Patents by Inventor Zongxuan Hong

Zongxuan Hong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8729326
    Abstract: A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
    Type: Grant
    Filed: August 14, 2008
    Date of Patent: May 20, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Zongxuan Hong
  • Publication number: 20140127593
    Abstract: The metal-air battery system of this invention has a detachable anode compartment and cathode compartment for producing electric current, wherein the anode compartment and the cathode compartment are pressed into contact when the battery is put in use to generate electric power; and the anode compartment and the cathode compartment are separated when the battery is not in use to generate electric power. The anode compartment also has an injection device to inject water mist to maintain the moisture level of the metal gel inside the anode compartment. The metal-air battery system of this invention will extend the battery storage life significantly as compared to conventional metal-air battery. In addition, the metal-air battery system of this invention makes replacing anode conveniently so that the battery system can be re-used continuously.
    Type: Application
    Filed: November 5, 2012
    Publication date: May 8, 2014
    Inventors: ZONGXUAN HONG, CUNXI SHEN, AIYING CHEN
  • Publication number: 20140107383
    Abstract: A composition comprising a supported hydrogenation catalyst comprising palladium and an organophosphorous compound, the supported hydrogenation catalyst being capable of selectively hydrogenating highly unsaturated hydrocarbons to unsaturated hydrocarbons. A method of making a selective hydrogenation catalyst comprising contacting a support with a palladium-containing compound to form a palladium supported composition, contacting the palladium supported composition with an organophosphorus compound to form a catalyst precursor, and reducing the catalyst precursor to form the catalyst.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 17, 2014
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Zongxuan Hong
  • Patent number: 8633127
    Abstract: A composition comprising a supported hydrogenation catalyst comprising palladium and an organophosphorous compound, the supported hydrogenation catalyst being capable of selectively hydrogenating highly unsaturated hydrocarbons to unsaturated hydrocarbons. A method of making a selective hydrogenation catalyst comprising contacting a support with a palladium-containing compound to form a palladium supported composition, contacting the palladium supported composition with an organophosphorus compound to form a catalyst precursor, and reducing the catalyst precursor to form the catalyst.
    Type: Grant
    Filed: February 23, 2010
    Date of Patent: January 21, 2014
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Zongxuan Hong
  • Patent number: 7902414
    Abstract: A catalytic process for the selective production of para-xylene comprises the step of reacting an aromatic hydrocarbon selected from the group consisting of toluene, benzene and mixtures thereof with a feed comprising carbon monoxide and hydrogen in the presence of a selectivated catalyst. The process includes a catalyst selectivation phase and a para-xylene production phase. In the catalyst selectivation phase, the aromatic hydrocarbon and the feed are contacted with the catalyst under a first set of conditions effective to increase the para-selectivity of said catalyst. In the para-xylene production phase, the aromatic hydrocarbon and said feed are contacted with the catalyst under a second set of conditions different from the first set of conditions effective to selectively produce para-xylene.
    Type: Grant
    Filed: October 3, 2007
    Date of Patent: March 8, 2011
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Zongxuan Hong, Songsheng Tan, Timothy E. McMinn
  • Publication number: 20100228065
    Abstract: A composition comprising a supported hydrogenation catalyst comprising palladium and an organophosphorous compound, the supported hydrogenation catalyst being capable of selectively hydrogenating highly unsaturated hydrocarbons to unsaturated hydrocarbons. A method of making a selective hydrogenation catalyst comprising contacting a support with a palladium-containing compound to form a palladium supported composition, contacting the palladium supported composition with an organophosphorus compound to form a catalyst precursor, and reducing the catalyst precursor to form the catalyst.
    Type: Application
    Filed: February 23, 2010
    Publication date: September 9, 2010
    Applicant: CHEVRON PHILLIPS CHEMICAL COMPANY LP
    Inventors: Tin-Tack Peter Cheung, Zongxuan Hong
  • Patent number: 7482081
    Abstract: The battery system of this invention continuously regenerates the electrodes of the battery in-situ and on-time as the electrodes are consumed during discharge, which concurrently generate electric current. The continuous in-situ and on-time regeneration of the anode is achieved by a supply of reducing materials in the battery compartment that is in contact with the anode. With the use of high energy density reducing materials, the energy density of the battery system is increased significantly. When the reducing materials are consumed, the reducing materials can be replaced with a supplying device. With the use of specially designed supplying devices for reducing materials, recharging battery system is more convenient, safe, fast, and can be operated repeatedly.
    Type: Grant
    Filed: February 2, 2005
    Date of Patent: January 27, 2009
    Inventor: Zongxuan Hong
  • Publication number: 20080300436
    Abstract: A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
    Type: Application
    Filed: August 14, 2008
    Publication date: December 4, 2008
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Zongxuan Hong
  • Patent number: 7417007
    Abstract: A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
    Type: Grant
    Filed: July 20, 2006
    Date of Patent: August 26, 2008
    Assignee: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Peter Cheung, Joseph Bergmeister, III, Zongxuan Hong
  • Publication number: 20080033067
    Abstract: A catalytic process for the selective production of para-xylene comprises the step of reacting an aromatic hydrocarbon selected from the group consisting of toluene, benzene and mixtures thereof with a feed comprising carbon monoxide and hydrogen in the presence of a selectivated catalyst. The process includes a catalyst selectivation phase and a para-xylene production phase. In the catalyst selectivation phase, the aromatic hydrocarbon and the feed are contacted with the catalyst under a first set of conditions effective to increase the para-selectivity of said catalyst. In the para-xylene production phase, the aromatic hydrocarbon and said feed are contacted with the catalyst under a second set of conditions different from the first set of conditions effective to selectively produce para-xylene.
    Type: Application
    Filed: October 3, 2007
    Publication date: February 7, 2008
    Inventors: John Ou, Zongxuan Hong, Songsheng Tan, Timothy McMinn
  • Publication number: 20070128509
    Abstract: A method for synthesizing sodium borohydride compound with reduced energy usage and recycles of by-product materials involved in the application and synthesis processes of sodium borohydride is disclosed. The method utilizes a sodium-sulfur electrochemical cell flow system for synthesizing sodium metal and incorporates the sodium metal produced in the commercial sodium borohydride synthesis processes known in prior arts, for example, the “Schlesinger process”. Furthermore, the by-product materials involved in the application and synthesis of sodium borohydride are recycled through a series of processes.
    Type: Application
    Filed: November 27, 2006
    Publication date: June 7, 2007
    Inventor: Zongxuan Hong
  • Publication number: 20070027030
    Abstract: A method for producing a selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition. A selective hydrogenation catalyst for hydrogenating a highly unsaturated hydrocarbon to an unsaturated hydrocarbon formed by the method comprising contacting an inorganic catalyst support with a chlorine-containing compound to form a chlorided catalyst support and adding palladium to the chlorided catalyst support to form a supported-palladium composition.
    Type: Application
    Filed: July 20, 2006
    Publication date: February 1, 2007
    Applicant: Chevron Phillips Chemical Company LP
    Inventors: Tin-Tack Cheung, Joseph Bergmeister, Zongxuan Hong
  • Publication number: 20050276746
    Abstract: The operating characteristics of catalytic reactors used in systems which generate hydrogen from the contact of a fuel with a catalyst are enhanced by such reactors incorporating one or more of group of elements consisting of (a) a heat exchanging element that preheats the fuel solution prior to its contact with the catalyst, (b) one or more liquid diffusing elements which distributes the flow of fuel over the catalyst so as to increase the generation hydrogen from such contact, (c) multiple catalysts having different hydrogen generating characteristics and d) a membrane capable of operating at pressures equal to or greater than 50 psig which surrounds catalytic material in the reactor and separates the generated hydrogen from the fuel.
    Type: Application
    Filed: June 14, 2004
    Publication date: December 15, 2005
    Inventors: Qinglin Zhang, Gregory Smith, Zongxuan Hong
  • Publication number: 20050175877
    Abstract: The battery system of this invention continuously regenerates the electrodes of the battery in-situ and on-time as the electrodes are consumed during discharge, which concurrently generate electric current. The continuous in-situ and on-time regeneration of the anode is achieved by a supply of reducing materials in the battery compartment that is in contact with the anode. The continuous in-situ and on-time regeneration of the cathode is achieved by a supply of oxidizing materials in the battery compartment that is in contact with the cathode. With the use of high energy density reducing materials and/or oxidizing materials, the energy density of the battery system is increased significantly. When the reducing materials and/or oxidizing materials are consumed, the reducing materials and/or oxidizing materials can be replaced with a supplying device.
    Type: Application
    Filed: February 2, 2005
    Publication date: August 11, 2005
    Inventor: Zongxuan Hong
  • Publication number: 20040097769
    Abstract: A catalytic process for the selective production of para-xylene comprises the step of reacting an aromatic hydrocarbon selected from the group consisting of toluene, benzene and mixtures thereof with a feed comprising carbon monoxide and hydrogen in the presence of a selectivated catalyst. The process includes a catalyst selectivation phase and a para-xylene production phase. In the catalyst selectivation phase, the aromatic hydrocarbon and the feed are contacted with the catalyst under a first set of conditions effective to increase the para-selectivity of said catalyst. In the para-xylene production phase, the aromatic hydrocarbon and said feed are contacted with the catalyst under a second set of conditions different from the first set of conditions effective to selectively produce para-xylene.
    Type: Application
    Filed: November 14, 2002
    Publication date: May 20, 2004
    Inventors: John D. Y. Ou, Zongxuan Hong, Songsheng Tan, Timothy E. McMinn
  • Patent number: 6388156
    Abstract: It has been discovered that para-xylene (PX) can be synthesized with improved selectivity by reacting an aromatic compound such as toluene and/or benzene with a reactant(s) such as a combination of hydrogen and carbon monoxide and/or carbon dioxide and/or methanol or methylating agents produced therefrom. Catalytic reaction systems are employed, such as crystalline or amorphous aluminosilicates having one-dimensional channel structure, para-alkyl selectivated crystalline or amorphous aluminosilicates, para-alkyl selectivated substituted aluminosilicates, crystalline or amorphous substituted silicates having one-dimensional channel structure, para-alkyl selectivated substituted silicates, crystalline or amorphous aluminophosphates, para-alkyl selectivated crystalline or amorphous aluminophosphates, para-alkyl selectivated zeolite-bound zeolite and para-alkyl selectivated substituted aluminophosphates, and mixtures thereof.
    Type: Grant
    Filed: May 14, 1999
    Date of Patent: May 14, 2002
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John D. Y. Ou, Gary F. Janda, Zongxuan Hong, Russell D. Sellen