Patents by Inventor Zvi Yaniv

Zvi Yaniv has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120289112
    Abstract: Improved mechanical properties of carbon nanotube (CNT)-reinforced polymer adhesive matrix nanocomposites are obtained by functionalizing the CNTs with a compound that bonds well to an epoxy matrix. The particles sufficiently improve mechanical properties of the nanocomposites, such as flexural strength and modulus.
    Type: Application
    Filed: June 18, 2012
    Publication date: November 15, 2012
    Applicant: APPLIED NANOTECH HOLDINGS, INC.
    Inventors: DONGSHENG MAO, ZVI YANIV, TOM JACOB RAKOWSKI
  • Publication number: 20120266653
    Abstract: Systems and techniques for the analysis of gases for medical purposes are described. In one aspect, a system includes a sample collector to collect a physical sample associated with an individual and present a gas sample for analysis, a gas analysis device to analyze the gas sample presented by the sample collector to determine a concentration of one or more non-aqueous gases in the gas sample, a data storage device that includes information reflecting a correlation between concentration of the one or more non-aqueous gases in the gas sample and a disease state, and a data analysis device to determine a medical condition of the individual based on the concentration of one or more non-aqueous gases in the gas sample and the information.
    Type: Application
    Filed: June 28, 2012
    Publication date: October 25, 2012
    Applicant: APPLIED NANOTECH HOLDINGS, INC.
    Inventors: ZVI YANIV, PRABHU SOUNDARRAJAN
  • Patent number: 8283403
    Abstract: Carbon nanotubes (CNTs) are so long that they cannot be penetrated inbetween carbon fibers during a prepreg preparation process, and are shortened in order for them not to be filtered out by the carbon fibers. This results in a huge improvement of the mechanical properties (flexural strength and flexural modulus) compared with neat epoxy.
    Type: Grant
    Filed: July 25, 2008
    Date of Patent: October 9, 2012
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Dongsheng Mao, Zvi Yaniv
  • Publication number: 20120237767
    Abstract: A buffer layer is used to coat on the multi-filament wrapped string to fill the gaps. The polymers of the buffer-layer coating have a high melt-flow (low viscosity) during coating process to fill all the gaps between the filaments, and the filaments are fixed by the coatings onto base core materials. An outer protective coating is applied, which may comprise a composite nylon, clay nanoparticles, carbon nanotubes, an impact modifier, or any combination of the foregoing.
    Type: Application
    Filed: May 25, 2012
    Publication date: September 20, 2012
    Applicant: APPLIED NANOTECH HOLDINGS, INC.
    Inventors: ZVI YANIV, Dongsheng Mao
  • Publication number: 20120220695
    Abstract: A combination of multi-walled carbon nanotubes and single-walled carbon nanotubes and/or double-walled carbon nanotubes significantly improves the mechanical properties of polymer nanocomposites. Both flexural strength and flexural modulus of the MWNTs and single-walled carbon nanotubes and/or double-walled carbon nanotubes co-reinforced epoxy nanocomposites are further improved compared with same amount of either single-walled carbon nanotubes and/or double-walled carbon nanotubes or multi-walled carbon nanotubes reinforced epoxy nanocomposites. Besides epoxy, other thermoset polymers may also work.
    Type: Application
    Filed: March 6, 2012
    Publication date: August 30, 2012
    Inventors: Dongsheng Mao, Zvi Yaniv
  • Publication number: 20120147448
    Abstract: A method for manufacturing an electrochromic window positions a pattern of conductive lines over a first transparent substrate, a transparent conductive film over the pattern of conductive lines and first transparent substrate, and an electrochromic layer over the transparent conductive film, wherein the transparent conductive layer is a physical barrier separating the electrochromic layer from the pattern of conductive lines. The first transparent substrate may be flexible. The pattern of conductive lines and transparent conductive film may be deposited and processed at a temperature less than 180 degrees C. The pattern of conductive lines may be deposited on the first transparent substrate by printing techniques.
    Type: Application
    Filed: February 10, 2010
    Publication date: June 14, 2012
    Applicant: APPLIED NANOTECH HOLDINGS, INC,
    Inventors: Zvi Yaniv, Giuseppe Chidichimo, Bruna Clara De Simone, Daniela Imbardelli
  • Patent number: 8129463
    Abstract: A combination of MWNTs (herein, MWNTs have more than 2 walls) and DWNTs significantly improves the mechanical properties of polymer nanocomposites. A small amount of DWNTs reinforcement (<1 wt. %) significantly improves the flexural strength of epoxy matrix nanocomposites. A same or similar amount of MWNTs reinforcement significantly improves the flexural modulus (stiffness) of epoxy matrix nanocomposites. Both flexural strength and flexural modulus of the MWNTs and DWNTs-coreinforced epoxy nanocomposites are further improved compared with same amount of either DWNTs or MWNTs-reinforced epoxy nanocomposites. In this epoxy/DWNTs/MWNTs nanocomposite system, SWNTs may also work instead of DWNTs. Besides epoxy, other thermoset polymers may also work.
    Type: Grant
    Filed: March 29, 2007
    Date of Patent: March 6, 2012
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Dongsheng Mao, Zvi Yaniv
  • Publication number: 20120052993
    Abstract: A nylon 11 composite has significantly improved flexural modulus while keeping or even increasing the impact strength. This composite system may comprise a nylon 11/filler/modifier. The “ball” portion of badminton shuttlecocks made by this type of composite more closely emulate the flight capabilities of natural feather shuttlecocks than neat nylon 11.
    Type: Application
    Filed: August 25, 2011
    Publication date: March 1, 2012
    Applicant: APPLIED NANOTECH HOLDINGS, INC.
    Inventors: Xueping Li, Dongsheng Mao, Zvi Yaniv
  • Publication number: 20120049384
    Abstract: Conductive lines are deposited on a substrate to produce traces for conducting electricity between electronic components. A patterned metal layer is formed on the substrate, and then a layer of material having a low thermal conductivity is coated over the patterned metal layer and the substrate. Vias are formed through the layer of material having the low thermal conductivity thereby exposing portions of the patterned metal layer. A film of conductive ink is then coated over the layer of material having the low thermal conductivity and into the vias to thereby coat the portions of the patterned metal layer, and then sintered. The film of conductive ink coated over the portion of the patterned metal layer does not absorb as much energy from the sintering as the film of conductive ink coated over the layer of material having the low thermal conductivity. The layer of material having the low thermal conductivity may be a polymer, such as polyimide.
    Type: Application
    Filed: March 26, 2010
    Publication date: March 1, 2012
    Applicants: ISHIHARA CHEMCIAL CO., LTD., APPLIED NANOTECH HOLDINGS, INC.
    Inventors: Zvi Yaniv, Mohshi Yang, Peter B. Laxton
  • Publication number: 20110300305
    Abstract: Nanoparticle inks and powders are sintered using an applied mechanical energy, such as uniaxial pressure, hydrostatic pressure, and ultrasonic energy, which may also include applying a sheer force to the inks or powders in order to make the resultant film or line conductive.
    Type: Application
    Filed: May 2, 2011
    Publication date: December 8, 2011
    Applicant: APPLIED NANOTECH HOLDINGS, INC.
    Inventors: Yunjun Li, Samuel Kim, Igor Pavlovsky, Zvi Yaniv, Mohshi Yang
  • Publication number: 20110286876
    Abstract: Graphite aluminum composites for use in thermal management applications, such as heat sinks, are manufactured using pressure molds. The materials may be mixed previous to insertion into the mold, or can be mixed within the mold. Further, graphitic particles, such as graphitic needle coke surfaces, can be coated with the aluminum before the mold process is performed. Further, ceramic sheets can be inserted into the mixture before the mold process is performed so that the molded material can then be sliced to provide a carbon aluminum composite plate with a ceramic sheet on one of its surfaces.
    Type: Application
    Filed: May 23, 2011
    Publication date: November 24, 2011
    Applicant: APPLIED NANOTECH HOLDINGS, INC.
    Inventors: Nan Jiang, Samuel Kim, Zvi Yaniv
  • Patent number: 8062697
    Abstract: Carbon nanotubes, which in several embodiments are mixed with particles, organic materials, non-organic materials, or solvents, are deposited on a substrate to form a cold cathode. The deposition of the carbon nanotube mixture is performed using an ink jet printing process.
    Type: Grant
    Filed: May 6, 2005
    Date of Patent: November 22, 2011
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Zvi Yaniv, Richard Fink, Mohshi Yang, Dongsheng Mao
  • Publication number: 20110160346
    Abstract: Improved mechanical properties of carbon nanotube (CNT)-reinforced polymer matrix nanocomposites are obtained by functionalizing the CNTs with a compound that bonds well to an epoxy matrix before dispersing the solution using a microfluidic process. Well-dispersed particles are obtained that sufficiently improve mechanical properties of the nanocomposites, such as flexural strength and modulus. The resulting composite material is used for coatings on marine vessels.
    Type: Application
    Filed: March 3, 2011
    Publication date: June 30, 2011
    Applicant: Applied Nanotech Holdings, Inc.
    Inventors: Zvi Yaniv, Dongsheng Mao
  • Publication number: 20110147647
    Abstract: An article of manufacture comprises a carbon-containing matrix. The carbon-containing matrix may comprise at least one type of carbon material selected from the group comprising graphite crystalline carbon materials, carbon powder, carbon fibers, artificial graphite powder, or combinations thereof. In addition, the carbon-containing matrix comprises a plurality of pores. The article of manufacture also comprises an additive that is not a metal pressure disposed within at least a portion of the plurality of pores.
    Type: Application
    Filed: June 3, 2010
    Publication date: June 23, 2011
    Applicant: Applied Nanotech, Inc.
    Inventors: Zvi Yaniv, Nan Jiang, James Novak
  • Patent number: 7960718
    Abstract: Fabrication of thin-film transistor devices on polymer substrate films that is low-temperature and fully compatible with polymer substrate materials. The process produces micron-sized gate length structures that can be fabricated using inkjet and other standard printing techniques. The process is based on microcrack technology developed for surface conduction emitter configurations for field emission devices.
    Type: Grant
    Filed: July 2, 2007
    Date of Patent: June 14, 2011
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Richard Lee Fink, Zvi Yaniv
  • Publication number: 20110043965
    Abstract: The instant article of manufacture is made by applying optical energy to one or more layers of nanoparticulate materials under predetermined conditions to produce a nanostructure. The nanostructure has layers of optically fused nanoparticles including a predetermined pore density, a predetermined pore size, or both. The predetermined conditions for applying the optical energy may include a predetermined voltage, a predetermined duration, a predetermined power density, or combinations thereof.
    Type: Application
    Filed: July 14, 2010
    Publication date: February 24, 2011
    Applicant: Applied Nanotech, Inc.
    Inventors: Zvi Yaniv, Nan Jiang, James P. Novak, Richard L. Fink
  • Publication number: 20110027603
    Abstract: An article of manufacture comprises a carbon-containing matrix. The carbon-containing matrix may comprise at least one type of carbon material selected from the group comprising graphite crystalline carbon materials, carbon powder, and artificial graphite powder. In addition, the carbon-containing matrix comprises a plurality of pores. The article of manufacture also comprises a metal component comprising Al, alloys of Al, or combinations thereof. The metal component is disposed in at least a portion of the plurality of pores. Further, the article of manufacture comprises an additive comprising at least Si. At least a portion of the additive is disposed in an interface between the metal component within the pores and the carbon-containing matrix. The additive enhances phonon coupling and propagation at the interface.
    Type: Application
    Filed: December 2, 2009
    Publication date: February 3, 2011
    Applicant: Applied Nanotech, Inc.
    Inventors: Zvi Yaniv, Igor Pavlovsky, Nan Jiang, James P. Novak, Richard Fink, Mohshi Yang, Dongsheng Mao, Samuel Kim
  • Patent number: 7879131
    Abstract: A process for encapsulating metal microparticles in a pH sensitive polymer matrix using a suspension containing the polymer. The process first disperses the metal particles in a polymeric solution consisting of a pH sensitive polymer. The particles are then encapsulated in the form of micro-spheres of about 5-10 microns in diameter comprising the pH sensitive polymer and the metal ions (Ni2+, Cu2+) to be coated. The encapsulated matrix includes first metal particles homogeneously dispersed in a pH sensitive matrix, comprising the second metal ions. A high shear homogenization process ensures homogenization of the aqueous mixture resulting in uniform particle encapsulation. The encapsulated powder may be formed using spray drying. The powder may be then coated in a controlled aqueous media using an electroless deposition process. The polymer is removed when the encapsulated micro-spheres encounter a pH change in the aqueous solution.
    Type: Grant
    Filed: August 15, 2007
    Date of Patent: February 1, 2011
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Zvi Yaniv, Prabhu Soundarrajan
  • Patent number: 7854861
    Abstract: Composition of carbon nanotubes (CNTs) are produced into inks that are dispensable via ink jet deposition processes or others. The CNT ink is dispensed into wells formed in a cathode structure. The inks include carbon nanotubes, binding materials, and possibly other nanoparticles. Such binding materials may include epoxies and silicate materials.
    Type: Grant
    Filed: September 9, 2004
    Date of Patent: December 21, 2010
    Assignee: Applied Nanotech Holdings, Inc.
    Inventors: Yunjun Li, Richard Lee Fink, Mohshi Yang, Zvi Yaniv
  • Publication number: 20100310447
    Abstract: A composition of matter comprises a carbon-containing matrix. The carbon-containing matrix may comprise one or more carbon materials selected from the group comprising graphite crystalline carbon materials, carbon powder, carbon fibers, artificial graphite powder, and combinations thereof. In addition, the carbon-containing matrix comprises a plurality of pores. The composition of matter also comprises a reactive additive that is not a metal pressure disposed within at least a portion of the plurality of pores.
    Type: Application
    Filed: June 3, 2010
    Publication date: December 9, 2010
    Applicant: Applied Nanotech, Inc.
    Inventors: Zvi Yaniv, Nan Jiang, James Novak