Patents by Inventor Zongyao LI

Zongyao LI has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250044803
    Abstract: The disclosure provides a communication delay compensation method and a communication delay compensation system based on an autonomous robot, where the method includes the following steps: establishing a state equation based on a system model of an AUV positioning system; acquiring an included angle between a direction vector of AUV to an observation station and a velocity vector of AUV based on the system model; establishing an observation equation according to the state equation and the included angle; establishing an extended Kalman filter equation based on the system model, the included angle and the observation equation; and calculating a position information predicted value at the current time by using the extended Kalman filter equation to complete communication delay compensation.
    Type: Application
    Filed: March 8, 2024
    Publication date: February 6, 2025
    Inventors: Chaoyang CHEN, Zongyao LI, Pei LI, Juan CHEN, Zuguo CHEN, Ying ZOU, Ming LU, Zunhui YI, Lei HE, Liang CHEN
  • Publication number: 20250037967
    Abstract: Systems and methods of imaging a sample using a charged-particle beam apparatus are disclosed. The charged-particle beam apparatus may include a compound objective lens comprising a magnetic lens and an electrostatic lens, the magnetic lens comprising a cavity, and an electron detector located immediately upstream from a polepiece of the magnetic lens and inside the cavity of the magnetic lens. In some embodiments, deflectors may be located between the electron detector and the opening of the polepiece adjacent to the sample to achieve a large field of view. Electron distributions among the detectors can be manipulated without changing the landing energy by changing the potential of the control electrode(s) in the electrostatic objective lens. The electron source can be operated with several discrete potentials to cover different landing energies, while the potential difference between electron source and the extractor is fixed.
    Type: Application
    Filed: October 10, 2024
    Publication date: January 30, 2025
    Inventors: Xuedong LIU, Weimin ZHOU, Xiaoxue CHEN, Xiaoyu JI, Heng LI, Shahedul HOQUE, Zongyao LI, Shuhao LIU, Weiming REN
  • Patent number: 12142455
    Abstract: Systems and methods of imaging a sample using a charged-particle beam apparatus are disclosed. The charged-particle beam apparatus may include a compound objective lens comprising a magnetic lens and an electrostatic lens, the magnetic lens comprising a cavity, and an electron detector located immediately upstream from a polepiece of the magnetic lens and inside the cavity of the magnetic lens. In some embodiments, deflectors may be located between the electron detector and the opening of the polepiece adjacent to the sample to achieve a large field of view. Electron distributions among the detectors can be manipulated without changing the landing energy by changing the potential of the control electrode(s) in the electrostatic objective lens. The electron source can be operated with several discrete potentials to cover different landing energies, while the potential difference between electron source and the extractor is fixed.
    Type: Grant
    Filed: April 8, 2021
    Date of Patent: November 12, 2024
    Assignee: ASML Netherlands B.V.
    Inventors: Xuedong Liu, Weimin Zhou, Xiaoxue Chen, Xiaoyu Ji, Heng Li, Shahedul Hoque, Zongyao Li, Shuhao Liu, Weiming Ren
  • Publication number: 20210319977
    Abstract: Systems and methods of imaging a sample using a charged-particle beam apparatus are disclosed. The charged-particle beam apparatus may include a compound objective lens comprising a magnetic lens and an electrostatic lens, the magnetic lens comprising a cavity, and an electron detector located immediately upstream from a polepiece of the magnetic lens and inside the cavity of the magnetic lens. In some embodiments, deflectors may be located between the electron detector and the opening of the polepiece adjacent to the sample to achieve a large field of view. Electron distributions among the detectors can be manipulated without changing the landing energy by changing the potential of the control electrode(s) in the electrostatic objective lens. The electron source can be operated with several discrete potentials to cover different landing energies, while the potential difference between electron source and the extractor is fixed.
    Type: Application
    Filed: April 8, 2021
    Publication date: October 14, 2021
    Inventors: Xuedong LIU, Weimin ZHOU, Xiaoxue CHEN, Xiaoyu JI, Heng LI, Shahedul HOQUE, Zongyao LI, Shuhao LIU, Weiming REN