Patents by Inventor Zvi Lapidot

Zvi Lapidot has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030063790
    Abstract: A method is provided for the detection of defects on a semiconductor wafer by checking individual pixels on the wafer, collecting the signature of each pixel, defined by the way in which it responds to the light of a scanning beam, and determining whether the signature is that of a faultless pixel or of a pixel that is defective or suspect to be defective. An apparatus is also provided for the determination of such defects, which comprises a stage for supporting a wafer, a laser source generating a beam that is directed onto the wafer, collecting optics and photoelectric sensors for collecting the laser light scattered by the wafer in a number of directions and generating corresponding analog signals, an A/D converter deriving from said signals digital components defining pixel signatures, and selection systems for identifying the signatures of suspect pixels and verifying whether the suspect pixels are indeed defective.
    Type: Application
    Filed: October 28, 2002
    Publication date: April 3, 2003
    Applicant: APPLIED MATERIALS, INC
    Inventors: Zeev Smilansky, Sagie Tsadka, Zvi Lapidot, Rivi Sherman
  • Publication number: 20030063791
    Abstract: A method is provided for the detection of defects on a semiconductor wafer by checking individual pixels on the wafer, collecting the signature of each pixel, defined by the way in which it responds to the light of a scanning beam, and determining whether the signature is that of a faultless pixel or of a pixel that is defective or suspect to be defective. An apparatus is also provided for the determination of such defects, which comprises a stage for supporting a wafer, a laser source generating a beam that is directed onto the wafer, collecting optics and photoelectric sensors for collecting the laser light scattered by the wafer in a number of directions and generating corresponding analog signals, an A/D converter deriving from said signals digital components defining pixel signatures, and selection systems for identifying the signatures of suspect pixels and verifying whether the suspect pixels are indeed defective.
    Type: Application
    Filed: October 28, 2002
    Publication date: April 3, 2003
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Zeev Smilansky, Sagie Tsadka, Zvi Lapidot, Rivi Sherman
  • Publication number: 20020054704
    Abstract: A method is provided for the detection of defects on a semiconductor wafer by checking individual pixels on the wafer, collecting the signature of each pixel, defined by the way in which it responds to the light of a scanning beam, and determining whether the signature is that of a faultless pixel or of a pixel that is defective or suspect to be defective. An apparatus is also provided for the determination of such defects, which comprises a stage for supporting a wafer, a laser source generating a beam that is directed onto the wafer, collecting optics and photoelectric sensors for collecting the laser light scattered by the wafer in a number of directions and generating corresponding analog signals, an A/D converter deriving from said signals digital components defining pixel signatures, and selection systems for identifying the signatures of suspect pixels and verifying whether the suspect pixels are indeed defective.
    Type: Application
    Filed: December 6, 2001
    Publication date: May 9, 2002
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Zeev Smilansky, Sagie Tsadka, Zvi Lapidot, Rivi Sherman
  • Patent number: 6366690
    Abstract: A method is provided for the detection of defects on a semiconductor wafer by checking individual pixels on the wafer, collecting the signature of each pixel, defined by the way in which it responds to the light of a scanning beam, and determining whether the signature is that of a faultless pixel or of a pixel that is defective or suspect to be defective. An apparatus is also provided for the determination of such defects, which comprises a stage for supporting a wafer, a laser source generating a beam that is directed onto the wafer, collecting optics and photoelectric sensors for collecting the laser light scattered by the wafer in a number of directions and generating corresponding analog signals, an A/D converter deriving from the signals digital components defining pixel signatures, and selection systems for identifying the signatures of suspect pixels and verifying whether the suspect pixels are indeed defective.
    Type: Grant
    Filed: July 7, 1998
    Date of Patent: April 2, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Zeev Smilansky, Sagie Tsadka, Zvi Lapidot, Rivi Sherman
  • Patent number: 4758888
    Abstract: Inspection of workpieces traveling along a production line includes on-line inspection of the workpieces at an upstream inspection station to detect possible flaws without interrupting the progression of workpieces along the production line. Possible flaws in the inspected workpieces are imaged, and images of possible flaws are stored in a memory in a way that associates a stored image with the workpiece containing the possible flaw. Off-line, a stored image is retrieved from the memory before the workpiece with which the image is associated reaches a downstream sorting station. The retrieved image is displayed on a monitor for verifying, by visual inspection, whether the possible flaw in the workpiece with which the retrieved image is associated, is valid. Workpieces are diverted at the downstream sorting station in response to vertification of flaws.
    Type: Grant
    Filed: February 17, 1987
    Date of Patent: July 19, 1988
    Assignee: Orbot Systems, Ltd.
    Inventor: Zvi Lapidot
  • Patent number: RE38559
    Abstract: A binary map of an object having edges is produced by first producing a digital grey scale image of the object with a given resolution, and processing the grey scale image to produce a binary map of the object at a resolution greater than said given resolution. Processing of the grey scale image includes the step of converting the 2-dimensional digital grey scale image with a filter function related to the second derivative of a Gaussian function forming a 2-dimensional convolved image having signed values. The location of an edge in the object is achieved by finding zero crossings between adjacent oppositely signed values. Preferably, the zero crossings are achieved by an interpolation process that produces a binary bit map of the object at a resolution greater than the resolution of the grey scale image.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: July 27, 2004
    Inventors: Amiram Caspi, Zeev Smilansky, Zvi Lapidot