Forehead pad for respiratory mask

- ResMed Limited

A forehead pad for use in a respiratory mask with a forehead support, which includes a base portion to contact a user's forehead, a support post connected to the base portion, and a head adapted to connect the support post to a forehead support. A pair of forehead pads may be joined with a connector.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 12/946,244, now allowed, which is a divisional of U.S. application Ser. No. 11/705,451, filed Feb. 13, 2007, now U.S. Pat. No. 7,856,980, which is a continuation of U.S. application Ser. No. 10/655,595, filed Sep. 5, 2003, now U.S. Pat. No. 7,216,647, which claims the benefit of U.S. Provisional Application Ser. No. 60/424,696 filed Nov. 8, 2002 and U.S. Provisional Application Ser. No. 60/467,572 filed May 5, 2003, and which is a Continuation-In-Part of U.S. Non-Provisional application Ser. No. 10/235,846 filed Sep. 6, 2002, now U.S. Pat. No. 6,823,869, which in turn claims priority to U.S. Provisional Patent Application Ser. No. 60/317,486 filed Sep. 7, 2001 and U.S. Provisional Patent Application Ser. No. 60/342,854 filed Dec. 28, 2001. Each of the above applications is hereby incorporated herein by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The invention relates to forehead pads. These pads can be used with a respiratory mask for Non-invasive Positive Pressure Ventilation (NPPV) treatment of Sleep Disordered Breathing (SDB).

2. Background of the Invention

Nasal masks are commonly used in the treatment of respiratory conditions and sleep disorders by delivering a flow of breathable gas to a user to either assist the user in respiration or to provide a therapeutic form of gas to the user to prevent sleep disorders such as obstructive sleep apnea (OSA). These nasal masks typically receive a gas through a supply line, which delivers the gas into a chamber formed by walls of the mask.

The mask is generally semi-rigid and has a face portion that is in communication with the nose and/or mouth of a user. The mask is normally secured to the user's head by straps. The straps are adjusted to pull the mask against the face with sufficient force to achieve a gas-tight seal between the mask and the user's face. Gas is thus delivered to the mask through the aperture to the user's nasal passages and/or mouth.

One of the problems that arises with the use of the mask is that in order for the straps to be tight, the mask is compressed against the user's face and may push unduly hard on the user's nose. Additionally the mask may move around on the user's face. Therefore, masks often contain a forehead support that creates addition contact points between the mask and the user's head. The forehead support minimizes the movement of the mask as well as minimizes uncomfortable pressure points of the mask by preventing the mask from pushing too strongly against the user's nose and/or facial region.

Forehead supports typically have attached thereto a soft comfortable patient-contacting forehead pad. Forehead pads are generally constructed from soft materials, such as silicone, in contrast to the forehead support, which is generally rigid. One form of prior art forehead pad is disclosed in U.S. Pat. No. 6,119,693, the contents of which are hereby incorporated by reference in their entirety.

A problem with existing forehead pads is the mechanism by which the pad is connected to forehead support. The pad must be secured in such a way so as to be easy to insert and remove, but not be unintentionally dislodged. Furthermore, regardless of the relative proximity between the forehead support/pad and the mask frame, there should be no sharp edges against which the user's face can make contact, leading to further discomfort.

One form of known forehead pad is used on the AIR PILOT mask, manufactured by MPV, Truma, Germany, shown in FIGS. 50 to 57. This forehead pad includes a stalk adapted to be pulled through a hole on an arm of a forehead support. The pad also includes two rows of three slots adapted to engage with two rows of three teeth which project rearwardly from the arm of the forehead support. Problems with this type of forehead pad include: (i) it is difficult to assemble; (ii) it is difficult to remove; (iii) it may become dislodged during the night and present sharp teeth to the forehead of a patient; (iv) it has a vague assembly which makes it difficult to know when it is in the correct position; (v) its construction leads to regions of high pressure under the teeth; and (vi) it presents an edge to the forehead of a patient when rocked at an angle.

A further problem with existing forehead pads is that they can lead to uneven pressure on the user's forehead, leading to discomfort and marks on the face. For example, one form of known forehead pad includes a patient contacting surface and a pair of reinforcing struts, as shown in FIGS. 16 to 17. During use, the pad is subject to a compressing force that can lead to pressure points, lines or ridges on the patient contacting surface in the region where the reinforcing struts join it. This can lead to uneven pressure on the user's forehead. The use of existing forehead pads also results in sweating by the user.

Another problem with a known form of forehead support is the mechanism for engaging the forehead pad with the forehead support. The forehead support includes a pair of rigid L-shaped catches c adapted to slidably engage with a recess in the forehead pad, as shown in FIGS. 18 to 20. A problem can arise if a pad is not in position when the forehead support is in use: the catch may abut against the forehead of a user. This can lead to discomfort and marking of the forehead.

Therefore, there exists a need in the art for a forehead pad that overcomes the problems listed above.

SUMMARY OF THE INVENTION

One aspect of the invention is directed towards a mask assembly having a forehead support and a forehead pad that provide more comfort to a user.

Another aspect of the invention is directed towards a forehead pad that distributes contact pressure around the user's forehead.

Another aspect of the invention is directed towards a forehead pad that permits a wide range of motion.

Another aspect of the invention is directed towards a forehead pad that lessens or avoids contact between the user and the edges of the forehead pad.

Another aspect of the invention is directed towards a forehead pad that achieves an even pressure distribution with no localized regions of high forces.

Another aspect of the invention is directed towards providing a forehead pad that is easy to insert in a forehead support and is flexible enough to accommodate a range of different forehead sizes and shapes.

Another aspect of the invention is directed towards a forehead pad that tapers smoothly from the support post to the base region, causing lines of force to be smoothly and evenly carried from the support post to the base region, resulting in an even distribution of the pressure across a user's forehead.

Another aspect of the invention is directed towards a forehead pad for a forehead support of a respiratory mask that comprises a plate region connected to a support post, the support post including a forehead support engaging mechanism.

Another aspect of the invention is directed towards a forehead pad that it is relatively easy to engage with a forehead support but relatively more difficult to disengage.

Another aspect of the invention is directed towards a forehead pad that lessens or avoids contact between the user and the edges of the forehead support.

Another aspect of the invention is directed towards a forehead pad that includes a base portion to contact a user's forehead, a support post comprising a necked down region connected to the base portion, and a head adapted to connect the support post to a forehead support of a respiratory mask.

Another aspect of the invention is directed towards a forehead pad assembly that includes at least two pads, each pad comprising a base portion to contact a user's forehead, a support post comprising a necked down region connected to the base portion, and a head adapted to connect the support post to a forehead support of a respiratory mask. The assembly further comprises at least one connector to connect adjacent base portions.

Other aspects, features and advantages of this invention will become apparent from the following detailed description when taken in conjunction with the accompanying drawings, which are a part of this disclosure and which illustrate, by way of example, principles of preferred embodiments.

BRIEF DESCRIPTION OF FIGURES

FIG. 1 is a perspective view of a respiratory mask and forehead pad according to one embodiment of the present invention;

FIG. 2 is a perspective and enlarged view of the forehead support shown in FIG. 1, without the mask frame and pads;

FIG. 3 is a perspective view of one embodiment of a forehead pad according to the present invention;

FIG. 4 is a perspective view of a respiratory mask and forehead pad according to one second embodiment of the present invention;

FIG. 5 is a perspective view of another embodiment of a forehead pad according to the present invention;

FIG. 6 is a top view of a forehead support including a pair of forehead pads and a forehead of a user;

FIG. 7 is a perspective view of the contact surface of one embodiment of a forehead pad showing raised surfaces;

FIG. 8 is a cross-sectional view of one embodiment of a forehead pad showing a hollowed out region;

FIG. 9 is a top view of an embodiment of a forehead pad assembly showing two pads joined by a flexible connector;

FIG. 10 is a right side view of one embodiment of a forehead pad in a respiratory mask showing contact with a user;

FIG. 11 is a cross-sectional view of one embodiment of a forehead pad engaged with one embodiment of a forehead support;

FIG. 12 is a cross-sectional view of another embodiment of a forehead pad engaged with another embodiment of a forehead support;

FIG. 13 is a cross-sectional view of another embodiment of a forehead pad engaged with another embodiment of a forehead support;

FIG. 14 is a cross-sectional view of another embodiment of a forehead pad engaged with another embodiment of a forehead support;

FIG. 15 is a top view of the embodiment of the forehead support shown in FIG. 14;

FIG. 16 is a cross-section of a prior art forehead pad;

FIG. 17 is a cross-section of the forehead pad shown in FIG. 16 in a compressed state;

FIG. 18 is a cross-section of a prior art forehead pad;

FIG. 19 is a front view of a prior art forehead support;

FIG. 20 is a top view of the forehead support shown in FIG. 19;

FIG. 21 is a side view of another embodiment of a forehead pad according to the present invention;

FIG. 22 is a bottom view of the embodiment shown in FIG. 21;

FIG. 23 is a top view of the embodiment shown in FIG. 21;

FIG. 24 is another side view of the embodiment shown in FIG. 21;

FIG. 25 is a cross-sectional view of the embodiment shown in FIG. 24 along axis 25-25;

FIG. 26 is a perspective view of the embodiment shown in FIG. 21;

FIG. 27 is a perspective view of another embodiment of a forehead support according to the present invention;

FIG. 28 is an end view of another embodiment of a forehead pad according to the present invention;

FIG. 29 is a side view of the embodiment shown in FIG. 28;

FIG. 30 is a perspective view of the embodiment shown in FIG. 28;

FIG. 31 is a top view of the embodiment shown in FIG. 28;

FIG. 32 is a rear view of the embodiment shown in FIG. 9;

FIG. 33 is a top view of the embodiment shown in FIG. 32;

FIG. 34 is a front view of the embodiment shown in FIG. 32;

FIG. 35 is an end view of the embodiment shown in FIG. 9;

FIG. 36 is a cross-sectional view of the embodiment shown in FIG. 35 along axis 36-36;

FIG. 37 is a an expanded cross-sectional view of the embodiment shown in FIG. 35;

FIG. 38 is a rear view of another embodiment a forehead pad according to the present invention;

FIG. 39 is a top view of the embodiment shown in FIG. 38;

FIG. 40 is a cross-sectional view of the embodiment shown in FIG. 38 along axis 40-40;

FIG. 41 is a front view of the embodiment shown in FIG. 38;

FIG. 42 is an end view of the embodiment shown in FIG. 39;

FIG. 43 is a cross-sectional view of the embodiment shown in FIG. 42 along axis 43-43;

FIG. 44 is an expanded cross-sectional view of the embodiment shown in FIG. 42;

FIG. 45 is a cross-sectional view of one embodiment of a forehead pad engaged with one embodiment of a forehead support according to the present invention;

FIG. 46 is side view of the embodiment shown in FIG. 45;

FIG. 47 is a cross-sectional view of another embodiment of a forehead pad engaged with another embodiment of a forehead support according to the present invention;

FIG. 48 is a top view of the embodiment of the forehead pad and the embodiment of the forehead support shown in FIG. 47;

FIG. 49 is a top view of the embodiment of the forehead pad engaged with the embodiment of the forehead support shown in FIG. 47 during an intermediate assembly step;

FIG. 50 is a front view of a prior art forehead pad;

FIG. 51 is a top view of the forehead pad shown in FIG. 50;

FIG. 52 is bottom side view of the forehead pad shown in FIG. 50;

FIG. 53 is a left view of the forehead pad shown in FIG. 50;

FIG. 54 is a top view of a prior art forehead pad;

FIG. 55 is a perspective view of the forehead pad shown in FIG. 55;

FIG. 56 is a top view of a prior art forehead support;

FIG. 57 is a front view of a prior art forehead support;

FIG. 58 is a top view of another embodiment of a forehead pad according to the present invention;

FIG. 59 is a front perspective view of another embodiment of a forehead pad according to the present invention;

FIG. 60 is a rear perspective view of the forehead pad shown in FIG. 59;

FIG. 61 is a cross-sectional view of the forehead pad shown in FIG. 59 along the minor axis;

FIG. 62 is a cross-sectional view of the forehead pad shown in FIG. 59 along the major axis;

FIG. 63 is a perspective view of another embodiment of a forehead pad according to the present invention;

FIG. 64 is a cross-sectional view of another embodiment of a forehead pad according to the present invention;

FIG. 65 is a cross-sectional view of another embodiment of a forehead pad according to the present invention;

FIG. 66 is a cross-sectional view of another embodiment of a forehead pad according to the present invention;

FIG. 67 is a partial cross-sectional view another embodiment of a forehead pad according to the present invention;

FIG. 68 shows an embodiment of a forehead pad according to the present invention flexed in a first direction;

FIG. 69 shows an embodiment of a forehead pad according to the present invention flexed in a second direction;

FIG. 70 shows an embodiment of a forehead pad according to the present invention flexed in a third direction; and

FIG. 71 shows an embodiment of a forehead pad according to the present invention flexed in a fourth direction.

DETAILED DESCRIPTION OF ILLUSTRATED EMBODIMENTS

FIG. 1 shows an example of a respiratory mask assembly 100. The mask assembly includes a frame portion 101, a forehead support 102, and a forehead pad 300. The mask is adapted to fasten securely and comfortably to a user's face. In particular, the mask assembly 100 comprises a seal-forming region 103 that covers the user's nose and/or mouth and a contains opening 104 to which an air delivery tube can be attached. Air or oxygen flows through the opening 104 under positive pressure.

The forehead support 102 is advantageously connected to the frame portion 101 of the mask assembly 100, e.g., by a pivot device 105, which can be adjusted to allow the forehead support 102 to the accommodate the configuration of a user's face. The forehead support 102 is preferably made from a thermoplastic material. One embodiment of a forehead support is shown in greater detail in FIG. 2.

The forehead support 102 can be configured to be essentially straight or it can be curved. The essential straight embodiment is shown in FIG. 2. In the case where the forehead support is curved, the curvature generally follows the curvature of the user's forehead. While this is the most likely structure, it is within the scope of the present invention to use a forehead support 102 that has the opposite curvature, or any combination thereof.

The forehead support 102 can be provided with one or more openings. These openings can be adapted to serve numerous purposes including points of connection to the mask frame, points of connection to any another support surface, points of connection 201 for straps to secure the mask to the user, and apertures 202 for a forehead pad.

In a preferred embodiment of the forehead support 102, the apertures 202 are designed to receive a head of the forehead pad 300. The apertures 202 can be disposed about the forehead support 102 in a manner to allow a user to adjust the position of the forehead pad 300. The apertures 202 are also designed to allow a user to attach the forehead pad 300 securely to the forehead support 102. In a preferred embodiment, the apertures 202 designed to allow a user to attach the forehead pad 300 securely and reversibly to the forehead support 102.

The forehead pad 300 in accordance with a first embodiment of the invention is shown in greater detail in FIG. 3. The forehead pad 300 comprises a base portion 305 to contact a user's forehead, a support post 301 connected to the base portion, and a head 302 adapted to be connected to the forehead support 102. In this embodiment, the head 302 is bullet or cone shaped, or otherwise tapered. However, other shapes are possible as long as they serve the purpose of the invention.

The base portion 305, support post 301, and head 302 can be separate pieces, designed to fit with each other. In one embodiment, the base portion 305 and the support post 301 can be constructed as one piece. In another embodiment, the support post 301 and the head 302 can be constructed as one piece. In yet another embodiment, the base portion 305 and the head 302 can be constructed without a support post 301. Finally, in a preferred embodiment, the base portion 305, the support post 301, and the head 302 are molded integrally into one piece.

The embodiment shown in FIG. 3 contains a necked down region 303 between the base of the head 302 and the top of the support post 301. In a preferred configuration, the forehead pad is adapted to releasably engage with the forehead support 102. The function of the necked down region 303 is to facilitate this feature. The necked down region 303 is such that its diameter is smaller than the diameter of the base of the head 302. This results in a lip 304a between the base of the head 302 and the necked down region 303 and another lip 304b between the necked down region 303 and the support post 301.

In a preferred embodiment, the necked down region 303 is at least as long as the length of the aperture 202 (FIG. 2) in the forehead support 102. Insertion of the pad 300 through a first end 200 of the aperture in the forehead support 102 results in the head 302 passing through the aperture 202 and emerging out a second end 210. The support post 301 remains on the side of the first end 200 of the aperture 202 with the necked down region 303 occupying at least the length of the aperture. This feature results in easy insertion and a tight fit.

Typically, this insertion can be carried out by a user by applying axial pressure to the base portion 305 of the pad 300. While the support post 301 is flexible, it can withstand the forces needed for assembly. Using the forehead pad embodiment described in FIG. 3 and the forehead support described in FIG. 2 as examples, the head 302, as well as the lip 304a distort as axial force is applied against the first end 200 of the aperture 202, until the head 302 and the lip 304a reach a second end 210 of the aperture 202, whereupon the lip 304a re-expands to engage a first surface 215 of the forehead support 102 adjacent to the aperture 202. Further, the lip 304b abuts against a second surface 205 of the forehead support 102, to prevent axial movement of the pad 300.

The removal of the pad occurs by applying a pulling force it in a direction opposite to the axial force applied for insertion. Once again, the head 302 and the lip 304a distort as the lip 304a disengages with the first surface 215 of the forehead support 102 adjacent to the aperture 202. Lip 304a disengages with the second surface 205 of the forehead support 102. Both the head 302 and the lip 304a regain their original shape after disengagement from the forehead support 200.

The pressure can be applied by a user's fingers and the successful insertion of the pad 300 is indicated not only by the emergence of the head 302 through the first surface 215 of the aperture 202 but typically also by a clicking sound. The combination of sight, sound, and ease of insertion is useful for aged or otherwise infirm users with limited manual and/or digital dexterity. The sound produced has the added benefit of providing the user of knowledge that the pad 300 has been successfully inserted in the dark. This feature can be of importance due to the fact that the masks are used at night. Both the forehead support 102 and the forehead pad 300 are configured such that the pad 300 can be placed in different positions on the support 102 so as to achieve different positions of contact on the user's forehead.

A wide variety of methods well known to a person skilled in the art for the manufacture of the base portion, support post, and head. A preferred method of manufacture is by injection molding.

The support post 301 can project from the base portion 305 at an angle α, defined between a tangent t to the outer surface of the base portion 305 at a point of contact between the support post 301 and the base portion 305. This angle α can be about 90°, i.e., the support post 301 extends essentially straight out from the base portion 305. FIG. 3 shows an embodiment of a forehead pad 300 in which the angle α is about 90°.

FIG. 4 shows another embodiment of a respiratory mask assembly 410. The mask assembly 410 includes of a frame portion 411, a forehead support 412, and another embodiment of a forehead pad 400. The forehead support 412 is advantageously connected to the frame portion 411 of the mask 410, e.g., by a pivot device 413. The mask assembly 410 comprises a seal-forming cushion 414 that covers a user's nose and/or mouth and contains a swivel elbow 415. The swivel elbow 415 is adapted to receive a supply of air or oxygen flows at positive pressure.

FIG. 5 shows another embodiment of a forehead pad 400 in greater detail. This embodiment of the pad 400 includes a base portion 408, a support post 401, and a head 402. The general construction and operation is similar to that of the first embodiment although there are several differences in the construction, for example, the angle β between the tangent t to the outer surface of the base portion 406 at a point of contact between the support post 401 and the base portion 408 is between about 60° and about 120°. Preferably, the angle β is about 70°. One advantage of a support post 401 projecting at an angle less than 90° is to allow the base portion 400 to better fit the contours of a user's forehead, as shown in FIG. 6.

The support post 401 can be constructed in a manner so as to make it more flexible. For example, the support post 401 includes cut away portions 405. These cut away portions help the support post to be able to be bent or flexed, varying the angle β in use. In this way, a support post 401 of larger diameter may be used while still retaining a degree of flexibility as shown in FIGS. 68 to 71.

The base portion 408 can be of any shape, preferably in a pad-like configuration. In one embodiment, a contact region 407 of the base portion 408 is shaped so that the transmission of contact forces to the surface of the forehead of the user takes place under physiologically compatible pressures, as shown in FIG. 58. In a preferred embodiment, the contact region 407 is concavely curved to follow the curvature of a forehead.

The contact region 407 can optionally include a raised surface pattern 510 as shown in FIG. 7. The pattern 510 reduces the possibility of a suction effect of the pad 400 thereby reducing the drawing of blood in the region and making the pad 400 more comfortable. The raised pattern 510 has the added benefit of reducing sweating. In another embodiment, a rear surface of the pad 400 is given a sand-blasted finish to improve ventilation and reduce the likelihood of sweating.

The base portion 408 and support post 401 of the pad 400 can also include a hollowed out region 608 extending a pre-determined distance 601 into the base portion 408 and/or the support post 401 as shown in the cross-sectional view in FIG. 8. In the embodiment shown, the hollowed out region 608 extends through the base portion 408 and partly into the support post 401. This structure imparts a degree of springiness and flexibility to the forehead pad 400. Due to the essentially incompressible nature of silicone, some cut-away regions 405 assist flexibility. The use of the hollowed out region 608 allows for some movement along an axis through the support post 401.

Increasing the diameter of the support post 401 makes the forehead pad 400 easier to insert into the forehead support 102. Furthermore, a larger diameter reduces the likelihood of localized pressure points. However, as the support post 401 is made thicker, it becomes less flexible. Hence the preferred embodiment of the invention balances ease of insertion with flexibility.

In another embodiment, the hollowed out region 608 extends through the base portion 408, the support post 401, and the head 402 resulting in a through-bore 509 (shown in FIG. 7). The through-bore 509 may further facilitate compression of the support post 401 and head 402 during assembly and disassembly. This structure allows a flow of air and/or moisture to occur from the user's skin to the atmosphere, resulting in a reduction of sweating and a more comfortable pad 400.

The support post 401 has a diameter that is in its broadest aspect between about 0.1 cm and about 3.0 cm. More specifically the diameter of the support post of the embodiment of FIG. 9 is between about 0.5 cm and about 1.25 cm, and most preferably the diameter is about 1 cm. The term “about” is meant to indicate that the diameters are not absolute and can be deviated by one skilled in the art. Alternative embodiments, such as those shown in FIGS. 21 to 31 have different diameters.

The support post 401 has a length that is in its broadest aspect between about 0.1 cm and about 2.5 cm. More specifically the length is between about 0.5 cm and about 1.25 cm, and most preferably the length is about 1 cm. Dimensions for one form of forehead pad are shown in FIG. 37. Once again, the term “about” is meant to indicate that the lengths are not absolute and can be deviated by one skilled in the art.

The support post 401 can be straight or it can taper. An example of a straight support post is shown in the embodiment in FIG. 3. The taper can also be such that the region at the base portion is thicker than the head region, as shown in the embodiment in FIG. 5.

As would be understood by one skilled in the art, a wide variety of materials can be used to manufacture the forehead pad in accordance with the present invention. Features of any material used should include biocompatibility, flexibility and comfort. Some examples of such materials include rubber and flexible plastics. In a preferred embodiment, the pad is constructed from cured Liquid Silicone Rubber (Part#2666031, Silastic 94-595-HC) manufactured by Dow Corning, alternatively a silicone with a hardness of approximately 35-45 Shore A may be used. These examples are merely intended to be illustrative and are not limiting in any manner.

In accordance with a preferred embodiment of the present invention, at least two base pads can be joined in a forehead pad assembly 700. In this embodiment, two versions of which are shown in FIGS. 9 and 32 to 44, a connector 711 is used to connect adjacent base portions 708. Any type of connector can be used such as a strap or a flexible bridge portion. An advantage of a connector is that the assembly 700 has a one-piece design which is less likely to be lost. The plurality of base portions 708, with contact regions 707, and connectors 711 can be integrally formed with each other.

As mentioned earlier, the hollowed out region 608 can extend a pre-determined distance into the base portion 708 and/or the support post 701. This distance can be adjusted to increase flexibility of the forehead pad assembly 700. For example, the hollowed out region 608 extends a longer distance into the support post 701 in the embodiment shown in FIG. 44 when compared to the embodiment shown in FIG. 37. Increasing the distance of the hollowed out region 608 has several advantages including flexibility, minimization of contact with the edges of the base portion 708, and better airflow resulting in a reduction in sweating by the user.

The hollowed out region 608 can also have a variety of shapes including conical, pyramidal, cylindrical, or combinations thereof. It is within the scope of this invention that the hollowed out region 608 have additional sub-structures within it including ridges, bumps, or holes.

In a preferred embodiment, the two base portions 708 of a forehead pad assembly 700 are adapted in order to be situated above left and right eyebrows of the user. As shown in FIG. 10, a base portion 708 is shown against the user's forehead 813. The support post 701 is designed to act as a spring along the direction of arrow 814. The cut away portions 705 improve its flexibility while maintaining ease of insertion. Another advantage of this design is that it can better accommodate rolling and twisting of the mask 410. A further advantage of the support post 701 is that its diameter is optimized to reduce the effect of a single point of pressure on the forehead 813.

The cut away portions 705 define an undercut 720 between the cut away portions 705 and the base portion 708. The undercut 720 can be a variety of shapes including curved, square, conical, triangular, or any combinations thereof. The undercut 720 depth e can also be varied. The depth e can range between about 0.25 mm to about 1.25 mm, preferably between about 0.5 mm and about 1 mm, and most preferably about 0.75 mm. The term “about” is meant to indicate that the widths and lengths are not absolute and can be deviated by one skilled in the art.

The number, shape, and size, width w, and length 1 of the cut away portions 705 can be varied to serve a variety of purposes including ease of insertion, ease of removal, flexibility of motion when unassembled with the forehead support, flexibility of motion when assembled with the forehead support, minimization of contact between the user and the edges of the base portion 708, minimization of contact between the user and the edges of the forehead support 102, and angles between the forehead pad assembly 700 and the forehead support 102. The width w can range between about 0.25 mm to about 1.25 mm, preferably between about 0.5 mm and about 1 mm, and most preferably about 0.75 mm. The length 1 can range between about 0.05 mm to about 1.5 mm, preferably between about 0.25 mm and about 1 mm Once again, the term “about” is meant to indicate that the widths and lengths are not absolute and can be deviated by one skilled in the art.

The cut away portions 705 can have regions of similar or different widths w and similar or different lengths 1. Comparison of the embodiment of the forehead pad assembly 700 shown in FIGS. 32 to 37 with the embodiment of the forehead pad assembly 700 shown in FIGS. 38 to 44 shows a few variations in the cut away portions 705. The width w of the cut away portions 705 in the embodiment shown in FIGS. 38 to 44 is less than the width w of the cut away portions 705 in the embodiment shown in FIGS. 32 to 37.

The undercut 720 in FIG. 40 (a cross-sectional view along line 40-40 of FIG. 39) may be more pronounced than the embodiment of FIGS. 32 to 37. Thus the range of movement of the pad in the vertical plane can be increased, thereby increasing the range of users the mask will fit. In addition, the increased range of movement can help prevent the edge of the pad from coming in contact with the user's forehead, thereby increasing user compliance and comfort. Finally, the increased undercut 720, along with the shape and size of the surrounding cut away portions 705, can effect the force necessary to flex the base portion 708 with respect to the support post 701, thereby optimizing the desired flexing forces within levels acceptable to the user while still allowing adequate performance of the forehead pad assembly 700.

One advantage of reducing the width w and/or increasing the depth e is to vary the angle δ between the forehead pad assembly 700 and the forehead support 102, which in turn allows for greater range of motion and user comfort. The angle δ is the angle between a horizontal line h and a line passing through the center of the base portion 708 and the support post 701. FIGS. 45 and 46 show the embodiment of the forehead pad assembly 700 shown in FIGS. 38 to 44 assembled with the forehead support 102. The angle δ is about 25°. The angle δ of the embodiment of the forehead pad assembly 700 shown in FIGS. 32 to 37 assembled with the forehead support 102 is about 0°. Once again, the term “about” is meant to indicate that the angles are not absolute and can be deviated by one skilled in the art.

Presentation of the base portion 708 of the forehead pad assembly 700 at an angle which is generally parallel to the users forehead provides improved comfort to the user, reducing the likelihood of pressure sores which may result from an uneven presentation. In some forms of long masks, for example a full face mask, the forehead support 102 may be positioned in use higher up the forehead of the user than in a nasal mask.

In the embodiment of forehead support shown in FIG. 42, the support post 701 and base portion 708 are generally perpendicular to one another when viewed from an end. However, in other embodiments, they may be constructed at different angles. For a long mask, because of the curvature of the skull, in order that the base portion 708 of the forehead pad assembly 700 be presented generally parallel to the user's forehead, either (i) the forehead support 102 should be adapted to retain a perpendicular forehead pad assembly 700 at an angle, as shown in FIG. 45, or (ii) the forehead support 102 should be adapted to retain a non-perpendicular forehead pad assembly 700 at a right angle. In the preferred embodiment, a perpendicular pad is used and the forehead support 102 is adapted to retain and present the pad to the forehead of the user at the appropriate angle. In this way, the same forehead pad assembly 700 can be used across a range of mask systems, for example, nasal masks and full face masks, providing an economic benefit to the manufacturer through the use of common parts.

FIG. 11 shows a cross section of an embodiment of a forehead pad 900 inserted into an aperture 930 in a forehead support 940. To insert the pad 900, axial force is applied in the direction of arrow 914. The head 902 and the lip 904 distort as they pass through the aperture 930. Once the head 902 and the lip 904 are through the aperture 930, the necked down region 903 of the support post 901 occupies the length of the aperture 930. This results in the lip 905 also making contact with the forehead support 940. The engagement of lips 904 and 905 with respective side surfaces of the forehead support 940 results in maintaining the pad 900 in position.

To remove the pad 900 from the forehead support 940 the pad 900 is pulled in an opposite direction to arrow 914. Once again, the head 902 and/or the lip 904 distort as they pass through the aperture 930 enable the pad 900 to disengage from the forehead support 940.

FIG. 12 shows a cross section of an embodiment of a forehead pad 1000 inserted into another embodiment of a forehead support 1040. The forehead support 1040 has arms 2000 that can move in direction d when pressure is applied to the pad 408 in direction a. In one embodiment, the movement of arms 2000 results in a plastic deformation, i.e., the removal of the pad 408 results in the arms 2000 remaining essentially in the position they were when the pad 408 was inserted. In another embodiment, the movement of arms 2000 results in an elastic deformation, i.e., the removal of the pad 408 results in the arms 2000 returning essentially to the position they were before the pad 408 was inserted. The support post 401 can compress in direction b allowing for ease in insertion and removal but still providing a firm fit. Once inserted, the pad 408 can be adjusted by angle γ.

A cross section of another embodiment of a forehead pad 1000 engaged with a rigid forehead support 1040 is shown in FIG. 13. The forehead support 1040 comprises lips 1042 and 1043. Lip 1042 of the forehead support 1040 is adapted to engage lip 1004 of the head 1002 and lip 1043 of the forehead support 1040 is adapted to engage lip 1005 of the support post 1010. In another embodiment of the invention, the support post 1010 is co-molded to the forehead support 1040.

FIGS. 14 and 15 shown another embodiment of a forehead pad 1000 engaged with an embodiment of a forehead support 1040. The forehead support 1040 has arms 2001. These arms 2001 define the aperture 1030 and can be moved in direction a to allow for removal of the pad 1000.

In another embodiment of the invention, the support post 1010 includes a generally cylindrical end region adapted to engage with a key-shaped slot of a forehead support. To attach the stalk to the forehead support, a small-diameter portion of the end region is slid through a generally rectangular region of smaller diameter, causing it to distort, before being received within a generally cylindrical region having a diameter slightly larger than that of the stalk, as in FIGS. 47 to 49. The smaller diameter portion of the end region defines two shoulder regions, similar in function to those of other embodiments, adapted to prevent axial movement of the pad.

In one form, the base portion 408 of the forehead pad is generally plate- or disc-shaped. In a preferred form, it presents a concave surface to a forehead of a patient in use. Possible shapes of the base portion include rectangular and oval shapes.

The shape of the support post 401 and base portion 408 are designed to cause lines of force 490 to be smoothly and evenly carried from the support post 401 to the base portion 408, as shown in FIG. 58. In this way there is an even distribution of pressure across the user's forehead 813. The lines of force 490 are not concentrated. The support post 401 is of a design to be sufficiently rigid so that it does not buckle when inserted and pushed.

An alternative embodiment of a forehead pad according to the present invention is shown in FIGS. 59 to 62. In this embodiment, there is a “cleat” on the T-bar arm of the forehead support, the cleat having a generally oval shape and positioned away from the surface of the arm of the forehead support, defining a space between the front side of the cleat and the arm of the forehead support. The pad has a generally oval shape, defining a major and minor axis and includes a shaft therethrough with a varying profile. The initial profile is of a complementary shape to the cleat, allowing the pad to fit on the cleat. Further along the shaft, the profile rotates approximately 90°, defining a shoulder region. In this way, the pad can be inserted over the cleat and then twisted approximately 90° to lock it in position. In this position, the shoulder region of the pad engages with the front side of the cleat.

In a preferred embodiment, the pad includes a pair of dimples adapted to engage with corresponding protrusions on the arm of the forehead support. Engagement between the dimples and respective protrusions provides feedback to the user that the pad has been correctly rotationally aligned. Furthermore, the engagement between dimples and protrusions reduces unintentional rotational movement of the pads. Alternative locking mechanisms, such as those with keys or moveable slider blocks, fall within the scope of the invention.

FIG. 63 shows an alternative embodiment of the invention. In this embodiment, the arms of the forehead support 102 are generally cylindrical and are covered in a generally cylindrical “pipe” of foam, forming the forehead pad 400. Because of the generally constant radius of the forehead arm and the pipe, there are no sharp edges presented to the forehead of the user, regardless of the angle of the support with respect to the forehead. In one form, the foam only partly surrounds the arm of the forehead support. Furthermore, because of the generally constant properties of the foam with respect to angular position, the lines of force are smoothly carried to the forehead of the user. In another embodiment, the pipe is shaped so that its outer surface positions a thicker section at the forehead and the bore through the pipe need not be circular, permitting attachment to non-circular arms.

In alternative embodiments, shown in FIGS. 64 to 66, the thickness of the pipe about a circumference can be varied to provide adjustability. The pipe can have two sections of different thicknesses (FIG. 64), three sections of different thickness (FIG. 65), or can have an eccentric thickness (FIG. 66). These embodiments offer several other advantages including increasing the snugness of the fit without removal of the mask, decreasing tightness of the pipe and associated symptoms, e.g., sweating and discomfort, without removal of the mask.

FIG. 67 shows an alternative embodiment of the invention. In this embodiment, the tip of the forehead support 102 comprises a generally spherical ball. A foam or silicone pad 400, also generally spherically shaped, is placed over the tip of the forehead support 102. The general spherical shape smoothly carries lines of force from the tip of the forehead support to the forehead, regardless of orientation. In this way there is an even distribution of force on the forehead of the user.

While this application has described a few embodiments of forehead pads and forehead supports, it is well understood by one skilled in the art that various forehead pads, forehead supports, and masks can be used interchangeably. A type of forehead pad is not limited to a particular forehead support or to a specific mask.

In an alternative embodiment, the support post of the forehead pad can be used in combination with an extruded pad such as used on the MIRAGE mask (U.S. Pat. No. 6,119,693). Another embodiment has a forehead pad devoid of a convex surface, instead including a support post used in combination with a concave surface. Another embodiment includes a pad with varying cross-sectional thicknesses, e.g., it could be thinner at edges for greater flexibility when rolling, than at the center.

It can thus be appreciated that the aspects of the present invention have been fully and effectively accomplished. The foregoing specific embodiments have been provided to illustrate structural and functional principles of the present invention, and are not intended to be limiting. To the contrary, the present invention is intended to encompass all modifications, alterations and substitutions within the spirit and scope of the present invention.

Claims

1. A forehead support assembly for a respiratory mask, comprising:

a forehead support comprising a pair of apertures, the pair of apertures being provided on opposites sides of a centerline of the forehead support, each aperture extending through the forehead support from a first side to a second side opposite the first side and configured to face a patient's forehead; and
a forehead pad assembly repeatably attachable to and detachable from the forehead support, the forehead pad assembly being formed of flexible material and comprising: a pair of forehead pads, each of which has a curved base portion having a first side configured to face the forehead support when the forehead pad assembly is connected to the forehead support and a second side configured to engage the patient's forehead; a pair of a support posts, each of which extends from the first side of a respective base portion, each support post having a proximal end adjacent the first side of the respective base portion and a distal end opposite the proximal end, each support post comprising a head at the distal end, a necked down region between the head and the proximal end, the necked down region having a cross-sectional area smaller than a cross-sectional area of a base of the head such that a lip is formed between the base of the head and the necked down region, the base of the head having a cross-sectional area that is larger than a cross-sectional area of the apertures of the forehead support; a hollowed out region extending into the base portion without reaching the head of the support post so that the support post is axially compressible; and a connector that connects the base portions of the forehead pad assembly to each other,
wherein the forehead pad assembly is attachable to the forehead support by applying an axial force on each base portion in an axial direction of each support post to insert each support post through a respective aperture in the forehead support to distort the head and the lip until the lip reaches an end of the aperture and returns to its undistorted shape and engages a surface of the forehead support surrounding the aperture, and the forehead pad assembly is detachable from the forehead support by applying a pulling force to each base portion in a direction opposite to the pressure applied for insertion to distort the lip and the head to disengage the lip from the surface of the forehead support,
wherein the support post further includes a tapered portion such that a region at the base portion has a larger cross-sectional area than the head.

2. A forehead support assembly for a respiratory mask according to claim 1, wherein each support post projects from the first side of the respective base portion at an angle, the angle being defined between an axis of the support post and a tangent to the first side at the point of contact between the support post and the base portion, and the angle is less than 90 degrees.

3. A forehead support assembly for a respiratory mask according to claim 2, wherein a portion of the second side of each forehead pad further comprises a raised surface pattern and the raised surface pattern has four arms that extend generally from a central point of the second side.

4. A forehead support assembly for a respiratory mask according to claim 3, wherein a first portion of the each of the heads has a substantially rectangular shape that merges with a second portion that has a substantially triangular shape, and each aperture of the forehead support has a similar shape.

5. A forehead support assembly for a respiratory mask according to claim 4, wherein the raised surface pattern reduces the possibility of a suction effect of each of the forehead pads.

6. A forehead support assembly for a respiratory mask according to claim 1, wherein the support post further comprises a cut away portion between the necked down portion and the proximal end.

7. A one-piece integrally molded forehead pad comprising:

a substantially rectangular base portion having a first side and an opposing second side, the first side being concavely curved and having a raised surface pattern, the second side being convexly curved;
a support post projecting from the second side of the base portion at an oblique angle defined between a tangent to the second surface of the base portion at a point of contact between the support post and the base portion, the support post comprising at least one undercut adapted to increase a flexibility of the support post;
a hollowed out region extending through the base portion and partly into the support post, the hollowed out region configured to make the support post axially compressible;
a head adapted to connect the forehead pad to a forehead support of a respiratory mask, a top surface of the head having a substantially rectangular first portion that merges with a substantially triangular second portion, the head being tapered from a bottom portion to the top surface; and
a necked down region located between the support post and the head, a cross-sectional area of the necked down region being smaller than a cross-sectional area of a top portion of the support post and smaller than a cross-sectional area of the bottom portion of the head so as to form a first lip at a base of the head and a second lip at the top portion of the support post,
wherein the support post includes a tapered portion such that a region at the base portion has a larger cross-sectional area than the head, and
wherein the hollowed out region does not extend into the head.

8. The forehead pad of claim 7, wherein support post is flexible and is adapted to withstand an assembly force applied when the forehead pad is connected to the forehead support of the respiratory mask.

9. The forehead pad of claim 7, wherein the hollowed out region imparts a degree of springiness to and flexibility to the forehead pad.

10. The forehead pad of claim 7, wherein the first and/or second side of the base portion has a sand-blasted finish.

11. The forehead pad of claim 7, wherein, in the absence of a force acting on the support post, the support post projects from the second side of the base portion at the oblique angle defined between the tangent to the second surface of the base portion at the point of contact between the support post and the base portion.

12. A one-piece integrally molded forehead pad assembly comprising:

two forehead pads according to the forehead pad of claim 7; and
at least one connector that connects adjacent base portions.

13. The forehead pad assembly of claim 12, wherein the connector is a flexible bridge.

14. A respiratory mask assembly comprising:

a headgear assembly adapted to support the mask assembly on a user's face;
a frame portion with lower headgear anchor points adapted to anchor straps of the headgear assembly;
a seal-forming portion adapted to cover the user's nose and/or mouth;
a forehead support connected to the frame portion, the forehead support being curved and having a plurality of headgear connection points and one or more forehead pad connection points; and
the forehead pad assembly of claim 12, wherein
the forehead pad connection points comprise apertures shaped complimentary to the shapes of the heads of the forehead pads, the forehead pad connection points receiving the heads of the forehead pads,
the heads of the forehead pads have larger cross-sectional areas than the forehead pad connection point apertures,
a length of each necked down region is substantially the same as a length of the forehead pad connection point apertures,
the first lip of each forehead pad abuts a first side of the forehead support and the second lip of each forehead pad abuts a second side of the forehead support when the forehead pad assembly is mounted on the forehead support,
the emergence of the heads of the forehead pads through the forehead connection points produces an audible sound, and
the headgear connection points comprise apertures that receive headgear straps to secure the mask assembly to the user's face.

15. The respiratory mask assembly of claim 14, wherein the curvature of the forehead support is adapted to follow a curvature of the user's forehead.

16. The respiratory mask assembly of claim 15, wherein the first lips and the second lips of the forehead pads prevent axial movement within the forehead pad connection points when the forehead pad assembly is mounted on the forehead support.

17. The respiratory mask of claim 16, wherein the head and the first lip are configured to distort when an axial force is applied to a first end of the hole in the forehead support until the head and the first lip reach a second end of the hole in the forehead support.

18. A silicone forehead pad comprising:

a substantially rectangular base portion;
a support post projecting from the base portion and comprising at least one cut-away portion adapted to increase a flexibility of the support post;
a hollowed out region extending through the base portion and partly into the support post, the hollowed out region being configured to make the support post axially compressible;
a head adapted to connect the forehead pad to a forehead support of a respiratory mask, a top surface of the head having a smaller cross-sectional area than a base of the head; and
a necked down region located between the support post and the head,
wherein the support post includes a tapered portion such that a region at the base portion has a larger cross-sectional area than the head, and
wherein the hollowed out region terminates before reaching the head.

19. The forehead pad of claim 18, wherein the support post projects from the base portion at an angle defined between a tangent to the second surface of the base portion at a point of contact between the support post and the base portion.

20. The forehead pad of claim 19, wherein the angle is an oblique angle.

21. The forehead pad of claim 18, wherein the necked down region forms a first lip at the base of the head and forms a second lip at a top portion of the support post.

22. The forehead pad of claim 18, wherein the hollowed out imparts a degree of springiness to and flexibility to the forehead pad.

23. The forehead pad of claim 22, wherein the support post is adapted to withstand forces needed for assembly of the head to the forehead support.

24. The forehead pad of claim 18, wherein the head has a substantially rectangular first portion that merges with a substantially triangular second portion.

25. The forehead pad of claim 18, wherein the base portion is curved and has a raised surface pattern.

26. A one-piece integrally molded forehead pad assembly comprising:

two forehead pads according to the forehead pad of claim 18; and
at least one connector that connects adjacent base portions.

27. A respiratory mask assembly comprising:

a frame portion;
a seal-forming portion adapted to cover a user's nose and/or mouth;
a forehead support connected to the frame portion, the forehead support being curved and having a plurality forehead pad connection points; and
the forehead pad assembly of claim 26 connected to the forehead support.

28. The respiratory mask assembly of claim 27, wherein the necked down region forms a first lip at the base of the head and forms a second lip at a top portion of the support post.

29. The respiratory mask of claim 28, wherein the head and the first lip are configured to distort when an axial force is applied to a first end of the hole in the forehead support until the head and the first lip reach a second end of the hole in the forehead support.

Referenced Cited
U.S. Patent Documents
4429 March 1846 Cooke
35724 June 1862 Wilcox
428592 May 1890 Chapman
463351 November 1891 Elliott
592002 October 1897 Denham
715611 December 1902 Schnenker et al.
716530 December 1902 Giddens
781516 January 1905 Guthrie
812706 February 1906 Warbasse
1070986 August 1913 Richter
1081745 December 1913 Johnston
1176886 March 1916 Ermold
1192186 July 1916 Greene
1206045 November 1916 Smith
1333075 March 1920 Hill et al.
1381826 June 1921 Hansen
1610793 December 1926 Kaufman
1632449 June 1927 McKesson
1653572 December 1927 Jackson
1672165 June 1928 Lewis
1733020 October 1929 Jones
1926027 September 1933 Biggs
2029129 January 1936 Schwartz
2033448 March 1936 James
2123353 July 1938 Catt
2130555 September 1938 Malcom
2133699 October 1938 Heidbrink
2141222 December 1938 Pioch
2245658 June 1941 Erickson
2245969 June 1941 Francisco et al.
2248477 July 1941 Lombard
2254854 September 1941 O'Connell
2287353 June 1942 Minnick
2317608 April 1943 Heidbrink
2359506 October 1944 Battley et al.
2371965 March 1945 Lehmberg
2376671 March 1945 Fink
2376871 May 1945 Fink
2382364 August 1945 Yant
2415846 February 1947 Randall
2428451 October 1947 Emerson
2438058 March 1948 Kincheloe
2454103 November 1948 Swidersky
2473518 June 1949 Garrard et al.
D156060 November 1949 Wade
D161337 December 1950 Hill
2540567 February 1951 Bennett
2578621 December 1951 Yant
2590006 March 1952 Gordon
2617751 November 1952 Bickett
2625155 January 1953 Engelder
2638161 May 1953 Jones
2664084 December 1953 Hammermann
2693178 November 1954 Gilroy
2706983 April 1955 Matheson et al.
2747464 May 1956 Bowerman
2820651 January 1958 Phillips
2823671 February 1958 Garelick
2832015 April 1958 Ortega
2837090 June 1958 Bloom et al.
2868196 January 1959 Stampe
2875757 March 1959 Galleher, Jr.
2893387 July 1959 Gongoll et al.
2896889 July 1959 Hershberger
2902033 September 1959 Galleher, Jr.
2917045 December 1959 Schildknecht et al.
2931356 April 1960 Schwarz
2939458 June 1960 Lundquist
3013556 December 1961 Galleher
3042035 July 1962 Coanda
3117574 January 1964 Replogle
3141213 July 1964 Nicholas
3182659 May 1965 Blount et al.
3189027 June 1965 Bartlett
3193624 July 1965 Webb et al.
3238943 March 1966 Holley
3288138 November 1966 Sachs
3315672 April 1967 Cunningham et al.
3315674 April 1967 Bloom et al.
3330273 July 1967 Bennett
3362420 January 1968 Blackburn et al.
3363833 January 1968 Laerdal
3456967 July 1969 Hulverson et al.
3474783 October 1969 Ulmann
3494072 February 1970 Olson
3523534 August 1970 Nolan
3535810 October 1970 Baehrle
3555752 January 1971 Bogaert
3556122 January 1971 Laerdal
3580051 May 1971 Blevins
3700000 October 1972 Hesse et al.
3720235 March 1973 Schrock
3725953 April 1973 Johnson et al.
3726275 April 1973 Jackson et al.
3750333 August 1973 Vance
3752157 August 1973 Malmin
3779164 December 1973 Study
3796216 March 1974 Schwarz
3799164 March 1974 Rollins
D231803 June 1974 Huddy
3824999 July 1974 King
3830230 August 1974 Chester
3978854 September 7, 1976 Mills, Jr.
4034426 July 12, 1977 Hardwick et al.
4049357 September 20, 1977 Hamisch, Jr.
4062357 December 13, 1977 Laerdal
4064875 December 27, 1977 Cramer et al.
4069516 January 24, 1978 Watkins, Jr.
4077404 March 7, 1978 Elam
D248497 July 11, 1978 Slosek
4111197 September 5, 1978 Warncke et al.
D250131 October 31, 1978 Lewis et al.
4120302 October 17, 1978 Ziegler
4121580 October 24, 1978 Fabish
4156426 May 29, 1979 Gold
4161946 July 24, 1979 Zuesse
4164942 August 21, 1979 Beard et al.
4167185 September 11, 1979 Lewis
4198772 April 22, 1980 Furutu
4201205 May 6, 1980 Bartholomew
4226234 October 7, 1980 Gunderson
4231363 November 4, 1980 Grimes
4233972 November 18, 1980 Hauff et al.
4245632 January 20, 1981 Houston
4248218 February 3, 1981 Fischer
4265239 May 5, 1981 Fischer, Jr. et al.
4266540 May 12, 1981 Panzik et al.
4274404 June 23, 1981 Molzan et al.
4275908 June 30, 1981 Elkins et al.
D262322 December 15, 1981 Mizerak
4304229 December 8, 1981 Curtin
4328797 May 11, 1982 Rollins et al.
4337767 July 6, 1982 Yahata
4347205 August 31, 1982 Stewart
4354488 October 19, 1982 Bartos
4369284 January 18, 1983 Chen
4380102 April 19, 1983 Hansson
4402316 September 6, 1983 Gadberry
4412537 November 1, 1983 Tiger
4414973 November 15, 1983 Matheson et al.
4417575 November 29, 1983 Hilton et al.
4446576 May 8, 1984 Hisataka
4454880 June 19, 1984 Muto et al.
4454881 June 19, 1984 Huber et al.
4458679 July 10, 1984 Ward
4467799 August 28, 1984 Steinberg
4494538 January 22, 1985 Ansite
4506665 March 26, 1985 Andrews et al.
4522639 June 11, 1985 Ansite et al.
4549334 October 29, 1985 Miller
4558710 December 17, 1985 Eichler
4572323 February 25, 1986 Randall
4580556 April 8, 1986 Kondur
4593688 June 10, 1986 Payton
4603692 August 5, 1986 Montesi
4606340 August 19, 1986 Ansite
D285496 September 2, 1986 Berman
4616647 October 14, 1986 McCreadie
4622964 November 18, 1986 Flynn
4633972 January 6, 1987 DeRocher
4649908 March 17, 1987 Ghaly
4655213 April 7, 1987 Rapoport et al.
4665570 May 19, 1987 Davis
4671271 June 9, 1987 Bishop et al.
4674134 June 23, 1987 Lundin
4676241 June 30, 1987 Webb et al.
4677975 July 7, 1987 Edgar et al.
4677977 July 7, 1987 Wilcox
4686977 August 18, 1987 Cosma
4707863 November 24, 1987 McNeal
4713844 December 22, 1987 Westgate
H397 January 5, 1988 Stark
D293613 January 5, 1988 Wingler
4732147 March 22, 1988 Fuller
4739755 April 26, 1988 White et al.
4770169 September 13, 1988 Schmoegner et al.
4772760 September 20, 1988 Graham
4774941 October 4, 1988 Cook
4782832 November 8, 1988 Trimble et al.
4783029 November 8, 1988 Geppert et al.
4799477 January 24, 1989 Lewis
4807617 February 28, 1989 Nesti
4809692 March 7, 1989 Nowacki et al.
4811730 March 14, 1989 Milano
4819629 April 11, 1989 Jonson
4821713 April 18, 1989 Bauman
4832017 May 23, 1989 Schnoor
4835820 June 6, 1989 Robbins, III
4841953 June 27, 1989 Dodrill
4848334 July 18, 1989 Bellm
4848366 July 18, 1989 Aita et al.
4850346 July 25, 1989 Michel et al.
4856118 August 15, 1989 Sapiejewski
D304384 October 31, 1989 Derobert
4870963 October 3, 1989 Carter
4875714 October 24, 1989 Lee
4875718 October 24, 1989 Marken
4898174 February 6, 1990 Fangrow, Jr.
4899614 February 13, 1990 Katamui
4905683 March 6, 1990 Cronjaeger
4905686 March 6, 1990 Adams
4907584 March 13, 1990 McGinnis
4910806 March 27, 1990 Baker et al.
4915105 April 10, 1990 Lee
4915106 April 10, 1990 Aulgur et al.
4919128 April 24, 1990 Kopala et al.
4938210 July 3, 1990 Shene
4938212 July 3, 1990 Snook et al.
4944210 July 31, 1990 Flock et al.
4944310 July 31, 1990 Sullivan
4946202 August 7, 1990 Perricone
D310431 September 4, 1990 Bellm
4960121 October 2, 1990 Nelson et al.
4971051 November 20, 1990 Toffolon
4974586 December 4, 1990 Wandel et al.
4974921 December 4, 1990 Miyata et al.
4986269 January 22, 1991 Hakkinen
4989271 February 5, 1991 Sapiejewski et al.
4989596 February 5, 1991 MacRis et al.
4989599 February 5, 1991 Carter
4997217 March 5, 1991 Kunze
5003631 April 2, 1991 Richardson
5003633 April 2, 1991 Itoh
5005568 April 9, 1991 Loescher et al.
5005571 April 9, 1991 Dietz
5018519 May 28, 1991 Brown
5027809 July 2, 1991 Robinson
5038776 August 13, 1991 Harrison et al.
5042473 August 27, 1991 Lewis
5042478 August 27, 1991 Kopala et al.
5046200 September 10, 1991 Feder
5054482 October 8, 1991 Bales
5062421 November 5, 1991 Burns et al.
5063922 November 12, 1991 Hakkinen
5069205 December 3, 1991 Urso
5074297 December 24, 1991 Venegas
D323908 February 11, 1992 Hollister et al.
5093940 March 10, 1992 Nishiyama
5109839 May 5, 1992 Blasdell et al.
5109840 May 5, 1992 Daleiden
5121745 June 16, 1992 Israel
5133347 July 28, 1992 Huennebeck
5136760 August 11, 1992 Sano et al.
5137520 August 11, 1992 Maxson et al.
5138722 August 18, 1992 Urella et al.
5140980 August 25, 1992 Haughey et al.
5140982 August 25, 1992 Bauman
5149980 September 22, 1992 Haughey et al.
5146914 September 15, 1992 Sturrock
5156146 October 20, 1992 Corces et al.
5159938 November 3, 1992 Laughlin
5178138 January 12, 1993 Walstrom et al.
5181506 January 26, 1993 Tardiff, Jr. et al.
D333015 February 2, 1993 Farmer
D334633 April 6, 1993 Rudolph
5199424 April 6, 1993 Sullivan et al.
D335322 May 4, 1993 Jones
5215336 June 1, 1993 Worthing
5220699 June 22, 1993 Farris
5231983 August 3, 1993 Matson et al.
5233978 August 10, 1993 Callaway
5243971 September 14, 1993 Sullivan et al.
5245995 September 21, 1993 Sullivan et al.
5253641 October 19, 1993 Choate
5265595 November 30, 1993 Rudolph
5269296 December 14, 1993 Landis
5279289 January 18, 1994 Kirk
5280784 January 25, 1994 Kohler
5291880 March 8, 1994 Almovist et al.
5301689 April 12, 1994 Wennerholm
5311862 May 17, 1994 Blasdell et al.
5322057 June 21, 1994 Raabe et al.
5322059 June 21, 1994 Walther
5331691 July 26, 1994 Runckel
5334646 August 2, 1994 Chen
5343878 September 6, 1994 Scarberry et al.
5349949 September 27, 1994 Schegerin
5357945 October 25, 1994 Messina
5357951 October 25, 1994 Ratner
5372130 December 13, 1994 Stern et al.
5388273 February 14, 1995 Sydor et al.
5388571 February 14, 1995 Roberts et al.
5390373 February 21, 1995 Flory
5391248 February 21, 1995 Brain
5398673 March 21, 1995 Lambert
5400781 March 28, 1995 Davenport
5404871 April 11, 1995 Goodman et al.
5411021 May 2, 1995 Gdulla et al.
5419317 May 30, 1995 Blasdell et al.
5419318 May 30, 1995 Tayebi
5429126 July 4, 1995 Bracken
5429683 July 4, 1995 Le Mitouard
5431158 July 11, 1995 Tirotta
5438981 August 8, 1995 Starr et al.
5441046 August 15, 1995 Starr et al.
D362061 September 5, 1995 McGinnis et al.
5477852 December 26, 1995 Landis et al.
5479920 January 2, 1996 Piper et al.
5481763 January 9, 1996 Brostrom et al.
5485837 January 23, 1996 Solesbee et al.
5488948 February 6, 1996 Dubruille et al.
5492116 February 20, 1996 Scarberry
5501214 March 26, 1996 Sabo
5509404 April 23, 1996 Lloyd et al.
5511541 April 30, 1996 Dearstine
5517986 May 21, 1996 Starr et al.
5522382 June 4, 1996 Sullivan et al.
5538000 July 23, 1996 Rudolph
5538001 July 23, 1996 Bridges
5540223 July 30, 1996 Starr et al.
5542128 August 6, 1996 Lomas
5546936 August 20, 1996 Virag et al.
5558090 September 24, 1996 James
RE35339 October 1, 1996 Rapoport
5560354 October 1, 1996 Berthon-Jones et al.
5570682 November 5, 1996 Johnson
5570684 November 5, 1996 Behr
5570689 November 5, 1996 Starr et al.
5571217 November 5, 1996 Del Bon et al.
D377089 December 31, 1996 Starr et al.
5592938 January 14, 1997 Scarberry et al.
5608647 March 4, 1997 Rubsamen et al.
5617849 April 8, 1997 Springett et al.
5642730 July 1, 1997 Baran
5645049 July 8, 1997 Foley et al.
5645054 July 8, 1997 Cotner et al.
5647355 July 15, 1997 Starr et al.
5647357 July 15, 1997 Barnett et al.
5649532 July 22, 1997 Griffiths
5649533 July 22, 1997 Oren
5655520 August 12, 1997 Howe et al.
5655527 August 12, 1997 Scarberry et al.
5657493 August 19, 1997 Ferrero et al.
5657752 August 19, 1997 Landis et al.
5660174 August 26, 1997 Jacobelli
5662101 September 2, 1997 Ogden et al.
5666946 September 16, 1997 Langenback
5676133 October 14, 1997 Hickle et al.
D385960 November 4, 1997 Rudolph
5685296 November 11, 1997 Zdrojkowski et al.
5687715 November 18, 1997 Landis et al.
5704345 January 6, 1998 Berthon-Jones et al.
5709204 January 20, 1998 Lester
5715814 February 10, 1998 Ebers
5724964 March 10, 1998 Brunson et al.
5724965 March 10, 1998 Handke et al.
5740795 April 21, 1998 Brydon
5743414 April 28, 1998 Baudino
5746201 May 5, 1998 Kidd
5794617 August 18, 1998 Brunell et al.
D398987 September 29, 1998 Cotner et al.
5813423 September 29, 1998 Kirchgeorg
5832918 November 10, 1998 Pantino
5839436 November 24, 1998 Fangrow et al.
D402755 December 15, 1998 Kwok
5860677 January 19, 1999 Martins et al.
RE36165 March 30, 1999 Behr
5884624 March 23, 1999 Barnett et al.
5896857 April 27, 1999 Hely et al.
5906199 May 25, 1999 Budzinski
5909732 June 8, 1999 Diesel et al.
5921239 July 13, 1999 McCall et al.
5935136 August 10, 1999 Hulse et al.
5937851 August 17, 1999 Serowski et al.
5966745 October 19, 1999 Schwartz et al.
5975079 November 2, 1999 Hellings et al.
5979025 November 9, 1999 Horng
6006748 December 28, 1999 Hollis
D419658 January 25, 2000 Matchett et al.
6016804 January 25, 2000 Gleason et al.
D421298 February 29, 2000 Kenyon et al.
6019101 February 1, 2000 Cotner et al.
6029660 February 29, 2000 Calluaud et al.
6029665 February 29, 2000 Berthon-Jones
6029668 February 29, 2000 Freed
6039044 March 21, 2000 Sullivan
D423096 April 18, 2000 Kwok
6044844 April 4, 2000 Kwok et al.
6062148 May 16, 2000 Hodge et al.
6062221 May 16, 2000 Brostrom et al.
6082360 July 4, 2000 Rudolph et al.
6091973 July 18, 2000 Colla et al.
D428987 August 1, 2000 Kwok
6098205 August 8, 2000 Schwartz et al.
6112746 September 5, 2000 Kwok et al.
6119693 September 19, 2000 Kwok et al.
6123071 September 26, 2000 Berthon-Jones et al.
6152137 November 28, 2000 Schwartz et al.
6189532 February 20, 2001 Hely et al.
6192886 February 27, 2001 Rudolph
D439326 March 20, 2001 Hecker et al.
6196223 March 6, 2001 Belfer et al.
D443355 June 5, 2001 Gunaratnam et al.
6240605 June 5, 2001 Stevens et al.
6250375 June 26, 2001 Lee et al.
6256846 July 10, 2001 Lee
6257237 July 10, 2001 Suzuki
6272722 August 14, 2001 Lai
6321421 November 27, 2001 Lim
6341606 January 29, 2002 Bordewick et al.
6347631 February 19, 2002 Hansen et al.
6357441 March 19, 2002 Kwok et al.
6360406 March 26, 2002 Patterson et al.
6374826 April 23, 2002 Gunaratnam et al.
6381813 May 7, 2002 Lai
6388640 May 14, 2002 Chigira et al.
6397847 June 4, 2002 Scarberry et al.
6408853 June 25, 2002 Chang
6412487 July 2, 2002 Gunaratnam et al.
6418928 July 16, 2002 Bordewick et al.
6422238 July 23, 2002 Lithgow
6427694 August 6, 2002 Hecker et al.
6431172 August 13, 2002 Bordewick
6435181 August 20, 2002 Jones, Jr. et al.
6439230 August 27, 2002 Gunaratnam et al.
6449817 September 17, 2002 Hsu
6463931 October 15, 2002 Kwok et al.
6467483 October 22, 2002 Kopacko et al.
6491034 December 10, 2002 Gunaratnam et al.
6494207 December 17, 2002 Kwok
D468823 January 14, 2003 Smart
6513206 February 4, 2003 Banitt et al.
6513526 February 4, 2003 Kwok et al.
6520182 February 18, 2003 Gunaratnam
6530373 March 11, 2003 Patron et al.
6532961 March 18, 2003 Kwok et al.
6536435 March 25, 2003 Fecteau et al.
6557556 May 6, 2003 Kwok et al.
6561190 May 13, 2003 Kwok
6561191 May 13, 2003 Kwok
6581601 June 24, 2003 Ziaee
6595214 July 22, 2003 Hecker
6615830 September 9, 2003 Serowski et al.
6615832 September 9, 2003 Chen
6615834 September 9, 2003 Gradon et al.
6626177 September 30, 2003 Ziaee
6631718 October 14, 2003 Lovell
D484237 December 23, 2003 Lang et al.
6675446 January 13, 2004 Buettell
6679260 January 20, 2004 Her
6679261 January 20, 2004 Lithgow
6691707 February 17, 2004 Gunaratnam et al.
6691708 February 17, 2004 Kwok et al.
6701535 March 9, 2004 Dobbie et al.
6701927 March 9, 2004 Kwok et al.
6705647 March 16, 2004 Palmer
6712072 March 30, 2004 Lang
6729333 May 4, 2004 Barnett et al.
D492992 July 13, 2004 Guney et al.
D493521 July 27, 2004 Guney
6789543 September 14, 2004 Cannon
6796308 September 28, 2004 Gunaratnam et al.
6805117 October 19, 2004 Ho et al.
6823869 November 30, 2004 Raje et al.
6832610 December 21, 2004 Gradon et al.
6832615 December 21, 2004 Hensel
D502260 February 22, 2005 Lang et al.
6851425 February 8, 2005 Jaffre
6851428 February 8, 2005 Dennis
6860269 March 1, 2005 Kwok et al.
6907882 June 21, 2005 Ging
6918390 July 19, 2005 Lithgow et al.
6926004 August 9, 2005 Schumacher
6973929 December 13, 2005 Gunaratnam
6986352 January 17, 2006 Frater et al.
D515698 February 21, 2006 Lang et al.
6997188 February 14, 2006 Kwok et al.
7000614 February 21, 2006 Lang et al.
7005414 February 28, 2006 Barnikol et al.
7007696 March 7, 2006 Palkon et al.
7011090 March 14, 2006 Drew et al.
7021311 April 4, 2006 Gunaratnam et al.
7036508 May 2, 2006 Kwok
7047965 May 23, 2006 Ball
7047972 May 23, 2006 Ging et al.
7059326 June 13, 2006 Heidmann et al.
7066379 June 27, 2006 Eaton et al.
7069932 July 4, 2006 Eaton et al.
7089939 August 15, 2006 Walker et al.
7095938 August 22, 2006 Tolstikhin
7100610 September 5, 2006 Biener
7107989 September 19, 2006 Frater et al.
7112179 September 26, 2006 Bonutti et al.
7178525 February 20, 2007 Matula, Jr. et al.
7185652 March 6, 2007 Gunaratnam et al.
7207334 April 24, 2007 Smart
7207335 April 24, 2007 Kwok et al.
7216647 May 15, 2007 Lang et al.
7219670 May 22, 2007 Jones et al.
7234466 June 26, 2007 Kwok et al.
7234773 June 26, 2007 Raftery et al.
7290546 November 6, 2007 Ho et al.
7296574 November 20, 2007 Sprinkle et al.
7318437 January 15, 2008 Gunaratnam et al.
7318439 January 15, 2008 Raje et al.
7320323 January 22, 2008 Lang et al.
7353826 April 8, 2008 Sleeper et al.
7353827 April 8, 2008 Geist
7406965 August 5, 2008 Kwok et al.
7461656 December 9, 2008 Gunaratnam et al.
7472704 January 6, 2009 Gunaratnam
7487772 February 10, 2009 Ging et al.
7487777 February 10, 2009 Gunaratnam et al.
7503327 March 17, 2009 Gunaratnam
7509958 March 31, 2009 Amarasinghe et al.
7523754 April 28, 2009 Lithgow
7610916 November 3, 2009 Kwok et al.
7614400 November 10, 2009 Lithgow et al.
7621274 November 24, 2009 Sprinkle et al.
7654263 February 2, 2010 Lang et al.
7665464 February 23, 2010 Kopacko et al.
7743767 June 29, 2010 Ging et al.
7762259 July 27, 2010 Gunaratnam
7775209 August 17, 2010 Biener et al.
7779832 August 24, 2010 Ho
7814911 October 19, 2010 Bordewick et al.
7819119 October 26, 2010 Ho
7827987 November 9, 2010 Woodard et al.
7827990 November 9, 2010 Melidis et al.
7841345 November 30, 2010 Guney et al.
7856698 December 28, 2010 Lang et al.
7856980 December 28, 2010 Lang et al.
7856982 December 28, 2010 Matula, Jr. et al.
7861715 January 4, 2011 Jones et al.
7874293 January 25, 2011 Gunaratnam et al.
7878199 February 1, 2011 Ging et al.
7882837 February 8, 2011 Kwok et al.
7900635 March 8, 2011 Gunaratnam et al.
7942148 May 17, 2011 Davidson et al.
7942149 May 17, 2011 Gunaratnam
7967013 June 28, 2011 Ging et al.
7967014 June 28, 2011 Heidmann et al.
7971590 July 5, 2011 Kwok et al.
7992559 August 9, 2011 Lang et al.
8042538 October 25, 2011 Ging et al.
8042546 October 25, 2011 Gunaratnam et al.
8051850 November 8, 2011 Kwok et al.
8091553 January 10, 2012 Bordewick et al.
8113203 February 14, 2012 Lithgow et al.
8136524 March 20, 2012 Ging et al.
8186348 May 29, 2012 Kwok et al.
8186352 May 29, 2012 Gunaratnam et al.
8210180 July 3, 2012 Gunaratnam
8220459 July 17, 2012 Davidson et al.
8230855 July 31, 2012 Raje et al.
9072853 July 7, 2015 Lang
20020053347 May 9, 2002 Ziaee
20030062048 April 3, 2003 Gradon
20030075180 April 24, 2003 Raje et al.
20030084904 May 8, 2003 Gunaratnam
20030089373 May 15, 2003 Gradon et al.
20030196656 October 23, 2003 Moore et al.
20040211428 October 28, 2004 Jones, Jr. et al.
20040094157 May 20, 2004 Dantanarayana et al.
20040112385 June 17, 2004 Drew et al.
20040112387 June 17, 2004 Lang et al.
20040118406 June 24, 2004 Lithgow et al.
20040177850 September 16, 2004 Gradon et al.
20040216747 November 4, 2004 Jones et al.
20040226566 November 18, 2004 Gunaratnam et al.
20050011522 January 20, 2005 Ho et al.
20050098183 May 12, 2005 Nash et al.
20050199239 September 15, 2005 Lang et al.
20050211252 September 29, 2005 Lang et al.
20060081250 April 20, 2006 Bordewick et al.
20060118117 June 8, 2006 Berthon-Jones et al.
20060169286 August 3, 2006 Eifler et al.
20060219246 October 5, 2006 Dennis
20060254593 November 16, 2006 Chang
20060283461 December 21, 2006 Lubke et al.
20070044804 March 1, 2007 Matula et al.
20070137653 June 21, 2007 Wood
20070144525 June 28, 2007 Davidson et al.
20080178885 July 31, 2008 Raje et al.
20080257354 October 23, 2008 Davidson et al.
20080264421 October 30, 2008 Kwok et al.
20080314389 December 25, 2008 Thomas et al.
20090044808 February 19, 2009 Guney
20090050156 February 26, 2009 Ng et al.
20090126739 May 21, 2009 Ng et al.
20090139526 June 4, 2009 Melidis et al.
20090173343 July 9, 2009 Omura et al.
20090223521 September 10, 2009 Howard et al.
20100000543 January 7, 2010 Berthon-Jones et al.
20100071700 March 25, 2010 Hitchcock et al.
20100089401 April 15, 2010 Lang et al.
20100282265 November 11, 2010 Melidis et al.
20100300447 December 2, 2010 Biener et al.
20110030692 February 10, 2011 Jones et al.
20110056498 March 10, 2011 Lang et al.
20110094516 April 28, 2011 Chang
20110174311 July 21, 2011 Gunaratnam
20110226254 September 22, 2011 Lang et al.
20110259337 October 27, 2011 Hitchcock et al.
20120174928 July 12, 2012 Raje et al.
Foreign Patent Documents
91/77110 November 1991 AU
94/64816 December 1994 AU
95/16178 July 1995 AU
94/59430 October 1995 AU
95/32914 February 1996 AU
97/41018 April 1998 AU
98/89312 January 1999 AU
200071882 June 2001 AU
618807 April 1961 CA
623129 July 1961 CA
1039144 September 1978 CA
88122 November 1999 CA
2045649 October 1989 CN
2417885 February 2001 CN
2419188 February 2001 CN
1326371 December 2001 CN
2464353 December 2001 CN
1408453 April 2003 CN
2558395 July 2003 CN
1735438 February 2006 CN
102038996 May 2011 CN
102038996 March 2013 CN
284 800 November 1913 DE
459 104 April 1928 DE
701 690 January 1941 DE
923 500 February 1955 DE
30 15 279 October 1981 DE
159396 March 1983 DE
33 45 067 June 1984 DE
37 07 952 March 1987 DE
35 37 507 April 1987 DE
35 39 073 May 1987 DE
40 04 157 April 1991 DE
42 12 259 January 1993 DE
42 33 448 April 1993 DE
43 43 205 June 1995 DE
195 48 380 July 1996 DE
196 03 949 August 1997 DE
297 15 718 October 1997 DE
197 35 359 January 1998 DE
297 21 766 March 1998 DE
29723101 July 1998 DE
298 10 846 August 1998 DE
4 99 00 296.5 January 1999 DE
198 17 332 January 1999 DE
99/16 August 1999 DE
198 07 961 August 1999 DE
198 08 105 September 1999 DE
299 23 126 March 2000 DE
200 05 346 May 2000 DE
299 23 141 May 2000 DE
200 17 940 February 2001 DE
199 54 517 June 2001 DE
199 62 515 July 2001 DE
100 45 183 May 2002 DE
100 51 891 May 2002 DE
10045183 May 2002 DE
10045183 May 2002 DE
198 40 760 March 2003 DE
103 31 837 January 2005 DE
103 38 169 March 2005 DE
203 21 882 February 2012 DE
0 054 154 June 1982 EP
0 252 052 January 1988 EP
0 264 772 April 1988 EP
0 334 555 September 1989 EP
0 386 605 September 1990 EP
0 427 474 May 1991 EP
0 462 701 December 1991 EP
0 303 090 April 1992 EP
0 549 299 June 1993 EP
0 602 424 June 1994 EP
0 608 684 August 1994 EP
0 697 225 July 1995 EP
0 178 925 April 1996 EP
0 747 078 December 1996 EP
0 821 978 February 1998 EP
0 853 962 July 1998 EP
0 958 841 November 1999 EP
1 027 905 August 2000 EP
1 057 494 December 2000 EP
1 099 452 May 2001 EP
1 163 923 December 2001 EP
1 205 205 May 2002 EP
1 266 674 December 2002 EP
1 334 742 August 2003 EP
1 356 843 October 2003 EP
1 555 039 July 2005 EP
1 545 673 December 2013 EP
145309 January 2000 ES
780018 April 1935 FR
2 574 657 June 1986 FR
2 658 725 August 1991 FR
2 691 906 December 1993 FR
2 720 280 December 1995 FR
2 749 176 December 1997 FR
649 689 January 1951 GB
823 887 November 1959 GB
1 395 391 May 1975 GB
1 467 828 March 1977 GB
2 145 335 March 1985 GB
2 147 506 May 1985 GB
2 164 569 March 1986 GB
2 186 801 August 1987 GB
2 267 648 December 1993 GB
2080119 December 1998 GB
2080120 December 1998 GB
2080121 December 1998 GB
S39-13991 July 1964 JP
S48-55696 October 1971 JP
S52-76695 June 1977 JP
S59-55535 April 1984 JP
S61-67747 May 1986 JP
H06-184803 July 1994 JP
H07-21058 April 1995 JP
H07-308381 November 1995 JP
H09-501084 February 1997 JP
H09-216240 August 1997 JP
9-292588 November 1997 JP
H11-000397 January 1999 JP
1105649 February 1999 JP
H11-104256 April 1999 JP
H11-508159 July 1999 JP
H11-381522 November 1999 JP
2000-135103 May 2000 JP
2000-279520 October 2000 JP
2000-325481 November 2000 JP
2000-515784 November 2000 JP
2002-028240 January 2002 JP
2002-543943 December 2002 JP
2003-502119 February 2003 JP
2003-175106 June 2003 JP
2003-190308 July 2003 JP
2004-329941 November 2004 JP
2005-506156 March 2005 JP
3686609 August 2005 JP
65 481 August 2000 SE
WO 80/01044 May 1980 WO
WO 80/01645 August 1980 WO
WO 82/03548 October 1982 WO
WO 86/06969 December 1986 WO
WO 87/01950 April 1987 WO
WO 91/03277 March 1991 WO
WO 92/15353 September 1992 WO
WO 92/20395 November 1992 WO
WO 93/01854 February 1993 WO
WO 93/24169 December 1993 WO
WO 94/02190 February 1994 WO
WO 94/16759 August 1994 WO
WO 94/20051 September 1994 WO
WO 95/02428 January 1995 WO
WO 95/04566 February 1995 WO
WO 96/17643 June 1996 WO
WO 96/25983 August 1996 WO
WO 96/39206 December 1996 WO
WO 97/00092 January 1997 WO
WO 97/07847 March 1997 WO
WO 97/09090 March 1997 WO
WO 97/41911 November 1997 WO
WO 98/04310 February 1998 WO
WO 98/11930 March 1998 WO
WO 98/12965 April 1998 WO
WO 98/18514 May 1998 WO
WO 98/24499 June 1998 WO
WO 98/26829 June 1998 WO
WO 98/26830 June 1998 WO
WO 98/30123 July 1998 WO
WO 98/34665 August 1998 WO
WO 98/48878 November 1998 WO
WO 99/21618 May 1999 WO
WO 99/30760 June 1999 WO
WO 99/43375 September 1999 WO
WO 99/58181 November 1999 WO
WO 99/61088 December 1999 WO
WO 99/65554 December 1999 WO
WO 00/21600 April 2000 WO
WO 00/38772 July 2000 WO
WO 00/50121 August 2000 WO
WO 00/57942 October 2000 WO
WO 00/69521 November 2000 WO
0078384 December 2000 WO
WO 00/78381 December 2000 WO
WO 00/78384 December 2000 WO
WO 01/62326 August 2001 WO
WO 01/97892 December 2001 WO
WO 01/97893 December 2001 WO
WO 02/07806 January 2002 WO
WO 02/11804 February 2002 WO
WO 02/32491 April 2002 WO
WO 02/45784 June 2002 WO
WO 02/47749 June 2002 WO
WO 03/005931 January 2003 WO
WO 03/035156 May 2003 WO
WO 03/059427 July 2003 WO
WO 03/082406 October 2003 WO
WO 03/105921 December 2003 WO
WO 2004/012803 February 2004 WO
WO 2004/021960 March 2004 WO
WO 2004/022144 March 2004 WO
WO 2004/022145 March 2004 WO
WO 2004/022146 March 2004 WO
WO 2004/022147 March 2004 WO
WO 2004/041342 May 2004 WO
WO 2004/073778 September 2004 WO
WO 2004/078228 September 2004 WO
WO 2004/096332 November 2004 WO
WO 2005/002656 January 2005 WO
WO 2005/018523 March 2005 WO
WO 2005/028010 March 2005 WO
WO 2005/063326 July 2005 WO
WO 2005/063328 July 2005 WO
WO 2005/068002 July 2005 WO
WO 2005/094928 October 2005 WO
WO 2005/123166 December 2005 WO
WO 2006/000046 January 2006 WO
WO 2006/074513 July 2006 WO
WO 2006/074515 July 2006 WO
WO 2006/074516 July 2006 WO
WO 2006/138416 December 2006 WO
WO 2007/045008 April 2007 WO
WO 2007/048174 May 2007 WO
WO 2009/026627 March 2009 WO
WO 2009/052560 April 2009 WO
WO 2009/062265 May 2009 WO
WO 2009/108995 September 2009 WO
WO 2010/066004 June 2010 WO
Other references
  • Office Action dated Jun. 28, 2017 issued in Chinese Application No. 201610091989.0 with English translation (11 pages).
  • Office Action dated Nov. 27, 2014 in Chinese Application No. 201310032494.7.
  • Communication of a Notice of Opposition dated Feb. 17, 2014 in European Patent No. 1 545 673 including a Notice of Opposition dated Feb. 10, 2014.
  • Brief Communication dated Apr. 4, 2014 in European Patent No. 1 545 673 including a Brief dated Mar. 25, 2014.
  • Cancellation Request dated Feb. 18, 2014 filed in German Utility Model DE 203 21 882.
  • Brief dated Mar. 5, 2014 Requesting a Declaratory Decision filed in German Utility Model DE 203 21 882.
  • Kreisler's Petition dated Mar. 25, 2014 filed in Cancellation Proceedings of German Utility Model DE 203 21 882.
  • Notice of Opposition dated Feb. 17, 2014 in European Application No. 03793491.6.
  • Notification of Acceptance of the Request for Invalidation dated Oct. 8, 2013 in Chinese Patent No. 201010620187.7.
  • Request for the Invalidation of a Patent Right dated Sep. 13, 2013 in Chinese Patent No. 201010620187.7.
  • Extended European Search Report dated Nov. 7, 2013 in European Application No. 13152059.5 (6 pages).
  • Extended European Search Report dated Nov. 7, 2013 in European Application No. 13152062.9 (6 pages).
  • Patent Examination Report No. 1 dated Apr. 23, 2013 in Australian Application No. 2012233050.
  • 4 additional photographs of “Weinmann Mask,” before applicants' filing date.
  • 9 photographs of Weinmann mask, WM 23122, 1991.
  • Australian Appln. No. 2005253641—Examiner's First Report, dated Apr. 20, 2010.
  • Australian Appln. No. 2005253641—Examiner's Report, dated Aug. 18, 2011.
  • Australian Appln. No. 2005256167—Examiner's First Report, dated Apr. 29, 2010.
  • Australian Appln. No. 2006206044—Examiner's First Report, dated Dec. 1, 2010.
  • Australian Appln. No. 2010251884—Examination Report, dated Jul. 27, 2012.
  • Chinese Appln. No. 200410038106.7—Office Action (w/English translation), dated Jun. 15, 2007.
  • Chinese Appln. No. 200480011911.9—Office Action (w/English translation), dated Jun. 24, 2010.
  • Chinese Appln. No. 200480040220.1—Office Action (English translation only), before applicants' filing date.
  • Chinese Appln. No. 200580020203.6—Office Action (w/English translation), dated Jun. 1, 2010.
  • Chinese Appln. No. 200580020203.6—Office Action (w/English translation), dated Jul. 6, 2011.
  • Chinese Appln. No. 200580020203.6—Office Action (w/English translation), dated Dec. 23, 2011.
  • Chinese Appln. No. 200580020203.6—Office Action (w/English translation), dated Apr. 18, 2012.
  • Chinese Appln. No. 200580021230.5—Office Action (w/English translation), dated Jul. 3, 2009.
  • Chinese Appln. No. 201010508994.X—Office Action (w/ English translation), dated Jun. 15, 2011.
  • Chinese Appln. No. 201010517066.X—Office Action (w/English translation), dated Nov. 10, 2011.
  • DeVilbiss Serenity Mask—Instruction Guide 9352 Series, before applicants' filing date.
  • DeVilbiss Serenity Mask—Mask Accessories, before applicants' filing date.
  • European Appln. No. EP 02445110.6—Search Report, dated Nov. 6, 2003.
  • European Appln. No. EP 02714190.2—Search Report, dated Jul. 11, 2006.
  • European Appln. No. EP 04730413.4—Supplementary Search Report, dated Sep. 29, 2009.
  • European Appln. No. EP 04802114.1—Supplementary Search Report, dated May 7, 2009.
  • European Appln. No. EP 05749447.8—Supplementary Search Report, dated Dec. 2, 2009.
  • European Appln. No. EP 05753870.4—Office Action, dated Jul. 19, 2010.
  • European Appln. No. EP 05753870.4—Supplementary Search Report, dated Dec. 15, 2009.
  • European Appln. No. EP 06704773.8—Supplementary Search Report, dated Mar. 29, 2011.
  • European Appln. No. EP 08161868.8—Search Report, dated Sep. 23, 2008.
  • European Appln. No. EP 09003544.5—Search Report, dated Jun. 2, 2009.
  • European Appln. No. EP 10166255.9—Search Report, dated Oct. 25, 2010.
  • European Appln. No. EP 10181516.5—Search Report, dated Jun. 13, 2012.
  • European Appln. No. EP 10182015.7—Search Report, dated Jun. 15, 2012.
  • European Appln. No. EP 10185071.7—Search Report, dated Dec. 6, 2010.
  • European Appln. No. EP 10185072.5—Search Report, dated Dec. 6, 2010.
  • European Appln. No. EP 10185073.3—Search Report, dated Dec. 6, 2010.
  • European Appln. No. EP 12165749.8—Extended Search Report, dated Oct. 18, 2012.
  • European Appln. No. EP 12165751.4—Extended Search Report, dated Oct. 16, 2012.
  • German Patent No. 101 51 984—Decision from Opposition hearing by Weinmann (w/English translation), dated Dec. 6, 2007.
  • Japanese Appln. No. S52-164619—English translation of Figure 1, Dec. 1977.
  • Japanese Appln. No. 2000-029094—Office Action (English translation only), before applicants' filing date.
  • Japanese Appln. No. 2001-504444—Office Action (w/English translation only), dated Oct. 26, 2004.
  • Japanese Appln. No. 2003-537718—Office Action (w/English translation only), dated Oct. 7, 2008.
  • Japanese Appln. No. 2003-559587—Office Action (w/English translation only), dated Mar. 17, 2009.
  • Japanese Appln. No. 2004-137431—Office Action (w/English translation), dated Dec. 8, 2009.
  • Japanese Appln. No. 2005-004072—Office Action (w/English translation), dated Sep. 24, 2009.
  • Japanese Appln. No. 2006-504029—Office Action (w/English translation), dated Nov. 10, 2009.
  • Japanese Appln. No. 2006-545843—Office Action (w/English translation), dated Jun. 7, 2011.
  • Japanese Appln. No. 2007-515732—Office Action (w/English translation), dated Aug. 24, 2010.
  • Japanese Appln. No. 2007-515732—Office Action (w/English translation), dated Aug. 16, 2011.
  • Japanese Appln. No. 2007-515732—Office Action (w/English translation), dated Jun. 12, 2012.
  • Japanese Appln. No. 2007-516895—Office Action (w/English translation), dated Aug. 24, 2010.
  • Japanese Appln. No. 2007-550640—Office Action (w/English translation), dated Mar. 29, 2011.
  • Japanese Appln. No. 2007-550640—Office Action (w/English translation), dated Mar. 27, 2012.
  • Japanese Appln. No. 2008-318985—Office Action (w/English translation), dated Jun. 14, 2011.
  • Japanese Appln. No. 2010-268127—Office Action (w/English translation), dated Jul. 10, 2012.
  • Japanese Appin. No. 2011-038110—Office Action (w/English translation), dated Aug. 14, 2012.
  • Japanese Appln. No. 2011-106504—Office Action (w/English translation), dated Nov. 13, 2012.
  • Mask 1 Photographs, Respironics Inc., Reusable Full Mask (small) Part #452033 Lot #951108, before applicants' filing date.
  • Mask 2 Photographs, Puritan—Bennett, Adam Curcuit, Shell Part #231700, Swivel Part #616329-00, Pillows (medium) Part #616324, before applicants' filing date.
  • Mask 3 Photographs, DeVilbiss Healthcare Inc., Devilbiss Seal-Ring and CPAP Mask Kit (medium), Part #73510-669, before applicants' filing date.
  • Mask 4 Photographs, Respironics Inc., Monarch Mini Mask with Pressure Port, Part #572004, Monarch Headgear, Part #572011, before applicants' filing date.
  • Mask 5 Photographs, Healthdyne Technologies, Nasal CPAP Mask (medium narrow), Part #702510, before applicants' filing date.
  • Mask 6 Photographs, Healthdyne Technologies, Soft Series Nasal CPAP Mask, Part #702020, before applicants' filing date.
  • Mask 7 Photographs, DeVilbiss Healthcare Inc., Small Mask and Seal Rings, Part #73510-668, before applicants' filing date.
  • Mask 8 Photographs, Respironics Inc., Reusable Contour Mask (medium), Part #302180, before applicants' filing date.
  • Mask 11 Photographs, Weinmann: Hamburg, Nasalmaskensystem mit Schalldämpfer (medium), Part #WN 23105, before applicants' filing date.
  • Mask 12 Photographs, Life Care, before applicants' filing date.
  • Mask 13 Photographs, Healthdyne Technologies, before applicants' filing date.
  • Mark 14 Photographs, King System, before applicants' filing date.
  • Mask 15 Photographs, Respironics Inc., Pediatric Mask, before applicants' filing date.
  • Mask 16 Photographs, Hans Rudolph Inc., Hans Rudolph Silicone Rubber Face Mask/8900, before applicants' filing date.
  • New Zealand Appln. No. 556041—Examination Report, dated May 6, 2011.
  • New Zealand Appln. No. 564877—Examination Report, dated Dec. 2, 2009.
  • New Zealand Appln. No. 567375—Examination Report, dated Nov. 17, 2009.
  • New Zealand Appln. No. 587820—Examination Report, dated Sep. 13, 2010.
  • New Zealand Appln. No. 592219—Examination Report, dated Apr. 11, 2011.
  • New Zealand Appln. No. 597689—Examination Report, dated Jan. 25, 2012.
  • PCT/AU2003/001160—International Search Report, dated Oct. 8, 2003.
  • PCT/AU2004/000563—International Search Report, dated Jul. 23, 2004.
  • PCT/AU2004/001760—International Preliminary Report on Patentability, dated Jul. 3, 2006.
  • PCT/AU2004/001813—International Search Report, dated Mar. 7, 2005.
  • PCT/AU2004/001813—International Preliminary Report on Patentability, dated Jul. 3, 2006.
  • PCT/AU2005/000850—International Search Report, dated Aug. 12, 2005.
  • PCT/AU2005/000850—International Preliminary Report on Patentability, dated Dec. 20, 2006.
  • PCT/AU2005/000931—International Search Report, dated Jul. 19, 2005.
  • PCT/AU2005/000931—International Preliminary Report on Patentability, dated Dec. 28, 2006.
  • PCT/AU2006/000037—International Search Report, dated Mar. 17, 2006.
  • PCT/AU2006/001570—International Search Report, dated Jan. 8, 2007.
  • PCT/AU2009/000241—International Search Report, dated May 18, 2009.
  • PCT/AU2009/001102—International Search Report, dated Dec. 11, 2009.
  • PCT/AU2010/000657—International Search Report, dated Sep. 9, 2010.
  • PCT/EP2004/012811—International Search Report, dated Apr. 12, 2005.
  • Photograph of Weinmann Mask, acquired prior to 1998.
  • PCT/AU2004/001760—International Search Report, dated Feb. 3, 2005.
  • Product Brochure for ResMed “Sullivan® Mirage™—The Mirage is Real. A Perfect Fit-First Time,” ©1998 ResMed Limited, 4 pages.
  • ResCare Limited, “Sullivantm™ Nasal CPAP System, Nose Mask Clip—User Instructions” May 1990, 1 page.
  • ResMed Ltd., “Improving patient compliance with the ResMed Range of Mask Systems the Ultimate Interface for CPAP treatment,” 4 pages, before applicants' filing date.
  • ResMed, Mask Systems Product Brochure, Sep. 1992, 2 pages.
  • Respironics, Inc., “Nasal Mask System Silicone Contour Mask,” Product Instructions, Jun. 1997, 2 pages.
  • “Somnomask” brochure, 1999, along with various invoices relating to the “Somnomask”.
  • Somnotron CPAP-Great WM 2300 Instruction Manual, Weinmann Hamburg, 1991, 11 pages.
  • The ResMed Range of Mask Systems, product brochure, Nov. 1995, 4 pages.
  • U.S. Appl. No. 12/083,779—Office Action, dated Feb. 17, 2012.
  • U.S. Appl. No. 12/083,779—Office Action, dated Sep. 28, 2012.
  • U.S. Appl. No. 60/227,472, filed Aug. 2000 (expired).
  • U.S. Appl. No. 60/424,696, filed Nov. 8, 2002 (expired).
  • U.S. Appl. No. 60/467,572, filed May 2003 (expired).
  • U.S. Appl. No. 60/643,121, filed Jan. 12, 2005 (expired).
  • Product Brochure for ResMed “Sullivan® Mirage198 —The Mirage is Real. A Perfect Fit-First Time,” © 1997 ResMed Limited, 4 pages.
  • Supplementary European Search Report dated Jun. 15, 2010 in European Application No. 03793491.6.
  • PCT International Search Report dated Oct. 8, 2003.
  • Examiner's First Report, dated Jun. 22, 2011 in Australian Appln. No. 2010201443 (2 pages).
  • Notice of Reasons for Rejection dated Mar. 3, 2009 in Japanese Appln. No. 2004-569777.
  • European Appln. No. EP 09178736.6—Search Report, dated May 6, 2010.
  • Notification of the Second Office Action dated Jul. 10, 2012 in Chinese Appln. No. 201010620187.7.
  • Notification of the First Office Action dated Oct. 26, 2011 in Chinese Appln. No. 201010620187.7.
  • Chinese Appln. No. 200910223650.1—Office Action (w/English translation), dated Mar. 29, 2012.
  • Mask 9 Photographs, Healthdyne Technologies, Healthdyne Large Headgear, before applicants' filing date.
  • Mask 10 Photographs, Respironics Inc., Soft Cap (medium), Part #302142, before applicants' filing date.
  • Extended European Search Report dated Mar. 18, 2016 issued in European Application No. 15002978.3 (7 pages).
  • Notification of the Second Office Action dated Aug. 12, 2015 issued in Chinese Application No. 201310032494.7 with English translation (14 pages).
  • Office Action dated Mar. 23, 2018 issued in Chinese Application No. 2016100919890 with English translation (14 pages).
  • Office Action dated Sep. 30, 2018 issued in Chinese Application No. 2016100919890 with English translation (14 pages).
Patent History
Patent number: 10195385
Type: Grant
Filed: Mar 18, 2015
Date of Patent: Feb 5, 2019
Patent Publication Number: 20150190601
Assignee: ResMed Limited (Bella Vista)
Inventors: Bernd Christoph Lang (Graefelfing), Timothy Tsun-Fai Fu (Sydney), Perry David Lithgow (Sydney), Memduh Guney (Sydney), Joanne Elizabeth Drew (Sydney), Martin Bechtel (Winsen/Luhe), Achim Biener (Aufkirchen), Michael Kassipillai Gunaratnam (Sydney), Aaron Samuel Davidson (Sydney), Milind Chandrakant Raje (Sydney)
Primary Examiner: Colin W Stuart
Assistant Examiner: Douglas Sul
Application Number: 14/661,508
Classifications
Current U.S. Class: Ball- And Socket-mounted (297/405)
International Classification: A61M 16/06 (20060101); A61M 16/08 (20060101);