Patents by Inventor Zong-Liang Huo

Zong-Liang Huo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20060220085
    Abstract: Single transistor floating body dynamic random access memory (DRAM) cells include a semiconductor substrate and a barrier layer on the semiconductor substrate and a recess channel transistor on the barrier layer. The recess channel transistor includes a source region of a first conductivity type, a drain region of the first conductivity type spaced apart from the source region and a floating body of a second conductivity type between the barrier layer and the source region and the drain region. The floating body includes a recess region between the source region and the drain region. Methods of forming single transistor floating body dynamic random access memory (DRAM) cells are also provided.
    Type: Application
    Filed: January 19, 2006
    Publication date: October 5, 2006
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Publication number: 20060220134
    Abstract: Complementary metal oxide semiconductor (CMOS) static random access memory (SRAM) cells include at least a first inverter formed in a fin-shaped pattern of stacked semiconductor regions of opposite conductivity type. In some of these embodiments, the first inverter includes a first conductivity type (e.g., P-type or N-type) MOS load transistor electrically coupled in series with a second conductivity type (e.g., N-type of P-type) MOS driver transistor. The first inverter is arranged so that active regions of the first conductivity type MOS load transistor and the second conductivity type driver transistor are vertically stacked relative to each other within a first portion of a vertical dual-conductivity semiconductor fin structure. This fin structure is surrounded on at least three sides by a wraparound gate electrode, which is configured to modulate conductivity of both the active regions in response to a gate signal.
    Type: Application
    Filed: March 14, 2006
    Publication date: October 5, 2006
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo, Hong-Sik Yoon, Shi-Eun Kim
  • Publication number: 20060197131
    Abstract: In a DRAM device and a method of manufacturing the same, a multiple tunnel junction (MTJ) structure is provided, which includes conductive patterns and nonconductive patterns alternately stacked on each other. The nonconductive patterns have a band gap larger than a band gap of the conductive patterns. A gate insulation layer and a gate electrode are formed on a sidewall of the MTJ structure. A word line is connected with the MTJ structure, and a bit line is connected with one of top and bottom surfaces of the MTJ structure. A capacitor is connected with one of top and bottom surfaces of the MTJ structure that is not connected with the bit line. Current leakage in the DRAM device is reduced and a unit cells may be vertically stacked on the substrate, so a smaller surface area of the substrate is required for the DRAM device.
    Type: Application
    Filed: February 22, 2006
    Publication date: September 7, 2006
    Inventors: Hong-Sik Yoon, In-Seok Yeo, Seung-Jae Baik, Zong-Liang Huo, Shi-Eun Kim
  • Publication number: 20060060914
    Abstract: There are provided highly integrated semiconductor memory devices being suitable for storing two bits of data in one unit cell, and methods of fabricating the same. The unit cell of the semiconductor memory device includes a semiconductor substrate and source and drain regions formed in the semiconductor substrate and spaced from each other. First and second data lines are formed to run across over a channel region between the source and drain regions and to be disposed adjacent to the source and drain regions respectively. A first MTJ barrier layer pattern is disposed between the first data line and the channel region. A second MTJ barrier layer pattern is disposed between the second data line and the channel region. A first floated storage node is disposed between the first MTJ barrier layer pattern and the channel region. A second floated storage node is disposed between the second MTJ barrier layer pattern and the channel region.
    Type: Application
    Filed: September 22, 2005
    Publication date: March 23, 2006
    Inventors: Zong-Liang Huo, Seung-Jae Baik, In-Seok Yeo