The terminal includes a reception subsystem including first and second receivers and a phase correction unit. The first and second receivers are respectively coupled to receive third and fourth RF signals from the remote communication terminal. The phase correction unit is coupled to produce, responsively to the third and fourth RF signals, a phase correction for correcting an error component in the beamforming phase offset.
    Type: Grant
    Filed: May 18, 2012
    Date of Patent: September 3, 2013
    Assignee: Provigent Ltd.
    Inventors: Rafi Ravid, Zohar Montekyo, Ahikam Aharony
  • Patent number: 8351552
    Abstract: A communication receiver includes a front end, which is arranged to receive a Radio Frequency (RF) signal, which includes modulated symbols carrying data that have been encoded by a block Forward Error Correction (FEC) code. The front end converts the RF signal to a sequence of soft received symbols, wherein the soft received symbols are subject to distortion by at least first and second noise components having respective at least first and second statistical distributions. A metric calculation unit is arranged to process the soft received symbols so as to extract parameters indicative of the at least first and second statistical distributions, and to compute FEC metrics based on the extracted parameters. A FEC decoder is arranged to accept the FEC metrics as input, and to process the metrics in an iterative FEC decoding process so as to decode the FEC code and reconstruct the data.
    Type: Grant
    Filed: October 17, 2011
    Date of Patent: January 8, 2013
    Assignee: Provigent Ltd.
    Inventors: Zohar Montekyo, Ronen Yonesi, Jonathan Friedmann
  • Publication number: 20120230444
    Abstract: A communication terminal includes first and second transmitters, which are coupled to produce respective first and second Radio Frequency (RF) signals that are phase-shifted with respect to one another by a beamforming phase offset, and to transmit the RF signals toward a remote communication terminal. The terminal includes a reception subsystem including first and second receivers and a phase correction unit. The first and second receivers are respectively coupled to receive third and fourth RF signals from the remote communication terminal. The phase correction unit is coupled to produce, responsively to the third and fourth RF signals, a phase correction for correcting an error component in the beamforming phase offset.
    Type: Application
    Filed: May 18, 2012
    Publication date: September 13, 2012
    Applicant: Provigent Ltd.
    Inventors: Rafi RAVID, Zohar MONTEKYO, Ahikam AHARONY
  • Patent number: 8204143
    Abstract: A communication terminal includes first and second transmitters, which are coupled to produce respective first and second Radio Frequency (RF) signals that are phase-shifted with respect to one another by a beamforming phase offset, and to transmit the RF signals toward a remote communication terminal. The terminal includes a reception subsystem including first and second receivers and a phase correction unit. The first and second receivers are respectively coupled to receive third and fourth RF signals from the remote communication terminal. The phase correction unit is coupled to produce, responsively to the third and fourth RF signals, a phase correction for correcting an error component in the beamforming phase offset.
    Type: Grant
    Filed: January 19, 2009
    Date of Patent: June 19, 2012
    Assignee: Provigent Ltd.
    Inventors: Rafi Ravid, Zohar Montekyo, Ahikam Aharony
  • Publication number: 20120093265
    Abstract: A communication receiver includes a front end, which is arranged to receive a Radio Frequency (RF) signal, which includes modulated symbols carrying data that have been encoded by a block Forward Error Correction (FEC) code. The front end converts the RF signal to a sequence of soft received symbols, wherein the soft received symbols are subject to distortion by at least first and second noise components having respective at least first and second statistical distributions. A metric calculation unit is arranged to process the soft received symbols so as to extract parameters indicative of the at least first and second statistical distributions, and to compute FEC metrics based on the extracted parameters. A FEC decoder is arranged to accept the FEC metrics as input, and to process the metrics in an iterative FEC decoding process so as to decode the FEC code and reconstruct the data.
    Type: Application
    Filed: October 17, 2011
    Publication date: April 19, 2012
    Applicant: Provigent Ltd.
    Inventors: Zohar MONTEKYO, Ronen Yonesi, Jonathan Friedmann
  • Patent number: 8040985
    Abstract: A communication receiver includes a front end, which is arranged to receive a Radio Frequency (RF) signal, which includes modulated symbols carrying data that have been encoded by a block Forward Error Correction (FEC) code. The front end converts the RF signal to a sequence of soft received symbols, wherein the soft received symbols are subject to distortion by at least first and second noise components having respective at least first and second statistical distributions. A metric calculation unit is arranged to process the soft received symbols so as to extract parameters indicative of the at least first and second statistical distributions, and to compute FEC metrics based on the extracted parameters. A FEC decoder is arranged to accept the FEC metrics as input, and to process the metrics in an iterative FEC decoding process so as to decode the FEC code and reconstruct the data.
    Type: Grant
    Filed: October 9, 2007
    Date of Patent: October 18, 2011
    Assignee: Provigent Ltd
    Inventors: Zohar Montekyo, Ronen Yonesi, Jonathan Friedmann
  • Publication number: 20090185650
    Abstract: A communication terminal includes first and second transmitters, which are coupled to produce respective first and second Radio Frequency (RF) signals that are phase-shifted with respect to one another by a beamforming phase offset, and to transmit the RF signals toward a remote communication terminal. The terminal includes a reception subsystem including first and second receivers and a phase correction unit. The first and second receivers are respectively coupled to receive third and fourth RF signals from the remote communication terminal. The phase correction unit is coupled to produce, responsively to the third and fourth RF signals, a phase correction for correcting an error component in the beamforming phase offset.
    Type: Application
    Filed: January 19, 2009
    Publication date: July 23, 2009
    Applicant: PROVIGENT LTD.
    Inventors: Rafi Ravid, Zohar Montekyo, Ahikam Aharony
  • Publication number: 20090092208
    Abstract: A communication receiver includes a front end, which is arranged to receive a Radio Frequency (RF) signal, which includes modulated symbols carrying data that have been encoded by a block Forward Error Correction (FEC) code. The front end converts the RF signal to a sequence of soft received symbols, wherein the soft received symbols are subject to distortion by at least first and second noise components having respective at least first and second statistical distributions. A metric calculation unit is arranged to process the soft received symbols so as to extract parameters indicative of the at least first and second statistical distributions, and to compute FEC metrics based on the extracted parameters. A FEC decoder is arranged to accept the FEC metrics as input, and to process the metrics in an iterative FEC decoding process so as to decode the FEC code and reconstruct the data.
    Type: Application
    Filed: October 9, 2007
    Publication date: April 9, 2009
    Inventors: Zohar Montekyo, Ronen Yonesi, Jonathan Friedmann