Method and apparatus for switching a load between two power sources
In an apparatus for selectively coupling a load to a grid power source and an inverter that is fed electric power by an alternate power source, a node is coupled to the load. A grid sensor senses the grid power source. A grid relay selectively couples grid power to the node. An inverter relay also selectively couples the inverter to node. A controller closes the grid relay and the inverter relay when grid power is available. The controller opens the grid relay when grid power is not available. The controller opens the inverter relay when grid power is not available and when feedback indicates that the grid relay is closed.
The present invention relates to power management systems and, more specifically, for a system managing
2. Description of the Related ArtAlternative energy sources, including solar power sources, are increasingly being used to power loads such as home and office electrical systems, which also receive electric power from the power grid. Typically, the alternative energy source produces direct current (DC) power that is fed to an inverter, which converts it to alternating current (AC) power and synchronizes the AC power with power on the grid. When the alternative energy source produces more power than is consumed by the load, excess power is delivered to the power grid. When the alternative energy source produces less power than is consumed by the load, the load takes power from the power grid in addition to that from the alternative power source.
Sometimes, the load gets disconnected from the power grid as a result of such events as fallen power lines. Typically, when this happens, the inverter is disconnected from the power grid to prevent hazards from alternative energy sourced power on the fallen lines. Unfortunately, when the inverter is disconnected from the grid, it is also disconnected from the load. Thus, the home or office will be without electric power, even though it could otherwise still be generated locally by the alternative energy source.
Therefore, there is a need for an apparatus that disconnects an alternative energy source from the power grid while still supplying power to the load when the power grid fails.
SUMMARY OF THE INVENTIONThe disadvantages of the prior art are overcome by the present invention which, in one aspect, is an apparatus for selectively coupling a load to a grid power source and an inverter that is fed electric power by an alternate power source. A first node is configured to be coupled to the load. A grid sensor senses a state of the grid power source. A grid relay couples the grid power source to the first node when in a closed state and decouples the grid power source from the first node when in an open state. An inverter relay couples the inverter to the first node when in a closed state and decouples the inverter from the first node when in an open state. A controller is responsive to the grid sensor and is programmed to: (i) cause the grid relay to be in the closed state and cause the inverter relay to be in the closed state when the grid sensor indicates power is available from the grid; (ii) cause the grid relay to be in the open state when the grid sensor indicates that power is not available from the grid; and (iii) cause the inverter relay to be in the open state when the grid sensor indicates power is not available from the grid and when feedback from the grid relay indicates that the grid relay is in the closed state.
In another aspect, the invention is a system for selectively coupling a load to a grid power source that delivers power on a first grid power line and a second grid power line that is 180° out of phase with the first power line and an inverter that is fed electric power by an alternate power source and that delivers power on a first inverter power line and a second inverter power line that is 180° out of phase with the first power line. A first sub-node is configured to be coupled to a first phase contact of the load and a second sub-node is configured to be coupled to a second phase contact of the load. A first grid sensor senses a state of the first grid power line and a second grid sensor senses a state of the second grid power line. A grid relay selectively couples the first grid power line to the first sub-node and the second grid power line to the second sub-node. An inverter relay selectively couples the first inverter power line to the first sub-node and the second inverter power line to the second sub-node. A controller that receives feedback from the grid relay and is responsive to the grid sensor and is programmed to: (i) cause the grid relay to couple the first grid power line to the first sub-node and the second grid power line to the second sub-node when the first grid sensor indicates power is available from the first grid power line and from the second grid power line; (ii) cause the grid relay to decouple the first grid power line from the first sub-node and the second grid power line from the second sub-node when the first grid sensor indicates power is not available from the first grid power line and from the second grid power line; and (iii) cause the inverter relay to decouple the first inverter power line from the first sub-node the second inverter power line from the second sub-node when the first grid sensor indicates power is not available from the first grid power line and from the second grid power line and when the feedback from the grid relay indicates that the either the first grid power line is coupled to the first sub-node or the second grid power line is coupled to the second sub-node.
In yet another aspect, the invention is a method of switching a load between a grid power source and an alternative power source, in which a state of the grid power source is sensed. If the sensing step indicates that power is available from the grid power source then both the grid power source and the alternative power source are coupled to the load. If the sensing step indicates that power is not available from the grid power source then the grid power source is decoupled from the load. Whether the grid power source is decoupled from the load after the step of decoupling the grid power source from the load is sensed. If the grid power source is decoupled from the load, then the alternative power source is coupled to the load. If grid power is not available and the grid power source is coupled to the load, then the alternative power source is decoupled from the load.
These and other aspects of the invention will become apparent from the following description of the preferred embodiments taken in conjunction with the following drawings. As would be obvious to one skilled in the art, many variations and modifications of the invention may be effected without departing from the spirit and scope of the novel concepts of the disclosure.
A preferred embodiment of the invention is now described in detail. Referring to the drawings, like numbers indicate like parts throughout the views. Unless otherwise specifically indicated in the disclosure that follows, the drawings are not necessarily drawn to scale. As used in the description herein and throughout the claims, the following terms take the meanings explicitly associated herein, unless the context clearly dictates otherwise: the meaning of “a,” “an,” and “the” includes plural reference, the meaning of “in” includes “in” and “on.”
As shown in
The grid relay 120 and the inverter relay 114 are both controlled by a microcontroller 130 (such as, in one representative embodiment, an MSP430-series microcontroller available from Texas Instruments), which receives power from both the grid power supply 110 (fed by the grid power source 20) and an inverter power supply 112 (fed by the inverter 14). Thus, if one of the grid power source 20 or the inverter 14 fails, the microcontroller 130 will still have power from the other.
If, as shown in
As shown in
As shown in
As shown in
A plunger 322 has a first position (as shown in
The above described embodiments, while including the preferred embodiment and the best mode of the invention known to the inventor at the time of filing, are given as illustrative examples only. It will be readily appreciated that many deviations may be made from the specific embodiments disclosed in this specification without departing from the spirit and scope of the invention. Accordingly, the scope of the invention is to be determined by the claims below rather than being limited to the specifically described embodiments above.
Claims
1. An apparatus for selectively coupling a load to a grid power source and an inverter that is fed electric power by an alternate power source, comprising:
- (a) a first node, configured to be coupled to the load;
- (b) a grid sensor that senses a state of the grid power source;
- (c) a grid relay that couples the grid power source to the first node when in a closed state and that decouples the grid power source from the first node when in an open state;
- (d) an inverter relay that couples the inverter to the first node when in a closed state and that decouples the inverter from the first node when in an open state; and
- (e) a controller that is responsive to the grid sensor and that is programmed to: (i) cause the grid relay to be in the closed state and cause the inverter relay to be in the closed state when the grid sensor indicates power is available from the grid; (ii) cause the grid relay to be in the open state when the grid sensor indicates that power is not available from the grid; and (iii) cause the inverter relay to be in the open state when the grid sensor indicates power is not available from the grid and when feedback from the grid relay indicates that the grid relay is in the closed state.
2. An apparatus for selectively coupling a load to a grid power source and an inverter that is fed electric power by an alternate power source, comprising:
- (a) a first node, configured to be coupled to the load;
- (b) a grid sensor that senses a state of the grid power source;
- (c) a grid relay that couples the grid power source to the first node when in a closed state and that decouples the grid power source from the first node when in an open state;
- (d) an inverter relay that couples the inverter to the first node when in a closed state and that decouples the inverter from the first node when in an open state; and
- (e) a controller that is responsive to the grid sensor and that is programmed to: (i) cause the grid relay to be in the closed state and cause the inverter relay to be in the closed state when the grid sensor indicates power is available from the grid; (ii) cause the grid relay to be in the open state when the grid sensor indicates that power is not available from the grid; and (iii) cause the inverter relay to be in the open state when the grid sensor indicates power is not available from the grid and when feedback from the grid relay indicates that the grid relay is in the closed state, wherein the grid power source includes a first grid power line and a second grid power line that is 180° out of phase with the first power line and wherein the inverter delivers power on a first inverter power line and a second inverter power line that is 180° out of phase with the first power line and wherein the grid relay comprises: (i.) a housing; (ii.) a first grid contact in a fixed relationship with the housing and a second grid contact in a fixed relationship with the housing; (iii.) a first load contact in a fixed relationship with the housing and a second load contact in a fixed relationship with the housing; (iv.) a first moving contact in a movable relationship with the housing and movable between contacting both the first grid contact and the first load contact, thereby electrically coupling the first grid contact to the first load contact, and not contacting at least one of the first grid contact and the first load contact, thereby electrically decoupling the first grid contact from the first load contact, and a second moving contact in a movable relationship with the housing and movable between contacting both the second grid contact and the second load contact, thereby electrically coupling the second grid contact to the second load contact, and not contacting at least one of the second grid contact and the second load contact, thereby electrically decoupling the second grid contact from the second load contact; and (v.) a state mechanism that forces the first moving contact to electrically couple the first grid contact to the first load contact and simultaneously forces the second moving contact to electrically couple the second grid contact to the second load contact thereby driving the grid relay into the closed state and that forces the first moving contact to electrically decouple couple the first grid contact from the first load contact and simultaneously forces the second moving contact to electrically decouple the second grid contact to the second load contact thereby driving the grid relay into the open state.
3. The apparatus of claim 2, wherein the alternate power source comprises an alternative power source selected from a list consisting of: a photovoltaic system, a wind power system, a hydroelectric power system, a thermoelectric power system, and combinations thereof.
4. The apparatus of claim 2, wherein the state mechanism comprises:
- (e) a first spring that pushes the first moving contact toward the first grid contact and the first load contact and a second spring that pushes the first moving contact toward the second grid contact and the second load contact;
- (f) a first arm in sliding relationship along a first direction relative to the housing and coupled to the first moving contact and a second arm in sliding relationship along a second direction relative to the housing and coupled to the second moving contact;
- (g) a plunger that has a first position which allows the first spring to push the first moving contact into a closed position that electrically couples first grid contact to the first load contact and that allows the second spring to push the second moving contact into a closed position that electrically couples second grid contact to the second load contact, the plunger also having a second position which pushes the first moving contact into an open position that electrically decouples first grid contact from the first load contact and that pushes the second moving contact into an open position that electrically decouples second grid contact from the second load contact;
- (h) a driving mechanism that selectively moves the plunger between the first position and the second position; and
- (i) a sensor system that senses if the plunger is in the first position or in the second position.
5. The apparatus of claim 4, wherein the driving mechanism comprises a solenoid.
6. The apparatus of claim 4, wherein the sensor system includes a first micro-switch that includes a first probe in contact with the plunger and a second micro-switch that includes a second probe in contact with the plunger.
7. The apparatus of claim 6, wherein the controller feeds power to the first micro-switch and to the second micro-switch, and wherein the controller receives a first feedback signal from the first micro-switch and wherein the driving mechanism receives feedback from the second micro-switch.
8. The apparatus of claim 7, wherein the controller is programmed to cause the inverter relay to be in the open state when the grid sensor indicates that power is not available from the grid and when the first micro-switch indicates that the first moving contact and the second moving contact are in the closed position.
9. The apparatus of claim 2, further comprising:
- (e) a first power supply that supplies power to the controller from the power grid; and
- (f) a second power supply that supplies power to the controller from the inverter.
10. The apparatus of claim 2, wherein the controller is programmed to cause the grid relay to be in the open state when voltage from the first power supply falls below a predetermined threshold.
11. A system for selectively coupling a load to a grid power source that delivers power on a first grid power line and a second grid power line that is 180° out of phase with the first power line and an inverter that is fed electric power by an alternate power source and that delivers power on a first inverter power line and a second inverter power line that is 180° out of phase with the first power line, comprising:
- (e) a first sub-node, configured to be coupled to a first phase contact of the load and a second sub-node, configured to be coupled to a second phase contact of the load;
- (f) a first grid sensor that senses a state of the first grid power line and a second grid sensor that senses a state of the second grid power line;
- (g) a grid relay that selectively couples the first grid power line to the first sub-node and the second grid power line to the second sub-node;
- (h) an inverter relay that selectively couples the first inverter power line to the first sub-node and the second inverter power line to the second sub-node;
- (i) a controller that receives feedback from the grid relay and is responsive to the grid sensor and that is programmed to: (i) cause the grid relay to couple the first grid power line to the first sub-node and the second grid power line to the second sub-node when the first grid sensor indicates power is available from the first grid power line and from the second grid power line; (ii) cause the grid relay to decouple the first grid power line from the first sub-node and the second grid power line from the second sub-node when the first grid sensor indicates power is not available from the first grid power line and from the second grid power line; and (iii) cause the inverter relay to decouple the first inverter power line from the first sub-node the second inverter power line from the second sub-node when the first grid sensor indicates power is not available from the first grid power line and from the second grid power line and when the feedback from the grid relay indicates that the either the first grid power line is coupled to the first sub-node or the second grid power line is coupled to the second sub-node.
12. The system of claim 11, wherein the alternate power source comprises an alternative power source selected from a list consisting of: a photovoltaic system, a wind power system, a hydroelectric power system, a thermoelectric power system, and combinations thereof.
13. The system of claim 11, wherein the grid relay comprises:
- (e) a housing;
- (f) a first grid contact in a fixed relationship with the housing and a second grid contact in a fixed relationship with the housing;
- (g) a first load contact in a fixed relationship with the housing and a second load contact in a fixed relationship with the housing;
- (h) a first moving contact in a movable relationship with the housing and movable between contacting both the first grid contact and the first load contact, thereby electrically coupling the first grid contact to the first load contact, and not contacting at least one of the first grid contact and the first load contact, thereby electrically decoupling the first grid contact from the first load contact, and a second moving contact in a movable relationship with the housing and movable between contacting both the second grid contact and the second load contact, thereby electrically coupling the second grid contact to the second load contact, and not contacting at least one of the second grid contact and the second load contact, thereby electrically decoupling the second grid contact from the second load contact;
- (i) a state mechanism that forces the first moving contact to electrically couple the first grid contact to the first load contact and simultaneously forces the second moving contact to electrically couple the second grid contact to the second load contact thereby driving the grid relay into the closed state and that forces the first moving contact to electrically decouple couple the first grid contact from the first load contact and simultaneously forces the second moving contact to electrically decouple the second grid contact to the second load contact thereby driving the grid relay into the open state; and
- (j) a sensor system that senses if the plunger is in the first position or in the second position.
14. The system of claim 13, wherein the state mechanism comprises:
- (e) a first spring that pushes the first moving contact toward the first grid contact and the first load contact and a second spring that pushes the first moving contact toward the second grid contact and the second load contact;
- (f) a first arm in sliding relationship along a first direction relative to the housing and coupled to the first moving contact and a second arm in sliding relationship along a second direction relative to the housing and coupled to the second moving contact;
- (g) a plunger that has a first position which allows the first spring to push the first moving contact into a closed position that electrically couples first grid contact to the first load contact and that allows the second spring to push the second moving contact into a closed position that electrically couples second grid contact to the second load contact, the plunger also having a second position which pushes the first moving contact into an open position that electrically decouples first grid contact from the first load contact and that pushes the second moving contact into an open position that electrically decouples second grid contact from the second load contact; and
- (h) a driving mechanism that selectively moves the plunger between the first position and the second position.
15. The system of claim 14, wherein the driving mechanism comprises a solenoid.
16. The system of claim 14, wherein the sensor system comprises a first micro-switch that includes a first probe in contact with the plunger, wherein the controller feeds power to the first micro-switch and wherein the controller receives a first feedback signal from the first micro-switch indicative of whether the first moving contact and the second moving contact are in the open position or the closed position, wherein the controller is programmed to cause the inverter relay decouple the first inverter power line from the first sub-node and the second inverter power line from the second sub-node when the first micro-switch indicates that the first moving contact and the second moving contact are in the closed position when power is not available from the power grid.
17. The system of claim 11, further comprising:
- (e) a first power supply that supplies power to the controller from the power grid; and
- (f) a second power supply that supplies power to the controller from the inverter.
18. The system of claim 11, wherein the controller is programmed to cause the grid relay to decouple the first grid power line from the first sub-node and the second grid power line from the second sub-node when voltage from the first power supply falls below a predetermined threshold.
19. A method of switching a load between a grid power source and an alternative power source, comprising the steps of:
- (e) sensing a state of the grid power source;
- (f) if the sensing step indicates that power is available from the grid power source then coupling both the grid power source and the alternative power source to the load;
- (g) if the sensing step indicates that power is not available from the grid power source then: (i) decoupling the grid power source from the load; (ii) sensing if the grid power source is decoupled from the load after the step of decoupling the grid power source from the load; (iii) if the grid power source is decoupled from the load, then coupling the alternative power source to the load; and (iv) if the grid power source is coupled to the load, then decoupling the alternative power source from the load.
20. The method of claim 19, wherein the sensing step comprises the steps of:
- (e) sensing a voltage from the grid power source; and
- (f) determining that power is not available when the voltage from the grid power source falls below a predetermined threshold.
5027051 | June 25, 1991 | Lafferty |
5270636 | December 14, 1993 | Lafferty |
6188145 | February 13, 2001 | Stewart |
6914418 | July 5, 2005 | Sung |
7843085 | November 30, 2010 | Ledenev et al. |
7929327 | April 19, 2011 | Haines |
20050077879 | April 14, 2005 | Near |
20090152947 | June 18, 2009 | Wang |
20110115295 | May 19, 2011 | Moon |
20110133558 | June 9, 2011 | Park |
20110148205 | June 23, 2011 | Moon |
20120044014 | February 23, 2012 | Stratakos et al. |
20120098350 | April 26, 2012 | Campanella et al. |
20140084687 | March 27, 2014 | Dent |
20160164295 | June 9, 2016 | Cheng et al. |
20170264212 | September 14, 2017 | Muguerza Olcoz et al. |
20170317501 | November 2, 2017 | Moriyama |
- WIPO: “Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration”; PCT dated Feb. 8, 2019.
- Maehlum, Mathias Aarre: “Grid-Tied, Off-Grid and Hybrid Solar Systems”, Aug. 14, 2013, Energy Informative (downloaded from http://energyinformative.org/grid-tied-off-grid-and-hybrid-solar-systems/).
Type: Grant
Filed: Nov 29, 2017
Date of Patent: Dec 3, 2019
Patent Publication Number: 20190165603
Inventor: Mark Matyac (Lawrenceville, GA)
Primary Examiner: Jared Fureman
Assistant Examiner: Duc M Pham
Application Number: 15/825,644
International Classification: H02J 9/06 (20060101);