Patents by Inventor Zong-Hsin Liu

Zong-Hsin Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11684874
    Abstract: A tangential flow filtration module includes plural plate units connected in sequence. Each of the plate units includes a main body, a first combing portion, a second combing portion, a first flange and a second flange. The main body has a first side surface, a second side surface and a through hole. The first side surface is opposite to the second side surface, and the through hole extends from the first side surface to the second side surface. The first combing portion and the second combing portion are disposed on the first side surface and the second side surface respectively. The first flange and the second flange respectively protrude from the first side surface and the second side surface and respectively. The first combing portion of one of the plate units is combined with the second combing portion of another one of the plate units, so that a sieving structure.
    Type: Grant
    Filed: December 29, 2020
    Date of Patent: June 27, 2023
    Assignee: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventors: Zheng-Han Hong, Chun-Mu Wu, Zong-Hsin Liu, Po-Han Tseng, Yao-Kun Haung
  • Publication number: 20220203272
    Abstract: A tangential flow filtration module includes plural plate units connected in sequence. Each of the plate units includes a main body, a first combing portion, a second combing portion, a first flange and a second flange. The main body has a first side surface, a second side surface and a through hole. The first side surface is opposite to the second side surface, and the through hole extends from the first side surface to the second side surface. The first combing portion and the second combing portion are disposed on the first side surface and the second side surface respectively. The first flange and the second flange respectively protrude from the first side surface and the second side surface and respectively. The first combing portion of one of the plate units is combined with the second combing portion of another one of the plate units, so that a sieving structure.
    Type: Application
    Filed: December 29, 2020
    Publication date: June 30, 2022
    Inventors: Zheng-Han HONG, Chun-Mu WU, Zong-Hsin LIU, Po-Han TSENG, Yao-Kun HAUNG
  • Publication number: 20210153747
    Abstract: A mobile device for detecting an oral pathology includes a casing, a probing unit, and a processor. The probing unit includes a fiber bundle set and a contact part configured to contact a gum portion of a tooth of an examinate. The fiber bundle set includes a light source fiber bundle and a light-receiving fiber bundle. The light source fiber bundle has a light-exiting end within the contact part, and can project a probing light onto the gum portion. The light-receiving fiber bundle has a light-receiving end within the contact part. The light-receiving fiber bundle can receive diffuse reflection lights generated after the probing light is diffuse reflected by the gum portion. The processor is in signal connection with the light-receiving fiber bundle, and can receive the diffuse reflection lights, to build an optical spectrum, and to determine a state of the gum portion according to the optical spectrum.
    Type: Application
    Filed: September 29, 2020
    Publication date: May 27, 2021
    Inventors: Keng-Ta LIN, Po-Chi HU, Yuan-Hsun TSAI, Zong-Hsin LIU
  • Patent number: 10821413
    Abstract: A microparticle forming device is used to form microparticles with uniform particle size and proper roundness, and includes a collection pipe, a fluid nozzle, a reactor and a filter. The collection pipe includes a fluid passage, an aqueous-phase fluid inlet, an oil-phase fluid inlet and a mixed fluid outlet, all of which communicate with the fluid passage. The oil-phase fluid inlet is located between the aqueous-phase fluid inlet and the mixed fluid outlet. The fluid nozzle has a plurality of oil-phase fluid drop outlets aligned with the oil-phase fluid inlet of the collection pipe. The reactor has a reaction chamber communicating with the mixed fluid outlet of the collection pipe, a mixing member accommodated in the reaction chamber, and a microparticle collection port communicating communicated with the reaction chamber. Two opposite ends of the filter respectively communicate with the reaction chamber of the reactor.
    Type: Grant
    Filed: December 22, 2017
    Date of Patent: November 3, 2020
    Assignee: METAL INDUSTRIES RESEARCH & DEVELOPMENT CENTRE
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ming-Fang Tsai, Ying-Chieh Lin, Chiu-Feng Lin, Ying-Cheng Lu, Yao-Kun Huang
  • Patent number: 10335754
    Abstract: A nozzle for producing microparticles includes a nozzle body having an oscillating device and an amplifying portion connected to the oscillating device and located between first and second ends of the nozzle body. A through-hole extends from the first end through the amplifying portion and the second end. A tube assembly is mounted in the through-hole and includes first and second tubes between which a first fluid passageway is defined. A second fluid passageway is defined in the second tube. Two ends of the first tube respectively form a first filling port and a plurality of first outlet ports both of which intercommunicate with the first fluid passageway. Two ends of the second tube respectively form a second filling port and a second outlet port both of which intercommunicate with the second fluid passageway. A formation space is defined between the second outlet port and the first outlet ports.
    Type: Grant
    Filed: December 15, 2016
    Date of Patent: July 2, 2019
    Assignee: Metal Industries Research & Development Centre
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Yao-Kun Huang, Ying-Cheng Lu
  • Publication number: 20190193043
    Abstract: A microparticle forming device is used to form microparticles with uniform particle size and proper roundness, and includes a collection pipe, a fluid nozzle, a reactor and a filter. The collection pipe includes a fluid passage, an aqueous-phase fluid inlet, an oil-phase fluid inlet and a mixed fluid outlet, all of which are communicated with the fluid passage. The oil-phase fluid inlet is located between the aqueous-phase fluid inlet and the mixed fluid outlet. The fluid nozzle has a plurality of oil-phase fluid drop outlets aligned with the oil-phase fluid inlet of the collection pipe. The reactor has a reaction chamber communicated with the mixed fluid outlet of the collection pipe, a mixing member accommodated in the reaction chamber, and a microparticle collection port communicated with the reaction chamber. Two opposite ends of the filter are respectively communicated with the reaction chamber of the reactor.
    Type: Application
    Filed: December 22, 2017
    Publication date: June 27, 2019
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ming-Fang Tsai, Ying-Chieh Lin, Chiu-Feng Lin, Ying-Cheng Lu, Yao-Kun Huang
  • Publication number: 20190134591
    Abstract: A microcarrier forming apparatus includes a tank having an inner periphery. A plurality of spoilers is disposed on the inner periphery of the tank. A spray generator includes a spraying end facing an interior of the tank. A stirrer includes a shaft and a fluid driving member. The shaft includes a central axis inclined from a horizontal plane. The fluid driving member is coupled to the shaft and is disposed in the interior of the tank.
    Type: Application
    Filed: December 26, 2017
    Publication date: May 9, 2019
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Shiao-Wei Kuo, Yao-Kun Huang
  • Publication number: 20190125677
    Abstract: A water-phase composition for producing microparticles includes a water-phase fluid, an amphiphilic polymer stabilizing agent, a water-phase surfactant, and an organic solvent. The amphiphilic polymer stabilizing agent can be polyvinyl alcohol. The water-phase surfactant can be polysorbate 20, polysorbate 80, poloxamer 188, or sodium dodecyl sulfate. The water-phase surfactant can be ethyl acetate, dichloromethane, chloroform, or dimethyl sulfoxide.
    Type: Application
    Filed: December 27, 2017
    Publication date: May 2, 2019
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Shiao-Wei Kuo, Yao-Kun Huang
  • Patent number: 10272404
    Abstract: A nozzle for producing microparticles includes a nozzle body having a first end and a second end opposite to the first end. The nozzle body further includes a through-hole extending from the first end through the second end. A fluid passageway is defined in the through-hole and forms a filling port in the first end of the nozzle body and a plurality of outlet ports in the second end of the nozzle body. The nozzle body further includes an oscillating device and an amplifying portion. The oscillating device is connected to the amplifying portion. The amplifying portion surrounds the fluid passageway and is located adjacent to the second end of the nozzle body.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: April 30, 2019
    Assignee: Metal Industries Research & Development Centre
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Yao-Kun Huang, Ying-Cheng Lu
  • Patent number: 10137090
    Abstract: A nozzle, an apparatus, and a method for producing dual-layer microparticles used as microcarriers. The nozzle includes a nozzle body having a first fluid passageway and a cover mounted to the nozzle body and having a second fluid passageway. A plurality of extension tubes is communicated with an end of the first fluid passageway and is spaced from each other. Each extension tube includes an outlet port distant to the first fluid passageway. A plurality of sleeves is communicated with the second fluid passageway. Each sleeve includes an opening distant to the second fluid passageway. Each extension tube extends into one of the sleeves. An outer wall of each extension tube is spaced from an inner wall of one of the sleeves. The outlet port of each extension tube is located between the second fluid passageway and the opening of one of the sleeves.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: November 27, 2018
    Assignee: Metal Industries Research & Development Centre
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Hai-Ching Tsou, Ying-Cheng Lu
  • Patent number: 10117835
    Abstract: A nozzle includes a nozzle body having a fluid passageway to which extension tubes are communicated. Each extension tube includes an end having an outlet port. The outlet ports are spaced from each other. An apparatus includes the nozzle, a fluid tank into which the extension tubes extends, a fluid shear device mounted in the fluid tank, and a temperature control system in which the fluid tank is mounted. A method includes filling a water phase fluid into the fluid tank. An oil phase fluid flows out of the nozzle body via the outlet ports. The water phase fluid is disturbed and flows out of the outlet ports to form semi-products of microparticles in the fluid tank. Each semi-product has an inner layer formed by the oil phase fluid and an outer layer formed by the water phase fluid. The outer layers of the semi-products are removed to form microparticles.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: November 6, 2018
    Assignee: Metal Industries Research & Development Centre
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Hai-Ching Tsou, Ying-Cheng Lu
  • Patent number: 10029280
    Abstract: A sieve for microparticles includes a seat having a chamber and a plurality of boards mounted in the chamber. Each of the plurality of boards includes a first face and a second face opposite to the first face. The first face includes at least one notch. The second face includes at least one groove. The first face of each of the plurality of boards abuts the second face of an adjacent board. The at least one notch and the at least one groove respectively of two adjacent boards are partially aligned and intercommunicated with each other.
    Type: Grant
    Filed: December 14, 2016
    Date of Patent: July 24, 2018
    Assignee: Metal Industries Research & Development Centre
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Chia-Ming Jan, Yun-Lung Huang, Hai-Ching Tsou, Ying-Cheng Lu
  • Publication number: 20180161819
    Abstract: A sieve for microparticles includes a seat having a chamber and a plurality of boards mounted in the chamber. Each of the plurality of boards includes a first face and a second face opposite to the first face. The first face includes at least one notch. The second face includes at least one groove. The first face of each of the plurality of boards abuts the second face of an adjacent board. The at least one notch and the at least one groove respectively of two adjacent boards are partially aligned and intercommunicated with each other.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Chia-Ming Jan, Yun-Lung Huang, Hai-Ching Tsou, Ying-Cheng Lu
  • Publication number: 20180161278
    Abstract: A nozzle, an apparatus, and a method are provided for mass production of dual-layer microparticles used as microcarriers. The nozzle includes a nozzle body having a first fluid passageway and a cover mounted to the nozzle body and having a second fluid passageway. A plurality of extension tubes is communicated with an end of the first fluid passageway and is spaced from each other. Each extension tube includes an outlet port distant to the first fluid passageway. A plurality of sleeves is communicated with the second fluid passageway. Each sleeve includes an opening distant to the second fluid passageway. Each extension tube extends into one of the sleeves. An outer wall of each extension tube is spaced from an inner wall of one of the sleeves. The outlet port of each extension tube is located between the second fluid passageway and the opening of one of the sleeves.
    Type: Application
    Filed: December 14, 2016
    Publication date: June 14, 2018
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Hai-Ching Tsou, Ying-Cheng Lu
  • Publication number: 20180111103
    Abstract: A nozzle for producing microparticles includes a nozzle body having an oscillating device and an amplifying portion connected to the oscillating device and located between first and second ends of the nozzle body. A through-hole extends from the first end through the amplifying portion and the second end. A tube assembly is mounted in the through-hole and includes first and second tubes between which a first fluid passageway is defined. A second fluid passageway is defined in the second tube. Two ends of the first tube respectively form a first filling port and a plurality of first outlet ports both of which intercommunicate with the first fluid passageway. Two ends of the second tube respectively form a second filling port and a second outlet port both of which intercommunicate with the second fluid passageway. A formation space is defined between the second outlet port and the first outlet ports.
    Type: Application
    Filed: December 15, 2016
    Publication date: April 26, 2018
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Yao-Kun Huang, Ying-Cheng Lu
  • Publication number: 20180110736
    Abstract: A nozzle includes a nozzle body having a fluid passageway to which extension tubes are communicated. Each extension tube includes an end having an outlet port. The outlet ports are spaced from each other. An apparatus includes the nozzle, a fluid tank into which the extension tubes extends, a fluid shear device mounted in the fluid tank, and a temperature control system in which the fluid tank is mounted. A method includes filling a water phase fluid into the fluid tank. An oil phase fluid flows out of the nozzle body via the outlet ports. The water phase fluid is disturbed and flows out of the outlet ports to form semi-products of microparticles in the fluid tank. Each semi-product has an inner layer formed by the oil phase fluid and an outer layer formed by the water phase fluid. The outer layers of the semi-products are removed to form microparticles.
    Type: Application
    Filed: December 14, 2016
    Publication date: April 26, 2018
    Inventors: Cheng-Han Hung, Zong-Hsin Liu, Ying-Chieh Lin, Ming-Fang Tsai, Hai-Ching Tsou, Ying-Cheng Lu
  • Publication number: 20180111106
    Abstract: A method for producing microparticles includes filling a tank with a first fluid. A nozzle including a plurality of first outlet ports facing the tank is provided. A second fluid forms a plurality of liquid films on the first outlet ports. The liquid films on the first outlet ports absorb a vibrational energy to form a plurality of microdroplets that falls into the first fluid. The first fluid envelops outer layers of the microdroplets to form a plurality of semi-products of microparticles. Each semi-product includes an outer layer formed by the first fluid and an inner layer formed by the second fluid. The semi-products in the tank are collected. The outer layers of the semi-products are removed to form a plurality of microparticle products.
    Type: Application
    Filed: December 15, 2016
    Publication date: April 26, 2018
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Yao-Kun Huang, Ying-Cheng Lu
  • Publication number: 20180099256
    Abstract: A nozzle for producing microparticles includes a nozzle body having a first end and a second end opposite to the first end. The nozzle body further includes a through-hole extending from the first end through the second end. A fluid passageway is defined in the through-hole and forms a filling port in the first end of the nozzle body and a plurality of outlet ports in the second end of the nozzle body. The nozzle body further includes an oscillating device and an amplifying portion. The oscillating device is connected to the amplifying portion. The amplifying portion surrounds the fluid passageway and is located adjacent to the second end of the nozzle body.
    Type: Application
    Filed: December 14, 2016
    Publication date: April 12, 2018
    Inventors: Zong-Hsin Liu, Cheng-Han Hung, Ying-Chieh Lin, Cheng-Tang Pan, Yao-Kun Huang, Ying-Cheng Lu
  • Publication number: 20170160528
    Abstract: A light collecting module that includes at least one light concentrating unit, at least one collimating unit, and a focusing mirror is provided. The light concentrating unit has a light input end and a light output end opposite to the light input end, and the light concentrating unit is configured to collect lights at various incident angles through the light input end and concentrate the lights on the light output end. The collimating unit collimates the lights from the light output end of the light concentrating unit. The focusing mirror focuses the collimated lights from the collimating unit on a focus of the focusing mirror.
    Type: Application
    Filed: December 4, 2015
    Publication date: June 8, 2017
    Inventors: Zong-Hsin Liu, Fu-Chuan Hsu, Cheng-Tang Pan, Yen-Po Sun, Chung-Kun Yen, Wen-Jiun Liu, Hsuan-Cheng Liu