Patents by Inventor Zoran Vrankovic

Zoran Vrankovic has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11936182
    Abstract: A system for distributing DC bus voltage and control power to multiple motors includes a rectifier front end supplying a DC bus voltage and a DC control voltage. Both the DC bus voltage and the DC control voltage are distributed via a common set of conductors. Diodes are operatively connected between the DC control voltage and the common set of conductors. The diodes allow forward conduction of the DC control voltage and distribution of control power to distributed devices when the DC bus voltage is not present. Once the DC bus voltage is present, the diodes block conduction of the DC control voltage. Each of the distributed devices are configured with an internal power supply that is operative to generate an internal control voltage from either the DC control voltage or the DC bus voltage.
    Type: Grant
    Filed: June 28, 2022
    Date of Patent: March 19, 2024
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Zoran Vrankovic, Mark A. Gries, Craig R. Winterhalter, Arun K. Guru
  • Publication number: 20230343506
    Abstract: A system and method for integrating a magnetic component within a power converter includes a coil integrated on a PCB. The PCB includes multiple layers and traces on each layer to form a single coil or to form multiple coils on the magnetic component. The PCB further includes at least one opening in the PCB through which a core component may pass, such that the magnetic component is defined by the coils and the core material. To reduce eddy currents built up within the traces, the dimensions of traces on a layer are varied and the position of traces between layers of the PCB are varied. The widths and locations of individual traces are selected to reduce coupling of the trace to leakage fluxes within the magnetic component. A floating conductive layer may also be provided to still further reduce the magnitude of eddy currents induced within the coil.
    Type: Application
    Filed: June 29, 2023
    Publication date: October 26, 2023
    Inventors: Gennadi Sizov, Zoran Vrankovic, Gary L. Skibinski
  • Publication number: 20230324432
    Abstract: The present disclosure is directed to an integrated drive module assembly with vibration-based anomaly detection. The integrated drive module assembly may include a motor coupled to a drive module. The drive module may provide electric power to the motor for operation. Moreover, the drive module may provide control signals to control operations of the motor. The drive module may include an accelerometer and a processing circuit. The processing circuit may determine baseline vibration profiles of the motor during operation using the accelerometer. Subsequently, the processing circuit may determine anomaly conditions of the motor based on comparing the vibrations of the motor with the baseline vibration profiles. Accordingly, the integrated drive module assembly may facilitate performing countermeasures with low latency based on detecting the anomaly conditions using the accelerometer when the drive module is coupled to the motor.
    Type: Application
    Filed: April 11, 2022
    Publication date: October 12, 2023
    Inventors: Zoran Vrankovic, Arun K. Guru, Todd M. Oestreich, Theodore A. Rodriguez, JR., Kristin N. Yee, Jon P. Vanderpas
  • Publication number: 20230170765
    Abstract: Power semiconductor switching devices in an integrated motor drive are mounted directly to a circuit board substrate via a “pick and place” assembly process. The circuit board substrate is then mounted within the housing for the integrated motor drive and, preferably, in a generally central orientation within the housing. A potting material is provided within the housing of the integrated motor drive and around the circuit board. The potting material substantially encloses the circuit board and fills the volume within the integrated motor drive. The potting material is selected to provide good thermal conductivity between the circuit board and the housing of the integrated motor drive. The potting material is also selected to provide flexibility such that expansion and contraction of the potting material due to heating and cooling of the material does not damage the circuit board or the electronic components mounted to the circuit board.
    Type: Application
    Filed: November 29, 2021
    Publication date: June 1, 2023
    Inventors: Zoran Vrankovic, Kristin N. Yee
  • Publication number: 20220329065
    Abstract: A system for distributing DC bus voltage and control power to multiple motors includes a rectifier front end supplying a DC bus voltage and a DC control voltage. Both the DC bus voltage and the DC control voltage are distributed via a common set of conductors. Diodes are operatively connected between the DC control voltage and the common set of conductors. The diodes allow forward conduction of the DC control voltage and distribution of control power to distributed devices when the DC bus voltage is not present. Once the DC bus voltage is present, the diodes block conduction of the DC control voltage. Each of the distributed devices are configured with an internal power supply that is operative to generate an internal control voltage from either the DC control voltage or the DC bus voltage.
    Type: Application
    Filed: June 28, 2022
    Publication date: October 13, 2022
    Inventors: Zoran Vrankovic, Mark A. Gries, Craig R. Winterhalter, Arun K. Guru
  • Patent number: 11404869
    Abstract: A system for distributing DC bus voltage and control power to multiple motors includes a rectifier front end supplying a DC bus voltage and a DC control voltage. Both the DC bus voltage and the DC, control voltage are distributed via a common set of conductors. Diodes are operatively connected between the DC control voltage and the common set of conductors. The diodes allow forward conduction of the DC control voltage and distribution of control power to distributed devices when the DC bus voltage is not present. Once the DC bus voltage is present, the diodes block conduction of the DC control voltage. Each of the distributed devices are configured with an internal power supply that is operative to generate an internal control voltage from either the DC control voltage or the DC bus voltage.
    Type: Grant
    Filed: May 10, 2019
    Date of Patent: August 2, 2022
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Zoran Vrankovic, Mark A. Gries, Craig R. Winterhalter, Arun K. Guru
  • Patent number: 11387761
    Abstract: A motor drive that outputs a sinusoidal waveform utilizes power switching devices operable at high switching frequencies. The switching devices may be operated, for example, between twenty kilohertz and one megahertz. A first filter is included at the output of the motor drive which has a bandwidth selected to attenuate voltage components at the output which are at the switching frequency or multiples thereof such that the output voltage waveform is generally sinusoidal. Additional filtering is included within the motor drive to establish a circulation path for common mode currents within the motor drive. Further, a shield is provided adjacent to those components within the motor drive that may experience voltage or current waveforms at the switching frequency or multiples thereof to cause radiated emissions to establish eddy currents within the EMI shield rather than passing through the shield into the environment.
    Type: Grant
    Filed: November 24, 2020
    Date of Patent: July 12, 2022
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Zoran Vrankovic, Gennadi Sizov, Gary L. Skibinski, David A. Figie, Yao Da, Todd M. Oestreich, Adam M. Shea
  • Patent number: 11283388
    Abstract: A motor controller executing a current regulator and a modulation routine in separate update intervals provides an improved fundamental voltage waveform for a motor controlled by the motor controller. The current regulator is executed at a first periodic update rate and the modulation routine is executed at a second periodic update rate, where the frequency at which the modulation routine executes is at least twice the frequency at which the current regulator executes. Executing the current regulator and the modulation routines at different frequencies results in the current regulator generating a single voltage reference signal for multiple periods of the modulation routine. To reduce voltage ripple induced by decoupling execution of the current regulator and the modulation routine, the motor controller extrapolates the voltage reference generated by the current regulator into multiple voltage reference signals, where a unique voltage reference signal is provided for each period of the modulation routine.
    Type: Grant
    Filed: December 28, 2020
    Date of Patent: March 22, 2022
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Gennadi Sizov, Zoran Vrankovic, Todd M. Oestreich, Gary L. Skibinski
  • Patent number: 11031897
    Abstract: A modulation routine in a motor drive under lightly loaded conditions which prevents DC bus voltage pump-up includes both active states and zero states. In a first zero state, each phase of the motor is connected to a negative rail of the DC bus, and in a second zero state, each phase of the motor is connected to a positive rail of the DC bus. When motor is lightly loaded or unloaded such that DC bus voltage pump-up may occur, the two zero states are utilized in an uneven manner. The specific division of the zero state between the first and second zero states may be selected in a manner that prevents the DC bus voltage pump-up from occurring.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: June 8, 2021
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Peter K. Meyer, Gennadi Sizov, Zoran Vrankovic, Gary L. Skibinski
  • Publication number: 20210091697
    Abstract: A motor drive that outputs a sinusoidal waveform utilizes power switching devices operable at high switching frequencies. The switching devices may be operated, for example, between twenty kilohertz and one megahertz. A first filter is included at the output of the motor drive which has a bandwidth selected to attenuate voltage components at the output which are at the switching frequency or multiples thereof such that the output voltage waveform is generally sinusoidal. Additional filtering is included within the motor drive to establish a circulation path for common mode currents within the motor drive. Further, a shield is provided adjacent to those components within the motor drive that may experience voltage or current waveforms at the switching frequency or multiples thereof to cause radiated emissions to establish eddy currents within the EMI shield rather than passing through the shield into the environment.
    Type: Application
    Filed: November 24, 2020
    Publication date: March 25, 2021
    Inventors: Zoran Vrankovic, Gennadi Sizov, Gary L. Skibinski, David A. Figie, Yao Da, Todd M. Oestreich, Adam M. Shea
  • Patent number: 10879826
    Abstract: A motor drive that outputs a sinusoidal waveform utilizes power switching devices operable at high switching frequencies. The switching devices may be operated, for example, between twenty kilohertz and one megahertz. A first filter is included at the output of the motor drive which has a bandwidth selected to attenuate voltage components at the output which are at the switching frequency or multiples thereof such that the output voltage waveform is generally sinusoidal. Additional filtering is included within the motor drive to establish a circulation path for common mode currents within the motor drive. Further, a shield is provided adjacent to those components within the motor drive that may experience voltage or current waveforms at the switching frequency or multiples thereof to cause radiated emissions to establish eddy currents within the EMI shield rather than passing through the shield into the environment.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: December 29, 2020
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Zoran Vrankovic, Gennadi Sizov, Gary L. Skibinski, David A. Figie, Yao Da, Todd M. Oestreich, Adam M. Shea
  • Publication number: 20200358285
    Abstract: A system for distributing DC bus voltage and control power to multiple motors includes a rectifier front end supplying a DC bus voltage and a DC control voltage. Both the DC bus voltage and the DC, control voltage are distributed via a common set of conductors. Diodes are operatively connected between the DC control voltage and the common set of conductors. The diodes allow forward conduction of the DC control voltage and distribution of control power to distributed devices when the DC bus voltage is not present. Once the DC bus voltage is present, the diodes block conduction of the DC control voltage. Each of the distributed devices are configured with an internal power supply that is operative to generate an internal control voltage from either the DC control voltage or the DC bus voltage.
    Type: Application
    Filed: May 10, 2019
    Publication date: November 12, 2020
    Inventors: Zoran Vrankovic, Mark A. Gries, Craig R. Winterhalter, Arun K. Guru
  • Publication number: 20200350111
    Abstract: A system and method for integrating a magnetic component within a power converter includes a coil integrated on a PCB. The PCB includes multiple layers and traces on each layer to form a single coil or to form multiple coils on the magnetic component. The PCB further includes at least one opening in the PCB through which a core component may pass, such that the magnetic component is defined by the coils and the core material. To reduce eddy currents built up within the traces, the dimensions of traces on a layer are varied and the position of traces between layers of the PCB are varied. The widths and locations of individual traces are selected to reduce coupling of the trace to leakage fluxes within the magnetic component. A floating conductive layer may also be provided to still further reduce the magnitude of eddy currents induced within the coil.
    Type: Application
    Filed: April 30, 2019
    Publication date: November 5, 2020
    Inventors: Gennadi Sizov, Zoran Vrankovic, Gary L. Skibinski
  • Patent number: 9899953
    Abstract: A system to detect a ground fault at the output of an inverter section prior to powering up a motor drive system is disclosed. A low voltage power supply is connected to the DC bus prior to connecting the input power source to the rectifier section. If a ground fault exists, the voltage potential on the DC bus causes conduction through one of the freewheeling diodes connected in parallel to the power switching device on the output of the inverter section. A fault detection circuit generates a signal corresponding to the presence of the low voltage potential when the low voltage is applied to the DC bus. If a ground fault is present at the output of one of the inverter sections, the motor drive system prevents the AC voltage from being applied to the rectifier section.
    Type: Grant
    Filed: June 27, 2016
    Date of Patent: February 20, 2018
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: John R. Figie, Zoran Vrankovic, Mark A. Gries, Craig Winterhalter, Gennadi Sizov
  • Publication number: 20170373630
    Abstract: A system to detect a ground fault at the output of an inverter section prior to powering up a motor drive system is disclosed. A low voltage power supply is connected to the DC bus prior to connecting the input power source to the rectifier section. If a ground fault exists, the voltage potential on the DC bus causes conduction through one of the freewheeling diodes connected in parallel to the power switching device on the output of the inverter section. A fault detection circuit generates a signal corresponding to the presence of the low Voltage potential when the low voltage is applied to the DC bus. If a ground fault is present at the output of one of the inverter sections, the motor drive system prevents the AC voltage from being applied to the rectifier section.
    Type: Application
    Filed: June 27, 2016
    Publication date: December 28, 2017
    Inventors: John R. Figie, Zoran Vrankovic, Mark A. Gries, Craig Winterhalter, Gennadi Sizov
  • Patent number: 9621094
    Abstract: A filter for reducing radiated emissions in switching power converters such as a motor drive is disclosed. The switching power converter modulates a DC voltage input to generate a desired AC voltage output. Capacitors are connected in parallel between each output phase and a common connection, which may be a ground connection. The magnitude and layout of the capacitors are selected to minimize current conducted by the capacitors. The capacitors may be surface mount technology located proximate to the switching devices or the capacitors may be incorporated in the circuit board on which the switching devices are mounted. The filter may be applied to any of the switching elements in a motor drive, such as the inverter section, an active rectifier section, or a switched mode power supply.
    Type: Grant
    Filed: February 4, 2015
    Date of Patent: April 11, 2017
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Zoran Vrankovic, Craig Winterhalter, Gary Skibinski
  • Patent number: 9300144
    Abstract: An integrated drive motor (IDM) power distribution architecture utilizes an IDM power interface module (IPIM) to create a control voltage that is distributed to all the IDMs in a network. This power distribution may be accomplished along a hybrid cable, for example, that includes both signal conductors and power conductors. The IPIM is capable of detecting short circuits and/or overload conditions and disabling the power supply to the IDMs. Additionally, a second power supply may be utilized in the IPIM such that when the power supply to the IDMs is deactivated, the IPIM may remain functional, for example, to report one or more fault conditions to the user. Additionally, this reporting of fault status may be accomplished via a user display integrated with or coupled to the IPIM.
    Type: Grant
    Filed: October 24, 2014
    Date of Patent: March 29, 2016
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Mark Cooper, Mark Alan Gries, Zoran Vrankovic, David Dean Van Dorpe
  • Patent number: 9263928
    Abstract: A system to monitor the temperature of power electronic devices in a motor drive includes a base plate defining a planar surface on which the electronic devices and/or circuit boards within the motor drive may be mounted. The power electronic devices are mounted to the base plate through the direct bond copper (DBC). A circuit board is mounted to the base plate which includes a temperature sensor mounted on the circuit board proximate to the power electronic devices. The temperature sensor generates a digital signal corresponding to the temperature measured by the sensor. A copper pad is included between each layer of the circuit board and between the first layer of the circuit board and the sensor. The circuit board also includes vias extending through each layer of the board. The copper pads and vias establish a thermally conductive path between the temperature sensor and the base plate.
    Type: Grant
    Filed: August 14, 2014
    Date of Patent: February 16, 2016
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Zoran Vrankovic, Rongjun Huang, Mark Cooper, David M Brod
  • Patent number: 9048708
    Abstract: An electronics drive module is connected to the flange of a drive motor assembly. The module includes: a metal frame including a peripheral wall; and a metal floor. A power supply PCBA is located adjacent the upper surface of the metal floor, and a switching chip assembly is located adjacent the lower surface of the floor. The base plate of the switching chip assembly conducts heat into the floor and conducts heat into the mounting flange. An environmental seal is located between the lower edge of the frame and the sealing surface of the mounting flange and extending coextensively with the lower edge of the peripheral wall such that a sealing zone is defined within the peripheral wall of the frame and the first and second thermal interfaces are located within the sealing zone.
    Type: Grant
    Filed: November 5, 2012
    Date of Patent: June 2, 2015
    Assignee: Rockwell Automation Technologies, Inc.
    Inventors: Shawn D. Cloran, Zoran Vrankovic, Corey J. Risty
  • Publication number: 20150145463
    Abstract: A filter for reducing radiated emissions in switching power converters such as a motor drive is disclosed. The switching power converter modulates a DC voltage input to generate a desired AC voltage output. Capacitors are connected in parallel between each output phase and a common connection, which may be a ground connection. The magnitude and layout of the capacitors are selected to minimize current conducted by the capacitors. The capacitors may be surface mount technology located proximate to the switching devices or the capacitors may be incorporated in the circuit board on which the switching devices are mounted. The filter may be applied to any of the switching elements in a motor drive, such as the inverter section, an active rectifier section, or a switched mode power supply.
    Type: Application
    Filed: February 4, 2015
    Publication date: May 28, 2015
    Inventors: Zoran Vrankovic, Craig Winterhalter, Gary Skibinski