Modulation of prekallikrein (PKK) expression
Disclosed herein are antisense compounds and methods for decreasing PKK mRNA and protein expression. Such methods, compounds, and compositions are useful to treat, prevent, or ameliorate PKK-associated diseases, disorders, and conditions.
Latest Ionis Pharmaceuticals, Inc. Patents:
The present application is being filed along with a Sequence Listing in electronic format. The Sequence Listing is provided as a file entitled BIOL0172USC1SEQ_ST25.txt created Apr. 5, 2017, which is approximately 632 KB in size. The information in the electronic format of the sequence listing is incorporated herein by reference in its entirety.
FIELDProvided are compounds, compositions, and methods for reducing expression of human plasma prekallikrein (PKK) mRNA and protein in an animal. Such compositions and methods are useful to treat, prevent, or ameliorate inflammatory and thromboembolic conditions.
BACKGROUNDPlasma prekallikrein (PKK) is the precursor of plasma kallikrein (PK), which is encoded by the KLKB1 gene. PKK is a glycoprotein that participates in the surface-dependent activation of blood coagulation, fibrinolysis, kinin generation, and inflammation. PKK is converted to PK by Factor XIIa by the cleavage of an internal Arg-Ile peptide bond. PK liberates kinins from kininogens and also generates plasmin from plasminogen. PK is a member of the kinin-kallikrein pathway, which consists of several proteins that play a role in inflammation, blood pressure control, coagulation, and pain.
SUMMARYProvided herein are compounds, compositions, and methods for modulating expression of PKK mRNA and protein. In certain embodiments, compounds useful for modulating expression of PKK mRNA and protein are antisense compounds. In certain embodiments, the antisense compounds are antisense oligonucleotides.
In certain embodiments, modulation can occur in a cell or tissue. In certain embodiments, the cell or tissue is in an animal. In certain embodiments, the animal is a human. In certain embodiments, PKK mRNA levels are reduced. In certain embodiments, PKK protein levels are reduced. Such reduction can occur in a time-dependent manner or in a dose-dependent manner.
Also provided are compounds, compositions, and methods useful for preventing, treating, and ameliorating diseases, disorders, and conditions associated with PKK. In certain embodiments, such PKK associated diseases, disorders, and conditions are inflammatory diseases. In certain embodiments, the inflammatory disease may be an acute or chronic inflammatory disease. In certain embodiments, such inflammatory diseases may include hereditary angioedema (HAE), edema, angioedema, swelling, angioedema of the lids, ocular edema, macular edema, and cerebral edema. In certain embodiments, such PKK associated diseases, disorders, and conditions are thromboembolic diseases. In certain embodiments, such thromboembolic diseases may include thrombosis, embolism, thromboembolism, deep vein thrombosis, pulmonary embolism, myocardial infarction, stroke, and infarct.
Such diseases, disorders, and conditions can have one or more risk factors, causes, or outcomes in common.
Certain risk factors and causes for development of an inflammatory disease include genetic predisposition to an inflammatory disease and environmental factors. In certain embodiments, the subject has a mutated complement 1 esterase inhibitor (C1-INH) gene or mutated Factor 12 gene. In certain embodiments, the subject has taken or is on angiotensin-converting enzyme inhibitors (ACE inhibitors) or angiotensin II receptor blockers (ARBs). In certain embodiments, the subject has had an allergic reaction leading to angioedema. In certain embodiments, the subject has type I HAE. In certain embodiments, the subject has type II HAE. In certain embodiments, the subject has type III HAE.
Certain outcomes associated with development of an inflammatory disease include edema/swelling in various body parts including the extremities (i.e., hands, feet, arms, legs), the intestines (abdomen), the face, the genitals, the larynx (i.e., voice box); vascular permeability; vascular leakage; generalized inflammation; abdominal pain; bloating; vomiting; diarrhea; itchy skin; respiratory (asthmatic) reactions; rhinitis; anaphylaxis; bronchoconstriction; hypotension; coma; and death.
Certain risk factors and causes for development of a thromboembolic disease include genetic predisposition to a thromboembolic disease, immobility, surgery (particularly orthopedic surgery), malignancy, pregnancy, older age, use of oral contraceptives, atrial fibrillation, previous thromboembolic condition, chronic inflammatory disease, and inherited or acquired prothrombotic clotting disorders. Certain outcomes associated with development of a thromboembolic condition include decreased blood flow through an affected vessel, death of tissue, and death.
In certain embodiments, methods of treatment include administering a PKK antisense compound to an individual in need thereof. In certain embodiments, methods of treatment include administering a PKK antisense oligonucleotide to an individual in need thereof.
It is to be understood that both the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the invention, as claimed. Herein, the use of the singular includes the plural unless specifically stated otherwise. As used herein, the use of “or” means “and/or” unless stated otherwise. Furthermore, the use of the term “including” as well as other forms, such as “includes” and “included”, is not limiting. Also, terms such as “element” or “component” encompass both elements and components comprising one unit and elements and components that comprise more than one subunit, unless specifically stated otherwise.
The section headings used herein are for organizational purposes only and are not to be construed as limiting the subject matter described. All documents, or portions of documents, cited in this application, including, but not limited to, patents, patent applications, articles, books, and treatises, are hereby expressly incorporated by reference for the portions of the document discussed herein, as well as in their entirety.
Definitions
Unless specific definitions are provided, the nomenclature utilized in connection with, and the procedures and techniques of, analytical chemistry, synthetic organic chemistry, and medicinal and pharmaceutical chemistry described herein are those well known and commonly used in the art. Standard techniques may be used for chemical synthesis, and chemical analysis. Where permitted, all patents, applications, published applications and other publications, GENBANK Accession Numbers and associated sequence information obtainable through databases such as National Center for Biotechnology Information (NCBI) and other data referred to throughout in the disclosure herein are incorporated by reference for the portions of the document discussed herein, as well as in their entirety.
Unless otherwise indicated, the following terms have the following meanings:
“2′-O-methoxyethyl” (also 2′-MOE and 2′-OCH2CH2—OCH3 and MOE) refers to an O-methoxyethyl modification of the 2′ position of a furanose ring. A 2′-O-methoxyethyl modified sugar is a modified sugar.
“2′-O-methoxyethyl modified nucleoside” (also “2′-MOE nucleoside”) means a nucleoside comprising a 2′-MOE modified sugar moiety.
“2′-substituted nucleoside” means a nucleoside comprising a substituent at the 2′-position of the furanose ring other than H or OH. In certain embodiments, 2′ substituted nucleosides include nucleosides with bicyclic sugar modifications.
“2′-deoxynucleoside” means a nucleoside comprising a hydrogen at the 2′ position of the sugar portion of the nucleoside.
“3′ target site” refers to the nucleotide of a target nucleic acid which is complementary to the 3′-most nucleotide of a particular antisense compound.
“5′ target site” refers to the nucleotide of a target nucleic acid which is complementary to the 5′-most nucleotide of a particular antisense compound.
“5-methylcytosine” means a cytosine modified with a methyl group attached to the 5 position. A 5-methylcytosine is a modified nucleobase.
“About” means within ±7% of a value. For example, if it is stated, “the compounds affected at least about 70% inhibition of PKK”, it is implied that the PKK levels are inhibited within a range of 63% and 77%.
“Administered concomitantly” refers to the co-administration of two pharmaceutical agents in any manner in which the pharmacological effects of both are manifest in the patient at the same time. Concomitant administration does not require that both pharmaceutical agents be administered in a single pharmaceutical composition, in the same dosage form, or by the same route of administration. The effects of both pharmaceutical agents need not manifest themselves at the same time. The effects need only be overlapping for a period of time and need not be coextensive.
“Administering” means providing a pharmaceutical agent to an animal, and includes, but is not limited to administering by a medical professional and self-administering.
“Amelioration” refers to a lessening, slowing, stopping, or reversing of at least one indicator of the severity of a condition or disease. The severity of indicators may be determined by subjective or objective measures, which are known to those skilled in the art.
“Animal” refers to a human or non-human animal, including, but not limited to, mice, rats, rabbits, dogs, cats, pigs, and non-human primates, including, but not limited to, monkeys and chimpanzees.
“Antisense activity” means any detectable or measurable activity attributable to the hybridization of an antisense compound to its target nucleic acid. In certain embodiments, antisense activity is a decrease in the amount or expression of a target nucleic acid or protein encoded by such target nucleic acid. “Antisense compound” means an oligomeric compound that is capable of undergoing hybridization to a target nucleic acid through hydrogen bonding. Examples of antisense compounds include single-stranded and double-stranded compounds, such as, antisense oligonucleotides, siRNAs, shRNAs, ssRNAs, and occupancy-based compounds.
“Antisense compound” means an oligomeric compound that is capable of undergoing hybridization to a target nucleic acid through hydrogen bonding. Examples of antisense compounds include single-stranded and double-stranded compounds, such as, antisense oligonucleotides, siRNAs, shRNAs, ssRNAs, and occupancy-based compounds.
“Antisense inhibition” means reduction of target nucleic acid levels in the presence of an antisense compound complementary to a target nucleic acid compared to target nucleic acid levels or in the absence of the antisense compound. “Antisense mechanisms” are all those mechanisms involving hybridization of a compound with target nucleic acid, wherein the outcome or effect of the hybridization is either target degradation or target occupancy with concomitant stalling of the cellular machinery involving, for example, transcription or splicing.
“Antisense mechanisms” are all those mechanisms involving hybridization of a compound with a target nucleic acid, wherein the outcome or effect of the hybridization is either target degradation or target occupancy with concomitant stalling of the cellular machinery involving, for example, transcription or splicing.
“Antisense oligonucleotide” means a single-stranded oligonucleotide having a nucleobase sequence that permits hybridization to a corresponding segment of a target nucleic acid. “Base complementarity” refers to the capacity for the precise base pairing of nucleobases of an antisense oligonucleotide with corresponding nucleobases in a target nucleic acid (i.e., hybridization), and is mediated by Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen binding between corresponding nucleobases.
“Base complementarity” refers to the capacity for the precise base pairing of nucleobases of an antisense oligonucleotide with corresponding nucleobases in a target nucleic acid (i.e., hybridization), and is mediated by Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen binding between corresponding nucleobases.
“Bicyclic sugar” means a furanose ring modified by the bridging of two atoms. A bicyclic sugar is a modified sugar.
“Bicyclic nucleoside” (also bicyclic nucleic acid or BNA) means a nucleoside having a sugar moiety comprising a bridge connecting two carbon atoms of the sugar ring, thereby forming a bicyclic ring system. In certain embodiments, the bridge connects the 4′-carbon and the 2′-carbon of the sugar ring.
“Cap structure” or “terminal cap moiety” means chemical modifications, which have been incorporated at either terminus of an antisense compound.
“cEt” or “constrained ethyl” means a bicyclic nucleoside having a sugar moiety comprising a bridge connecting the 4′-carbon and the 2′-carbon, wherein the bridge has the formula: 4′-CH(CH3)—O-2′.
“cEt modified nucleoside” (also “constrained ethyl nucleoside”) means a nucleoside comprising a bicyclic sugar moiety comprising a 4′-CH(CH3)—O-2′ bridge.
“Chemically distinct region” refers to a region of an antisense compound that is in some way chemically different than another region of the same antisense compound. For example, a region having 2′-O-methoxyethyl nucleosides is chemically distinct from a region having nucleosides without 2′-O-methoxyethyl modifications.
“Chimeric antisense compound” means an antisense compound that has at least two chemically distinct regions, each position having a plurality of subunits.
“Co-administration” means administration of two or more pharmaceutical agents to an individual. The two or more pharmaceutical agents may be in a single pharmaceutical composition, or may be in separate pharmaceutical compositions. Each of the two or more pharmaceutical agents may be administered through the same or different routes of administration. Co-administration encompasses parallel or sequential administration.
“Complementarity” means the capacity for pairing between nucleobases of a first nucleic acid and a second nucleic acid.
“Comprise,” “comprises,” and “comprising” will be understood to imply the inclusion of a stated step or element or group of steps or elements but not the exclusion of any other step or element or group of steps or elements.
“Contiguous nucleobases” means nucleobases immediately adjacent to each other.
“Designing” or “Designed to” refer to the process of creating an oligomeric compound that specifically hybridizes with a selected nucleic acid molecule.
“Diluent” means an ingredient in a composition that lacks pharmacological activity, but is pharmaceutically necessary or desirable. For example, in drugs that are injected, the diluent may be a liquid, e.g. saline solution.
“Dose” means a specified quantity of a pharmaceutical agent provided in a single administration, or in a specified time period. In certain embodiments, a dose may be administered in one, two, or more boluses, tablets, or injections. For example, in certain embodiments where subcutaneous administration is desired, the desired dose requires a volume not easily accommodated by a single injection, therefore, two or more injections may be used to achieve the desired dose. In certain embodiments, the pharmaceutical agent is administered by infusion over an extended period of time or continuously. Doses may be stated as the amount of pharmaceutical agent per hour, day, week, or month.
“Downstream” refers to the relative direction toward the 3′ end or C-terminal end of a nucleic acid.
“Effective amount” in the context of modulating an activity or of treating or preventing a condition means the administration of that amount of pharmaceutical agent to a subject in need of such modulation, treatment, or prophylaxis, either in a single dose or as part of a series, that is effective for modulation of that effect, or for treatment or prophylaxis or improvement of that condition. The effective amount may vary among individuals depending on the health and physical condition of the individual to be treated, the taxonomic group of the individuals to be treated, the formulation of the composition, assessment of the individual's medical condition, and other relevant factors.
“Efficacy” means the ability to produce a desired effect.
“Expression” includes all the functions by which a gene's coded information is converted into structures present and operating in a cell. Such structures include, but are not limited to the products of transcription and translation.
“Fully complementary” or “100% complementary” means each nucleobase of a first nucleic acid has a complementary nucleobase in a second nucleic acid. In certain embodiments, a first nucleic acid is an antisense compound and a target nucleic acid is a second nucleic acid.
“Gapmer” means a chimeric antisense compound in which an internal region having a plurality of nucleosides that support RNase H cleavage is positioned between external regions having one or more nucleosides, wherein the nucleosides comprising the internal region are chemically distinct from the nucleoside or nucleosides comprising the external regions. The internal region may be referred to as a “gap” and the external regions may be referred to as the “wings.”
“Hybridization” means the annealing of complementary nucleic acid molecules. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an antisense compound and a target nucleic acid. In certain embodiments, complementary nucleic acid molecules include, but are not limited to, an antisense oligonucleotide and a nucleic acid target.
“Identifying an animal having an inflammatory disease” means identifying an animal having been diagnosed with an inflammatory disease or predisposed to develop an inflammatory disease. Individuals predisposed to develop an inflammatory disease include those having one or more risk factors for developing an inflammatory disease including environmental factors, having a personal or family history, or genetic predisposition to one or more inflammatory disease. Such identification may be accomplished by any method including evaluating an individual's medical history and standard clinical tests or assessments, such as genetic testing.
“Identifying an animal having a PKK associated disease” means identifying an animal having been diagnosed with a PKK associated disease or predisposed to develop a PKK associated disease. Individuals predisposed to develop a PKK associated disease include those having one or more risk factors for developing a PKK associated disease including having a personal or family history, or genetic predisposition of one or more PKK associated diseases. Such identification may be accomplished by any method including evaluating an individual's medical history and standard clinical tests or assessments, such as genetic testing.
“Identifying an animal having a thromboembolic disease” means identifying an animal having been diagnosed with a thromboembolic disease or predisposed to develop a thromboembolic disease. Individuals predisposed to develop a thromboembolic disease include those having one or more risk factors for developing a thromboembolic disease including having a personal or family history, or genetic predisposition of one or more thromboembolic diseases, immobility, surgery (particularly orthopedic surgery), malignancy, pregnancy, older age, use of oral contraceptives, atrial fibrillation, previous thromboembolic condition, chronic inflammatory disease, and inherited or acquired prothrombotic clotting disorders. Such identification may be accomplished by any method including evaluating an individual's medical history and standard clinical tests or assessments, such as genetic testing.
“Immediately adjacent” means there are no intervening elements between the immediately adjacent elements. “Individual” means a human or non-human animal selected for treatment or therapy.
“Individual” means a human or non-human animal selected for treatment or therapy.
“Inhibiting PKK” means reducing the level or expression of a PKK mRNA and/or protein. In certain embodiments, PKK mRNA and/or protein levels are inhibited in the presence of an antisense compound targeting PKK, including an antisense oligonucleotide targeting PKK, as compared to expression of PKK mRNA and/or protein levels in the absence of a PKK antisense compound, such as an antisense oligonucleotide.
“Inhibiting the expression or activity” refers to a reduction or blockade of the expression or activity and does not necessarily indicate a total elimination of expression or activity.
“Internucleoside linkage” refers to the chemical bond between nucleosides.
“Linked nucleosides” means adjacent nucleosides linked together by an internucleoside linkage.
“Locked nucleic acid” or “LNA” or “LNA nucleosides” means nucleic acid monomers having a bridge connecting two carbon atoms between the 4′ and 2′position of the nucleoside sugar unit, thereby forming a bicyclic sugar. Examples of such bicyclic sugar include, but are not limited to A) α-L-Methyleneoxy (4′-CH2—O-2′) LNA, (B) β-D-Methyleneoxy (4′-CH2—O-2′) LNA, (C) Ethyleneoxy (4′-(CH2)2—O-2′) LNA, (D) Aminooxy (4′-CH2—O—N(R)-2′) LNA and (E) Oxyamino (4′-CH2—N(R)-2′) LNA, as depicted below.
As used herein, LNA compounds include, but are not limited to, compounds having at least one bridge between the 4′ and the 2′ position of the sugar wherein each of the bridges independently comprises 1 or from 2 to 4 linked groups independently selected from —[C(R1)(R2)]n—, —C(R1)═C(R2)—, —C(R1)═N—, —C(═NR1)—, —C(═O)—, —C(═S)—, —O—, —Si(R1)2—, —S(═O)x— and —N(R1)—; wherein: x is 0, 1, or 2; n is 1, 2, 3, or 4; each R1 and R2 is, independently, H, a protecting group, hydroxyl, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, a heterocycle radical, a substituted heterocycle radical, heteroaryl, substituted heteroaryl, C5-C7 alicyclic radical, substituted C5-C7 alicyclic radical, halogen, OJ1, NJ1J2, SJ1, N3, COOJ1, acyl (C(═O)—H), substituted acyl, CN, sulfonyl (S(═O)2-J1), or sulfoxyl (S(═O)-J1); and each J1 and J2 is, independently, H, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, acyl (C(═O)—H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, C1-C12 aminoalkyl, substituted C1-C12 aminoalkyl or a protecting group.
Examples of 4′-2′ bridging groups encompassed within the definition of LNA include, but are not limited to one of formulae: —[C(R1)(R2)]n—, —[C(R1)(R2)]n—O—, —C(R1R2)—N(R1)—O— or —C(R1R2)—O—N(R1)—. Furthermore, other bridging groups encompassed with the definition of LNA are 4′-CH2-2′, 4′-(CH2)2-2′, 4′-(CH2)3-2′, 4′-CH2—O-2′, 4′-(CH2)2—O-2′, 4′-CH2—O—N(R1)-2′ and 4′-CH2—N(R1)—O-2′- bridges, wherein each R1 and R2 is, independently, H, a protecting group or C1-C12 alkyl.
Also included within the definition of LNA according to the invention are LNAs in which the 2′-hydroxyl group of the ribosyl sugar ring is connected to the 4′ carbon atom of the sugar ring, thereby forming a methyleneoxy (4′-CH2—O-2′) bridge to form the bicyclic sugar moiety. The bridge can also be a methylene (—CH2—) group connecting the 2′ oxygen atom and the 4′ carbon atom, for which the term methyleneoxy (4′-CH2—O-2′) LNA is used. Furthermore; in the case of the bicylic sugar moiety having an ethylene bridging group in this position, the term ethyleneoxy (4′-CH2CH2—O-2′) LNA is used. α-L-methyleneoxy (4′-CH2-O-2′), an isomer of methyleneoxy (4′-CH2—O-2′) LNA is also encompassed within the definition of LNA, as used herein.
“Mismatch” or “non-complementary nucleobase” refers to the case when a nucleobase of a first nucleic acid is not capable of pairing with the corresponding nucleobase of a second or target nucleic acid.
“Modified internucleoside linkage” refers to a substitution or any change from a naturally occurring internucleoside bond (i.e. a phosphodiester internucleoside bond).
“Modified nucleobase” means any nucleobase other than adenine, cytosine, guanine, thymidine (also known as 5-methyluracil), or uracil. An “unmodified nucleobase” means the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C), and uracil (U).
“Modified nucleoside” means a nucleoside having, independently, a modified sugar moiety and/or modified nucleobase.
“Modified nucleotide” means a nucleotide having, independently, a modified sugar moiety, modified internucleoside linkage, and/or modified nucleobase.
“Modified oligonucleotide” means an oligonucleotide comprising at least one modified internucleoside linkage, modified sugar, and/or modified nucleobase.
“Modified sugar” means substitution and/or any change from a natural sugar moiety.
“Monomer” means a single unit of an oligomer. Monomers include, but are not limited to, nucleosides and nucleotides, whether naturally occurring or modified.
“Motif” means the pattern of unmodified and modified nucleosides in an antisense compound.
“Natural sugar moiety” means a sugar moiety found in DNA (2′-H) or RNA (2′-OH).
“Naturally occurring internucleoside linkage” means a 3′ to 5′ phosphodiester linkage.
“Non-complementary nucleobase” refers to a pair of nucleobases that do not form hydrogen bonds with one another or otherwise support hybridization.
“Nucleic acid” refers to molecules composed of monomeric nucleotides. A nucleic acid includes, but is not limited to, ribonucleic acids (RNA), deoxyribonucleic acids (DNA), single-stranded nucleic acids, double-stranded nucleic acids, small interfering ribonucleic acids (siRNA), and microRNAs (miRNA).
“Nucleobase” means a heterocyclic moiety capable of pairing with a base of another nucleic acid.
“Nucleobase complementarity” refers to a nucleobase that is capable of base pairing with another nucleobase. For example, in DNA, adenine (A) is complementary to thymine (T). For example, in RNA, adenine (A) is complementary to uracil (U). In certain embodiments, complementary nucleobase refers to a nucleobase of an antisense compound that is capable of base pairing with a nucleobase of its target nucleic acid. For example, if a nucleobase at a certain position of an antisense compound is capable of hydrogen bonding with a nucleobase at a certain position of a target nucleic acid, then the position of hydrogen bonding between the oligonucleotide and the target nucleic acid is considered to be complementary at that nucleobase pair.
“Nucleobase sequence” means the order of contiguous nucleobases independent of any sugar, linkage, and/or nucleobase modification.
“Nucleoside” means a nucleobase linked to a sugar.
“Nucleoside mimetic” includes those structures used to replace the sugar or the sugar and the base and not necessarily the linkage at one or more positions of an oligomeric compound such as for example nucleoside mimetics having morpholino, cyclohexenyl, cyclohexyl, tetrahydropyranyl, bicyclo, or tricyclo sugar mimetics, e.g., non furanose sugar units. Nucleotide mimetic includes those structures used to replace the nucleoside and the linkage at one or more positions of an oligomeric compound such as for example peptide nucleic acids or morpholinos (morpholinos linked by —N(H)—C(═O)—O— or other non-phosphodiester linkage). Sugar surrogate overlaps with the slightly broader term nucleoside mimetic but is intended to indicate replacement of the sugar unit (furanose ring) only. The tetrahydropyranyl rings provided herein are illustrative of an example of a sugar surrogate wherein the furanose sugar group has been replaced with a tetrahydropyranyl ring system. “Mimetic” refers to groups that are substituted for a sugar, a nucleobase, and/or internucleoside linkage. Generally, a mimetic is used in place of the sugar or sugar-internucleoside linkage combination, and the nucleobase is maintained for hybridization to a selected target.
“Nucleotide” means a nucleoside having a phosphate group covalently linked to the sugar portion of the nucleoside.
“Off-target effect” refers to an unwanted or deleterious biological effect associated with modulation of RNA or protein expression of a gene other than the intended target nucleic acid.
“Oligomeric compound” or “oligomer” means a polymer of linked monomeric subunits which is capable of hybridizing to at least a region of a nucleic acid molecule.
“Oligonucleotide” means a polymer of linked nucleosides each of which can be modified or unmodified, independent one from another.
“Parenteral administration” means administration through injection (e.g., bolus injection) or infusion. Parenteral administration includes subcutaneous administration, intravenous administration, intramuscular administration, intraarterial administration, intraperitoneal administration, or intracranial administration, e.g., intrathecal or intracerebroventricular administration.
“Peptide” means a molecule formed by linking at least two amino acids by amide bonds. Without limitation, as used herein, peptide refers to polypeptides and proteins.
“Pharmaceutical agent” means a substance that provides a therapeutic benefit when administered to an individual. For example, in certain embodiments, an antisense oligonucleotide targeted to PKK is a pharmaceutical agent.
“Pharmaceutical composition” means a mixture of substances suitable for administering to a subject. For example, a pharmaceutical composition may comprise an antisense oligonucleotide and a sterile aqueous solution.
“Pharmaceutically acceptable derivative” encompasses pharmaceutically acceptable salts, conjugates, prodrugs or isomers of the compounds described herein.
“Pharmaceutically acceptable salts” means physiologically and pharmaceutically acceptable salts of antisense compounds, i.e., salts that retain the desired biological activity of the parent oligonucleotide and do not impart undesired toxicological effects thereto.
“Phosphorothioate linkage” means a linkage between nucleosides where the phosphodiester bond is modified by replacing one of the non-bridging oxygen atoms with a sulfur atom. A phosphorothioate linkage is a modified internucleoside linkage.
“PKK” means mammalian plasma prekallikrein, including human plasma prekallikrein. Plasma prekallikrein (PKK) is the precursor of plasma kallikrein (PK), which is encoded by the KLKB1 gene.
“PKK associated disease” means any disease associated with any PKK nucleic acid or expression product thereof. Such diseases may include an inflammatory disease or a thromboembolic disease. Such diseases may include hereditary angioedema (HAE).
“PKK mRNA” means any messenger RNA expression product of a DNA sequence encoding PKK.
“PKK nucleic acid” means any nucleic acid encoding PKK. For example, in certain embodiments, a PKK nucleic acid includes a DNA sequence encoding PKK, an RNA sequence transcribed from DNA encoding PKK (including genomic DNA comprising introns and exons), and an mRNA sequence encoding PKK. “PKK mRNA” means an mRNA encoding a PKK protein.
“PKK protein” means the polypeptide expression product of a PKK nucleic acid.
“Portion” means a defined number of contiguous (i.e., linked) nucleobases of a nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of a target nucleic acid. In certain embodiments, a portion is a defined number of contiguous nucleobases of an antisense compound.
“Prevent” or “preventing” refers to delaying or forestalling the onset or development of a disease, disorder, or condition for a period of time from minutes to days, weeks to months, or indefinitely.
“Prodrug” means a therapeutic agent that is prepared in an inactive form that is converted to an active form (i.e., drug) within the body or cells thereof by the action of endogenous enzymes or other chemicals and/or conditions.
“Prophylactically effective amount” refers to an amount of a pharmaceutical agent that provides a prophylactic or preventative benefit to an animal.
“Region” is defined as a portion of the target nucleic acid having at least one identifiable structure, function, or characteristic.
“Ribonucleotide” means a nucleotide having a hydroxy at the 2′ position of the sugar portion of the nucleotide. Ribonucleotides may be modified with any of a variety of substituents.
“Salts” mean a physiologically and pharmaceutically acceptable salts of antisense compounds, i.e., salts that retain the desired biological activity of the parent oligonucleotide and do not impart undesired toxicological effects thereto.
“Segments” are defined as smaller or sub-portions of regions within a target nucleic acid.
“Side effects” means physiological responses attributable to a treatment other than desired effects. In certain embodiments, side effects include, without limitation, injection site reactions, liver function test abnormalities, renal function abnormalities, liver toxicity, renal toxicity, central nervous system abnormalities, and myopathies.
“Single-stranded oligonucleotide” means an oligonucleotide which is not hybridized to a complementary strand.
“Sites,” as used herein, are defined as unique nucleobase positions within a target nucleic acid.
“Specifically hybridizable” or “specifically hybridizes” refers to an antisense compound having a sufficient degree of complementarity between an antisense oligonucleotide and a target nucleic acid to induce a desired effect, while exhibiting minimal or no effects on non-target nucleic acids under conditions in which specific binding is desired, i.e., under physiological conditions in the case of in vivo assays and therapeutic treatments.
“Stringent hybridization conditions” or “stringent conditions” refer to conditions under which an oligomeric compound will hybridize to its target sequence, but to a minimal number of other sequences.
“Subject” means a human or non-human animal selected for treatment or therapy.
“Target” refers to a protein, the modulation of which is desired.
“Target gene” refers to a gene encoding a target.
“Targeting” or “targeted” means the process of design and selection of an antisense compound that will specifically hybridize to a target nucleic acid and induce a desired effect.
“Target nucleic acid,” “target RNA,” and “target RNA transcript” and “nucleic acid target” all mean a nucleic acid capable of being targeted by antisense compounds.
“Target region” means a portion of a target nucleic acid to which one or more antisense compounds is targeted.
“Target segment” means the sequence of nucleotides of a target nucleic acid to which an antisense compound is targeted. “5′ target site” refers to the 5′-most nucleotide of a target segment. “3′ target site” refers to the 3′-most nucleotide of a target segment.
“Therapeutically effective amount” means an amount of a pharmaceutical agent that provides a therapeutic benefit to an individual.
“Treat” or “treating” or “treatment” refers to administering a composition to effect an improvement of the disease or condition.
“Unmodified nucleobases” mean the purine bases adenine (A) and guanine (G), and the pyrimidine bases thymine (T), cytosine (C) and uracil (U).
“Unmodified nucleotide” means a nucleotide composed of naturally occuring nucleobases, sugar moieties, and internucleoside linkages. In certain embodiments, an unmodified nucleotide is an RNA nucleotide (i.e. β-D-ribonucleosides) or a DNA nucleotide (i.e. β-D-deoxyribonucleoside).
“Upstream” refers to the relative direction toward the 5′ end or N-terminal end of a nucleic acid.
“Wing segment” means a plurality of nucleosides modified to impart to an oligonucleotide properties such as enhanced inhibitory activity, increased binding affinity for a target nucleic acid, or resistance to degradation by in vivo nucleases.
Certain Embodiments
Certain embodiments provide compounds, compositions, and methods for inhibiting plasma prekallikrein (PKK) mRNA and protein expression. Certain embodiments provide compounds, compositions, and methods for decreasing PKK mRNA and protein levels.
Certain embodiments provide antisense compounds targeted to a plasma prekallikrein (PKK) nucleic acid. In certain embodiments, the PKK nucleic acid is the sequence set forth in GENBANK Accession No. NM_000892.3 (incorporated herein as SEQ ID NO: 1), GENBANK Accession No. DC412984.1 (incorporated herein as SEQ ID NO: 2), GENBANK Accession No. CN265612.1 (incorporated herein as SEQ ID NO: 3), GENBANK Accession No. AK297672.1 (incorporated herein as SEQ ID NO: 4), GENBANK Accession No. DC413312.1 (incorporated herein as SEQ ID NO: 5), GENBANK Accession No. AV688858.2 (incorporated herein as SEQ ID NO: 6), GENBANK Accession No. CD652077.1 (incorporated herein as SEQ ID NO: 7), GENBANK Accession No. BC143911.1 (incorporated herein as SEQ ID NO: 8), GENBANK Accession No. CB162532.1 (incorporated herein as SEQ ID NO: 9), GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000 (incorporated herein as SEQ ID NO: 10), GENBANK Accession No. NM_008455.2 (incorporated herein as SEQ ID NO: 11), GENBANK Accession No. BB598673.1 (incorporated herein as SEQ ID NO: 12), GENBANK Accession No. NT_039460.7 truncated from nucleobases 6114001 to 6144000 (incorporated herein as SEQ ID NO: 13), GENBANK Accession No. NM_012725.2 (incorporated herein as SEQ ID NO: 14), GENBANK Accession No. NW_047473.1 truncated from nucleobases 10952001 to 10982000 (incorporated herein as SEQ ID NO: 15), GENBANK Accession No. XM_002804276.1 (incorporated herein as SEQ ID NO: 17), and GENBANK Accession No. NW_001118167.1 truncated from nucleobases 2358000 to 2391000 (incorporated herein as SEQ ID NO: 18).
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 30-2226.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases of the nucleobase sequence of SEQ ID NO: 570.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases of the nucleobase sequence of SEQ ID NO: 705.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, or at least 16 consecutive nucleobases of the nucleobase sequence of SEQ ID NO: 1666.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 20 linked nucleosides and having the nucleobase sequence of SEQ ID NO: 570.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 20 linked nucleosides and having the nucleobase sequence of SEQ ID NO: 705.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 16 linked nucleosides and having the nucleobase sequence of SEQ ID NO: 1666.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, or at least 16 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 62, 72, 103, 213, 312, 334-339, 344, 345, 346, 348, 349, 351, 369, 373, 381, 382, 383, 385, 387-391, 399, 411, 412, 414, 416, 444, 446-449, 452, 453, 454, 459, 460, 462-472, 473, 476, 477, 479, 480, 481, 484, 489-495, 497, 500, 504, 506, 522, 526, 535, 558, 559, 560, 564, 566, 568-571, 573, 576, 577, 578, 587, 595, 597-604, 607, 608, 610, 613, 615, 618, 619, 622, 623, 624, 633, 635, 636, 638, 639, 640, 642, 643, 645, 652, 655-658, 660, 661, 670, 674-679, 684, 685, 698, 704, 705, 707, 708, 713, 716, 717, 728, 734, 736, 767, 768, 776, 797, 798, 800, 802, 810, 815, 876, 880, 882, 883, 886, 891, 901-905, 908-911, 922, 923, 924, 931, 942, 950-957, 972, 974, 978, 979, 980, 987-991, 1005, 1017-1021, 1025, 1026, 1029, 1030, 1032, 1034, 1035, 1037, 1040, 1041, 1045, 1046, 1051, 1054, 1059, 1060, 1061, 1064, 1065, 1066, 1075, 1076, 1087, 1089, 1111, 1114, 1116, 1117, 1125, 1133, 1153, 1169, 1177, 1181, 1182, 1187, 1196, 1200, 1214, 1222, 1267, 1276, 1277, 1285, 1286, 1289, 1290, 1291, 1303, 1367, 1389, 1393, 1398-1401, 1406, 1407, 1408, 1411, 1419-1422, 1426, 1430, 1431, 1432, 1434-1437, 1439, 1440, 1443, 1444, 1451, 1452, 1471, 1516, 1527, 1535, 1537, 1538, 1539, 1540, 1541, 1563, 1564, 1567, 1568, 1616, 1617, 1623, 1629, 1664, 1665, 1666, 1679, 1687, 1734, 1804, 1876, 1886, 1915, 2008, 2018, 2100, 2101, 2115, and 2116. In certain embodiments, the modified oligonucleotide achieves at least 80% mRNA inhibition of PKK.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, or at least 16 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 62, 72, 103, 213, 334-339, 344, 346, 348, 349, 351, 381, 382, 383, 385, 389, 390, 391, 446, 448, 452, 453, 454, 466-473, 476, 481, 484, 491, 492, 494, 495, 497, 504, 526, 558, 559, 566, 568-571, 576, 578, 587, 595, 597, 598, 600-604, 607, 610, 613, 618, 619, 624, 635, 638, 639, 645, 652, 656, 657, 658, 660, 674, 675, 676, 684, 698, 704, 705, 707, 713, 716, 768, 876, 880, 901-905, 908-911, 922, 923, 924, 931, 942, 951, 954-957, 972, 974, 978, 979, 987, 988, 990, 1005, 1019, 1020, 1021, 1025, 1032, 1037, 1040, 1041, 1045, 1054, 1059, 1060, 1061, 1064, 1065, 1066, 1075, 1111, 1116, 1117, 1125, 1133, 1153, 1169, 1177, 1200, 1222, 1267, 1285, 1290, 1291, 1303, 1367, 1398, 1399, 1401, 1406, 1408, 1411, 1419, 1420, 1421, 1426, 1430, 1431, 1432, 1434-1437, 1440, 1443, 1444, 1451, 1537-1540, 1563, 1616, 1679, 1687, 1804, 2008, 2101, 2115, and 2116. In certain embodiments, the modified oligonucleotide achieves at least 85% mRNA inhibition of PKK.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, or at least 16 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 334, 346, 351, 382, 390, 391, 446, 448, 452, 453, 468, 469, 470, 471, 472, 476, 481, 491, 495, 504, 558, 566, 568, 570, 571, 578, 587, 597, 598, 600, 604, 613, 635, 638, 645, 656, 658, 660, 674, 675, 684, 704, 705, 880, 901-905, 909, 922, 931, 951, 954, 956, 990, 1005, 1020, 1032, 1037, 1040, 1041, 1045, 1054, 1075, 1111, 1125, 1133, 1153, 1200, 1267, 1291, 1303, 1398, 1399, 1401, 1406, 1420, 1426, 1430, 1431, 1434, 1435, 1436, 1440, 1443, 1451, 1537-1540, 2115, and 2116. In certain embodiments, the modified oligonucleotide achieves at least 90% mRNA inhibition of PKK.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, or at least 16 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 334, 391, 448, 468, 469, 568, 570, 598, 635, 658, 674, 684, 705, 901, 903, 904, 922, 990, 1267, 1291, 1420, 1430, 1431, 1434, 1435, 1436, 1537, 1538, and 1540. In certain embodiments, the modified oligonucleotide achieves at least 95% mRNA inhibition of PKK.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, or at least 16 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 334, 338, 346, 349, 382, 383, 390, 448, 452, 453, 454, 495, 526, 559, 570, 587, 598, 635, 660, 705, 901, 903, 904, 908, 923, 931, 955, 974, 988, 990, 1020, 1039, 1040, 1111, 1117, 1267, 1291, 1349, 1352, 1367, 1389, 1393, 1399, 1401, 1408, 1411, 1426, 1499, 1516, 1535, 1544, 1548, 1563, 1564, 1568, 1569, 1598, 1616, 1617, 1623, 1624, 1643, 1661, 1665, 1666, 1673, 1679, 1695, 1720, 1804, 1817, 1876, 1881, 1886, 1940, 1947, 2008, 2018, 2019, 2031, 2044, 2100, 2101, 2115, and 2116. In certain embodiments, the modified oligonucleotide achieves an IC50 (μM) of 0.4 or less.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, or at least 16 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 334, 346, 349, 382, 453, 454, 495, 526, 570, 587, 598, 635, 660, 901, 903, 904, 931, 955, 990, 1020, 1111, 1267, 1349, 1352, 1367, 1389, 1399, 1408, 1411, 1426, 1516, 1535, 1544, 1548, 1563, 1564, 1568, 1569, 1598, 1616, 1617, 1623, 1643, 1661, 1665, 1666, 1673, 1695, 1804, 1876, 1881, 2019, 2044, 2100, 2101, 2115, and 2116. In certain embodiments, the modified oligonucleotide achieves an IC50 (μM) of 0.3 or less.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, or at least 16 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 334, 346, 382, 453, 495, 526, 570, 587, 598, 635, 901, 904, 931, 955, 1020, 1111, 1349, 1352, 1389, 1426, 1516, 1535, 1544, 1548, 1564, 1569, 1598, 1616, 1617, 1665, 1666, 1804, 1876, 1881, 2019, 2044, 2101, and 2116. In certain embodiments, the modified oligonucleotide achieves an IC50 (μM) of 0.2 or less.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and having a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, or at least 16 consecutive nucleobases of any of the nucleobase sequences of SEQ ID NOs: 334, 495, 587, 598, 635, 1349, 1352, 1389, 1516, 1544, 1548, 1569, 1598, 1617, 1665, 1666, 1804, 1881, and 2019. In certain embodiments, the modified oligonucleotide achieves an IC50 (μM) of less than 0.2.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 27427-27466 of SEQ ID NO: 10.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 33183-33242 of SEQ ID NO: 10.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 30570-30610 of SEQ ID NO: 10.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 27427-27520 of SEQ ID NO: 10.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 33085-33247 of SEQ ID NO: 10.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 30475-30639 of SEQ ID NO: 10.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 27362-27524 of SEQ ID NO: 10.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 33101-33240 of SEQ ID NO: 10.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of nucleobases 30463-30638 of SEQ ID NO: 10.
Certain embodiments provide compounds, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 8, at least 9, at least 10, at least 11, at least 12, at least 13, at least 14, at least 15, at least 16, at least 17, at least 18, at least 19, or at least 20 consecutive nucleobases complementary to an equal length portion of exon 9, exon 12, or exon 14 of a PKK nucleic acid.
In certain embodiments the nucleobase sequence of the modified oligonucleotide is at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, at least 99%, or 100% complementary to SEQ ID NO: 10.
In certain embodiments, the compound consists of a single-stranded modified oligonucleotide.
In certain embodiments, at least one internucleoside linkage of the modified oligonucleotide is a modified internucleoside linkage.
In certain embodiments, at least one modified internucleoside linkage of the modified oligonucleotide is a phosphorothioate internucleoside linkage.
In certain embodiments, each internucleoside linkage of the modified oligonucleotide is a phosphorothioate linkage.
In certain embodiments, at least one nucleoside of the modified oligonucleotide comprises a modified nucleobase.
In certain embodiments, the modified nucleobase is a 5-methylcytosine.
In certain embodiments, the modified oligonucleotide comprises at least one modified sugar.
In certain embodiments, the modified sugar is a 2′ modified sugar, a BNA, or a THP.
In certain embodiments, the modified sugar is any of a 2′-O-methoxyethyl, 2′-O-methyl, a constrained ethyl, a LNA, or a 3′-fluoro-HNA.
In certain embodiments, the compound comprises at least one 2′-O-methoxyethyl nucleoside, 2′-O-methyl nucleoside, constrained ethyl nucleoside, LNA nucleoside, or 3′-fluoro-HNA nucleoside.
In certain embodiments, the modified oligonucleotide comprises:
a gap segment consisting of 10 linked deoxynucleosides;
a 5′ wing segment consisting of 5 linked nucleosides; and
a 3′ wing segment consisting of 5 linked nucleosides;
wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.
In certain embodiments, the modified oligonucleotide consists of 20 linked nucleosides.
In certain embodiments, the modified oligonucleotide consists of 19 linked nucleosides.
In certain embodiments, the modified oligonucleotide consists of 18 linked nucleosides.
Certain embodiments provide compounds consisting of a modified oligonucleotide according to the following formula: Tes Ges mCes Aes Aes Gds Tds mCds Tds mCds Tds Tds Gds Gds mCds Aes Aes Aes mCes Ae; wherein,
A=an adenine,
mC=a 5′-methylcytosine
G=a guanine,
T=a thymine,
e=a 2′-O-methoxyethyl modified nucleoside,
d=a 2′-deoxynucleoside, and
s=a phosphorothioate internucleoside linkage.
Certain embodiments provide compounds consisting of a modified oligonucleotide according to the following formula: mCes mCes mCes mCes mCes Tds Tds mCds Tds Tds Tds Ads Tds Ads Gds mCes mCes Aes Ges mCe; wherein,
A=an adenine,
mC=a 5′-methylcytosine;
G=a guanine,
T=a thymine,
e=a 2′-O-methoxyethyl modified nucleoside,
d=a 2′-deoxynucleoside, and
s=a phosphorothioate internucleoside linkage.
Certain embodiments provide compounds consisting of a modified oligonucleotide according to the following formula: mCes Ges Aks Tds Ads Tds mCds Ads Tds Gds Ads Tds Tds mCks mCks mCe; wherein,
A=an adenine,
mC=a 5′-methylcytosine;
G=a guanine,
T=a thymine,
e=a 2′-O-methoxyethyl modified nucleoside,
k=a cEt modified nucleoside,
d=a 2′-deoxynucleoside, and
s=a phosphorothioate internucleoside linkage.
Certain embodiments provide compounds according to the following formula:
Certain embodiments provide compounds according to the following formula:
Certain embodiments provide compounds according to the following formula:
Certain embodiments provide methods comprising administering to an animal the compound or composition of any preceding claim.
In certain embodiments, the animal is a human.
In certain embodiments, administering the compound prevents, treats, or ameliorates a PKK associated disease, disorder or condition.
In certain embodiments, the PKK associated disease, disorder or condition is a hereditary angioedema (HAE), edema, angioedema, swelling, angioedema of the lids, ocular edema, macular edema, cerebral edema, thrombosis, embolism, thromboembolism, deep vein thrombosis, pulmonary embolism, myocardial infarction, stroke, or infarct.
Certain embodiments provide use of the compound or composition of any preceding claim for the manufacture of a medicament for treating an inflammatory disease or a thromboembolic disease.
Antisense Compounds
Oligomeric compounds include, but are not limited to, oligonucleotides, oligonucleosides, oligonucleotide analogs, oligonucleotide mimetics, antisense compounds, antisense oligonucleotides, and siRNAs. An oligomeric compound may be “antisense” to a target nucleic acid, meaning that is capable of undergoing hybridization to a target nucleic acid through hydrogen bonding.
In certain embodiments, an antisense compound has a nucleobase sequence that, when written in the 5′ to 3′ direction, comprises the reverse complement of the target segment of a target nucleic acid to which it is targeted. In certain such embodiments, an antisense oligonucleotide has a nucleobase sequence that, when written in the 5′ to 3′ direction, comprises the reverse complement of the target segment of a target nucleic acid to which it is targeted.
In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 12 to 30 subunits in length. In certain embodiments, an antisense compound targeted to PKK nucleic acid is 12 to 25 subunits in length. In certain embodiments, an antisense compound targeted to PKK nucleic acid is 12 to 22 subunits in length. In certain embodiments, an antisense compound targeted to PKK nucleic acid is 14 to 20 subunits in length. In certain embodiments, an antisense compound targeted to PKK nucleic acid is 15 to 25 subunits in length. In certain embodiments, an antisense compound targeted to PKK nucleic acid is 18 to 22 subunits in length. In certain embodiments, an antisense compound targeted to PKK nucleic acid is 19 to 21 subunits in length. In certain embodiments, the antisense compound is 8 to 80, 12 to 50, 13 to 30, 13 to 50, 14 to 30, 14 to 50, 15 to 30, 15 to 50, 16 to 30, 16 to 50, 17 to 30, 17 to 50, 18 to 30, 18 to 50, 19 to 30, 19 to 50, or 20 to 30 linked subunits in length.
In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 12 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 13 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 14 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 15 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 16 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 17 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 18 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 19 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 20 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 21 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 22 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 23 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 24 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 25 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 26 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 27 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 28 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 29 subunits in length. In certain embodiments, an antisense compound targeted to a PKK nucleic acid is 30 subunits in length. In certain embodiments, the antisense compound targeted to a PKK nucleic acid is 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, or 80 linked subunits in length, or a range defined by any two of the above values. In certain embodiments the antisense compound is an antisense oligonucleotide, and the linked subunits are nucleosides.
In certain embodiments antisense oligonucleotides targeted to a PKK nucleic acid may be shortened or truncated. For example, a single subunit may be deleted from the 5′ end (5′ truncation), or alternatively from the 3′ end (3′ truncation). A shortened or truncated antisense compound targeted to a PKK nucleic acid may have two subunits deleted from the 5′ end, or alternatively may have two subunits deleted from the 3′ end, of the antisense compound. Alternatively, the deleted nucleosides may be dispersed throughout the antisense compound, for example, in an antisense compound having one nucleoside deleted from the 5′ end and one nucleoside deleted from the 3′ end.
When a single additional subunit is present in a lengthened antisense compound, the additional subunit may be located at the 5′ or 3′ end of the antisense compound. When two or more additional subunits are present, the added subunits may be adjacent to each other, for example, in an antisense compound having two subunits added to the 5′ end (5′ addition), or alternatively to the 3′ end (3′ addition), of the antisense compound. Alternatively, the added subunits may be dispersed throughout the antisense compound, for example, in an antisense compound having one subunit added to the 5′ end and one subunit added to the 3′ end.
It is possible to increase or decrease the length of an antisense compound, such as an antisense oligonucleotide, and/or introduce mismatch bases without eliminating activity. For example, in Woolf et al. (Proc. Natl. Acad. Sci. USA 89:7305-7309, 1992), a series of antisense oligonucleotides 13-25 nucleobases in length were tested for their ability to induce cleavage of a target RNA in an oocyte injection model. Antisense oligonucleotides 25 nucleobases in length with 8 or 11 mismatch bases near the ends of the antisense oligonucleotides were able to direct specific cleavage of the target mRNA, albeit to a lesser extent than the antisense oligonucleotides that contained no mismatches. Similarly, target specific cleavage was achieved using 13 nucleobase antisense oligonucleotides, including those with 1 or 3 mismatches.
Gautschi et al (J. Natl. Cancer Inst. 93:463-471, March 2001) demonstrated the ability of an oligonucleotide having 100% complementarity to the bcl-2 mRNA and having 3 mismatches to the bcl-xL mRNA to reduce the expression of both bcl-2 and bcl-xL in vitro and in vivo. Furthermore, this oligonucleotide demonstrated potent anti-tumor activity in vivo.
Maher and Dolnick (Nuc. Acid. Res. 16:3341-3358, 1988) tested a series of tandem 14 nucleobase antisense oligonucleotides, and a 28 and 42 nucleobase antisense oligonucleotides comprised of the sequence of two or three of the tandem antisense oligonucleotides, respectively, for their ability to arrest translation of human DHFR in a rabbit reticulocyte assay. Each of the three 14 nucleobase antisense oligonucleotides alone was able to inhibit translation, albeit at a more modest level than the 28 or 42 nucleobase antisense oligonucleotides.
Antisense Compound Motifs
In certain embodiments, antisense compounds targeted to a PKK nucleic acid have chemically modified subunits arranged in patterns, or motifs, to confer to the antisense compounds properties such as enhanced inhibitory activity, increased binding affinity for a target nucleic acid, or resistance to degradation by in vivo nucleases.
Chimeric antisense compounds typically contain at least one region modified so as to confer increased resistance to nuclease degradation, increased cellular uptake, increased binding affinity for the target nucleic acid, and/or increased inhibitory activity. A second region of a chimeric antisense compound may optionally serve as a substrate for the cellular endonuclease RNase H, which cleaves the RNA strand of an RNA:DNA duplex.
Antisense compounds having a gapmer motif are considered chimeric antisense compounds. In a gapmer an internal region having a plurality of nucleotides that supports RNaseH cleavage is positioned between external regions having a plurality of nucleotides that are chemically distinct from the nucleosides of the internal region. In the case of an antisense oligonucleotide having a gapmer motif, the gap segment generally serves as the substrate for endonuclease cleavage, while the wing segments comprise modified nucleosides. In certain embodiments, the regions of a gapmer are differentiated by the types of sugar moieties comprising each distinct region. The types of sugar moieties that are used to differentiate the regions of a gapmer may in some embodiments include β-D-ribonucleosides, β-D-deoxyribonucleosides, 2′-modified nucleosides (such 2′-modified nucleosides may include 2′-MOE, and 2′-O—CH3, among others), and bicyclic sugar modified nucleosides (such bicyclic sugar modified nucleosides may include those having a 4′-(CH2)n-O-2′ bridge, where n=1 or n=2 and 4′-CH2—O—CH2-2′). In certain embodiments, wings may include several modified sugar moieties, including, for example 2′-MOE. In certain embodiments, wings may include several modified and unmodified sugar moieties. In certain embodiments, wings may include various combinations of 2′-MOE nucleosides and 2′-deoxynucleosides.
Each distinct region may comprise uniform sugar moieties, variant, or alternating sugar moieties. The wing-gap-wing motif is frequently described as “X-Y-Z”, where “X” represents the length of the 5′ wing, “Y” represents the length of the gap, and “Z” represents the length of the 3′ wing. “X” and “Z” may comprise uniform, variant, or alternating sugar moieties. In certain embodiments, “X” and “Y” may include one or more 2′-deoxynucleosides. “Y” may comprise 2′-deoxynucleosides. As used herein, a gapmer described as “X-Y-Z” has a configuration such that the gap is positioned immediately adjacent to each of the 5′ wing and the 3′ wing. Thus, no intervening nucleotides exist between the 5′ wing and gap, or the gap and the 3′ wing. Any of the antisense compounds described herein can have a gapmer motif. In certain embodiments, “X” and “Z” are the same; in other embodiments they are different.
In certain embodiments, gapmers provided herein include, for example 20-mers having a motif of 5-10-5.
Target Nucleic Acids, Target Regions and Nucleotide Sequences
Nucleotide sequences that encode human plasma prekallikrein (PKK) include, without limitation, the following: GENBANK Accession No. NM_000892.3 (incorporated herein as SEQ ID NO: 1), GENBANK Accession No. DC412984.1 (incorporated herein as SEQ ID NO: 2), GENBANK Accession No. CN265612.1 (incorporated herein as SEQ ID NO: 3), GENBANK Accession No. AK297672.1 (incorporated herein as SEQ ID NO: 4), GENBANK Accession No. DC413312.1 (incorporated herein as SEQ ID NO: 5), GENBANK Accession No. AV688858.2 (incorporated herein as SEQ ID NO: 6), GENBANK Accession No. CD652077.1 (incorporated herein as SEQ ID NO: 7), GENBANK Accession No. BC143911.1 (incorporated herein as SEQ ID NO: 8), GENBANK Accession No. CB162532.1 (incorporated herein as SEQ ID NO: 9), GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000 (incorporated herein as SEQ ID NO: 10), GENBANK Accession No. NM_008455.2 (incorporated herein as SEQ ID NO: 11), GENBANK Accession No. BB598673.1 (incorporated herein as SEQ ID NO: 12), GENBANK Accession No. NT_039460.7 truncated from nucleobases 6114001 to 6144000 (incorporated herein as SEQ ID NO: 13), GENBANK Accession No. NM_012725.2 (incorporated herein as SEQ ID NO: 14), GENBANK Accession No. NW_047473.1 truncated from nucleobases 10952001 to 10982000 (incorporated herein as SEQ ID NO: 15), GENBANK Accession No. XM_002804276.1 (incorporated herein as SEQ ID NO: 17), and GENBANK Accession No. NW_001118167.1 truncated from nucleobases 2358000 to 2391000 (incorporated herein as SEQ ID NO: 18).
It is understood that the sequence set forth in each SEQ ID NO in the Examples contained herein is independent of any modification to a sugar moiety, an internucleoside linkage, or a nucleobase. As such, antisense compounds defined by a SEQ ID NO may comprise, independently, one or more modifications to a sugar moiety, an internucleoside linkage, or a nucleobase. Antisense compounds described by Isis Number (Isis No) indicate a combination of nucleobase sequence and motif.
In certain embodiments, a target region is a structurally defined region of the target nucleic acid. For example, a target region may encompass a 3′ UTR, a 5′ UTR, an exon, an intron, an exon/intron junction, a coding region, a translation initiation region, translation termination region, or other defined nucleic acid region. The structurally defined regions for PKK can be obtained by accession number from sequence databases such as NCBI and such information is incorporated herein by reference. In certain embodiments, a target region may encompass the sequence from a 5′ target site of one target segment within the target region to a 3′ target site of another target segment within the same target region.
Targeting includes determination of at least one target segment to which an antisense compound hybridizes, such that a desired effect occurs. In certain embodiments, the desired effect is a reduction in mRNA target nucleic acid levels. In certain embodiments, the desired effect is reduction of levels of protein encoded by the target nucleic acid or a phenotypic change associated with the target nucleic acid.
A target region may contain one or more target segments. Multiple target segments within a target region may be overlapping. Alternatively, they may be non-overlapping. In certain embodiments, target segments within a target region are separated by no more than about 300 nucleotides. In certain embodiments, target segments within a target region are separated by a number of nucleotides that is, is about, is no more than, is no more than about, 250, 200, 150, 100, 90, 80, 70, 60, 50, 40, 30, 20, or 10 nucleotides on the target nucleic acid, or is a range defined by any two of the preceeding values. In certain embodiments, target segments within a target region are separated by no more than, or no more than about, 5 nucleotides on the target nucleic acid. In certain embodiments, target segments are contiguous. Contemplated are target regions defined by a range having a starting nucleic acid that is any of the 5′ target sites or 3′ target sites listed herein.
Suitable target segments may be found within a 5′ UTR, a coding region, a 3′ UTR, an intron, an exon, or an exon/intron junction. Target segments containing a start codon or a stop codon are also suitable target segments. A suitable target segment may specifcally exclude a certain structurally defined region such as the start codon or stop codon.
The determination of suitable target segments may include a comparison of the sequence of a target nucleic acid to other sequences throughout the genome. For example, the BLAST algorithm may be used to identify regions of similarity amongst different nucleic acids. This comparison can prevent the selection of antisense compound sequences that may hybridize in a non-specific manner to sequences other than a selected target nucleic acid (i.e., non-target or off-target sequences).
There may be variation in activity (e.g., as defined by percent reduction of target nucleic acid levels) of the antisense compounds within an active target region. In certain embodiments, reductions in PKK mRNA levels are indicative of inhibition of PKK expression. Reductions in levels of a PKK protein are also indicative of inhibition of target mRNA expression. Further, phenotypic changes are indicative of inhibition of PKK expression. For example, reduced or prevented inflammation can be indicative of inhibition of PKK expression. In another example, reduced or prevented edema/swelling can be indicative of inhibition of PKK expression. In another example, reduced or prevented vascular permeability can be indicative of inhibition of PKK expression. In another example, reduced or prevented vascular leakage can be indicative of inhibition of PKK expression. In certain embodiments, vascular permeability is measured by quanification of a dye, such as Evans Blue.
Hybridization
In some embodiments, hybridization occurs between an antisense compound disclosed herein and a target nucleic acid. The most common mechanism of hybridization involves hydrogen bonding (e.g., Watson-Crick, Hoogsteen or reversed Hoogsteen hydrogen bonding) between complementary nucleobases of the nucleic acid molecules.
Hybridization can occur under varying conditions. Stringent conditions are sequence-dependent and are determined by the nature and composition of the nucleic acid molecules to be hybridized.
Methods of determining whether a sequence is specifically hybridizable to a target nucleic acid are well known in the art. In certain embodiments, the antisense compounds provided herein are specifically hybridizable with a target nucleic acid.
Complementarity
An antisense compound and a target nucleic acid are complementary to each other when a sufficient number of nucleobases of the antisense compound can hydrogen bond with the corresponding nucleobases of the target nucleic acid, such that a desired effect will occur (e.g., antisense inhibition of a target nucleic acid, such as a PKK nucleic acid).
Non-complementary nucleobases between an antisense compound and a PKK nucleic acid may be tolerated provided that the antisense compound remains able to specifically hybridize to a target nucleic acid. Moreover, an antisense compound may hybridize over one or more segments of a PKK nucleic acid such that intervening or adjacent segments are not involved in the hybridization event (e.g., a loop structure, mismatch or hairpin structure).
In certain embodiments, the antisense compounds provided herein, or a specified portion thereof, are, or are at least, 70%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% complementary to an PKK nucleic acid, a target region, target segment, or specified portion thereof. Percent complementarity of an antisense compound with a target nucleic acid can be determined using routine methods.
For example, an antisense compound in which 18 of 20 nucleobases of the antisense compound are complementary to a target region, and would therefore specifically hybridize, would represent 90 percent complementarity. In this example, the remaining noncomplementary nucleobases may be clustered or interspersed with complementary nucleobases and need not be contiguous to each other or to complementary nucleobases. As such, an antisense compound which is 18 nucleobases in length having four noncomplementary nucleobases which are flanked by two regions of complete complementarity with the target nucleic acid would have 77.8% overall complementarity with the target nucleic acid and would thus fall within the scope of the present invention. Percent complementarity of an antisense compound with a region of a target nucleic acid can be determined routinely using BLAST programs (basic local alignment search tools) and PowerBLAST programs known in the art (Altschul et al., J Mol. Biol., 1990, 215, 403 410; Zhang and Madden, Genome Res., 1997, 7, 649 656). Percent homology, sequence identity or complementarity, can be determined by, for example, the Gap program (Wisconsin Sequence Analysis Package, Version 8 for Unix, Genetics Computer Group, University Research Park, Madison Wis.), using default settings, which uses the algorithm of Smith and Waterman (Adv. Appl. Math., 1981, 2, 482 489).
In certain embodiments, the antisense compounds provided herein, or specified portions thereof, are fully complementary (i.e. 100% complementary) to a target nucleic acid, or specified portion thereof. For example, an antisense compound may be fully complementary to a plasma prekallikrein nucleic acid, or a target region, or a target segment or target sequence thereof. As used herein, “fully complementary” means each nucleobase of an antisense compound is capable of precise base pairing with the corresponding nucleobases of a target nucleic acid. For example, a 20 nucleobase antisense compound is fully complementary to a target sequence that is 400 nucleobases long, so long as there is a corresponding 20 nucleobase portion of the target nucleic acid that is fully complementary to the antisense compound. Fully complementary can also be used in reference to a specified portion of the first and/or the second nucleic acid. For example, a 20 nucleobase portion of a 30 nucleobase antisense compound can be “fully complementary” to a target sequence that is 400 nucleobases long. The 20 nucleobase portion of the 30 nucleobase oligonucleotide is fully complementary to the target sequence if the target sequence has a corresponding 20 nucleobase portion wherein each nucleobase is complementary to the 20 nucleobase portion of the antisense compound. At the same time, the entire 30 nucleobase antisense compound may or may not be fully complementary to the target sequence, depending on whether the remaining 10 nucleobases of the antisense compound are also complementary to the target sequence.
The location of a non-complementary nucleobase may be at the 5′ end or 3′ end of the antisense compound. Alternatively, the non-complementary nucleobase or nucleobases may be at an internal position of the antisense compound. When two or more non-complementary nucleobases are present, they may be contiguous (i.e. linked) or non-contiguous. In one embodiment, a non-complementary nucleobase is located in the wing segment of a gapmer antisense oligonucleotide.
In certain embodiments, antisense compounds that are, or are up to 11, 12, 13, 14, 15, 16, 17, 18, 19, or 20 nucleobases in length comprise no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid or specified portion thereof.
In certain embodiments, antisense compounds that are, or are up to 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleobases in length comprise no more than 6, no more than 5, no more than 4, no more than 3, no more than 2, or no more than 1 non-complementary nucleobase(s) relative to a target nucleic acid or specified portion thereof.
The antisense compounds provided also include those which are complementary to a portion of a target nucleic acid. As used herein, “portion” refers to a defined number of contiguous (i.e. linked) nucleobases within a region or segment of a target nucleic acid. A “portion” can also refer to a defined number of contiguous nucleobases of an antisense compound. In certain embodiments, the antisense compounds, are complementary to at least an 8 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 9 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 10 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least an 11 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 12 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 13 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 14 nucleobase portion of a target segment. In certain embodiments, the antisense compounds are complementary to at least a 15 nucleobase portion of a target segment. Also contemplated are antisense compounds that are complementary to at least a 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, or more nucleobase portion of a target segment, or a range defined by any two of these values.
Identity
The antisense compounds provided herein may also have a defined percent identity to a particular nucleotide sequence, SEQ ID NO, or compound represented by a specific Isis number, or portion thereof. As used herein, an antisense compound is identical to the sequence disclosed herein if it has the same nucleobase pairing ability. For example, a RNA which contains uracil in place of thymidine in a disclosed DNA sequence would be considered identical to the DNA sequence since both uracil and thymidine pair with adenine. Shortened and lengthened versions of the antisense compounds described herein as well as compounds having non-identical bases relative to the antisense compounds provided herein also are contemplated. The non-identical bases may be adjacent to each other or dispersed throughout the antisense compound. Percent identity of an antisense compound is calculated according to the number of bases that have identical base pairing relative to the sequence to which it is being compared.
In certain embodiments, the antisense compounds, or portions thereof, are at least 70%, 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, 99% or 100% identical to one or more of the antisense compounds or SEQ ID NOs, or a portion thereof, disclosed herein.
In certain embodiments, a portion of the antisense compound is compared to an equal length portion of the target nucleic acid. In certain embodiments, an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleobase portion is compared to an equal length portion of the target nucleic acid.
In certain embodiments, a portion of the antisense oligonucleotide is compared to an equal length portion of the target nucleic acid. In certain embodiments, an 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, or 25 nucleobase portion is compared to an equal length portion of the target nucleic acid.
Modifications
A nucleoside is a base-sugar combination. The nucleobase (also known as base) portion of the nucleoside is normally a heterocyclic base moiety. Nucleotides are nucleosides that further include a phosphate group covalently linked to the sugar portion of the nucleoside. For those nucleosides that include a pentofuranosyl sugar, the phosphate group can be linked to the 2′, 3′ or 5′ hydroxyl moiety of the sugar. Oligonucleotides are formed through the covalent linkage of adjacent nucleosides to one another, to form a linear polymeric oligonucleotide. Within the oligonucleotide structure, the phosphate groups are commonly referred to as forming the internucleoside linkages of the oligonucleotide.
Modifications to antisense compounds encompass substitutions or changes to internucleoside linkages, sugar moieties, or nucleobases. Modified antisense compounds are often preferred over native forms because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for nucleic acid target, increased stability in the presence of nucleases, or increased inhibitory activity.
Chemically modified nucleosides may also be employed to increase the binding affinity of a shortened or truncated antisense oligonucleotide for its target nucleic acid. Consequently, comparable results can often be obtained with shorter antisense compounds that have such chemically modified nucleosides.
Modified Internucleoside Linkages
The naturally occuring internucleoside linkage of RNA and DNA is a 3′ to 5′ phosphodiester linkage. Antisense compounds having one or more modified, i.e. non-naturally occurring, internucleoside linkages are often selected over antisense compounds having naturally occurring internucleoside linkages because of desirable properties such as, for example, enhanced cellular uptake, enhanced affinity for target nucleic acids, and increased stability in the presence of nucleases.
Oligonucleotides having modified internucleoside linkages include internucleoside linkages that retain a phosphorus atom as well as internucleoside linkages that do not have a phosphorus atom. Representative phosphorus containing internucleoside linkages include, but are not limited to, phosphodiesters, phosphotriesters, methylphosphonates, phosphoramidate, and phosphorothioates. Methods of preparation of phosphorous-containing and non-phosphorous-containing linkages are well known.
In certain embodiments, antisense compounds targeted to a plasma prekallikrein nucleic acid comprise one or more modified internucleoside linkages. In certain embodiments, the modified internucleoside linkages are phosphorothioate linkages. In certain embodiments, each internucleoside linkage of an antisense compound is a phosphorothioate internucleoside linkage.
Modified Sugar Moieties
Antisense compounds can optionally contain one or more nucleosides wherein the sugar group has been modified. Such sugar modified nucleosides may impart enhanced nuclease stability, increased binding affinity, or some other beneficial biological property to the antisense compounds. In certain embodiments, nucleosides comprise chemically modified ribofuranose ring moieties. Examples of chemically modified ribofuranose rings include without limitation, addition of substitutent groups (including 5′ and 2′ substituent groups, bridging of non-geminal ring atoms to form bicyclic nucleic acids (BNA), replacement of the ribosyl ring oxygen atom with S, N(R), or C(R1)(R2) (R, R1 and R2 are each independently H, C1-C12 alkyl or a protecting group) and combinations thereof. Examples of chemically modified sugars include 2′-F-5′-methyl substituted nucleoside (see PCT International Application WO 2008/101157 Published on Aug. 21, 2008 for other disclosed 5′,2′-bis substituted nucleosides) or replacement of the ribosyl ring oxygen atom with S with further substitution at the 2′-position (see published U.S. Patent Application US2005-0130923, published on Jun. 16, 2005) or alternatively 5′-substitution of a BNA (see PCT International Application WO 2007/134181 Published on Nov. 22, 2007 wherein LNA is substituted with for example a 5′-methyl or a 5′-vinyl group).
Examples of nucleosides having modified sugar moieties include without limitation nucleosides comprising 5′-vinyl, 5′-methyl (R or S), 4′-S, 2′-F, 2′-OCH3, 2′-OCH2CH3, 2′-OCH2CH2F and 2′-O(CH2)2OCH3 substituent groups. The substituent at the 2′ position can also be selected from allyl, amino, azido, thio, O-allyl, O—C1-C10 alkyl, OCF3, OCH2F, O(CH2)2SCH3, O(CH2)2—O—N(Rm)(Rn), O—CH2—C(═O)—N(Rm)(Rn), and O—CH2—C(═O)—N(Rl)—(CH2)2—N(Rm)(Rn), where each Rl, Rm and Rn is, independently, H or substituted or unsubstituted C1-C10 alkyl.
As used herein, “bicyclic nucleosides” refer to modified nucleosides comprising a bicyclic sugar moiety. Examples of bicyclic nucleosides include without limitation nucleosides comprising a bridge between the 4′ and the 2′ ribosyl ring atoms. In certain embodiments, antisense compounds provided herein include one or more bicyclic nucleosides comprising a 4′ to 2′ bridge. Examples of such 4′ to 2′ bridged bicyclic nucleosides, include but are not limited to one of the formulas: 4′-(CH2)—O-2′ (LNA); 4′-(CH2)—S-2′; 4′-(CH2)2—O-2′ (ENA); 4′-CH(CH3)—O-2′ (also referred to as constrained ethyl or cEt) and 4′-CH(CH2OCH3)—O-2′ (and analogs thereof see U.S. Pat. No. 7,399,845, issued on Jul. 15, 2008); 4′-C(CH3)(CH3)—O-2′ (and analogs thereof see PCT/US2008/068922 published as WO/2009/006478, published Jan. 8, 2009); 4′-CH2—N(OCH3)-2′ (and analogs thereof see PCT/US2008/064591 published as WO/2008/150729, published Dec. 11, 2008); 4′-CH2—O—N(CH3)-2′ (see published U.S. Patent Application US2004-0171570, published Sep. 2, 2004); 4′-CH2—N(R)—O-2′, wherein R is H, C1-C12 alkyl, or a protecting group (see U.S. Pat. No. 7,427,672, issued on Sep. 23, 2008); 4′-CH2—C(H)(CH3)-2′ (see Chattopadhyaya et al., J Org. Chem., 2009, 74, 118-134); and 4′-CH2—C(═CH2)-2′ (and analogs thereof see PCT/US2008/066154 published as WO 2008/154401, published on Dec. 8, 2008).
Further reports related to bicyclic nucleosides can also be found in published literature (see for example: Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372; Singh et al., Chem. Commun., 1998, 4, 455-456; Koshkin et al., Tetrahedron, 1998, 54, 3607-3630; Wahlestedt et al., Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 5633-5638; Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222; Singh et al., J Org. Chem., 1998, 63, 10035-10039; Srivastava et al., J Am. Chem. Soc., 2007, 129(26) 8362-8379; Elayadi et al., Curr. Opinion Invest. Drugs, 2001, 2, 558-561; Braasch et al., Chem. Biol., 2001, 8, 1-7; and Orum et al., Curr. Opinion Mol. Ther., 2001, 3, 239-243; U.S. Pat. Nos. 6,268,490; 6,525,191; 6,670,461; 6,770,748; 6,794,499; 7,034,133; 7,053,207; 7,399,845; 7,547,684; and 7,696,345; U.S. Patent Publication No. US2008-0039618; US2009-0012281; US2007-0287831; US2004-0171570; U.S. Patent Application Ser. Nos. 12/129,154; 60/989,574; 61/026,995; 61/026,998; 61/056,564; 61/086,231; 61/097,787; and 61/099,844; Published PCT International applications WO 1994/014226; WO 2004/106356; WO 2005/021570; WO 2007/134181; WO 2008/150729; WO 2008/154401; and WO 2009/006478. Each of the foregoing bicyclic nucleosides can be prepared having one or more stereochemical sugar configurations including for example α-L-ribofuranose and β-D-ribofuranose (see PCT international application PCT/DK98/00393, published on Mar. 25, 1999 as WO 99/14226).
In certain embodiments, bicyclic sugar moieties of BNA nucleosides include, but are not limited to, compounds having at least one bridge between the 4′ and the 2′ position of the pentofuranosyl sugar moiety wherein such bridges independently comprise 1 or from 2 to 4 linked groups independently selected from —[C(Ra)(Rb)]n—, —C(Ra)═C(Rb)—, —C(Ra)═N—, —C(═O)—, —C(═NRa)—, —C(═S)—, —O—, —Si(Ra)2—, —S(═O)x—, and —N(Ra)—;
wherein:
x is 0, 1, or 2;
n is 1, 2, 3, or 4;
each Ra and Rb is, independently, H, a protecting group, hydroxyl, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, heterocycle radical, substituted heterocycle radical, heteroaryl, substituted heteroaryl, C5-C7 alicyclic radical, substituted C5-C7 alicyclic radical, halogen, OJ1, NJ1J2, SJ1, N3, COOJ1, acyl (C(═O)—H), substituted acyl, CN, sulfonyl (S(═O)2-J1), or sulfoxyl (S(═O)-J1); and
each J1 and J2 is, independently, H, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C5-C20 aryl, substituted C5-C20 aryl, acyl (C(═O)—H), substituted acyl, a heterocycle radical, a substituted heterocycle radical, C1-C12 aminoalkyl, substituted C1-C12 aminoalkyl or a protecting group.
In certain embodiments, the bridge of a bicyclic sugar moiety is —[C(Ra)(Rb)]n—, —[C(Ra)(Rb)]n—O—, —C(RaRb)—N(R)—O— or —C(RaRb)—O—N(R)—. In certain embodiments, the bridge is 4′-CH2-2′, 4′-(CH2)2-2′, 4′-(CH2)3-2′, 4′-CH2—O-2′, 4′-(CH2)2—O-2′, 4′-CH2—O—N(R)-2′ and 4′-CH2—N(R)—O-2′- wherein each R is, independently, H, a protecting group or C1-C12 alkyl.
In certain embodiments, bicyclic nucleosides are further defined by isomeric configuration. For example, a nucleoside comprising a 4′-2′ methylene-oxy bridge, may be in the α-L configuration or in the β-D configuration. Previously, α-L-methyleneoxy (4′-CH2—O-2′) BNA's have been incorporated into antisense oligonucleotides that showed antisense activity (Frieden et al., Nucleic Acids Research, 2003, 21, 6365-6372).
In certain embodiments, bicyclic nucleosides include, but are not limited to, (A) α-L-methyleneoxy (4′-CH2—O-2′) BNA, (B) β-D-methyleneoxy (4′-CH2—O-2′) BNA, (C) ethyleneoxy (4′-(CH2)2—O-2′) BNA, (D) aminooxy (4′-CH2—O—N(R)-2′) BNA, (E) oxyamino (4′-CH2—N(R)—O-2′) BNA, and (F) methyl(methyleneoxy) (4′-CH(CH3)—O-2′) BNA, (G) methylene-thio (4′-CH2—S-2′) BNA, (H) methylene-amino (4′-CH2—N(R)-2′) BNA, (I) methyl carbocyclic (4′-CH2—CH(CH3)-2′) BNA, (J) propylene carbocyclic (4′-(CH2)3-2′) BNA and (K) vinyl BNA as depicted below:
wherein Bx is the base moiety and R is independently H, a protecting group, C1-C12 alkyl or C1-C12 alkoxy.
In certain embodiments, bicyclic nucleosides are provided having Formula I:
wherein:
Bx is a heterocyclic base moiety;
-Qa-Qb-Qc- is —CH2—N(Rc)—CH2, —C(═O)—N(Rc)—CH2—, —CH2—O—N(Rc)—, —CH2—N(Rc)—O— or —N(Rc)—O—CH2;
Rc is C1-C12 alkyl or an amino protecting group; and
Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium.
In certain embodiments, bicyclic nucleosides are provided having Formula II:
wherein:
Bx is a heterocyclic base moiety;
Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;
Za is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, substituted C1-C6 alkyl, substituted C2-C6 alkenyl, substituted C2-C6 alkynyl, acyl, substituted acyl, substituted amide, thiol or substituted thio.
In one embodiment, each of the substituted groups is, independently, mono or poly substituted with substituent groups independently selected from halogen, oxo, hydroxyl, OJc, NJcJd, SJc, N3, OC(═X)Jc, and NJeC(═X)NJcJd, wherein each Jc, Jd and Je is, independently, H, C1-C6 alkyl, or substituted C1-C6 alkyl and X is O or NJc.
In certain embodiments, bicyclic nucleosides are provided having Formula III:
wherein:
Bx is a heterocyclic base moiety;
Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;
Zb is C1-C6 alkyl, C2-C6 alkenyl, C2-C6 alkynyl, substituted C1-C6 alkyl, substituted C2-C6 alkenyl, substituted C2-C6 alkynyl or substituted acyl (C(═O)—).
In certain embodiments, bicyclic nucleosides are provided having Formula IV:
wherein:
Bx is a heterocyclic base moiety;
Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;
Rd is C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl or substituted C2-C6 alkynyl;
each qa, qb, qc and qd is, independently, H, halogen, C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl or substituted C2-C6 alkynyl, C1-C6 alkoxyl, substituted C1-C6 alkoxyl, acyl, substituted acyl, C1-C6 aminoalkyl or substituted C1-C6 aminoalkyl;
In certain embodiments, bicyclic nucleosides are provided having Formula V:
wherein:
Bx is a heterocyclic base moiety;
Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;
qa, qb, qe and qf are each, independently, hydrogen, halogen, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C1-C12 alkoxy, substituted C1-C12 alkoxy, OJj, SJj, SOJj, SO2Jj, NJiJk, N3, CN, C(═O)OJj, C(═O)NJjJk, C(═O)Jj, O—C(═O)NJjJk, N(H)C(═NH)NJjJk, N(H)C(═O)NJjJk or N(H)C(═S)NJjJk;
or qe and qf together are ═C(qg)(qh);
qg and qh are each, independently, H, halogen, C1-C12 alkyl or substituted C1-C12 alkyl.
The synthesis and preparation of the methyleneoxy (4′-CH2—O-2′) BNA monomers adenine, cytosine, guanine, 5-methyl-cytosine, thymine and uracil, along with their oligomerization, and nucleic acid recognition properties have been described (Koshkin et al., Tetrahedron, 1998, 54, 3607-3630). BNAs and preparation thereof are also described in WO 98/39352 and WO 99/14226.
Analogs of methyleneoxy (4′-CH2—O-2′) BNA and 2′-thio-BNAs, have also been prepared (Kumar et al., Bioorg. Med. Chem. Lett., 1998, 8, 2219-2222). Preparation of locked nucleoside analogs comprising oligodeoxyribonucleotide duplexes as substrates for nucleic acid polymerases has also been described (Wengel et al., WO 99/14226). Furthermore, synthesis of 2′-amino-BNA, a novel comformationally restricted high-affinity oligonucleotide analog has been described in the art (Singh et al., J. Org. Chem., 1998, 63, 10035-10039). In addition, 2′-amino- and 2′-methylamino-BNA's have been prepared and the thermal stability of their duplexes with complementary RNA and DNA strands has been previously reported.
In certain embodiments, bicyclic nucleosides are provided having Formula VI:
wherein:
Bx is a heterocyclic base moiety;
Ta and Tb are each, independently H, a hydroxyl protecting group, a conjugate group, a reactive phosphorus group, a phosphorus moiety or a covalent attachment to a support medium;
each qi, qj, qk and ql is, independently, H, halogen, C1-C12 alkyl, substituted C1-C12 alkyl, C2-C12 alkenyl, substituted C2-C12 alkenyl, C2-C12 alkynyl, substituted C2-C12 alkynyl, C1-C12 alkoxyl, substituted C1-C12 alkoxyl, OJj, SJj, SOJj, SO2Ji, NJiJk, N3, CN, C(═O)OJj, C(═O)NJjJk, C(═O)Jj, O—C(═O)NJjJk, N(H)C(═NH)NJjJk, N(H)C(═O)NJjJk or N(H)C(═S)NJjJk; and
qi and qj or ql and qk together are ═C(qg)(qh), wherein qg and qh are each, independently, H, halogen, C1-C12 alkyl or substituted C1-C12 alkyl.
One carbocyclic bicyclic nucleoside having a 4′-(CH2)3-2′ bridge and the alkenyl analog bridge 4′-CH═CH—CH2-2′ have been described (Freier et al., Nucleic Acids Research, 1997, 25(22), 4429-4443 and Albaek et al., J Org. Chem., 2006, 71, 7731-7740). The synthesis and preparation of carbocyclic bicyclic nucleosides along with their oligomerization and biochemical studies have also been described (Srivastava et al., J. Am. Chem. Soc., 2007, 129(26), 8362-8379).
As used herein, “4′-2′ bicyclic nucleoside” or “4′ to 2′ bicyclic nucleoside” refers to a bicyclic nucleoside comprising a furanose ring comprising a bridge connecting two carbon atoms of the furanose ring connects the 2′ carbon atom and the 4′ carbon atom of the sugar ring.
As used herein, “monocylic nucleosides” refer to nucleosides comprising modified sugar moieties that are not bicyclic sugar moieties. In certain embodiments, the sugar moiety, or sugar moiety analogue, of a nucleoside may be modified or substituted at any position.
As used herein, “2′-modified sugar” means a furanosyl sugar modified at the 2′ position. In certain embodiments, such modifications include substituents selected from: a halide, including, but not limited to substituted and unsubstituted alkoxy, substituted and unsubstituted thioalkyl, substituted and unsubstituted amino alkyl, substituted and unsubstituted alkyl, substituted and unsubstituted allyl, and substituted and unsubstituted alkynyl. In certain embodiments, 2′ modifications are selected from substituents including, but not limited to: O[(CH2)nO]mCH3, O(CH2)nNH2, O(CH2)nCH3, O(CH2)nF, O(CH2)nONH2, OCH2C(═O)N(H)CH3, and O(CH2)nON[(CH2)nCH3]2, where n and m are from 1 to about 10. Other 2′-substituent groups can also be selected from: C1-C12 alkyl, substituted alkyl, alkenyl, alkynyl, alkaryl, aralkyl, O-alkaryl or O-aralkyl, SH, SCH3, OCN, Cl, Br, CN, F, CF3, OCF3, SOCH3, SO2CH3, ONO2, NO2, N3, NH2, heterocycloalkyl, heterocycloalkaryl, aminoalkylamino, polyalkylamino, substituted silyl, an RNA cleaving group, a reporter group, an intercalator, a group for improving pharmacokinetic properties, or a group for improving the pharmacodynamic properties of an antisense compound, and other substituents having similar properties. In certain embodiments, modifed nucleosides comprise a 2′-MOE side chain (Baker et al., J. Biol. Chem., 1997, 272, 11944-12000). Such 2′-MOE substitution have been described as having improved binding affinity compared to unmodified nucleosides and to other modified nucleosides, such as 2′-O-methyl, O-propyl, and O-aminopropyl. Oligonucleotides having the 2′-MOE substituent also have been shown to be antisense inhibitors of gene expression with promising features for in vivo use (Martin, Helv. Chim. Acta, 1995, 78, 486-504; Altmann et al., Chimia, 1996, 50, 168-176; Altmann et al., Biochem. Soc. Trans., 1996, 24, 630-637; and Altmann et al., Nucleosides Nucleotides, 1997, 16, 917-926).
As used herein, a “modified tetrahydropyran nucleoside” or “modified THP nucleoside” means a nucleoside having a six-membered tetrahydropyran “sugar” substituted in for the pentofuranosyl residue in normal nucleosides (a sugar surrogate). Modified THP nucleosides include, but are not limited to, what is referred to in the art as hexitol nucleic acid (HNA), anitol nucleic acid (ANA), manitol nucleic acid (MNA) (see Leumann, Bioorg. Med. Chem., 2002, 10, 841-1954) or fluoro HNA (F-HNA) having a tetrahydropyran ring system as illustrated below:
In certain embodiments, sugar surrogates are selected having Formula VII:
wherein independently for each of said at least one tetrahydropyran nucleoside analog of Formula VII:
Bx is a heterocyclic base moiety;
Ta and Tb are each, independently, an internucleoside linking group linking the tetrahydropyran nucleoside analog to the antisense compound or one of Ta and Tb is an internucleoside linking group linking the tetrahydropyran nucleoside analog to the antisense compound and the other of Ta and Tb is H, a hydroxyl protecting group, a linked conjugate group or a 5′ or 3′-terminal group;
q1, q2, q3, q4, q5, q6 and q7 are each independently, H, C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl or substituted C2-C6 alkynyl; and each of R1 and R2 is selected from hydrogen, hydroxyl, halogen, substituted or unsubstituted alkoxy, NJ1J2, SJ1, N3, OC(═X)J1, OC(═X)NJ1J2, NJ3C(═X)NJ1J2 and CN, wherein X is O, S or NJ1 and each J1, J2 and J3 is, independently, H or C1-C6 alkyl.
In certain embodiments, the modified THP nucleosides of Formula VII are provided wherein q1, q2, q3, q4, q5, q6 and q7 are each H. In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is other than H. In certain embodiments, at least one of q1, q2, q3, q4, q5, q6 and q7 is methyl. In certain embodiments, THP nucleosides of Formula VII are provided wherein one of R1 and R2 is fluoro. In certain embodiments, R1 is fluoro and R2 is H; R1 is methoxy and R2 is H, and R1 is methoxyethoxy and R2 is H.
In certain embodiments, sugar surrogates comprise rings having more than 5 atoms and more than one heteroatom. For example nucleosides comprising morpholino sugar moieties and their use in oligomeric compounds has been reported (see for example: Braasch et al., Biochemistry, 2002, 41, 4503-4510; and U.S. Pat. Nos. 5,698,685; 5,166,315; 5,185,444; and 5,034,506). As used here, the term “morpholino” means a sugar surrogate having the following formula:
In certain embodiments, morpholinos may be modified, for example by adding or altering various substituent groups from the above morpholino structure. Such sugar surrogates are referred to herein as “modifed morpholinos.”
Combinations of modifications are also provided without limitation, such as 2′-F-5′-methyl substituted nucleosides (see PCT International Application WO 2008/101157 published on Aug. 21, 2008 for other disclosed 5′, 2′-bis substituted nucleosides) and replacement of the ribosyl ring oxygen atom with S and further substitution at the 2′-position (see published U.S. Patent Application US2005-0130923, published on Jun. 16, 2005) or alternatively 5′-substitution of a bicyclic nucleic acid (see PCT International Application WO 2007/134181, published on Nov. 22, 2007 wherein a 4′-CH2—O-2′ bicyclic nucleoside is further substituted at the 5′ position with a 5′-methyl or a 5′-vinyl group). The synthesis and preparation of carbocyclic bicyclic nucleosides along with their oligomerization and biochemical studies have also been described (see, e.g., Srivastava et al., J. Am. Chem. Soc. 2007, 129(26), 8362-8379).
In certain embodiments, antisense compounds comprise one or more modified cyclohexenyl nucleosides, which is a nucleoside having a six-membered cyclohexenyl in place of the pentofuranosyl residue in naturally occurring nucleosides. Modified cyclohexenyl nucleosides include, but are not limited to those described in the art (see for example commonly owned, published PCT Application WO 2010/036696, published on Apr. 10, 2010, Robeyns et al., J. Am. Chem. Soc., 2008, 130(6), 1979-1984; Horvath et al., Tetrahedron Letters, 2007, 48, 3621-3623; Nauwelaerts et al., J. Am. Chem. Soc., 2007, 129(30), 9340-9348; Gu et al., Nucleosides, Nucleotides & Nucleic Acids, 2005, 24(5-7), 993-998; Nauwelaerts et al., Nucleic Acids Research, 2005, 33(8), 2452-2463; Robeyns et al., Acta Crystallographica, Section F: Structural Biology and Crystallization Communications, 2005, F61(6), 585-586; Gu et al., Tetrahedron, 2004, 60(9), 2111-2123; Gu et al., Oligonucleotides, 2003, 13(6), 479-489; Wang et al., J. Org. Chem., 2003, 68, 4499-4505; Verbeure et al., Nucleic Acids Research, 2001, 29(24), 4941-4947; Wang et al., J. Org. Chem., 2001, 66, 8478-82; Wang et al., Nucleosides, Nucleotides & Nucleic Acids, 2001, 20(4-7), 785-788; Wang et al., J Am. Chem., 2000, 122, 8595-8602; Published PCT application, WO 06/047842; and Published PCT Application WO 01/049687; the text of each is incorporated by reference herein, in their entirety). Certain modified cyclohexenyl nucleosides have Formula X.
wherein independently for each of said at least one cyclohexenyl nucleoside analog of Formula X:
Bx is a heterocyclic base moiety;
T3 and T4 are each, independently, an internucleoside linking group linking the cyclohexenyl nucleoside analog to an antisense compound or one of T3 and T4 is an internucleoside linking group linking the tetrahydropyran nucleoside analog to an antisense compound and the other of T3 and T4 is H, a hydroxyl protecting group, a linked conjugate group, or a 5′- or 3′-terminal group; and
q1, q2, q3, q4, q5, q6, q7, q8 and q9 are each, independently, H, C1-C6 alkyl, substituted C1-C6 alkyl, C2-C6 alkenyl, substituted C2-C6 alkenyl, C2-C6 alkynyl, substituted C2-C6 alkynyl or other sugar substituent group.
As used herein, “2′-modified” or “2′-substituted” refers to a nucleoside comprising a sugar comprising a substituent at the 2′ position other than H or OH. 2′-modified nucleosides, include, but are not limited to, bicyclic nucleosides wherein the bridge connecting two carbon atoms of the sugar ring connects the 2′ carbon and another carbon of the sugar ring; and nucleosides with non-bridging 2′substituents, such as allyl, amino, azido, thio, O-allyl, O—C1-C10 alkyl, —OCF3, O—(CH2)2—O—CH3, 2′-O(CH2)2SCH3, O—(CH2)2—O—N(Rm)(Rn), or O—CH2—C(═O)—N(Rm)(Rn), where each Rm and Rn is, independently, H or substituted or unsubstituted C1-C10 alkyl. 2′-modifed nucleosides may further comprise other modifications, for example at other positions of the sugar and/or at the nucleobase.
As used herein, “2′-F” refers to a nucleoside comprising a sugar comprising a fluoro group at the 2′ position of the sugar ring.
As used herein, “2′-OMe” or “2′-OCH3” or “2′-O-methyl” each refers to a nucleoside comprising a sugar comprising an —OCH3 group at the 2′ position of the sugar ring.
As used herein, “MOE” or “2′-MOE” or “2′-OCH2CH2OCH3” or “2′-O-methoxyethyl” each refers to a nucleoside comprising a sugar comprising a —OCH2CH2OCH3 group at the 2′ position of the sugar ring.
As used herein, “oligonucleotide” refers to a compound comprising a plurality of linked nucleosides. In certain embodiments, one or more of the plurality of nucleosides is modified. In certain embodiments, an oligonucleotide comprises one or more ribonucleosides (RNA) and/or deoxyribonucleosides (DNA).
Many other monocyclo, bicyclo and tricyclo sugar surrogate ring systems are also known in the art that can be used to modify nucleosides for incorporation into antisense compounds as provided herein (see for example review article: Leumann, Bioorg. Med. Chem., 2002, 10, 841-1954). Such ring systems can undergo various additional substitutions to enhance activity.
Methods for the preparations of modified sugars are well known to those skilled in the art. Some representative U.S. patents that teach the preparation of such modified sugars include without limitation, U.S. Pat. Nos.: 4,981,957; 5,118,800; 5,319,080; 5,359,044; 5,393,878; 5,446,137; 5,466,786; 5,514,785; 5,519,134; 5,567,811; 5,576,427; 5,591,722; 5,597,909; 5,610,300; 5,627,053; 5,639,873; 5,646,265; 5,670,633; 5,700,920; 5,792,847 and 6,600,032 and International Application PCT/US2005/019219, filed Jun. 2, 2005 and published as WO 2005/121371 on Dec. 22, 2005, and each of which is herein incorporated by reference in its entirety.
In nucleotides having modified sugar moieties, the nucleobase moieties (natural, modified or a combination thereof) are maintained for hybridization with an appropriate nucleic acid target.
In certain embodiments, antisense compounds comprise one or more nucleosides having modified sugar moieties. In certain embodiments, the modified sugar moiety is 2′-MOE. In certain embodiments, the 2′-MOE modified nucleosides are arranged in a gapmer motif. In certain embodiments, the modified sugar moiety is a bicyclic nucleoside having a (4′-CH(CH3)—O-2′) bridging group. In certain embodiments, the (4′-CH(CH3)—O-2′) modified nucleosides are arranged throughout the wings of a gapmer motif.
Conjugated Antisense Compounds
Antisense compounds may be covalently linked to one or more moieties or conjugates which enhance the activity, cellular distribution or cellular uptake of the resulting antisense oligonucleotides. Typical conjugate groups include cholesterol moieties and lipid moieties. Additional conjugate groups include carbohydrates, phospholipids, biotin, phenazine, folate, phenanthridine, anthraquinone, acridine, fluoresceins, rhodamines, coumarins, and dyes.
Antisense compounds can also be modified to have one or more stabilizing groups that are generally attached to one or both termini of antisense compounds to enhance properties such as, for example, nuclease stability. Included in stabilizing groups are cap structures. These terminal modifications protect the antisense compound having terminal nucleic acid from exonuclease degradation, and can help in delivery and/or localization within a cell. The cap can be present at the 5′-terminus (5′-cap), or at the 3′-terminus (3′-cap), or can be present on both termini. Cap structures are well known in the art and include, for example, inverted deoxy a basic caps. Further 3′ and 5′-stabilizing groups that can be used to cap one or both ends of an antisense compound to impart nuclease stability include those disclosed in WO 03/004602 published on Jan. 16, 2003.
Cell Culture and Antisense Compounds Treatment
The effects of antisense compounds on the level, activity, or expression of PKK nucleic acids can be tested in vitro in a variety of cell types. Cell types used for such analyses are available from commercial vendors (e.g., American Type Culture Collection, Manassas, Va.; Zen-Bio, Inc., Research Triangle Park, N.C.; Clonetics Corporation, Walkersville, Md.) and are cultured according to the vendor's instructions using commercially available reagents (e.g., Life Technologies, Carlsbad, Calif.). Illustrative cell types include, but are not limited to, HepaRG™T cells and mouse primary hepatocytes.
In Vitro Testing of Antisense Oligonucleotides
Described herein are methods for treatment of cells with antisense oligonucleotides, which can be modified appropriately for treatment with other antisense compounds.
Cells may be treated with antisense oligonucleotides when the cells reach approximately 60-80% confluency in culture.
One reagent commonly used to introduce antisense oligonucleotides into cultured cells includes the cationic lipid transfection reagent LIPOFECTIN (Life Technologies, Carlsbad, Calif.). Antisense oligonucleotides may be mixed with LIPOFECTIN in OPTI-MEM 1 (Life Technologies, Carlsbad, Calif.) to achieve the desired final concentration of antisense oligonucleotide and a LIPOFECTIN concentration that may range from 2 to 12 ug/mL per 100 nM antisense oligonucleotide.
Another reagent used to introduce antisense oligonucleotides into cultured cells includes LIPOFECTAMINE (Life Technologies, Carlsbad, Calif.). Antisense oligonucleotide is mixed with LIPOFECTAMINE in OPTI-MEM 1 reduced serum medium (Life Technologies, Carlsbad, Calif.) to achieve the desired concentration of antisense oligonucleotide and a LIPOFECTAMINE concentration that may range from 2 to 12 ug/mL per 100 nM antisense oligonucleotide.
Another technique used to introduce antisense oligonucleotides into cultured cells includes electroporation.
Yet another technique used to introduce antisense oligonucleotides into cultured cells includes free uptake of the oligonucleotides by the cells.
Cells are treated with antisense oligonucleotides by routine methods. Cells may be harvested 16-24 hours after antisense oligonucleotide treatment, at which time RNA or protein levels of target nucleic acids are measured by methods known in the art and described herein. In general, when treatments are performed in multiple replicates, the data are presented as the average of the replicate treatments.
The concentration of antisense oligonucleotide used varies from cell line to cell line. Methods to determine the optimal antisense oligonucleotide concentration for a particular cell line are well known in the art. Antisense oligonucleotides are typically used at concentrations ranging from 1 nM to 300 nM when transfected with LIPOFECTAMINE. Antisense oligonucleotides are used at higher concentrations ranging from 625 to 20,000 nM when transfected using electroporation.
RNA Isolation
RNA analysis can be performed on total cellular RNA or poly(A)+mRNA. Methods of RNA isolation are well known in the art. RNA is prepared using methods well known in the art, for example, using the TRIZOL Reagent (Life Technologies, Carlsbad, Calif.) according to the manufacturer's recommended protocols.
Analysis of Inhibition of Target Levels or Expression
Inhibition of levels or expression of a PKK nucleic acid can be assayed in a variety of ways known in the art. For example, target nucleic acid levels can be quantitated by, e.g., Northern blot analysis, competitive polymerase chain reaction (PCR), or quantitaive real-time PCR. RNA analysis can be performed on total cellular RNA or poly(A)+mRNA. Methods of RNA isolation are well known in the art. Northern blot analysis is also routine in the art. Quantitative real-time PCR can be conveniently accomplished using the commercially available ABI PRISM 7600, 7700, or 7900 Sequence Detection System, available from PE-Applied Biosystems, Foster City, Calif. and used according to manufacturer's instructions.
Quantitative Real-Time PCR Analysis of Target RNA Levels
Quantitation of target RNA levels may be accomplished by quantitative real-time PCR using the ABI PRISM 7600, 7700, or 7900 Sequence Detection System (PE-Applied Biosystems, Foster City, Calif.) according to manufacturer's instructions. Methods of quantitative real-time PCR are well known in the art.
Prior to real-time PCR, the isolated RNA is subjected to a reverse transcriptase (RT) reaction, which produces complementary DNA (cDNA) that is then used as the substrate for the real-time PCR amplification. The RT and real-time PCR reactions are performed sequentially in the same sample well. RT and real-time PCR reagents may be obtained from Life Technologies (Carlsbad, Calif.). RT real-time-PCR reactions are carried out by methods well known to those skilled in the art.
Gene (or RNA) target quantities obtained by real time PCR are normalized using either the expression level of a gene whose expression is constant, such as cyclophilin A, or by quantifying total RNA using RIBOGREEN (Life Technologies, Inc. Carlsbad, Calif.). Cyclophilin A expression is quantified by real time PCR, by being run simultaneously with the target, multiplexing, or separately. Total RNA is quantified using RIBOGREEN RNA quantification reagent (Invetrogen, Inc. Eugene, Oreg.). Methods of RNA quantification by RIBOGREEN are taught in Jones, L. J., et al, (Analytical Biochemistry, 1998, 265, 368-374). A CYTOFLUOR 4000 instrument (PE Applied Biosystems) is used to measure RIBOGREEN fluorescence.
Probes and primers are designed to hybridize to a PKK nucleic acid. Methods for designing real-time PCR probes and primers are well known in the art, and may include the use of software such as PRIMER EXPRESS Software (Applied Biosystems, Foster City, Calif.).
Analysis of Protein Levels
Antisense inhibition of PKK nucleic acids can be assessed by measuring PKK protein levels. Protein levels of PKK can be evaluated or quantitated in a variety of ways well known in the art, such as immunoprecipitation, Western blot analysis (immunoblotting), enzyme-linked immunosorbent assay (ELISA), quantitative protein assays, protein activity assays (for example, caspase activity assays), immunohistochemistry, immunocytochemistry or fluorescence-activated cell sorting (FACS). Antibodies directed to a target can be identified and obtained from a variety of sources, such as the MSRS catalog of antibodies (Aerie Corporation, Birmingham, Mich.), or can be prepared via conventional monoclonal or polyclonal antibody generation methods well known in the art.
In Vivo Testing of Antisense Compounds
Antisense compounds, for example, antisense oligonucleotides, are tested in animals to assess their ability to inhibit expression of PKK and produce phenotypic changes.
In certain embodiments, such phenotypic changes include those associated with an inflammatory disease, such as, reduced inflammation, edema/swelling, vascular permeability, and vascular leakage. In certain embodiments, inflammation is measured by measuring the increase or decrease of edema, temperature, pain, color of tissue, and abdominal function in the animal.
In certain embodiments, such phenotypic changes include those associated with a thromboembolic disease, such as, prolonged aPTT, prolonged aPTT time in conjunction with a normal PT, decreased quantity of Platelet Factor 4 (PF-4), and reduced formation of thrombus or increased time for thrombus formation.
Testing may be performed in normal animals, or in experimental disease models. For administration to animals, antisense oligonucleotides are formulated in a pharmaceutically acceptable diluent, such as phosphate-buffered saline. Administration includes parenteral routes of administration, such as intraperitoneal, intravenous, and subcutaneous. Calculation of antisense oligonucleotide dosage and dosing frequency is within the abilities of those skilled in the art, and depends upon factors such as route of administration and animal body weight. Following a period of treatment with antisense oligonucleotides, RNA is isolated from liver tissue and changes in PKK nucleic acid expression are measured.
Certain Indications
In certain embodiments, the invention provides methods of treating an individual comprising administering one or more pharmaceutical compositions as described herein.
In certain embodiments, the individual has an inflammatory disease. In certain embodiments, the individual is at risk for developing an inflammatory condition, including, but not limited to hereditary angioedema (HAE), edema, angioedema, swelling, angioedema of the lids, ocular edema, macular edema, and cerebral edema. This includes individuals with an acquired problem, disease, or disorder that leads to a risk of inflammation, for example, genetic predisposition to an inflammatory condition, environmental factors, and exposure to certain medications, including, for example, ACE inhibitors and ARBs. In certain embodiments, the individual has been identified as in need of anti-inflammation therapy. Examples of such individuals include, but are not limited to those having a mutation in the genetic code for complement 1 esterase inhibitor (i.e., C1-INH) or Factor 12. In certain embodiments, an abnormal code can lead to a deficiency in C1-INH (i.e., type I HAE), an inability of existing C1-INH to function properly (type II HAE), or hyperfunctional Factor 12 (i.e., type III HAE).
In certain embodiments, the individual has a thromboembolic disease. In certain embodiments, the individual is at risk for a blood clotting disorder, including, but not limited to, infarct, thrombosis, embolism, thromboembolism such as deep vein thrombosis, pulmonary embolism, myocardial infarction, and stroke. This includes individuals with an acquired problem, disease, or disorder that leads to a risk of thrombosis, for example, surgery, cancer, immobility, sepsis, atherosclerosis atrial fibrillation, as well as genetic predisposition, for example, antiphospholipid syndrome and the autosomal dominant condition, Factor V Leiden. In certain embodiments, the individual has been identified as in need of anticoagulation therapy. Examples of such individuals include, but are not limited to, those undergoing major orthopedic surgery (e.g., hip/knee replacement or hip fracture surgery) and patients in need of chronic treatment, such as those suffering from arterial fibrillation to prevent stroke.
In certain embodiments the invention provides methods for prophylactically reducing PKK expression in an individual. Certain embodiments include treating an individual in need thereof by administering to an individual a therapeutically effective amount of an antisense compound targeted to a PKK nucleic acid.
In one embodiment, administration of a therapeutically effective amount of an antisense compound targeted to a PKK nucleic acid is accompanied by monitoring of PKK levels in the serum of an individual, to determine an individual's response to administration of the antisense compound. An individual's response to administration of the antisense compound is used by a physician to determine the amount and duration of therapeutic intervention.
In certain embodiments, administration of an antisense compound targeted to a PKK nucleic acid results in reduction of PKK expression by at least 15, 20, 25, 30, 35, 40, 45, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99%, or a range defined by any two of these values. In certain embodiments, pharmaceutical compositions comprising an antisense compound targeted to PKK are used for the preparation of a medicament for treating a patient suffering or susceptible to an inflammatory disease or thromboembolic disease.
Certain Compositions
1. ISIS 546254
In certain embodiments, ISIS 546254 is characterized as a 5-10-5 MOE gapmer, having a sequence of (from 5′ to 3′) TGCAAGTCTCTTGGCAAACA (incorporated herein as SEQ ID NO: 570), wherein each internucleoside linkage is a phosphorothioate linkage, each cytosine is a 5′-methylcytosine, each of nucleosides 1-5 and 16-20 are 2′-O-methoxyethyl modified nucleosides, and each of nucleosides 6-15 are 2′-deoxynucleosides.
In certain embodiments, ISIS 546254 is described by the following chemical notation: Tes Ges mCes Aes Aes Gds Tds mCds Tds mCds Tds Tds Gds Gds mCds Aes Aes Aes mCes Ae; wherein,
A=an adenine,
mC=a 5′-methylcytosine
G=a guanine,
T=a thymine,
e=a 2′-O-methoxyethyl modified nucleoside,
d=a 2′-deoxynucleoside, and
s=a phosphorothioate internucleoside linkage.
In certain embodiments, ISIS 546254 is described by the following chemical structure:
In certain embodiments, as provided in Example 2 (hereinbelow), ISIS 546254 achieved 95% inhibition of human PKK mRNA in cultured HepaRG™ cells (density of 20,000 cells per well) when transfected using electroporation with 5,000 nM antisense oligonucleotide after a treatment period of 24 hours and measured by quantitative real-time PCR using human primer probe set RTS3454 and adjusted according to total RNA content, as measured by RIBOGREEN®.
In certain embodiments, as provided in Example 5 (see Tables 34 and 41 hereinbelow), ISIS 546254 achieved an IC50 of 0.2 μM and 0.3 μM in a 4 point dose response curve (0.19 μM, 0.56 μM, 1.67 μM, and 5.0 μM) in cultured HepaRG™ cells (density of 20,000 cells per well) when transfected using electroporation after a treatment period of 16 and measured by quantitative real-time PCR using human primer probe set RTS3454 and adjusted according to total RNA content, as measured by RIBOGREEN®.
In certain embodiments, as provided in Example 7 (hereinbelow), ISIS 546254 achieved 31%, 55%, 84%, and 83% human PKK mRNA inhibition and 0%, 36%, 51%, and 76% human PKK protein inhibition in transgenic mice harboring the human PKK gene sequence when injected subcutaneously twice a week for 3 weeks with 2.5 mg/kg/week, 5.0 mg/kg/week, 10 mg/kg/week or 20 mg/kg/week with ISIS 546254.
In certain embodiments, as provided in Example 8 (hereinbelow), ISISI 546254 is effective for inhibiting PKK mRNA and protein expression and is tolerable in primates.
2. ISIS 546343
In certain embodiments, ISIS 546343 is characterized as a 5-10-5 MOE gapmer, having a sequence of (from 5′ to 3′) CCCCCTTCTTTATAGCCAGC (incorporated herein as SEQ ID NO: 705), wherein each internucleoside linkage is a phosphorothioate linkage, each cytosine is a 5′-methylcytosine, each of nucleosides 1-5 and 16-20 are 2′-O-methoxyethyl modified nucleosides, and each of nucleosides 6-15 are 2′-deoxynucleosides.
In certain embodiments, ISIS 546343 is described by the following chemical notation: mCes mCes mCes mCes mCes Tds Tds mCds Tds Tds Tds Ads Tds Ads Gds mCes mCes Aes Ges mCe; wherein,
A=an adenine,
mC=a 5′-methylcytosine;
G=a guanine,
T=a thymine,
e=a 2′-O-methoxyethyl modified nucleoside,
d=a 2′-deoxynucleoside, and
s=a phosphorothioate internucleoside linkage.
In certain embodiments, ISIS 546343 is described by the following chemical structure:
In certain embodiments, as provided in Example 2 (see Tables 9 and 10 hereinbelow), ISIS 546343 achieved 97% and 91% human PKK mRNA inhibition in cultured HepaRG™ cells (density of 20,000 cells per well) when transfected using electroporation with 5,000 nM antisense oligonucleotide after a treatment period of 24 hours and measured by quantitative real-time PCR using human primer probe set RTS3454 and adjusted according to total RNA content, as measured by RIBOGREEN®.
In certain embodiments, as provided twice in Example 5 (see Tables 34 and 41 hereinbelow), ISIS 546343 achieved an IC50 of 0.4 μM in a 4 point dose response curve (0.19 μM, 0.56 μM, 1.67 μM, and 5.0 μM) in cultured HepaRG™ cells (density of 20,000 cells per well) when transfected using electroporation after a treatment period of 16 and measured by quantitative real-time PCR using human primer probe set RTS3454 and adjusted according to total RNA content, as measured by RIBOGREEN®.
In certain embodiments, as provided in Example 7 (hereinbelow), ISIS 546343 achieved 46%, 66%, and 86% human PKK mRNA inhibition and 0%, 38%, and 79% human PKK protein inhibition in transgenic mice harboring the human PKK gene sequence when injected subcutaneously twice a week for 3 weeks with 2.5 mg/kg/week, 5.0 mg/kg/week, 10 mg/kg/week or 20 mg/kg/week with ISIS 546343.
In certain embodiments, as provided in Example 8 (hereinbelow), ISISI 546343 is effective for inhibiting PKK mRNA and protein expression and is tolerable in primates.
3. ISIS 548048
In certain embodiments, ISIS 548048 is characterized as a modified antisense oligonucleotide having the nucleobase sequence (from 5′ to 3′) CGATATCATGATTCCC (incorporated herein as SEQ ID NO: 1666), consisting of a combination of sixteen 2′-deoxynucleosides, 2′-O-methoxyethyl modified nucleosides, and cEt modified nucleosides, wherein each of nucleosides 1, 2, and 16 are 2′-O-methoxyethyl modified nucleosides, wherein each of nucleosides 3, 14, and 15 are cEt modified nucleosides, wherein each of nucleosides 4-13 are 2′-deoxynucleosides, wherein each internucleoside linkage is a phosphorothioate internucleoside linkage, and wherein each cytosine is a 5′-methylcytosine.
In certain embodiments, ISIS 548048 is described by the following chemical notation: mCes Ges Aks Tds Ads Tds mCds Ads Tds Gds Ads Tds Tds mCks mCks mCe; wherein,
A=an adenine,
mC=a 5′-methylcytosine;
G=a guanine,
T=a thymine,
e=a 2′-O-methoxyethyl modified nucleoside,
k=a cEt modified nucleoside,
d=a 2′-deoxynucleoside, and
s=a phosphorothioate internucleoside linkage.
In certain embodiments, ISIS 548048 is described by the following chemical structure:
In certain embodiments, as provided in Example 3 (hereinbelow), ISIS 548048 achieved 84% mRNA inhibition in cultured HepaRG™ cells (density of 20,000 cells per well) when transfected using electroporation with 1,000 nM antisense oligonucleotide after a treatment period of 24 hours and measured by quantitative real-time PCR using human primer probe set RTS3454 and adjusted according to total RNA content, as measured by RIBOGREEN®.
In certain embodiments, as provided in Example 6 (hereinbelow), ISIS 548048 achieved an IC50 of 0.1 μM in a 4 point dose response curve (0.11 μM, 0.33 μM, 1.00 μM, and 3.00 μM) in cultured HepaRG™ cells (density of 20,000 cells per well) when transfected using electroporation after a treatment period of 16 and measured by quantitative real-time PCR using human primer probe set RTS3454 and adjusted according to total RNA content, as measured by RIBOGREEN®.
In certain embodiments, as provided in Example 7 (hereinbelow), ISIS 548048 achieved 7%, 77%, 72% and 80% human PKK mRNA inhibition and 23%, 70%, 89%, and 98% human PKK protein inhibition in transgenic mice harboring the human PKK gene sequence when injected subcutaneously twice a week for 3 weeks with 2.5 mg/kg/week, 5.0 mg/kg/week, 10 mg/kg/week or 20 mg/kg/week with ISIS 548048.
In certain embodiments, as provided in Example 8 (hereinbelow), ISISI 548048 is effective for inhibiting PKK mRNA and protein expression and is tolerable in primates.
Certain Hotspot Regions
1. Nucleobases 27427-27466 of SEQ ID NO: 10
In certain embodiments, antisense oligonucletoides are designed to target nucleobases 27427-27466 of SEQ ID NO: 10 (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 27427-27466 of SEQ ID NO: 10 are a hotspot region. In certain embodiments, nucleobases 27427-27466 of SEQ ID NO: 10 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 15, 16, 17, 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 4-9-4 MOE gapmers, 4-10-4 MOE gapmers, 4-10-3 MOE gapmers, 3-10-4 MOE gapmers, or 3-10-3 MOE gapmers. In certain embodiments, the gapmers are 5-10-5 MOE and cEt gapmers, 4-9-4 MOE and cEt gapmers, 4-10-4 MOE and cEt gapmers, 4-10-3 MOE and cEt gapmers, 3-10-4 MOE and cEt gapmers, or 3-10-3 MOE and cEt gapmers. In certain embodiments, the nucleosides of the antisense olignonucleotides are linked by phosphorothioate internucleoside linkages.
In certain embodiments, nucleobases 27427-27466 of SEQ ID NO: 10 are targeted by the following ISIS numbers: 530993, 530994, 530995, 546251, 546252, 546253, 546254, 546255, 546256, 547410, 547411, 547978, 547979, 547980, and 547981.
In certain embodiments, nucleobases nucleobases 27427-27466 of SEQ ID NO: 10 are targeted by the following SEQ ID NOs: 94, 95, 96, 566, 567, 568, 569, 570, 571, 572, 573, 1597, 1598, 1599, and 1600.
In certain embodiments, antisense oligonucleotides targeting nucleobases 27427-27466 of SEQ ID NO: 10 achieve at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% reduction of PKK and/or protein levels in vitro and/or in vivo.
2. Nucleobases 33183-33242 of SEQ ID NO: 10
In certain embodiments, antisense oligonucletoides are designed to target nucleobases 33183-33242 of SEQ ID NO: 10 (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 33183-33242 of SEQ ID NO: 10 are a hotspot region. In certain embodiments, nucleobases 33183-33242 of SEQ ID NO: 10 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 15, 16, 17, 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 4-9-4 MOE gapmers, 4-10-4 MOE gapmers, 4-10-3 MOE gapmers, 3-10-4 MOE gapmers, or 3-10-3 MOE gapmers. In certain embodiments, the gapmers are 5-10-5 MOE and cEt gapmers, 4-9-4 MOE and cEt gapmers, 4-10-4 MOE and cEt gapmers, 4-10-3 MOE and cEt gapmers, 3-10-4 MOE and cEt gapmers, or 3-10-3 MOE and cEt gapmers. In certain embodiments, the nucleosides of the antisense olignonucleotides are linked by phosphorothioate internucleoside linkages.
In certain embodiments, nucleobases 33183-33242 of SEQ ID NO: 10 are targeted by the following ISIS numbers: 531052, 531053, 531054, 531055, 531056, 531057, 531158, 546343, 546345, 547480, 547481, 547482, and 547483.
In certain embodiments, nucleobases nucleobases 33183-33242 of SEQ ID NO: 10 are targeted by the following SEQ ID NOs: 155, 156, 157, 158, 159, 160, 261, 702, 703, 704, 705, 706, and 707.
In certain embodiments, antisense oligonucleotides targeting nucleobases 33183-33242 of SEQ ID NO: 10 achieve at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% reduction of PKK mRNA and/or protein levels in vitro and/or in vivo.
3. Nucleobases 30570-30610 of SEQ ID NO: 10
In certain embodiments, antisense oligonucletoides are designed to target nucleobases 30570-30610 of SEQ ID NO: 10 (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 30570-30610 of SEQ ID NO: 10 are a hotspot region. In certain embodiments, nucleobases 30570-30610 of SEQ ID NO: 10 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 15, 16, 17, 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 4-9-4 MOE gapmers, 4-10-4 MOE gapmers, 4-10-3 MOE gapmers, 3-10-4 MOE gapmers, or 3-10-3 MOE gapmers. In certain embodiments, the gapmers are 5-10-5 MOE and cEt gapmers, 4-9-4 MOE and cEt gapmers, 4-10-4 MOE and cEt gapmers, 4-10-3 MOE and cEt gapmers, 3-10-4 MOE and cEt gapmers, or 3-10-3 MOE and cEt gapmers. In certain embodiments, the nucleosides of the antisense olignonucleotides are linked by phosphorothioate internucleoside linkages.
In certain embodiments, nucleobases 30570-30610 of SEQ ID NO: 10 are targeted by the following ISIS numbers: 531026, 546309, 546310, 546311, 546313, 547453, 547454, 547455, 547456, 547457, 547458, 548046, 548047, 548048, 548049, and 548050.
In certain embodiments, nucleobases nucleobases 30570-30610 of SEQ ID NO: 10 are targeted by the following SEQ ID NOs: 129, 652, 653, 654, 655, 656, 657, 658, 659, 660, 661, 1664, 1665, 1666, 1667, and 1668.
In certain embodiments, antisense oligonucleotides targeting nucleobases 30570-30610 of SEQ ID NO: 10 achieve at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% reduction of PKK mRNA and/or protein levels in vitro and/or in vivo.
4. Nucleobases 27427-27520 of SEQ ID NO: 10
In certain embodiments, antisense oligonucletoides are designed to target nucleobases 27427-27520 of SEQ ID NO: 10 (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 27427-27520 of SEQ ID NO: 10 are a hotspot region. In certain embodiments, nucleobases 27427-27520 of SEQ ID NO: 10 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 15, 16, 17, 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 4-9-4 MOE gapmers, 4-10-4 MOE gapmers, 4-10-3 MOE gapmers, 3-10-4 MOE gapmers, or 3-10-3 MOE gapmers. In certain embodiments, the gapmers are 5-10-5 MOE and cEt gapmers, 4-9-4 MOE and cEt gapmers, 4-10-4 MOE and cEt gapmers, 4-10-3 MOE and cEt gapmers, 3-10-4 MOE and cEt gapmers, or 3-10-3 MOE and cEt gapmers. In certain embodiments, the nucleosides of the antisense olignonucleotides are linked by phosphorothioate internucleoside linkages.
In certain embodiments, nucleobases 27427-27520 of SEQ ID NO: 10 are targeted by the following ISIS numbers: 530993-530999, 546251-546256, 546258-546260, 546263, 546265-546268, 547410-547417, and 547978-547992.
In certain embodiments, nucleobases nucleobases 27427-27520 of SEQ ID NO: 10 are targeted by the following SEQ ID NOs: 94-100, 566-587, and 1597-1611.
In certain embodiments, antisense oligonucleotides targeting nucleobases 27427-27520 of SEQ ID NO: 10 achieve at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% reduction of PKK and/or protein levels in vitro and/or in vivo.
5. Nucleobases 33085-33247 of SEQ ID NO: 10
In certain embodiments, antisense oligonucletoides are designed to target nucleobases 33085-33247 of SEQ ID NO: 10 (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 33085-33247 of SEQ ID NO: 10 are a hotspot region. In certain embodiments, nucleobases 33085-33247 of SEQ ID NO: 10 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 15, 16, 17, 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 4-9-4 MOE gapmers, 4-10-4 MOE gapmers, 4-10-3 MOE gapmers, 3-10-4 MOE gapmers, or 3-10-3 MOE gapmers. In certain embodiments, the gapmers are 5-10-5 MOE and cEt gapmers, 4-9-4 MOE and cEt gapmers, 4-10-4 MOE and cEt gapmers, 4-10-3 MOE and cEt gapmers, 3-10-4 MOE and cEt gapmers, or 3-10-3 MOE and cEt gapmers. In certain embodiments, the nucleosides of the antisense olignonucleotides are linked by phosphorothioate internucleoside linkages.
In certain embodiments, nucleobases 33085-33247 of SEQ ID NO: 10 are targeted by the following ISIS numbers: 531041-531158, 546336, 546339, 546340, 546343, 546345, 547474-547483, 547778, 548077-548082, and 548677-548678.
In certain embodiments, nucleobases nucleobases 33085-33247 of SEQ ID NO: 10 are targeted by the following SEQ ID NOs: 144-160, 261, 693-707, 1256, 1320-1325, 2214, and 2215.
In certain embodiments, antisense oligonucleotides targeting nucleobases 33085-33247 of SEQ ID NO: 10 achieve at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at lest 99% reduction of PKK and/or protein levels in vitro and/or in vivo.
6. Nucleobases 30475-30639 of SEQ ID NO: 10
In certain embodiments, antisense oligonucletoides are designed to target nucleobases 30475-30639 of SEQ ID NO: 10 (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 30475-30639 of SEQ ID NO: 10 are a hotspot region. In certain embodiments, nucleobases 30475-30639 of SEQ ID NO: 10 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 15, 16, 17, 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 4-9-4 MOE gapmers, 4-10-4 MOE gapmers, 4-10-3 MOE gapmers, 3-10-4 MOE gapmers, or 3-10-3 MOE gapmers. In certain embodiments, the gapmers are 5-10-5 MOE and cEt gapmers, 4-9-4 MOE and cEt gapmers, 4-10-4 MOE and cEt gapmers, 4-10-3 MOE and cEt gapmers, 3-10-4 MOE and cEt gapmers, or 3-10-3 MOE and cEt gapmers. In certain embodiments, the nucleosides of the antisense olignonucleotides are linked by phosphorothioate internucleoside linkages.
In certain embodiments, nucleobases 30475-30639 of SEQ ID NO: 10 are targeted by the following ISIS numbers: 531021-531029, 531146, 546297, 546299-546304, 546306-546311, 546313, 546316-546319, 547444-547462, 548031, 548032, and 548034-548056.
In certain embodiments, nucleobases nucleobases 30475-30639 of SEQ ID NO: 10 are targeted by the following SEQ ID NOs: 124-132, 249, 633-669, and 1650-1674.
In certain embodiments, antisense oligonucleotides targeting nucleobases 30475-30639 of SEQ ID NO: 10 achieve at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% reduction of PKK and/or protein levels in vitro and/or in vivo.
7. Nucleobases 27362-27524 of SEQ ID NO: 10
In certain embodiments, antisense oligonucletoides are designed to target nucleobases 27362-27524 of SEQ ID NO: 10 (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 27362-27524 correspond to exon 9 of PKK (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 27362-27524 of SEQ ID NO: 10 are a hotspot region. In certain embodiments, nucleobases 27362-27524 of SEQ ID NO: 10 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 15, 16, 17, 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 4-9-4 MOE gapmers, 4-10-4 MOE gapmers, 4-10-3 MOE gapmers, 3-10-4 MOE gapmers, or 3-10-3 MOE gapmers. In certain embodiments, the gapmers are 5-10-5 MOE and cEt gapmers, 4-9-4 MOE and cEt gapmers, 4-10-4 MOE and cEt gapmers, 4-10-3 MOE and cEt gapmers, 3-10-4 MOE and cEt gapmers, or 3-10-3 MOE and cEt gapmers. In certain embodiments, the nucleosides of the antisense olignonucleotides are linked by phosphorothioate internucleoside linkages.
In certain embodiments, nucleobases 27361-27524 of SEQ ID NO: 10 are targeted by the following ISIS numbers: 530985-530999, 546244, 546247-546256, 546258-546260, 546263, 546265-546268, 547403-547417, 547723, 547968-547970, and 547972-547992.
In certain embodiments, nucleobases nucleobases 27361-27524 of SEQ ID NO: 10 are targeted by the following SEQ ID NOs: 86-100, 554-587, 1217, and 1588-1611.
In certain embodiments, antisense oligonucleotides targeting nucleobases 27362-27524 of SEQ ID NO: 10 achieve at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% reduction of PKK and/or protein levels in vitro and/or in vivo.
8. Nucleobases 33101-33240 of SEQ ID NO: 10
In certain embodiments, antisense oligonucletoides are designed to target nucleobases 33101-33240 of SEQ ID NO: 10 (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 33101-33240 correspond to exon 14 of PKK (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 33101-33240 of SEQ ID NO: 10 are a hotspot region. In certain embodiments, nucleobases 33101-33240 of SEQ ID NO: 10 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 15, 16, 17, 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 4-9-4 MOE gapmers, 4-10-4 MOE gapmers, 4-10-3 MOE gapmers, 3-10-4 MOE gapmers, or 3-10-3 MOE gapmers. In certain embodiments, the gapmers are 5-10-5 MOE and cEt gapmers, 4-9-4 MOE and cEt gapmers, 4-10-4 MOE and cEt gapmers, 4-10-3 MOE and cEt gapmers, 3-10-4 MOE and cEt gapmers, or 3-10-3 MOE and cEt gapmers. In certain embodiments, the nucleosides of the antisense olignonucleotides are linked by phosphorothioate internucleoside linkages.
In certain embodiments, nucleobases 33101-33240 of SEQ ID NO: 10 are targeted by the following ISIS numbers: 531041-531158, 546336, 546339, 546340, 546343, 546345, 547474-547483, 548077-548082, and 548678-548678.
In certain embodiments, nucleobases nucleobases 33101-33240 of SEQ ID NO: 10 are targeted by the following SEQ ID NOs: 144-160, 261, 693-707, 1320-1325, and 2215.
In certain embodiments, antisense oligonucleotides targeting nucleobases 33101-33240 of SEQ ID NO: 10 achieve at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% reduction of PKK and/or protein levels in vitro and/or in vivo.
9. Nucleobases 30463-30638 of SEQ ID NO: 10
In certain embodiments, antisense oligonucletoides are designed to target nucleobases 30463-30638 of SEQ ID NO: 10 (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 30463-30638 correspond to exon 12 of PKK (GENBANK Accession No. NT_016354.19 truncated from nucleobases 111693001 to 11730000). In certain embodiments, nucleobases 30463-30638 of SEQ ID NO: 10 are a hotspot region. In certain embodiments, nucleobases 30463-30638 of SEQ ID NO: 10 are targeted by antisense oligonucleotides. In certain embodiments, the antisense oligonucleotides are 15, 16, 17, 18, 19, or 20 nucleobases in length. In certain embodiments, the antisense oligonucleotides are gapmers. In certain embodiments, the gapmers are 5-10-5 MOE gapmers, 4-9-4 MOE gapmers, 4-10-4 MOE gapmers, 4-10-3 MOE gapmers, 3-10-4 MOE gapmers, or 3-10-3 MOE gapmers. In certain embodiments, the gapmers are 5-10-5 MOE and cEt gapmers, 4-9-4 MOE and cEt gapmers, 4-10-4 MOE and cEt gapmers, 4-10-3 MOE and cEt gapmers, 3-10-4 MOE and cEt gapmers, or 3-10-3 MOE and cEt gapmers. In certain embodiments, the nucleosides of the antisense olignonucleotides are linked by phosphorothioate internucleoside linkages.
In certain embodiments, nucleobases 30463-30638 of SEQ ID NO: 10 are targeted by the following ISIS numbers: 531021-531029, 531146, 546297, 546299-546304, 546306-546311, 546313, 546316-546319, 547444-547462, 548031, 548032, and 548034-548056.
In certain embodiments, nucleobases nucleobases 30463-30638 of SEQ ID NO: 10 are targeted by the following SEQ ID NOs: 124-132, 249, 633-669, and 1650-1674.
In certain embodiments, antisense oligonucleotides targeting nucleobases 30463-30638 of SEQ ID NO: 10 achieve at least 30%, at least 31%, at least 32%, at least 33%, at least 34%, at least 35%, at least 36%, at least 37%, at least 38%, at least 39%, at least 40%, at least 41%, at least 42%, at least 43%, at least 44%, at least 45%, at least 46%, at least 47%, at least 48%, at least 49%, at least 50%, at least 51%, at least 52%, at least 53%, at least 54%, at least 55%, at least 56%, at least 57%, at least 58%, at least 59%, at least 60%, at least 61%, at least 62%, at least 63%, at least 64%, at least 65%, at least 66%, at least 67%, at least 68%, at least 69%, at least 70%, at least 71%, at least 72%, at least 73%, at least 74%, at least 75%, at least 76%, at least 77%, at least 78%, at least 79%, at least 80%, at least 81%, at least 82%, at least 83%, at least 84%, at least 85%, at least 86%, at least 87%, at least 88%, at least 89%, at least 90%, at least 91%, at least 92%, at least 93%, at least 94%, at least 95%, at least 96%, at least 97%, at least 98%, or at least 99% reduction of PKK and/or protein levels in vitro and/or in vivo.
EXAMPLESNon-limiting Disclosure and Incorporation by Reference
While certain compounds, compositions and methods described herein have been described with specificity in accordance with certain embodiments, the following examples serve only to illustrate the compounds described herein and are not intended to limit the same. Each of the references recited in the present application is incorporated herein by reference in its entirety.
Example 1 Antisense Inhibition of Human PKK in HepaRG™ Cells by Antisense Oligonucleotides with 2′-MOE Sugar ModificationsAntisense oligonucleotides were designed targeting a PKK nucleic acid and were tested for their effects on PKK mRNA in vitro. HepaRG™ cells, which are terminally differentiated hepatic cells derived from a human hepatic progenitor cell line and retain many characteristics of primary human hepatocytes (Lubberstedt M. et al., J. Pharmacol. Toxicol. Methods 2011 63: 59-68), were used in the screen.
The chimeric antisense oligonucleotides in the tables below were designed as 5-10-5 MOE gapmers. The gapmers are 20 nucleosides in length, wherein the central gap segment comprises often 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-O-methoxyethyl modification. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted in the human gene sequence. Each gapmer listed in the tables below is targeted to either the human PKK mRNA, designated herein as SEQ ID NO: 1 (GENBANK Accession No. NM_000892.3) or the human PKK genomic sequence, designated herein as SEQ ID NO: 10 (GENBANK Accession No. NT 016354.19 truncated from nucleotides 111693001 to Ser. No. 11/730,000). ‘n/a’ indicates that the antisense oligonucleotide does not target that particular gene sequence.
Cultured HepaRG™ cells at a density of 20,000 cells per well were transfected using electroporation with 3,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and PKK mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3454 (forward sequence CCAAAAAAGGTGCACCAGTAACA, designated herein as SEQ ID NO: 20; reverse sequence CCTCCGGGACTGTACTTTAATAGG, designated herein as SEQ ID NO: 21; probe sequence CACGCAAACATTTCACAAGGCAGAGTACC, designated herein as SEQ ID NO: 22) was used to measure mRNA levels. PKK mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Results are presented as percent inhibition of PKK, relative to untreated control cells.
Additional antisense oligonucleotides were designed targeting a PKK nucleic acid and were tested for their effects on PKK mRNA in vitro.
The chimeric antisense oligonucleotides in the tables below were designed as 5-10-5 MOE gapmers, 4-9-4 MOE gapmers, 4-10-4 MOE gapmers, 4-10-3 MOE gapmers, 3-10-4 MOE gapmers, or 3-10-3 MOE gapmers. The 5-10-5 MOE gapmers are 20 nucleosides in length, wherein the central gap segment comprises often 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising five nucleosides each. The 4-9-4 MOE gapmers are 17 nucleosides in length, wherein the central gap segment comprises of nine 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising four nucleosides each. The 4-10-4 MOE gapmers are 18 nucleosides in length, wherein the central gap segment comprises often 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising four nucleosides each. The 4-10-3 MOE gapmers are 17 nucleosides in length, wherein the central gap segment comprises often 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising four and three nucleosides respectively. The 3-10-4 MOE gapmers are 17 nucleosides in length, wherein the central gap segment comprises often 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three and four nucleosides respectively. The 3-10-3 MOE gapmers are 16 nucleosides in length, wherein the central gap segment comprises often 2′-deoxynucleosides and is flanked by wing segments on the 5′ direction and the 3′ direction comprising three nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-O-methoxyethyl modification. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted in the human gene sequence. Each gapmer listed in the tables below is targeted to either SEQ ID NO: 1 or SEQ ID NO: 10. ‘n/a’ indicates that the antisense oligonucleotide does not target that particular gene sequence.
Cultured HepaRG™ cells at a density of 20,000 cells per well were transfected using electroporation with 5,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and PKK mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3454 was used to measure mRNA levels. PKK mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Results are presented as percent inhibition of PKK, relative to untreated control cells.
Additional antisense oligonucleotides were designed targeting a PKK nucleic acid and were tested for their effects on PKK mRNA in vitro.
The chimeric antisense oligonucleotides in the tables below were designed as deoxy, MOE and cEt gapmers. The gapmers are 16 nucleosides in length wherein the nucleoside have either a MOE sugar modification, a cEt sugar modification, or a deoxy modification. The ‘Chemistry’ column describes the sugar modifications of each oligonucleotide. ‘k’ indicates an cEt sugar modification; the number indicates the number of deoxynucleosides; otherwise, ‘d’ indicates a deoxynucleoside; and ‘e’ indicates a 2′-O-methoxyethyl modification. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each oligonucleotide are 5-methylcytosines. “Start site” indicates the 5′-most nucleoside to which the gapmer is targeted in the human gene sequence. “Stop site” indicates the 3′-most nucleoside to which the gapmer is targeted in the human gene sequence. Each gapmer listed in the tables below is targeted to either the human PKK mRNA, designated herein as SEQ ID NO: 1 or the human PKK genomic sequence, designated herein as SEQ ID NO: 10. ‘n/a’ indicates that the antisense oligonucleotide does not target that particular gene sequence.
Cultured HepaRG™ cells at a density of 20,000 cells per well were transfected using electroporation with 1,000 nM antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and PKK mRNA levels were measured by quantitative real-time PCR. Human primer probe set RTS3454 was used to measure mRNA levels. ISIS 531231 was also included in this assay. PKK mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Results are presented as percent inhibition of PKK, relative to untreated control cells.
Gapmers from the studies described above exhibiting significant in vitro inhibition of PKK mRNA were selected and tested at various doses in HepaRG™ cells. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.12 μM, 0.37 μM, 1.11 μM, 3.33 μM, and 10.00 μM concentrations of antisense oligonucleotide. After a treatment period of approximately 16 hours, RNA was isolated from the cells and PKK mRNA levels were measured by quantitative real-time PCR. Human PKK primer probe set RTS3454 was used to measure mRNA levels. PKK mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Results are presented as percent inhibition of PKK, relative to untreated control cells.
The half maximal inhibitory concentration (IC50) of each oligonucleotide is also presented. PKK mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.
Gapmers from the studies described above exhibiting significant in vitro inhibition of PKK mRNA were selected and tested at various doses in HepaRG™ cells. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.19 μM, 0.56 μM, 1.67 μM, and 5.00 μM concentrations of antisense oligonucleotide. After a treatment period of approximately 16 hours, RNA was isolated from the cells and PKK mRNA levels were measured by quantitative real-time PCR. Human PKK primer probe set RTS3454 was used to measure mRNA levels. PKK mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN®. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Results are presented as percent inhibition of PKK, relative to untreated control cells. ‘n/a’ indicates that there was no measurement done for that particular antisense oligonucleotide for that particular dose.
The half maximal inhibitory concentration (IC50) of each oligonucleotide is also presented. PKK mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.
Gapmers from the studies described above exhibiting significant in vitro inhibition of PKK mRNA were selected and tested at various doses in HepaRG™ cells. Cells were plated at a density of 20,000 cells per well and transfected using electroporation with 0.11 μM, 0.33 μM, 1.00 μM, and 3.00 μM concentrations of antisense oligonucleotide. After a treatment period of approximately 16 hours, RNA was isolated from the cells and PKK mRNA levels were measured by quantitative real-time PCR. Human PKK primer probe set RTS3454 was used to measure mRNA levels. PKK mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN. The antisense oligonucleotides were tested in a series of experiments that had similar culture conditions. The results for each experiment are presented in separate tables shown below. Results are presented as percent inhibition of PKK, relative to untreated control cells. ‘n/a’ indicates that there was no measurement done for that particular antisense oligonucleotide for that particular dose.
The half maximal inhibitory concentration (IC50) of each oligonucleotide is also presented. PKK mRNA levels were significantly reduced in a dose-dependent manner in antisense oligonucleotide treated cells.
Transgenic mice containing a 37,390 base pair fragment of the human KLKB1 gene sequence (chromosome 4: position 187148672-187179625, accession no: NC_000004.11) were treated with ISIS antisense oligonucleotides selected from studies described above, which were evaluated for efficacy in this model.
Treatment
Groups of transgenic mice were injected subcutaneously twice a week for 3 weeks with 2.5 mg/kg/week, 5.0 mg/kg/week, 10 mg/kg/week or 20 mg/kg/week of ISIS 546232, ISIS 546251, ISIS 546254, ISIS 546343, ISIS 546828, ISIS 547455, ISIS 547457, ISIS 547927, and ISIS 548048. One group of transgenic mice was injected subcutaneously twice a week for 3 weeks with PBS. Mice were euthanized 48 hours after the last dose, and organs and plasma were harvested for further analysis.
RNA Analysis
To evaluate the effect of ISIS oligonucleotides on target reduction, RNA was extracted from liver tissue for real-time PCR analysis of human PKK. Results are presented as percent inhibition of PKK mRNA, relative to PBS control. As shown in Table 48, treatment with ISIS antisense oligonucleotides resulted in significant reduction of PKK mRNA in comparison to the PBS control.
Protein Analysis
Plasma PKK protein levels were evaluated in all groups. Results are presented as percent inhibition of PKK protein, relative to PBS control. As shown in Table 49, treatment with ISIS antisense oligonucleotides resulted in significant reduction of PKK protein levels in comparison to the PBS control.
Cynomolgus monkeys were treated with ISIS antisense oligonucleotides selected from studies described above. Antisense oligonucleotide efficacy and tolerability were evaluated. The human antisense oligonucleotides tested are cross-reactive with the rhesus genomic sequence (GENBANK Accession No. NW_001118167.1 truncated from nucleotides 2358000 to 2391000 and designated herein as SEQ ID NO: 18). The target start site of each oligonucleotide to SEQ ID NO: 18 is presented in Table 50. ‘Mismatches’ indicates that the number of nucleotides by which the oligonucleotide is mismatched to the rhesus sequence. The greater the complementarity between the human oligonucleotide and the rhesus monkey sequence, the more likely the human oligonucleotide can cross-react with the rhesus monkey sequence. ‘n/a’ indicates that the oligonucleotide is has more than 3 mismatches with the rhesus gene sequence.
Treatment
Prior to the study, the monkeys were kept in quarantine for a 30-day period, during which the animals were observed daily for general health. The monkeys were 2-4 years old and weighed between 2 and 4 kg. Ten groups of four randomly assigned male cynomolgus monkeys each were injected subcutaneously with ISIS oligonucleotide or PBS. PBS solution or ISIS oligonucleotides at a dose of 40 mg/kg were administered initially with a loading regimen consisting of four doses on the first week of the study (days 1, 3, 5, and 7), followed by a maintenance regimen consisting of once weekly administration starting on Day 14 (weeks 2 to 13). Subcutaneous injections were performed in clock-wise rotations at 4 sites on the back; one site per dose. The injection sites were delineated by tattoo, while sedated using ketamine, and were separated by a minimum of 3 cm.
During the study period, the monkeys were observed a minimum of once daily for signs of illness or distress. Any animal experiencing more than momentary or slight pain or distress due to the treatment, injury or illness was promptly reported to the responsible veterinarian and the Study Director. Any animal in poor health or in a possible moribund condition was identified for further monitoring and possible euthanasia. For example, two monkeys treated with ISIS 547445 were euthanized due to subdued behavior, lateral position, lack of response to stimuli and decreased respiration. The protocols described in the Example were approved by the Institutional Animal Care and Use Committee (IACUC).
Target Reduction
RNA Analysis
On day 87 or 88, 48 hours after the final dose, RNA was extracted from liver tissue for real-time PCR analysis of PKK using primer probe set RTS3455 (forward sequence CCTGTGTGGAGGGTCACTCA, designated herein as SEQ ID NO: 23; reverse sequence CCACTATAGATGCGCCAAACATC, designated herein as SEQ ID NO: 24; probe sequence CCCACTGCTTTGATGGGCTTCCC, designated herein as SEQ ID NO: 25). The results were normalized to the housekeeping gene, Cyclophilin. Results are presented as percent inhibition of PKK mRNA, relative to PBS control. As shown in Table 51, treatment with ISIS antisense oligonucleotides resulted in significant reduction of PKK mRNA in comparison to the PBS control.
Protein Analysis
Approximately 0.9 mL of blood was collected each time from all available animals at pre-dose, day 17, day 31, day 45, day 59, and day 73, and placed in tubes containing 3.2% sodium citrate. The tubes were centrifuged (3000 rpm for 10 min at room temperature) to obtain plasma. PKK protein levels were measured in the plasma by ELISA. The results are presented in Table 52, expressed as percentage inhibition compared to the PBS control levels. The results indicate that ISIS oligonucleotides significantly reduced PKK protein levels.
Tolerability Studies
Liver Function
To evaluate the effect of ISIS oligonucleotides on hepatic function, the monkeys were fasted overnight. Approximately, 1.5 mL of blood samples were collected from all the study groups. Blood was collected in tubes without anticoagulant for serum separation. The tubes were kept at room temperature for a minimum of 90 min and then centrifuged at 3,000 rpm for 10 min. Levels of various liver function markers were measured using a Toshiba 120FR NEO chemistry analyzer (Toshiba Co., Japan). The results are presented in Table 53 and indicate that antisense oligonucleotides had no effect on liver function outside the expected range for antisense oligonucleotides.
Hematology
To evaluate any effect of ISIS oligonucleotides in cynomolgus monkeys on hematologic parameters, blood samples of approximately 1.2 mL of blood was collected pre-dose and on day 87 or day 88 from each of the available study animals in tubes containing K2-EDTA. Samples were analyzed for red blood cell (RBC) count, white blood cells (WBC) count, platelet count, hemoglobin content and hematocrit, using an ADVIA2120i hematology analyzer (SIEMENS, USA). The data is presented in Table 54.
The data indicate treatment with most of the oligonucleotides did not cause any changes in hematologic parameters outside the expected range for antisense oligonucleotides at this dose.
Kidney Function
To evaluate the effect of ISIS oligonucleotides on kidney function, the monkeys were fasted overnight. Approximately, 1.5 mL of blood samples were collected from all the study groups. Blood was collected in tubes without anticoagulant for serum separation. The tubes were kept at room temperature for a minimum of 90 min and then centrifuged at 3,000 rpm for 10 min. Levels of BUN and creatinine were measured using a Toshiba 120FR NEO chemistry analyzer (Toshiba Co., Japan). Results are presented in Table 55, expressed in mg/dL. The plasma chemistry data indicate that most of the ISIS oligonucleotides did not have any effect on the kidney function outside the expected range for antisense oligonucleotides. Specifically, treatment with ISIS 546254 was well tolerated in terms of the kidney function of the monkeys.
Kidney function was also assessed by urinalysis. Fresh urine from all animals was collected using a clean cage pan on wet ice. Food was removed overnight the day before fresh urine collection was done but water was supplied. The total protein and creatinine levels were measured using a Toshiba 120FR NEO automated chemistry analyzer (Toshiba Co., Japan) and the protein to creatinine ratio was calculated. The results are presented in Table 56.
C-reactive Protein Level Analysis
To evaluate any inflammatory effect of ISIS oligonucleotides in cynomolgus monkeys, the monkeys were fasted overnight. Approximately, 1.5 mL of blood samples were collected from all the study groups. Blood was collected in tubes without anticoagulant for serum separation. The tubes were kept at room temperature for a minimum of 90 min and then centrifuged at 3,000 rpm for 10 min. C-reactive protein (CRP), which is synthesized in the liver and which serves as a marker of inflammation, was measured using a Toshiba 120FR NEO chemistry analyzer (Toshiba Co., Japan). Complement C3 was also measured similarly, and the data is presented as a percentage of baseline values. The results are presented in Table 57 and indicate that treatment with ISIS oligonucleotides did not cause any inflammation in monkeys.
Antisense oligonucleotides targeting a murine PKK nucleic acid were designed and tested for their effects on PKK mRNA in vitro. Cultured mouse primary hepatocytes at a density of 10,000 cells per well were transfected using Cytofectin reagent with 12.5 nM, 25.0 nM, 50.0 nM, 100.0 nM, and 200.0 nM of antisense oligonucleotide. After a treatment period of approximately 24 hours, RNA was isolated from the cells and mouse PKK mRNA levels were measured by quantitative real-time PCR using the murine primer probe set RTS3313 (forward sequence TGCCTGCTGTTCAGCTTTCTC, designated herein as SEQ ID NO: 2228; reverse sequence TGGCAAAGTCCCTGTAATGCT, designated herein as SEQ ID NO: 2229; probe sequence CGTGACTCCACCCAAAGAGACAAATAAACG, designated herein as SEQ ID NO: 2230). PKK mRNA levels were adjusted according to total RNA content, as measured by RIBOGREEN.
The chimeric antisense oligonucleotides were designed as 5-10-5 MOE gapmers. The gapmers are 20 nucleotides in length, wherein the central gap segment is comprised of ten 2′-deoxynucleosides and is flanked on both sides (in the 5′ and 3′ directions) by wings comprising 5 nucleosides each. Each nucleoside in the 5′ wing segment and each nucleoside in the 3′ wing segment has a 2′-O-methoxyethyl modification. The internucleoside linkages throughout each gapmer are phosphorothioate linkages. All cytosine residues throughout each gapmer are 5-methylcytosines. Results demonstrate that PKK mRNA levels were significantly reduced in a dose dependent manner.
In one specific example, ISIS 482584 (GGCATATTGGTTTTTGGAAT; SEQ ID NO: 2244) reduced PKK mRNA in a dose dependent manner yielding a half maximal inhibitory concentration (IC50) of 84 nM (see Table 58). ISIS 482584 is targeted to SEQ ID NO: 11 (GENBANK Accession No. NM_008455.2) and has a target start site of 1586 and a target stop site of 1605. “Target start site” indicates the 5′-most nucleotide to which the gapmer is targeted. “Target stop site” indicates the 3′-most nucleotide to which the gapmer is targeted.
ISIS 482584 was tested for its effect on murine PKK mRNA in vivo.
Treatment
Six groups of male BALB/c mice each were treated with 2.5 mg/kg, 5.0 mg/kg, 10.0 mg/kg, 20.0 mg/kg, 40.0 mg/kg, or 80.0 mg/kg of ISIS 482584, administered subcutaneously twice a week for 3 weeks (weekly doses of 5.0 mg/kg, 10.0 mg/kg, 20.0 mg/kg, 40.0 mg/kg, 80.0 mg/kg, or 160.0 mg/kg). A control group of BALB/c mice was treated with PBS, administered subcutaneously twice a week for 3 weeks. Two days after the last dose of antisense oligonucleotide or PBS, mice from all groups were anesthetized with 150 mg/kg ketamine mixed with 10 mg/kg xylazine, administered by intraperitoneal injection. Liver was collected for RNA analysis.
RNA Analysis
RNA was extracted from liver tissue for real-time PCR analysis of PKK. PKK mRNA levels were measured using the murine primer probe set (forward sequence ACAAGTGCATTTTACAGACCAGAGTAC, designated herein as SEQ ID NO: 2231; reverse sequence GGTTGTCCGCTGACTTTATGCT, designated herein as SEQ ID NO: 2232; probe sequence AAGCACAGTGCAAGCGGAACACCC, designated herein as SEQ ID NO: 2233). Results are presented as percent inhibition of PKK, relative to PBS control. As shown in Table 59, treatment with ISIS 482584 resulted in significant dose-dependent reduction of PKK mRNA in comparison to the PBS control.
Protein Analysis
Plasma was collected in tubes containing sodium citrate as an anticoagulant. The samples were run on a 4-12% gradient SDS-polyacrylamide gel (Invitrogen), followed by immunoblotting with murine PKK antibody (R&D Systems). Blots were incubated with secondary fluorophore-labeled antibodies (LI-COR) and imaged in an Odyssey Imager (LI-COR). Results are presented as percent inhibition of PKK, relative to PBS control. As shown in Table 60, treatment with ISIS 482584 resulted in significant dose-dependent reduction of PKK plama protein in comparison to the PBS control.
Hereditary angioedema (HAE) is characterized by local swelling and increase in vascular permeability in subcutaneous tissues (Morgan, B. P. N. Engl. J. Med. 363: 581-83, 2010). It is caused by a deficiency of the C1 inhibitor, a protein of the complement system. Two mouse models were used in this study including an established mouse model of C1-INH deficiency and a captopril-induced edema model, both of which cause vascular permeability, a hallmark of HAE. Reversal of vascular permeability is accompanied by increased plasma levels of high molecular weight kininogen (HMWK).
In the first model, angioedema was induced by treatment with Captopril, a known antihypertensive agent, which increases vascular permeability in mice and replicates the pathology of hereditary angioedema.
In the second model, angioedema was induced by treatment with ISIS 461756, an antisense oligonucleotide which targets murine C1 inhibitor mRNA, which increases vascular permeability in mice and replicates the pathology of hereditary angioedema. ISIS 461756 (SEQ ID NO: 2245; AAAGTGGTTGATACCCTGGG) is a 5-10-5 MOE gapmer targeting nucleosides 1730-1749 of NM_009776.3 (SEQ ID NO: 2243).
The effect of HOE-140 and ISIS 482584, an antisense oligonucleotide inhibitor of PKK, were evaluated in the Captopril and ISIS 461756-induced mouse models of vascular permeability. Some of the murine groups were treated with HOE-140, a selective antagonist of the bradykinin B2 receptor, which blocks vasodilation and vascular permeability (Cruden and Newby, Expert Opin. Pharmacol. 9: 2383-90, 2008). Other mice were treated with ISIS 482584, which inhibits PKK mRNA expression. The effect of treatment with HOE-140 was compared with the effect of treatment with ISIS 482584.
Treatment
The various treatment groups for this assay are presented in Table 61.
Group 1 consisted of 4 C57BL/6J-Tyrc-2J mice treated with PBS administered subcutaneously twice a week for 4 weeks. No other treatment was administered to Group 1 which served as a control group to measure the basal level of vascular permeability.
Group 2 consisted of 8 C57BL/6J-Tyrc-2J mice treated with PBS administered subcutaneously twice a week for 4 weeks. At the end of the treatment, the mice were intraperitoneally administered 20 μg of captopril. Group 2 served as a PBS control group for captopril-induced vascular permeability.
Group 3 consisted of 8 C57BL/6J-Tyrc-2J mice treated with PBS administered subcutaneously twice a week for 4 weeks. On day 14, the mice were treated with 50 mg/kg of the antisense oligonucleotide targeting C1 inhibitor, ISIS 461756, administered subcutaneously twice a week for 2 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. Group 3 served as a PBS control group for captopril and ISIS 461756-induced vascular permeability.
Group 4 consisted of 8 C57BL/6J-Tyrc-2J mice treated with PBS administered subcutaneously twice a week for 4 weeks. On day 14, the mice were treated with 50 mg/kg of the antisense oligonucleotide targeting C1 inhibitor, ISIS 461756, administered subcutaneously twice a week for 2 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. The mice were then also intraperitoneally administered 30 μg of HOE-140. Group 4 served as a positive control for inhibition of vascular permeability with HOE-140.
Group 5 consisted of 8 C57BL/6J-Tyrc-2J mice treated with 40 mg/kg of control oligonucleotide ISIS 141923, a 5-10-5 MOE gapmer with no known murine target, (CCTTCCCTGAAGGTTCCTCC; SEQ ID NO: 2246) administered subcutaneously twice a week for 4 weeks. On day 14, the mice were treated with 50 mg/kg of the antisense oligonucleotide targeting C1 inhibitor, ISIS 461756, administered subcutaneously twice a week for 2 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. Group 5 served as a control group for captopril and ISIS 461756-induced vascular permeability.
Group 6 consisted of 8 C57BL/6J-Tyrc-2J mice and was treated with 40 mg/kg of ISIS 482584 administered subcutaneously twice a week for 4 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. Group 6 served as the experimental treatment group for examining the effect of PKK ASO on captopril-induced vascular permeability.
Group 7 consisted of 8 C57BL/6J-Tyrc-2J mice treated with 40 mg/kg of ISIS 482584 administered subcutaneously twice a week for 4 weeks. On day 14, the mice were treated with 50 mg/kg of the antisense oligonucleotide targeting C1 inhibitor, ISIS 461756, administered subcutaneously twice a week for 2 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. Group 7 served as the experimental treatment group for examining the effect of PKK ASO on captopril and ISIS 461756-induced vascular permeability.
All the groups were then injected with 30 mg/kg of Evans Blue solution into the tail vein. The mice were sacrificed 30 min after the Evans Blue solution administration and colons, feet, ears, and intestines were harvested. Blood samples were taken through cardiac puncture.
Quantification of Vascular Permeability
The harvested tissues from the feet, colon, ears, and intestines were placed separately in formamide solution overnight to leach out the Evans Blue dye. The formamide solution containing ear and feet tissue was heated to 55° C. and left overnight. The color intensity of the dye-infused formamide solution was then measured at OD600nm, and is presented in Table 62. Mice displaying any manifestation of angioedema take up more dye and, therefore, demonstrate high OD values.
As presented in Table 62, treatment with ISIS 482584 prevents vascular permeability in mice treated with captopril (Group 6) and in mice treated with captopril and ISIS 461756 (Group 7) compared to the respective PBS control groups (Groups 2 and 3). Measures of vascular permeability in mice of Groups 6 and 7 were also reduced in most of the tissues in comparison to the mice treated with the control oligonucleotide, ISIS 141923 (Group 5), where vascular permeability was induced with captopril and ISIS 461756. Measures of vascular permeability in the colon and feet tissues of both the treatment groups (Groups 6 and 7) were comparable to basal levels, as observed in mice treated with only PBS (Group 1). Reduction in vascular permeability in mice treated with ISIS 482584 was comparable to that seen in mice treated with the bradykinin 2 receptor antagonist, HOE140, which served as a positive control in this assay.
Therefore, antisense inhibition of PKK mRNA may be beneficial for the treatment and prevention of vascular permeability, which is symptomatic of HAE.
Quantification of High Molecular Weight Kininogen (HMWK)
Western blot quantification of HMWK from blood samples are presented in
As shown in
Basal permeability is the level of vascular permeability occurring in the tissues of naïve, untreated mice. The effect of ISIS 482584 in the prevention of vascular permeability, either basal or captopril-induced, was evaluated.
Treatment
The various treatment groups for this assay are presented in Table 63.
Group 1 consisted of 8 mice and was treated with PBS administered subcutaneously twice a week for 4 weeks. No other treatment was administered to Group 1 which served as a control group to measure the basal levels of vascular permeability.
Group 2 consisted of 8 mice and was treated with PBS administered subcutaneously twice a week for 4 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. Group 2 served as the negative control group for captopril-induced vascular permeability.
Group 3 consisted of 8 mice and was treated with PBS administered subcutaneously twice a week for 4 weeks. At the end of the treatment period, the mice were intraperitoneally administered 30 μg of HOE-140. Group 3 served as a positive control for inhibition of basal vascular permeability.
Group 4 consisted of 8 mice and was treated with PBS administered subcutaneously twice a week for 4 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. The mice were also intraperitoneally administered 30 μg of HOE-140. Group 4 served as a positive control for inhibition of captopril-induced vascular permeability.
Group 5 consisted of 8 mice and was treated with 40 mg/kg of ISIS 482584 administered subcutaneously twice a week for 4 weeks. Group 5 served as an experimental treatment group for examining the effect of ISIS 482584 on basal vascular permeability.
Group 6 consisted of 8 mice and was treated with 40 mg/kg of ISIS 482584 administered subcutaneously twice a week for 4 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. Group 6 served as an experimental treatment group for examining the effect of ISIS 482584 on captopril-induced vascular permeability.
All the groups were then injected with 30 mg/kg of Evans Blue solution. The mice were sacrificed 30 min after the Evans Blue solution administration and colons, feet, ears, and intestines were harvested.
Quantification of Vascular Permeability
The harvested tissues from the feet, colon, intestine, and ears were placed separately in formamide solution overnight to leach out the Evans Blue dye. The formamide solution containing feet and ear tissue was heated to 55° C. and left overnight. The color intensity of the dye-infused formamide solution was then measured at OD600nm, and is presented in Table 64. Mice displaying any manifestation of angioedema take up more dye and, therefore, demonstrate high OD values.
As presented in Table 64, mice treated with ISIS 482584 demonstrated reduced basal vascular permeability compared to the PBS control (Group 5 vs. Group 1). The reduction in basal vascular permeability by treatment with ISIS 482584 was comparable to that caused by treatment with HOE-140 (Group 3, which served as the positive control). Mice treated with ISIS 482584 also demonstrated reduced captopril-induced vascular permeability in most tissues compared to the PBS control (Group 6 vs. Group 2). The reduction in captopril-induced vascular permeability by treatment with ISIS 482584 was comparable to that caused by treatment with HOE-140 (Group 4, which served as the positive control).
The effect of varying doses on ISIS 482584 on captopril-induced vascular permeability was evaluated.
Treatment
The various treatment groups for this assay are presented in Table 65.
Group 1 consisted of 4 mice and was treated with PBS administered subcutaneously twice a week for 3 weeks. No other treatment was administered to Group 1 which served as a control group to measure the basal levels of vascular permeability.
Group 2 consisted of 8 mice and was treated with PBS administered subcutaneously twice a week for 3 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. Group 2 served as the control group for captopril-induced vascular permeability.
Group 3 consisted of 4 mice and was treated with PBS administered subcutaneously twice a week for 3 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. The mice were also intraperitoneally administered 30 μg of Icatibant (HOE-140). Group 4 served as a positive control for inhibition of captopril-induced vascular permeability.
Groups 4, 5, 6, 7, 8, and 9 consisted of 8 mice each and were treated with 2.5 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, 40 mg/kg, or 80 mg/kg (corresponding to 5 mg/kg, 10 mg/kg, 20 mg/kg, 40 mg/kg, 80 mg/kg, or 160 mg/kg per week), respectively of ISIS 482584 administered subcutaneously twice a week for 3 weeks. At the end of the treatment period, the mice of all the groups were intraperitoneally administered 20 μg of captopril. Groups 4-9 served as the experimental treatment groups for examining the effect of varying doses of ISIS 482584 on captopril-induced vascular permeability.
All the groups were then injected with 30 mg/kg of Evans Blue solution in the tail vein. The mice were sacrificed 30 min after the Evans Blue solution administration and colons, feet, ears, and intestines were harvested. Blood samples were taken through cardiac puncture.
Quantification of Vascular Permeability
The harvested tissues were placed in formamide solution overnight to leach out the Evans Blue dye. The formamide solution containing feet and ear tissue was heated to 55° C. and left overnight. The color intensity of the dye-infused formamide solution was then measured at OD600nm, and is presented in Table 66. Mice displaying any manifestation of angioedema take up more dye and, therefore, demonstrate high OD values.
As presented in Table 66, mice treated with higher doses of ISIS 482584 (Groups 4, 5, and 6) had reduced levels of captopril-induced vascular permeability compared to the corresponding PBS control group (Group 2). The reduction in vascular permeability in mice of these treatment groups (Groups 4 and 5) was comparable to the levels of basal vascular permeability (as shown in Group 1) as well as in mice treated with HOE-140 (Group 3).
Quantification of Vascular Leakage
The blood drawn through cardiac puncture was immediately mixed with 3 times the volume of ice-cold ethanol. The solution was centrifuged at 15,000 g for 20 minutes at 4° C. to remove cell debris and precipitated plasma proteins. The ethanol extracts were further purified by ultra-filtration through a 10 kDa MWCO filter. The color intensity of the ethanol extracted plasma solution was then measured at OD620nm. The results are presented in Table 67 as percentage increase or decrease of the OD values of the Group 1 PBS control. It was expected that tissues from mice displaying manifestation of angioedema would leak more dye from the plasma and, therefore, demonstrate low OD values, whereas treatment groups may display higher OD values due to reduced vascular leakage. Mice treated with 160 mg/kg/week and 80 mg/kg/week of ISIS 482584 (Groups 4 and 5) demonstrated less vascular leakage compared to the PBS negative control treated with captopril (Group 2). The results from Groups 4 and 5 were comparable to the positive control treated with HOE-140 (Group 3).
The effect of varying doses on ISIS 482584 on basal vascular permeability was evaluated.
Treatment
The various treatment groups for this assay are presented in Table 68.
Group 1 consisted of 8 mice and was treated with PBS administered subcutaneously twice a week for 3 weeks. No other treatment was administered to Group 1 which served as a control group to measure the basal levels of vascular permeability.
Group 2 consisted of 4 mice and was treated with PBS administered subcutaneously twice a week for 3 weeks. At the end of the treatment period, the mice were intraperitoneally administered 30 μg of HOE-140. Group 2 served as a positive control for inhibition of basal vascular permeability.
Groups 3, 4, 5, 6, 7, and 8 consisted of 8 mice each and were treated with 2.5 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, 40 mg/kg, or 80 mg/kg (corresponding to 5 mg/kg, 10 mg/kg, 20 mg/kg, 40 mg/kg, 80 mg/kg, or 160 mg/kg per week), respectively of ISIS 482584 administered subcutaneously twice a week for 3 weeks. Groups 4-9 served as the experimental treatment groups for examining the effect of varying doses of ISIS 482584 on basal vascular permeability.
All the groups were then injected with 30 mg/kg of Evans Blue solution in the tail vein. The mice were sacrificed 30 min after the Evans Blue solution administration and colons, feet, and ears were harvested and examined for permeability defects. Blood samples were taken through cardiac puncture.
Quantification of Vascular Permeability
The harvested tissues from the feet, colon, and ears were placed in formamide solution overnight to leach out the Evans Blue dye. The formamide solution containing feet and ear tissue was heated to 55° C. and left overnight. The color intensity of the dye-infused formamide solution was then measured at OD600nm, and is presented in Table 69. Higher OD values are associated with higher levels of permeability.
As presented in Table 10, most of the tissues of mice treated with ISIS 482584 at all doses (Groups 3-8) demonstrated reduced basal vascular permeability compared to the PBS control (Group 1). The reduction in basal vascular permeability of the ISIS oligonucleotide-treated groups was comparable to the same demonstrated in the positive control group treated with HOE-140 (Group 2).
Quantification of Vascular Leakage
The blood drawn through cardiac puncture was immediately mixed with 3 times the volume of ice-cold ethanol. The solution was centrifuged at 15,000 g for 20 minutes at 4° C. to remove cell debris and precipitated plasma proteins. The ethanol extracts were further purified by ultra-filtration through a 10 kDa MWCO filter. The color intensity of the ethanol extracted plasma solution was then measured at OD620nm. The results are presented in Table 70 as percentage increase or decrease of the OD values of the Group 1 PBS control. It was expected that treatment groups may display higher OD values due to reduced vascular leakage. All the mice in the ISIS oligonucleotide-treated groups demonstrated significantly reduced vascular leakage compared to the PBS negative control.
Quantification of High Molecular Weight Kininogen (HMWK)
Western blot quantification of HMWK from blood samples are presented in
As shown in Table 71, Groups treated with 482584 have higher levels of HMWK as compared to PBS control, increasing in a dose-dependent manner. Treatment with PKK antisense oligonucleotide results in stabilization of HMWK. Thus, vascular permeability is reduced in ISIS 482584-treated groups in a dose-dependent manner. As shown in Table 72, Groups treated with ISIS 482584 have lower HMWK cleavage product as compared to PBS control, decreasing in a dose-dependent manner. Thus, reduced HMWK is caused by PKK cleavage of HMWK into cleavage products (including bradykinin and HKa). Data are presented in Intensity Units as measured by densitometer.
Mice were treated varying doses of ISIS 410944, a 5-10-5 MOE gapmer targeting Factor 12 (GCATGGGACAGAGATGGTGC; SEQ ID NO: 2247), and ISIS 482584 in a captopril-induced vascular permeability model.
Treatment
The various treatment groups for this assay are presented in Table 73.
Group 1 consisted of 4 mice and was treated with PBS administered subcutaneously twice a week for 3 weeks. No other treatment was administered to Group 1 which served as a control group to measure the basal levels of vascular permeability.
Group 2 consisted of 8 mice and was treated with PBS administered subcutaneously twice a week for 3 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. Group 2 served as the control group for captopril-induced vascular permeability.
Group 3 consisted of 4 mice and was treated with PBS administered subcutaneously twice a week for 3 weeks. At the end of the treatment period, the mice were intraperitoneally administered 20 μg of captopril. The mice were also intraperitoneally administered 30 μg of HOE-140. Group 3 served as a positive control for inhibition of captopril-induced vascular permeability.
Groups 4, 5, 6, 7, and 8 consisted of 8 mice each and were treated with 2.5 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, or 40 mg/kg (corresponding to 5 mg/kg, 10 mg/kg, 20 mg/kg, 40 mg/kg, or 80 mg/kg per week), respectively of ISIS 482584 and ISIS 410944 each administered subcutaneously twice a week for 3 weeks. At the end of the treatment period, the mice of all the groups were intraperitoneally administered 20 μg of captopril. Groups 4-8 served as the experimental treatment groups for examining the effect of ISIS 410944 and ISIS 482584 on captopril-induced vascular permeability.
All the groups were then injected with 30 mg/kg of Evans Blue solution in the tail vein. The mice were sacrificed 30 min after the Evans Blue solution administration and colons, feet, ears, and intestines were harvested.
Quantification of Vascular Permeability
The harvested tissues from the feet, colon, and ears were placed in formamide solution overnight to leach out the Evans Blue dye. The formamide solution containing feet and ear tissue was heated to 55° C. and left overnight. The color intensity of the dye-infused formamide solution was then measured at OD600nm, and is presented in Table 74. Higher OD values are associated with higher levels of permeability.
As presented in Table 74, most of the tissues of mice treated with a combination of ISIS 482584 and ISIS 410944 at all doses (Groups 3-8) demonstrated reduced vascular permeability compared to the PBS control (Group 1). The reduction in vascular permeability of the ISIS oligonucleotide-treated groups was comparable to the same demonstrated in the basal PBS control (Group 1), as well as the positive control group treated with HOE140 (Group 2). Combination of PKK and Factor 12 antisense oligonucleotides results in synergistic decrease in permeability. As expected, a corresponding synergistic decrease in vascular leakage was also observed.
Mice were treated with varying doses of ISIS 410944, an antisense oligonucleotide targeting Factor 12, and ISIS 482584 in a basal vascular permeability model.
Treatment
The various treatment groups for this assay are presented in Table 75.
Group 1 consisted of 8 mice and was treated with PBS administered subcutaneously twice a week for 3 weeks. No other treatment was administered to Group 1 which served as a control group to measure the basal levels of vascular permeability.
Group 2 consisted of 4 mice and was treated with PBS administered subcutaneously twice a week for 3 weeks. At the end of the treatment period, the mice were intraperitoneally administered 30 μg of HOE-140. Group 2 served as a positive control for inhibition of basal vascular permeability.
Groups 3, 4, 5, 6, and 7 consisted of 8 mice each and were treated with 2.5 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, or 40 mg/kg (corresponding to 5 mg/kg, 10 mg/kg, 20 mg/kg, 40 mg/kg, or 80 mg/kg per week), respectively of ISIS 482584 and ISIS 410944 each administered subcutaneously twice a week for 3 weeks. Groups 3-7 served as the experimental treatment groups for examining the effect of ISIS 410944 and ISIS 482584 on basal vascular permeability.
All the groups were then injected with 30 mg/kg of Evans Blue solution in the tail vein. The mice were sacrificed 30 min after the Evans Blue solution administration and colons, feet, ears, and intestines were harvested.
Quantification of Vascular Permeability
The harvested tissues from the feet, colon, intestines, and ears were placed in formamide solution overnight to leach out the Evans Blue dye. The formamide solution containing feet and ear tissue was heated to 55° C. and left overnight. The color intensity of the dye-infused formamide solution was then measured at OD600nm, and is presented in Table 76. Higher OD values are associated with higher levels of permeability.
As presented in Table 76, most of the tissues of mice treated with a combination of ISIS 482584 and ISIS 410944 at all doses (Groups 2-7) demonstrated reduced vascular permeability compared to the PBS control (Group 1). The reduction in vascular permeability of the ISIS oligonucleotide-treated groups was comparable to the same demonstrated in positive control group treated with HOE140 (Group 2). Combination of PKK and Factor 12 antisense oligonucleotides results in synergistic decrease in permeability. As expected, a corresponding synergistic decrease in vascular leakage was also observed.
The effect of antisense inhibition of PKK mRNA on Factor 12 protein activation was evaluated.
Treatment
The various treatment groups for this assay are presented in Table 77.
Group 1 consisted of 8 mice and was treated with PBS administered subcutaneously twice a week for 3 weeks. No other treatment was administered to Group 1 which served as a control group to measure Factor 12 activation.
Groups 2, 3, 4, 5, and 6 consisted of 8 mice each and were treated with 2.5 mg/kg, 5 mg/kg, 10 mg/kg, 20 mg/kg, or 40 mg/kg (corresponding to 5 mg/kg, 10 mg/kg, 20 mg/kg, 40 mg/kg, or 80 mg/kg per week), respectively of ISIS 482584 administered subcutaneously twice a week for 3 weeks. Groups 2-6 served as the treatment groups for measuring the effect of ISIS 482584 on Factor 12 activation.
At the end of the treatment period, plasma was harvested from the mice for the Spectrozyme® Factor 12a based amidolytic assay for Factor 12 in plasma.
Assay for Factor 12 Activation in Plasma
Plasma (5 μL) was added to 85 μL of PBS with 1 ug/ml dextran sulfate (500 kDa) in a 96 well polypropelene microplate and the solution was incubated for 5 minutes at room temperature. Spectrozyme® FXIIa (10 μL of a 2 mM solution) and 0.2 mM KALLISTOP™ solution was added and the absorbance kinetic was measured at 405 nm. Factor 12 activation was measured in the linear phase of absorbance accumulation. The results are presented in Table 78 as a percentage of Factor 12 activation measured in the PBS control sample. As observed in Table 78, inhibition of PKK by ISIS 482584 results in decreased activation of Factor 12 by its substrate, implying the that PKK is required for proper factor 12 activation.
Vascular permeability induced by ISIS 461756, an antisense oligonucleotide which targets murine C1 inhibitor mRNA, increases vascular permeability in mice and replicates the pathology of hereditary angioedema. The effect of ISIS 482584 on this model was evaluated.
Treatment
One group of 8 mice was treated with 40 mg/kg ISIS 482584 administered subcutaneously twice a week for 3 weeks (weekly dose of 80 mg/kg). A second group of 8 mice was treated with 40 mg/kg of the control oligonucleotide, ISIS 141923, administered subcutaneously twice a week for 3 weeks (weekly dose of 80 mg/kg). A third group of 8 mice was treated with PBS administered subcutaneously twice a week for 3 weeks. On day 14, all the groups were treated with 12.5 mg/kg ISIS 461756 administered subcutaneously twice a week for 3 weeks (weekly dose of 25 mg/kg). A control group of mice was treated with PBS administered subcutaneously twice a week for 3 weeks but was not administered ISIS 461756.
At the end of the treatment period, all the groups were injected with 30 mg/kg of Evans Blue solution into the tail vein. The mice were sacrificed 30 min after the Evans Blue solution administration and colons, feet, ears, and intestines were harvested. The liver was also harvested for RNA analysis.
RNA Analysis
RNA was isolated from the liver for RT-PCR analysis of C1-INH and PKK mRNAs. The primer probe set for C1-INH is RTS3218 (forward sequence GAGTCCCCCAGAGCCTACAGT, designated herein as SEQ ID NO: 2234; reverse sequence TGTCATTTGTTATTGTGATGGCTACA, designated herein as SEQ ID NO: 2235; probe sequence CTGCCCTCTACCTGGCCAACAACCA, designated herein as SEQ ID NO: 2236). The primer probe set for PKK is RTS3287 (forward sequence ACAAGTGCATTTTACAGACCAGAGTAC, designated herein as SEQ ID NO: 2237; reverse sequence GGTTGTCCGCTGACTTTATGCT, designated herein as SEQ ID NO: 2238; probe sequence AAGCACAGTGCAAGCGGAACACCC, designated herein as SEQ ID NO: 2239). The results are presented in Table 79 as percent inhibition compared to the PBS control not treated with ISIS 461756. The data indicates that ISIS 461756 significantly reduced C1-INH mRNA expression and that treatment with ISIS 482584 significantly reduced PKK expression.
Quantification of Vascular Permeability
The harvested tissues from the feet, colon, and intestines were placed in formamide solution overnight to leach out the Evans Blue dye. The formamide solution containing feet tissue was heated to 55° C. and left overnight. The color intensity of the dye-infused formamide solution was then measured at OD600nm. The data is presented in Table 80 as percent increase or reduction compared to the PBS control not treated with ISIS 461756. The data indicates that treatment with ISIS 482584 prevented vascular permeability induced by ISIS 461756.
ISIS 482584, which demonstrated significant in vitro and in vivo inhibition of PKK, was evaluated in the FeCl3-induced inferior vena cava thrombosis mouse model.
Treatment
Three groups of 8 male BALB/c mice were treated with 10 mg/kg, 20 mg/kg, or 40 mg/kg of ISIS 482584, administered subcutaneously twice a week for 3 weeks (weekly doses of 20 mg/kg, 40 mg/kg, or 80 mg/kg). Two control groups of 12 BALB/c mice each were treated with PBS, administered subcutaneously twice a week for 3 weeks. Two days after the last dose of antisense oligonucleotide or PBS, mice from all groups were anesthetized with 150 mg/kg ketamine mixed with 10 mg/kg xylazine, administered by intraperitoneal injection. Thrombus formation was induced with FeCl3 in all groups of anesthetized mice except the first control group.
In mice undergoing FeCl3 treatment, thrombus formation was induced by applying a piece of filter paper (2×4 mm) pre-saturated with 10% FeCl3 solution directly on the vena cava. After 3 minutes of exposure, the filter paper was removed. Thirty minutes after the filter paper application, a fixed length of the vein containing the thrombus was dissected out for platelet analysis. Liver was collected for RNA analysis.
Quantification of Platelet Composition
Real-time PCR quantification of platelet factor-4 (PF-4) was used to quantify platelets in the vena cava as a measure of thrombus formation. PF-4 mRNA levels were measured using the murine primer probe set mPF4_LTS_00086 (forward sequence AGACCCATTTCCTCAAGGTAGAACT, designated herein as SEQ ID NO: 2240; reverse sequence CGCAGCGACGCTCATG, designated herein as SEQ ID NO: 2241; probe sequence TCTTTGGGTCCAGTGGCACCCTCTT, designated herein as SEQ ID NO: 2242). Results are presented as a percentage of PF-4 in ISIS oligonucleotide-treated mice, as compared to the two PBS-treated control groups. As shown in Table 81, treatment with ISIS 482584 resulted in a significant reduction of PF-4 in comparison to the PBS control. Therefore, reduction of PKK by the compound provided herein is useful for inhibiting thrombus formation.
Tail-bleeding was measured to observe whether treatment with ISIS 482584 causes excess bleeding or hemorrhage in mice.
Treatment
Groups of 10 male BALB/c mice were treated with 10 mg/kg, 20 mg/kg, or 40 mg/kg of ISIS 482584, administered subcutaneously twice a week for 3 weeks (weekly doses of 20 mg/kg, 40 mg/kg, or 80 mg/kg). A control group of 8 BALB/c mice was treated with PBS, administered subcutaneously twice a week for 3 weeks.
Tail-bleeding Assay
Two days after the final treatment of ISIS oligonucleotides or PBS, mice were placed in a tail bleeding chamber. Mice were anesthetized in the chamber with isoflurane. Then, a small piece of tail (approximately 4 mm from the tip) was cut with sterile scissors. The cut tail was immediately placed in a 15 mL Falcon tube filled with approximately 10 mL of 0.9% NaCl buffer solution warmed to 37° C. The blood was collected over the course of 40 minutes. The saline filled tubes were weighed both before and after bleeding. The results are provided in Table 82.
Treatment with ISIS 482584 did not significantly affect bleeding. These data suggest that the hemorrhagic potential of the compounds provided herein is low. These data taken with the results provided in Example 19 suggest inhibition of PKK with the compounds described herein are useful for providing antithrombotic activity without associated bleeding risk.
ISIS 482584 was evaluated in the FeCl3 induced mesenteric thrombosis mouse model.
Treatment
A group of 6-8 Swiss-Webster mice was treated with 40 mg/kg of ISIS 482584, administered subcutaneously twice a week for 3 weeks (weekly dose of 80 mg/kg). A control group of 6 Swiss-Webster mice was treated with PBS, administered subcutaneously twice a week for 3 weeks. Two days after the last dose of antisense oligonucleotide or PBS, mice from all groups were anesthetized with 75 mg/kg ketamine mixed with 25 mg/kg xylazine, administered by subcutaneous injection.
Rhodamine 6G dye at a dosage of 5 mg/kg was injected subcutaneously to stain platelets. Alexa-647-labeled anti-fibrinogen antibody at a dosage of 1 mg/kg was injected via tail vein injection to stain fibrin. The abdomen was opened by a middle incision. The visceral mesentery was spread on a glass coverslip and the mesenteric arterioles (70-120 μm) were located by observation under a microscope. Thrombus formation was induced by applying of cotton threads (2×0.3 mm) pre-saturated with 6% FeCl3 solution directly on the target vessel. After three minutes of exposure, the thread was removed and the color intensities of both the dyes were recorded by fluorescent microscopy (Olympus FluoView 1000 confocal laser scanning microscope) with appropriate filters for 70 min.
The results for platelet aggregation in the control and treatment groups are presented in Table 83, expressed in arbitrary units (a.u.). Platelet aggregation was reduced in mice treated with ISIS 482584 at a dose of 80 mg/kg/week as compared to mice treated with PBS. The results for fibrin formation in the control and treatment groups are presented in Table 84, also expressed in arbitrary units (a.u.). Fibrin formation was reduced in mice treated with ISIS 482584 at a dose of 80 mg/kg/week as compared to mice treated with PBS. Therefore, these results suggest that ISIS 482584 inhibits thrombus formation.
ISIS 482584 was evaluated in the stenosis-induced inferior vena cava (IVC) thrombosis model. Reduced blood flow and endothelial damage are hallmarks of this model, also known as the St. Tomas model.
Treatment
Four groups of 6-8 BALB/c mice were treated with 5 mg/kg, 10 mg/kg, 20 mg/kg, or 40 mg/kg of ISIS 482584, administered subcutaneously twice a week for 3 weeks (weekly doses of 10 mg/kg, 20 mg/kg, 40 mg/kg, or 80 mg/kg). A control group of 8 BALB/c mice was treated with PBS, administered subcutaneously twice a week for 3 weeks. Two days after the last dose of antisense oligonucleotide or PBS was administered, mice from all groups were anesthetized with 2.5% inhalant isoflurane. The IVC of the mice was exposed via a midline abdominal incision below the left renal vein, and was separated from the abdominal aorta by blunt dissection. A 6-0 silk tie (Ethicon, UK) was placed behind the blood vessel just below the left renal vein and a metal 4-0 suture (Ethicon, UK) was placed longitudinally over the IVC to tie the silk tie on top. The metal suture was then removed. Two neurovascular surgical clips (Braun Medical Inc, PA) were placed at two seaparate positions below the ligation for 20 seconds each, after which they were removed. The abdominal cavity contents were then replaced and the abdomen was closed. After 24 hrs, the IVC was exposed and checked for thrombi formation. All thrombi formed were collected and fixed in 10% formalin for 24 hrs.
The thrombi were weighed and the results are presented in Table 85, expressed in miligrams. As demonstrated by the results, treatment with increasing doses of ISIS 482584 resulted in corresponding decrease in thrombus weight. The results indicate that antisense inhibition of PKK is useful for inhibiting thrombus formation.
Claims
1. A compound, comprising a modified oligonucleotide consisting of 12 to 30 linked nucleosides and comprising a nucleobase sequence comprising at least 12 consecutive nucleobases complementary to an equal length portion of nucleobases 30570-30610 or 33183-33242 of SEQ ID NO: 10, wherein the modified oligonucleotide comprises:
- a gap segment consisting of linked deoxynucleosides;
- a 5′ wing segment consisting of linked nucleosides;
- a 3′ wing segment consisting of linked nucleosides;
- wherein the gap segment is positioned between the 5′ wing segment and the 3′ wing segment and wherein each nucleoside of each wing segment comprises a modified sugar.
2. The compound of claim 1, wherein the nucleobase sequence of the modified oligonucleotide is at least 90% complementary to SEQ ID NO: 10.
3. The compound of claim 1, comprising a single-stranded modified oligonucleotide.
4. The compound of claim 1, wherein at least one internucleoside linkage is a modified internucleoside linkage.
5. The compound of claim 4, wherein at least one modified internucleoside linkage is a phosphorothioate internucleoside linkage.
6. The compound of claim 5, wherein each internucleoside linkage is a phosphorothioate linkage.
7. The compound of claim 1, wherein at least one nucleoside comprises a modified nucleobase.
8. The compound of claim 7, wherein the modified nucleobase is a 5-methylcytosine.
9. The compound of claim 1, wherein the modified oligonucleotide comprises at least one modified sugar.
10. The compound of claim 9, wherein the modified sugar is a 2′ modified sugar, a BNA, or a THP.
11. The compound of claim 10, wherein the modified sugar is any of a 2′-O-methoxyethyl, 2′-O-methyl, a constrained ethyl, a LNA, or a 3′-fluoro-HNA.
12. The compound of claim 1, wherein the
- gap segment consists of 10 linked deoxynucleosides;
- the 5′ wing segment consists of 5 linked nucleosides; and
- the 3′ wing segment consists of 5 linked nucleosides.
13. A compound consisting of a modified oligonucleotide according to the following formula: mCes mCes mCes mCes mCes Tds Tds mCds Tds Tds Tds Ads Tds Ads Gds mCes mCes Aes Ges mCe; wherein,
- A=an adenine,
- mC=a 5′-methylcytosine;
- G=a guanine,
- T=a thymine,
- e=a 2′-O-methoxyethyl modified nucleoside,
- d=a 2′-deoxynucleoside, and
- s=a phosphorothioate internucleoside linkage.
14. A compound consisting of a modified oligonucleotide according to the following formula:
15. A composition comprising the compound of claim 1 or salt thereof and at least one of a pharmaceutically acceptable carrier or diluent.
16. A method comprising administering to an animal the composition of claim 15.
17. The method of claim 16, wherein the animal is a human.
18. The method of claim 17, wherein administering the compound prevents, treats, or ameliorates a PKK associated disease, disorder or condition.
19. The method of claim 17, wherein the PKK associated disease, disorder or condition is a hereditary angioedema (HAE), edema, angioedema, swelling, angioedema of the lids, ocular edema, macular edema, cerebral edema, thrombosis, embolism, thromboembolism, deep vein thrombosis, pulmonary embolism, myocardial infarction, stroke, or infarct.
7691997 | April 6, 2010 | Khvorova |
8143003 | March 27, 2012 | Inazawa |
8178503 | May 15, 2012 | Rigoutsos |
20120264692 | October 18, 2012 | Bare |
Type: Grant
Filed: Apr 11, 2017
Date of Patent: Oct 16, 2018
Patent Publication Number: 20170314026
Assignee: Ionis Pharmaceuticals, Inc. (Carlsbad, CA)
Inventors: Susan M. Freier (San Diego, CA), Huynh-Hoa Bui (San Diego, CA)
Primary Examiner: Sean McGarry
Application Number: 15/484,858
International Classification: C07H 21/02 (20060101); C07H 21/04 (20060101); A61K 31/70 (20060101); C12N 15/113 (20100101); A61K 31/7088 (20060101); A61K 38/36 (20060101); C12N 5/00 (20060101);