Liquid cartridge
A liquid cartridge includes a liquid chamber with a liquid outlet configured to supply the liquid from an interior of the chamber to an exterior of the chamber. An actuator is movable between a first position in which the liquid outlet is closed, and a second position in which the liquid outlet is open. A detector is positioned in the chamber, and is movable from a restricted position to a released position in response to movement of the actuator from the first to the second position. The detector is movable from the released position to the restricted position in response to movement of the actuator from the second to the first position.
Latest BROTHER KOGYO KABUSHIKI KAISHA Patents:
- PRINTING APPARATUS, PRINTING METHOD, AND NON-TRANSITORY AND COMPUTER-READABLE MEDIUM STORING COMPUTER PROGRAM
- IMAGE FORMING APPARATUS INCLUDING TONER CARTRIDGE THAT IS DETACHABLE FROM HOUSING WITH DRUM CARTRIDGE KEPT ATTACHED TO HOUSING
- Image recording device, method of controlling image recording device, and non-transitory computer-readable recording medium therefor
- Drum cartridge including drum contact movable in accordance with attachment of drum cartridge to main frame
- Printing apparatus and printing system for preventing undesired cancellation of printing
This application is a continuation of U.S. patent application Ser. No. 15/009,890, filed Jan. 29, 2016, and further claims priority from Japanese Patent Application Nos. 2015-066105, filed on Mar. 27, 2015, 2015-066106, filed on Mar. 27, 2015, and 2015-066110, filed on Mar. 27, 2015, each of which is incorporated herein by reference in its entirety.
TECHNICAL FIELDAspects described herein relate to a liquid cartridge storing liquid whose viscosity is changeable over time.
BACKGROUNDA known inkjet recording apparatus records an image on a recording medium by ejecting ink stored in an ink tank from nozzles. In such an inkjet recording apparatus, a change in viscosity of ink stored in the ink tank may cause clogging in the nozzles and/or deterioration of image recording quality.
In order to avoid an occurrence of such problems, the inkjet recording apparatus calculates the viscosity of ink stored in the ink tank and performs an appropriate preliminary discharge in accordance with the result of the ink viscosity calculation. More specifically, the inkjet recording apparatus calculates the ink viscosity based on an amount of ink remaining in the ink tank and a time elapsed from placement of the ink tank in the inkjet recording apparatus.
SUMMARYIn accordance with aspects of the present disclosure, an example liquid cartridge includes a liquid chamber with a liquid outlet configured to supply liquid from an interior of the liquid chamber to an exterior of the liquid chamber. An actuator is movable between a first position in which the liquid outlet is closed, and a second position in which the liquid outlet is open. A detector is positioned in the chamber, and is movable from a restricted position to a released position in response to movement of the actuator from the first to the second position. Further, the detector is movable from the released position to the restricted position in response to movement of the actuator from the second to the first position.
Aspects of the disclosure are illustrated by way of example and not by limitation in the accompanying figures in which like reference characters indicate similar elements.
Hereinafter, various illustrative embodiments will be described in detail with reference to the accompanying drawings, wherein like reference numerals represent like parts and assemblies throughout the several views. Reference to various embodiments does not limit the scope of the claims attached hereto. Additionally, any example set forth in the specification are not intended to be limiting and merely set forth some of the many possible embodiments for the appended claims. Throughout the specification, a threshold range might not necessarily have upper and lower limits that are both specified but may need to have at least one specified limit (e.g., a specified upper limit or a specified lower limit). For example, when the threshold range has a specified upper limit, the threshold range may include all values that are smaller than or equal to the upper limit. Similar to this, when the threshold range has a specified lower limit, the threshold range may include all values that are greater than or equal to the lower limit. In the description below, a direction that an ink cartridge 30 is inserted into a cartridge holder 110 may be defined as an insertion direction 51. A direction that is opposite to the insertion direction 51 and that an ink cartridge 30 is removed from the cartridge holder 110 may be defined as a removal direction 52. In the illustrative embodiments, the insertion direction 51 and the removal direction 52 both may be the horizontal direction but might not be limited thereto. In a state where an ink cartridge 30 is completely placed in the cartridge holder 110, e.g., in a state where the ink cartridge 30 is in a use position, the gravity direction may be defined as a downward direction 53 and a direction opposite to the gravity direction may be defined as an upward direction 54. Directions orthogonal to the insertion direction 51 and the downward direction 53 may be defined as a rightward direction 55 and a leftward direction 56 when viewed in the removal direction 52. Unless otherwise defined, it is assumed that an ink cartridge 30 is in the use position.
The degree of the change in ink viscosity of ink contained in an ink cartridge may differ greatly depending on, for example, an ink type and/or the temperature of an environment where an ink tank is stocked. Known inkjet recording apparatuses might not be capable of calculating the viscosity of ink stored in an ink tank that has been left and not been attached to the inkjet recording apparatus. Accordingly, some embodiments of the disclosure provide for a liquid cartridge that may enable direct estimation of viscosity of liquid stored in a storage chamber thereof.
[Overview of Printer 10]
As depicted in
An ink cartridge 30 stores ink (as an example of liquid) to be used in the printer 10. In a state where the ink cartridge 30 is completely placed in the cartridge holder 110, the ink cartridge 30 and the recording head 21 are connected with each other via the ink tube 20. The recording head 21 includes a sub tank 28. The sub tank 28 is configured to temporarily store therein ink supplied from the ink cartridge 30 through the ink tube 20. The recording head 21 ejects ink, which is supplied from the sub tank 28, from nozzles 29 selectively. For example, the recording head 21 further includes a head control board 17A. The head control board 17A applies drive voltage selectively to piezoelectric elements 29A provided for the respective nozzles 29, whereby ink is ejected from appropriate nozzles 29 selectively.
In the printer 10, a feed roller 23 feeds one or more recording sheets one by one from a feed tray 15 into a conveying path 24. A conveyor roller pair 25 further conveys the recording sheet onto a platen 26. The recording head 21 selectively ejects ink onto the recording sheet that is passing over the platen 26, thereby recording an image onto the recording sheet. A discharge roller pair 27 then discharges the recording sheet, which has passed over the platen 26, onto a discharge tray 16 disposed at a downstream end of the conveying path 24.
[Ink Supply Unit 100]
As depicted in
In
[Ink Needles 102]
As depicted in
The printer 10 further includes a cover (not depicted) that is configured to selectively cover and expose the opening 112 of the cartridge holder 110. The cover is supported by one of the casing 101 and a housing (not depicted) of the printer 10 such that the cover is capable of being opened and closed relative to the cartridge holder 110. When the cover is opened, the opening 112 is exposed to the outside of the printer 10. In this state, a user is allowed to insert or remove one or more ink cartridges 30 into or from the cartridge holder 110 through the opening 112. When the cover is closed, the opening 112 is covered by the cover and thus is not exposed to the outside of the printer 10. In this state, the user is not allowed to insert or remove any ink cartridge 30 into or from the cartridge holder 110.
Throughout the description, an ink cartridge 30 placed in the cartridge holder 110 refers to as an ink cartridge 30, at least a portion of which is located in the cartridge holder 110 (more specifically, in the casing 101). Therefore, an ink cartridge 30 placed in the cartridge holder 110 includes an ink cartridge 30 that is being inserted into the cartridge holder 110.
A state where an ink cartridge 30 is completely placed in the cartridge holder 110 refers to a state where an ink cartridge 30 is at least able to supply ink to the recording head 21 therefrom. For example, the completely placed state includes a state where an ink cartridge 30 is in a particular state that enables the printer 10 to perform image recording, e.g., a state where an ink cartridge 30 is retained so as not to move relative to the cartridge holder 110 or a state where an ink cartridge 30 is located inside the cartridge holder 110 with the cover of the cartridge holder 110 closed. When an ink cartridge 30 is completely placed in the cartridge holder 110, the ink cartridge 30 is in the use position.
[Sensors 103]
As depicted in
The sensor 103 is configured to output different detection signals according to whether light outputted from the light emitting portion has been received or not by the light receiving portion. For example, when the light receiving portion has not received light emitted from the light emitting portion (e.g., when intensity of received light is lower than a predetermined intensity), the sensor 103 outputs a low-level signal (e.g., a signal having a level lower than a threshold level). When the light receiving portion has received light outputted from the light emitting portion (e.g., when the intensity of received light is higher than or equal to the predetermined intensity), the sensor 103 outputs a high-level signal (e.g., a signal having a level higher than or equal to the threshold level). In the illustrative embodiment, the light emitting portion emits light (e.g., visible light or infrared light) that is capable of passing through walls of the raised portion 37 (e.g., a frame 31) of the ink cartridge 30 but is not capable of passing through ink stored in the ink cartridge 30. All of the sensors 103 provided for the ink cartridges 30 of the respective colors have the same or similar configuration and function in the same or similar manner to each other.
[Cartridge Sensors 107]
As depicted in
For example, when the cartridge sensor 107 is not pressed by a front end 58 of a cartridge cover 33 of an ink cartridge 30 placed in the cartridge holder 110, the cartridge sensor 107 outputs a low-level signal. When the cartridge sensor 107 has been pressed by the front end 58 of the cartridge cover 33, the cartridge sensor 107 outputs a high-level signal. In the illustrative embodiment, the cartridge sensor 107 may be a mechanical sensor that is configured to output different detection signals according to whether the cartridge sensor 107 has been pressed by the front end 58 of the cartridge cover 33. Nevertheless, in other embodiments, an optical sensor may be used as a cartridge sensor 107. All of the cartridge sensors 107 provided for the ink cartridges 30 of the respective colors have the same or similar configuration and function in the same or similar manner to each other.
[Ink Cartridges 30]
All ink cartridges 30 to be placed in the cartridge holder 110 have the same or similar configuration and function in the same or similar manner to each other. Therefore, one of the ink cartridge 30 will be described in detail. As depicted in
In the illustrative embodiment, the cartridge cover 33 allows the raised portion 37 and the ink outlet 60 of the ink tank 32 to protrude to the outside of the cartridge cover 33 through the opening 34 and the opening 35, respectively. Nevertheless, in other embodiments, for example, the cartridge cover 33 may also expose another portion of the ink tank 32 to the outside of the cartridge cover 33 as well as the raised portion 37 and the ink outlet 60.
As depicted in
As depicted in
The upper wall 39 connects between an upper end of the front wall 40 and an upper end of the rear wall 41. The lower wall 42 connects between a lower end of the front wall 40 and a lower end of the rear wall 41. The raised portion 37 protrudes in the upward direction 54 from the upper wall 39. At least the upper wall 39 including the raised portion 37 allows light emitted from the light emitting portion of the sensor 103 to pass therethrough.
The frame 31 has open ends in the right-left direction 5556. The right and left open ends of the frame 31 are sealed by respective films (not depicted). The film for sealing the right open end of the frame 31 has a shape that corresponds to an outline of the frame 31 when viewed in the rightward direction 55. The film for sealing the left open end of the frame 31 has a shape that corresponds to an outline of the frame 31 when viewed in the leftward direction 56. The films constitute right and left walls, respectively, of the ink chamber 36. The films are adhered to right and left ends, respectively, of the upper wall 39, the front wall 40, the rear wall 41, and the lower wall 42 by heat to close the right and left open ends of the ink chamber 36 tightly. Therefore, the ink chamber 36 is defined by the upper wall 39, the front wall 40, the rear wall 41, the lower wall 42, and the films and thus is capable of storing ink therein.
The ink tank 32 further includes a projection 48 inside the frame 31. The projection 48 extends from the first inner wall 43 in the rightward direction 55. A detector 59 is disposed inside the ink chamber 36. The projection 48 supports the detector 59.
[Ink Chamber 36]
As depicted in
[Ink Outlet 60]
As depicted in
The cylindrical wall 46 extends between the inside of the ink chamber 36 and the outside of the ink chamber 36. The cylindrical wall 46 has an opening 46A and an opening 46B (as an example of a liquid outlet) at opposite ends in an insertion-removal direction 5152. More specifically, the cylindrical wall 46 has the opening 46A at one end that faces the direction toward which the ink cartridge 30 is removed (e.g., at one end that is located inside the ink chamber 36). The cylindrical wall 46 has the opening 46B at the other end that faces the direction the ink cartridge 30 is inserted (e.g., at the other end that is located outside the ink chamber 36 (e.g., an exposed end)). With this configuration, the ink chamber 36 is in communication with the outside of the ink cartridge 30 through the valve chamber 47. Thus, the ink outlet 60 allows ink stored in the ink chamber 36 to flow to the outside of the ink cartridge 30. The exposed end, e.g., a distal end, of the cylindrical wall 46 is attached with the sealer 76 and the cap 79.
As depicted in
The second air communication passage 67 allows air to flow therethrough between the valve chamber 47 and the ink chamber 36. The second air communication passage 67 has a hole 67A, a groove 67B, and a hole 67C. The hole 67A provides communication between the inside and the outside of the cylindrical wall 46. The groove 67B has one end that is communication with the hole 67A. The hole 67C provides communication between the other end of the groove 67B and the ink chamber 36. The hole 67A is spaced from the hole 66A in the removal direction 52. The hole 67C is defined at a particular position that is higher than a level of ink stored in an ink chamber 36 of a not-yet-used ink cartridge 30. For example, the hole 67C is defined at a position that is higher than a level of the maximum amount of ink that the ink chamber 36 is capable of storing. The first air communication passage 66 and the second air communication passage 67 are liquid tightly sealed by the film constituting the right wall of the ink cartridge 30.
As depicted in
The cap 79 is fitted over the exposed end of the cylindrical wall 46. The cap 79 and the cylindrical wall 46 sandwiches the sealer 76 therebetween. The cap 79 has a through hole 69 at a substantially middle portion thereof. The through hole 69 penetrates the cap 79 in a thickness direction of the cap 79. The through hole 69 has a diameter that is greater than a diameter of the through hole 68. The cap 79 includes an engagement portion (not depicted) protruding in the removal direction 52. The engagement portion of the cap 79 is in engagement with an engagement portion 81 of the front wall 40. The cap 79 retains the sealer 76 at the exposed end of the cylindrical wall 46.
[Valve 77, Sealing Member 78, and Coil Spring 87]
As depicted in
The valve 77 includes a circular plug 83, a rod 84, a plurality of first protrusions 85, and a plurality of second protrusions 86. The rod 84 extends from the plug 83 in the removal direction 52. The first protrusions 85 and the second protrusions 86 protrude from the rod 84 in respective directions with respect to a diameter direction of the rod 84. The valve 77 is disposed within the valve chamber 47 while the plug 83 is oriented toward the exposed end of the cylindrical wall 46. In this state, the valve 77 is movable selectively in the insertion direction 51 or in the removal direction 52. A distal end of the rod 84 that is opposite to the end connected with the plug 83 protrudes to the ink chamber 36 beyond the valve chamber 47. That is, the valve 77 extends between the ink outlet 60 and the ink chamber 36. Nevertheless, in other embodiments, for example, the rod 84 might not necessarily protrude to the ink chamber 36 beyond the valve chamber 47. In this case, the valve 77 may be disposed within the ink outlet 60.
The valve 77 has an outside diameter that is smaller than the inside diameter of the cylindrical wall 46. Thus, the valve 77 is capable of moving selectively in the insertion direction 51 and in the removal direction 52. For example, the valve 77 is capable of moving between a first position (e.g., a position of the valve 77 depicted in
The plug 83 has an outside diameter that is slightly larger than the diameter of the through hole 68 of the sealer 76. With this configuration, as depicted in
The rod 84 has an outside diameter that is smaller than the outside diameter of the plug 83.
The plurality of first protrusions 85 includes four first protrusions 85 that are spaced apart from each other in a circumferential direction of the rod 84. The plurality of second protrusions 86 includes four second protrusions 86 that are spaced apart from each other in the circumferential direction of the rod 84. The plurality of first protrusions 85 is spaced from the plurality of second protrusions 86 in the insertion direction 51 and is disposed adjacent to the plug 83 in the removal direction 52.
The sealing member 78 may be made of an elastic material, for example, rubber. As depicted in
The cylindrical portion 95 is disposed between the plurality of first protrusions 85 and the plurality of second protrusions 86 while having the rod 84 of the valve 77 inserted therethrough. The cylindrical portion 95 has an inside diameter that is larger than the outside diameter of the rod 84. Therefore, in a state where the rod 84 penetrates the cylindrical portion 95, clearance is left between the cylindrical portion 95 and the rod 84. An empty space inside the cylindrical portion 95 is exposed through a gap between each adjacent two of the first protrusions 85 and a gap between each adjacent two of the second protrusions 86. With this configuration, the empty space inside the cylindrical portion 95 provides communication therethrough between a space of the valve chamber 47 leading to the opening 46A and another space of the valve chamber 47 leading to the opening 46B.
The cylindrical portion 95 includes one end that is in contact with the plurality of first protrusions 85 and the other end that is in contact with the plurality of second protrusions 86. With this configuration, the sealing member 78 is capable of moving together with the valve 77 within the valve chamber 47 selectively in the insertion direction 51 and in the removal direction 52.
The first sealing portion 96 is spaced from the second sealing portion 97 in the insertion direction 51.
The first sealing portion 96 and the second sealing portion 97 hermetically and closely contact the inner surface of the cylindrical wall 46. In a state where the sealing member 78 is not disposed in the valve chamber 47, an outside diameter of each of the first sealing portion 96 and the second sealing portion 97 is slightly larger than the inside diameter of the cylindrical wall 46. Therefore, in a state where the sealing member 78 is disposed in the valve chamber 47, the first sealing portion 96 and the second sealing portion 97 are in hermetical contact with the inner surface of the cylindrical wall 46 while being elastically deformed in a direction such that the first sealing portion 96 and the second sealing portion 97 decrease their outside diameter. As the valve 77 moves in the insertion-removal direction 5152, the first sealing portion 96 and the second sealing portion 97 slide relative to the inner surface of the cylindrical wall 46.
The coil spring 87 is disposed between the opening 46A and the plurality of second protrusions 86. The coil spring 87 urges the valve 77 in the insertion direction 51. For example, the coil spring 87 urges the valve 77 toward the first position from the second position. Thus, in the valve chamber 47, the valve 77 is retained while being in contact with the sealer 76 (refer to
[Detector 59]
As depicted in
As depicted in
The axial portion 61 is spaced from the second inner wall 44 in the insertion direction 51. The first arm 71 extends from the axial portion 61 in one direction with respect to the diameter direction of the axial portion 61. The second arm 72 extends from the axial portion 61 in another direction with respect to the diameter direction of the axial portion 61 so as to extend in a different direction from the direction that the first arm 71 extends. The second arm 72 extends in the removal direction 52 from the axial portion 61 beyond the second inner wall 44 through a recess 45 of the second inner wall 22. The recess 45 is recessed in the leftward direction 56 relative to a right end of the second inner wall 44. The third arm 73 extends from the axial portion 61 in other direction with respect to the diameter direction of the axial portion 61 so as to extend in a different direction from the directions that the first arm 71 and the second arm 72 extend respectively. The third arm 73 is shorter in length than the second arm 72.
The detection portion 62 is disposed at a distal end of the first arm 71 and is supported by the first arm 71. For example, the detection portion 62 is supported by the first arm 71 outside a surrounded area 154 that is defined by the first inner wall 43, the second inner wall 44, and the third inner wall 153. The detection portion 62 has a plate-like shape. The detection portion 62 may be made of material that blocks light outputted from the light emitting portion. The detection portion 62 is supported by the first arm 71 while being spaced from the axis of the detector 59 by a distance L1 (refer to
More specifically, when light outputted from the light emitting portion reaches one of a right surface and a left surface of the detection portion 62, the intensity of light that comes from the other of the right surface and the left surface of the detection portion 62 and reaches the light receiving portion may be less than a predetermined intensity, e.g., zero. For example, the detection portion 62 may completely block light from traveling in one of the rightward direction 55 and the leftward direction 56 therefrom, may absorb light partially, may deflect light to change the optical path of light, or may reflect the light completely. In one example, the detection portion 62 may be made of resin containing pigment. In another example, the detection portion 62 may be transparent or translucent and have a prism-like shape for changing the optical path of light. In other example, the detection portion 62 may have a reflecting film, e.g., an aluminum film, on its surface.
The float 63 is disposed at a distal end of the second arm 72 and is supported by the second arm 72. The float 63 may be made of material having a lower specific gravity than ink stored in the ink chamber 36. The float 63 is disposed within the surrounded area 154. For example, the second inner wall 44 is disposed between the float 63 and the axial portion 61 in the insertion-removal direction 5152, and no member is present between the float 63 and the lower wall 42 in the up-down direction 5453. While ink stored in the surrounded area 154 is present between the float 63 and the lower wall 42 in the up-down direction 5453, the float 63 and the lower wall 42 face each other with no member nor component interposed therebetween in the up-down direction 5453. The float 63 is supported by the second arm 72 while being spaced apart from the axis of the detector 59 by a distance L2 that is shorter than the distance L1 (refer to
The restriction portion 64 is disposed at a distal end of the third arm 73. The restriction portion 64 constitutes a portion of the third arm 73 and includes the distal end of the third arm 73. The restriction portion 64 has a flat surface at the distal end of the third arm 73. The restriction portion 64 is configured to contact and separate from a restriction member 88. In other embodiments, for example, the restriction portion 64 and the third arm 73 may be separate parts. In this case, the restriction portion 64 may be supported by the third arm 73.
The detector 59 is disposed inside the ink chamber 36 while the first arm 71 extends substantially in the upward direction 54, the second arm 72 extends substantially in the removal direction 52, and the third arm 73 extends substantially in the insertion direction 51. As depicted in
The detector 59 is movable (e.g., rotatable) between a released position (e.g., a position of the detector 59 depicted in
[Restriction Member 88]
As depicted in
As depicted in
The first portion 89 extends in the downward direction 53 from the projecting portion 91 of the second portion 90. The first portion 89 has a through hole 92 defined in its distal end portion. The through hole 92 penetrates the first portion 89 in the insertion-removal direction 5152. The valve 77 includes an engagement projection 77A at the other end that is opposite to the end including the plug 83. The engagement projection 77A of the valve 77 is disposed in the through hole 92 by insertion. The through hole 92 has a diameter that is slightly smaller than a diameter of the engagement projection 77A. Therefore, the engagement projection 77A and the through hole 92 are in engagement with each other, whereby the first portion 89 of the restriction member 88 is engagement with the valve 77. With this configuration, as the valve 77 moves in one of the insertion direction 51 and the removal direction 52, the restriction member 88 moves in the same direction (e.g., selectively in the insertion direction 51 and in the removal direction 52) together with the valve 77.
The restriction member 88 is movable between a restrict position (e.g., a position of the restriction member 88 depicted in
When the restriction member 88 is located at the restrict position, an upwardly-facing surface of the projecting portion 91 of the second portion 90 of the restriction member 88 is in contact with the restriction portion 64 from below of the restriction portion 64 and exerts an upward force to the restriction portion 64. Thus, the detector 59 is restricted from rotating in a direction of an arrow 74 (refer to
When the restriction member 88 is located at the release position, the projecting portion 91 of the second portion 90 of the restriction member 88 is located separate from the restriction portion 64 of the detector 59 in the removal direction 52. Therefore, the detector 59 is permitted to rotate in the direction of the arrow 74. That is, the detector 59 is permitted to rotate from the restricted position to the released position.
[Controller 130]
The printer 10 includes a controller 130. As depicted in
The controller 130 drives a motor (not depicted) to rotate the feed roller 23, the conveyor roller pair 25, and the discharge roller pair 27. The controller 130 controls the recording head 21 to cause the nozzles 29 to eject ink therefrom. For example, the controller 130 outputs a control signal to the head control board 17A. The control signal indicates a level of a drive voltage to be applied to the piezoelectric elements 29A. The head control board 17A applies a drive voltage specified by the control signal obtained from the controller 130 to the piezoelectric elements 29A provided for the respective nozzles 29, thereby causing the nozzles 29 to eject ink therefrom. The controller 130 controls a display 109 to display information of the printer 10 and one or more ink cartridges 30, and various messages thereon.
The controller 130 receives various signals: a detection signal outputted from the sensor 103, a detection signal outputted from the cartridge sensor 107, a signal outputted from a temperature sensor 106, and a signal outputted from a cover sensor 108. The temperature sensor 106 is configured to output a signal in accordance with the temperature. A measuring point where the temperature sensor 106 measures the temperature is not limited to a particular point. For example, the temperature sensor 106 may measure the temperature at any point inside the cartridge holder 110 or at any point of the exterior of the printer 10. The cover sensor 108 is configured to output different signals according to whether the cover closes or exposes the opening 112 of the cartridge holder 110.
[Placement/Removal of Ink Cartridge 30 to/from Cartridge Holder 110]
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, and the detector 59 behave in a process of placing the ink cartridge 30 to the cartridge holder 110. In the description below, it is assumed that an amount of ink remaining in the ink chamber 36 is more than the amount of ink remaining in the ink chamber 36 in a near-empty state.
In a state where the ink cartridge 30 is not placed in the cartridge holder 110, the valve 77 is located at the first position due to the urging force of the coil spring 87 as depicted in
When the valve 77 is located at the first position, the valve 77 is in contact with the sealer 76 by the urging force of the coil spring 87. In this state, the plug 83 is in tight contact with the edge of the through hole 68 of the sealer 76. Thus, the through hole 68 is closed, whereby ink is not allowed to flow to the outside of the ink cartridge 30 from the ink chamber 36.
When the valve 77 is located at the first position, the hole 66A is located between the first sealing portion 96 and the second sealing portion 97. Therefore, the second sealing portion 97 blocks the communication between the first air communication passage 66 and the second air communication passage 67. Thus, the ink chamber 36 is maintained at a negative pressure.
When the valve 77 is located at the first position, the restriction member 88 is located at the restrict position. When the restriction member 88 is located at the restrict position, the detector 59 is located at the restricted position. Due to buoyant force of the float 63, a force that tends to rotate the detector 59 in the direction of the arrow 74 acts on the detector 59. Thus, a force that tends to move the restriction portion 64 in the downward direction 53 acts on the restriction portion 64. In this state, the projecting portion 91 of the restriction member 88 is in contact with the restriction portion 64 of the detector 59 from below the restriction portion 64. When the restriction portion 64 is located in the restrict position, the restriction portion 64 is located in a movable range of the restriction member, and located downstream of the projecting portion 91 in the rotating direction of the detector 59. Thus, when the restriction member 88 is located at the restrict position, the restriction member 88 applies, to the restriction portion 64, an external force that acts in a direction opposite to the direction of the arrow 74, which may be the rotating direction of the detector 59 toward the released position. In other words, when the restriction member 88 is located at the release position, the restriction portion 64 is located within a movable range of the restriction member 88. When the restriction member 88 is located at the restrict position, the restriction member 88 is positioned on a moving route of the restriction portion 64. Therefore, the restriction portion 64 is not permitted to move into the inside of the movable range of the restriction member 88. Accordingly, the detector 59 is restricted from rotating from the restricted position.
In the illustrative embodiment, the restriction member 88 comes into contact with the restriction portion 64 from below to restrict the detector 59 from moving to the released position. Nevertheless, in other embodiments, for example, the projecting portion 91 of the restriction member 88 may come into contact with the restriction portion 64 by moving in the removal direction 52, to restrict the detector 59 from rotating from the restricted position.
When the detector 59 is located at the restricted position, the float 63 is located near the lower wall 42. That is, the float 63 is submerged in ink stored in the ink chamber 36.
When the detector 59 is located at the restricted position, the detection portion 62 is not located between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is allowed to reach the light receiving portion. Thus, when the detector 59 is located at the restricted position, the sensor 103 outputs a high-level signal to the controller 130.
While the ink cartridge 30 is not placed at a particular position in the cartridge holder 110, a corresponding cartridge sensor 107 is free from pressure of the front end 58 of the cartridge cover 33 of the ink cartridge 30. Therefore, the cartridge sensor 107 outputs a low-level signal to the controller 130.
In this state, the cover of the cartridge holder 110 is opened and then the ink cartridge 30 is inserted into the cartridge holder 110. That is, the ink cartridge 30 is placed at the particular portion in the cartridge holder 110. In other words, the ink cartridge 30 becomes in the use position.
When the ink cartridge 30 reaches a vicinity of the inner back surface 151 of the cartridge holder 110 by its movement in the insertion direction 51, the front end 58 of the cartridge cover 33 of the ink cartridge 30 presses the corresponding cartridge sensor 107 facing thereto. In response to this, the cartridge sensor 107 outputs a high-level signal to the controller 130. Thus, counting for measuring a moving time of the detector 59 is started.
When the ink cartridge 30 reaches a vicinity of the inner back surface 151 of the cartridge holder 110 by its movement in the insertion direction 51, the plug 83 of the valve 77 comes into contact with a corresponding ink needle 102. In this state, as the ink cartridge 30 further moves in the insertion direction 51, the valve 77 is pressed by a reaction force from the ink needle 102. Thus, the valve 77 moves in the removal direction 52 from the first position to the second position against the urging force of the coil spring 87.
As depicted in
When the valve 77 is located at the second position, both of the holes 66A and 67A are located between the first sealing portion 96 and the second sealing portion 97. Thus, the first air communication passage 66 and the second air communication passage 67 are in communication with each other. Accordingly, the ink chamber 36 comes into communication with the outside air, whereby the inside pressure of the ink chamber 36 changes from a negative pressure to the atmospheric pressure.
As the valve 77 moves in the removal direction 52 from the first position to the second position, the restriction member 88 moves in the removal direction 52 together with the valve 77. For example, the restriction member 88 moves from the restrict position to the release position, whereby the projecting portion 91 of the restriction member 88 separates from the restriction portion 64 of the detector 59. Thus, the detector 59 becomes free to rotate from the restricted position.
As the detector 59 becomes free to rotate, the detector 59 rotates in a direction of an arrow 75 (e.g., a direction that the float 63, which has been kept submerged in ink, comes up by its buoyant force). That is, the detector 59 rotates from the restricted position to the released position by the float 63 that moves upward in response to the movement of the restriction member 88 to the release position while the ink cartridge 30 is in the use position (e.g., while the ink cartridge 30 is completely placed in the cartridge holder 110).
When the detector 59 is located at the released position, the restriction portion 64 is located within the movable range of the restriction member 88.
The float 63 is movable in the upward direction 54, e.g., in the direction of the arrow 75, by its buoyant force. For example, the float 63 is movable in a direction away from the opening 155 defined in a lower end of the second inner wall 44. The float 63 keeps moving in the direction of the arrow 75 until the second arm 72 comes into contact with a surface 156A (refer to
When the detector 59 is located at the released position, the detection portion 62 is located between the light emitting portion and the light receiving portion of the sensor 103, thereby blocking light outputted from the light emitting portion from reaching the light receiving portion. Thus, when the detector 59 is located at the released position, the sensor 103 outputs a low-level signal to the controller 130. For example, the sensor 103 outputs a low-level signal (as an example of a detection signal) indicating the presence of the detector 59 at the released position. Thus, the counting for measuring the moving time of the detector 59 is ended. Through this process, the ink cartridge 30 is completely placed in the cartridge holder 110.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, and the detector 59 behave in a process of removing the ink cartridge 30 from the cartridge holder 110. In the description below, it is assumed that the amount of ink remaining in the ink chamber 36 is more than the amount of ink remaining in the ink chamber 36 in the near-empty state.
As depicted in
As the ink cartridge 30 moves in the removal direction 52 for removing the ink cartridge 30 from the cartridge holder 110, the valve 77 separates from the ink needle 102, whereby the valve 77 moves from the second position to the first position by the urging force of the coil spring 87. As the valve 77 moves from the second position to the first position, the restriction member 88 moves together with the valve 77 from the release position to the restrict position. While the restriction member 88 moves from the release position to the restrict position, the projecting portion 91 of the restriction member 88 comes into contact with the restriction portion 64 of the detector 59 that is located at the released position within the movable range of the restriction member 88. For example, a surface that extends intersecting the surface of the restriction portion 64 that is in contact with the projecting portion 91 of the restriction member 88 at the restrict position comes into contact with the surface of the restriction member 88 facing the direction toward which the ink cartridge 30 is inserted, whereby the restriction portion 64 is pressed toward the restricted position from the released position by the projecting portion 91. Thus, the detector 59 rotates in the direction opposite to the direction of the arrow 74 (refer to
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, and the detector 59 behave as the amount of ink remaining in the ink chamber 36 decreases due to consumption of ink in the recording head 21 after the ink cartridge 30 is completely placed in the cartridge holder 110.
Ink stored in the ink chamber 36 decreases due to consumption of ink by ink ejection from the nozzles 29 of the recording head 21 and thus the ink level becomes lower than a portion of the float 63. In a state where the ink level is lower than the portion of the float 63, the float 63 moves downward with the ink level lowering. In accordance with the downward movement of the float 63, the detector 59 rotates in the direction reverse to the direction of the arrow 74 (refer to
In one example, the detection portion 62 may be defined as described below. It is assumed that there are a point A and a point B in a line along the right-left direction 5556. The point A emits light, e.g., visible light or infrared light, toward the point B, and the emitted light travels in one of the rightward direction 55 and the leftward direction 56. The intensity of the emitted light at the point B without any obstruction is defined as light intensity I. In a state where the detection portion 62 is located between the point A and the point B in the right-left direction 5556, when an amount of ink stored in the ink chamber 36 is a predetermined amount or more, light that is emitted from the point A and travels in one of the rightward direction 55 and the leftward direction 56 reaches one of a right surface and a left surface of the detector 59. In this case, the intensity of light that comes out from the other of the right surface and the left surface of the detector 59 and reaches the point B may be lower than a half of the light intensity I, e.g., zero. In the state where the detection portion 62 is located between the point A and the point B in the right-left direction 5556, when the amount of ink stored in the ink chamber 36 is less than the predetermined amount, light that is emitted from the point A and travels in one of the rightward direction 55 and the leftward direction 56 reaches one of the right surface and the left surface of the detector 59. In this case, the intensity of light that is emitted from the other of the right surface and the left surface of the detector 59 and reaches the point B may be a half of the light intensity I or higher.
For example, the light-emitting portion of the sensor 103 is disposed at the point A and the light-receiving portion of the sensor 103 is disposed at the point B. The light-receiving portion of the sensor 103 may be, for example, a phototransistor. It is assumed that a value of a collector current of the phototransistor when the intensity of light that reaches the phototransistor without any obstruction is equal to the light intensity I is defined as value C. In a state where the detection portion 62 is located between the point A and the point B in the right-left direction 5556, when the amount of ink stored in the ink chamber 36 is a predetermined amount or more, light that is emitted from the point A and travels in one of the rightward direction 55 and the leftward direction 56 reaches one of the right surface and the left surface of the detector 59. In this case, the value of the collector current of the phototransistor when light that comes out from the other of the right surface and the left surface of the detector 59 and reaches the point B may be smaller than a half of the value, e.g., zero. In the state where the detection portion 62 is located between the point A and the point B in the right-left direction 5556, when the amount of ink stored in the ink chamber 36 is less than the predetermined amount, light that is emitted from the point A and travels in one of the rightward direction 55 and the leftward direction 56 reaches one of the right surface and the left surface of the detector 59. In this case, the value of the collector current of the phototransistor when light that comes out from the other of the right surface and the left surface of the detector 59 and reaches the point B may be a half of the value C or greater.
[Ink Viscosity Abnormality Determination by Controller 130]
The controller 130 executes processing for determining whether an abnormality is present or absence in viscosity of ink stored in the ink chamber 36 of the ink cartridge 30. Referring to flowcharts of
When the controller 130 determines that the detection signal outputted from the cartridge sensor 107 has been changed from a low-level signal to a high-level signal (e.g., YES in step S11), the controller 130 starts counting to measure a moving time of the detector 59 (e.g., step S12). The controller 130 refers to the detection signal at predetermined intervals. When the controller 130 determines that the level of the detection signal referred at a particular timing is different from the level of the detection signal referred last time, the controller 130 determines that the detection signal outputted from the cartridge sensor 107 has been changed. When the controller 130 determines that the detection signal outputted from the cartridge sensor 107 has not been changed from a low-level signal to a high-level signal (e.g., NO in step S11), the controller 130 executes processing of step S20. For example, when a new ink cartridge 30 is not placed in the cartridge holder 110, the controller 130 determines that the detection signal outputted from the cartridge sensor 107 has been changed from a low-level signal to a high-level signal (e.g., NO in step S11).
Subsequent to step S12, the controller 130 determines whether the time elapsed since the measurement of the moving time was started exceeds a predetermined maximum time (e.g., step S13). When the controller 130 determines that the elapsed time already exceeds the predetermined maximum time (e.g., YES in step S13), the controller 130 executes processing of step S15. For example, when the viscosity of ink stored in the ink chamber 36 is relatively extremely high, the controller 130 determines that the elapsed time already exceeds the predetermined maximum time (e.g., YES in step S13) before the controller 130 determines that the detection signal outputted from the sensor 103 has been changed from a high-level signal to a low-level signal.
When the controller 130 determines that the elapsed time does not exceed the predetermined maximum time (e.g., NO in step S13), the controller 130 determines whether the detection signal outputted from the sensor 103 has been changed from a high-level signal to a low-level signal (e.g., step S14). When the controller 130 determines that the detection signal outputted from the sensor 103 has not been changed from a high-level signal to a low-level signal (e.g., NO in step S14), the controller 130 executes the processing of step S13 again. When the controller 130 determines that the detection signal outputted from the sensor 103 has been changed from a high-level signal to a low-level signal (e.g., YES in step S14), the controller 130 ends counting to measure the moving time of the detector 59 and determines the moving time of the detector 59 (e.g., step S15). When the controller 130 determines that the elapsed time already exceeds the predetermined maximum time (e.g., YES in step S13), the controller 130 determines the predetermined maximum time as the moving time of the detector 59.
The moving time may be a time period elapsed until the detection signal outputted from the sensor 103 becomes a low-level signal from a high-level signal from the timing at which the detection signal outputted from the cartridge sensor 107 becomes a high-level signal from a low-level signal (e.g., YES in step S11).
More strictly, the switching of the detection signal outputted from the cartridge sensor 107 from a low-level signal to a high-level signal might not occur at the same time as when the detector 59 becomes capable of rotating from the restricted position to the released position due to disengagement from the restriction member 88. Nevertheless, the switching of the detection signal outputted from the cartridge sensor 107 from a low-level signal to a high-level signal occurs close to the release of the detector 59. Therefore, the timing at which the detector 59 becomes capable of rotating from the restricted position to the released position may be considered as the timing at which the detection signal outputted from the cartridge sensor 107 is changed from a low-level signal to a high-level signal. Thus, the controller 130 counts to measure a time elapsed until the controller 130 receives a low-level signal from the sensor 103 after the controller 130 receives a high-level signal from the cartridge sensor 107, and considers the measured time as the moving time of the detector 59, i.e., the time required for the movement of the detector 59 from the restricted position to the released position.
Subsequent to step S15, the controller 130 resets an abnormal flag (e.g., the controller 130 sets the abnormal flag to “OFF”) (e.g., step S16). The abnormal flag is set to “ON” when the moving time is not included within a threshold range (e.g., NO in step S18) as a result of the determination as to whether the moving time is included within the threshold range (e.g., step S18). The abnormal flag may be a value assigned on a basis of ink cartridge 30. The controller 130 stores the abnormal flag for each ink cartridge 30 in the EEPROM 134.
Subsequent to step S16, the controller 130 determines a threshold range based on the signal outputted from the temperature sensor 106 (e.g., step S17). The threshold range is used for comparison with the moving time measured in step S15 in order to estimate the viscosity of ink stored in the ink chamber 36. The controller 130 assigns a lower value to at least one of an upper limit and a lower limit of the threshold range when the temperature specified by the signal outputted from the temperature sensor 106 indicates a higher temperature. In other words, the controller 130 assigns a higher value to at least one of the upper limit and the lower limit of the threshold range when the temperature specified by the signal received from the temperature sensor 106 indicates a lower temperature.
Subsequent to step 17, the controller 130 determines whether the moving time measured in step S15 is included within the threshold range determined in step S17 (e.g., step S18). When the moving time is below the lower limit of the threshold range, it is estimated that the ink viscosity is lower than a normal ink viscosity. When the moving time is above the upper limit of the threshold range, it is estimated that the ink viscosity is higher than the normal ink viscosity. When the controller 130 determines that the moving time is out of the threshold range (e.g., NO in step S18), the controller 130 sets the abnormal flag to “ON” (e.g., step S19). When the controller 130 determines that the moving time is included within the threshold range (e.g., YES in step S18), the routine skips the processing of step S19.
The controller 130 determines whether a signal that indicates closing of the cover of the cartridge holder 11 is outputted from the cover sensor 108 (e.g., step S20). When the controller 130 determines that the cover is opened (e.g., NO in step S20), the controller 130 executes the processing of step S11 and subsequent steps again. When the controller 130 determines that the cover is closed (e.g., YES in step S20), the controller 130 determines whether a predetermined time has elapsed since the controller 130 determined, in step S20, that the cover is closed (e.g., step S21).
When the controller 130 determines that the predetermined time has already elapsed (e.g., YES in step S21), the controller 130 ends the ink viscosity abnormality determination process of
Subsequent to the ink viscosity abnormality determination processing of
The controller 130 determines whether the detection signal outputted from the cartridge sensor 107 is a high-level signal (e.g., step S31). When the controller 130 determines that the detection signal outputted from the cartridge sensor 107 is a low-level signal (e.g., NO in step S31), the controller 130 notifies the absence of an ink cartridge 30 (e.g., step S38) and ends the processing of
When the controller 130 determines that the detection signal outputted from the cartridge sensor 107 is a high-level signal (e.g., YES in step S31), the controller 130 determines whether the abnormal flag is “ON” (e.g., step S32). When the controller 130 determines that the abnormal flag is “ON” (e.g., YES in step S32), the controller 130 notifies information about the ink cartridge 30 (e.g., step S37) and ends the processing of
When the controller 130 determines that the abnormal flag is “OFF” (e.g., NO in step S32), the controller 130 executes remaining amount determination processing of
When the controller 130 determines that the empty flag is “ON” (e.g., YES in step S34), the controller 130 ends the processing of
As described above, when the controller 130 determines that the abnormal flag is “ON” (e.g., YES in step S32), the controller 130 does not execute image recording of step S36. That is, the routine skips step S36. In other words, the controller 130 does not permit the recording head 21 to eject ink therefrom.
Hereinafter, the remaining amount determination processing will be described referring to
When the controller 130 determines that the near-empty flag is not “ON” (e.g., NO in step S41), the controller 130 determines whether the detection signal outputted from the sensor 103 has been changed from a low-level signal to a high-level signal (e.g., step S42). When the controller 130 determines that the detection signal outputted from the sensor 103 has not been changed (e.g., NO in step S42), the controller 130 ends the remaining amount determination processing and executes the processing of step S34 of
In step S41, when the controller 130 determines that the near-empty flag is “ON” (e.g., YES in step S41), the controller 130 determines whether a software count value since the near-empty flag was set to “ON” is greater than or equal to a predetermined value (e.g., step S45). The software count value may be obtained based on data provided when the controller 130 provides an ink ejection instruction to the recording head 21. More specifically, the software count value may be obtained by accumulative count of a multiplication value of the number of ink droplets that the controller 130 orders the recording head 21 ejecting therefrom and an amount of ink of each ink droplet specified by the controller 130. The predetermined value may be used for comparison with the software count value.
When the controller 130 determines that the software count value since the near-empty flag was set to “ON” is smaller than the predetermined value (e.g., NO in step S45), that is, when the controller 130 determines that the amount of ink consumed by the recording head 21 since the near-empty flag was set to “ON” is less than the predetermined value (e.g., NO in step S45), the controller 130 executes the processing of step S44.
When the controller 130 determines that the software count value since the near-empty flag was set to “ON” is greater than or equal to the predetermined value (e.g., YES in step S45), that is, when the controller 130 determines that the amount of ink consumed by the recording head 21 since the near-empty flag was set to “ON” is greater than or equal to the predetermined value (e.g., YES in step S45), the controller 130 sets the empty flag to “ON” (e.g., step S46). Subsequently, the controller 130 notifies that the ink cartridge 30 is in an empty state (e.g., step S47) and ends the remaining amount determination processing of
In steps S44 and S47, in one example, the notification may be implemented by, for example, displaying a message on the display 109 of the printer 10 or outputting voice guidance from the speaker (not depicted).
[Effects Obtained by Illustrative Embodiment]
According to the illustrative embodiment, as the restriction member 88 moves from the restrict position to the release position, the detector 59 moves from the restricted position to the released position. The detector 59 moves through ink while receiving viscous and inertial resistance from ink, whereby the moving speed of the detector 59 depends on the ink viscosity. Therefore, the viscosity of ink stored in the ink cartridge 30 may be estimated through the measurement of the time elapsed from the timing at which the restriction member 88 reaches the release position to the timing at which the detector 59 reaches the released position. According to the ink cartridge 30 of the illustrative embodiment, due to return of the restriction member 88 from the release position to the restrict position, the movement of the detector 59 is restricted again at the restricted position. Accordingly, the repeating return of the restriction member 88 to the restrict position may enable a repeating estimation of the viscosity of ink stored in the ink cartridge 30. In the illustrative embodiment, the restriction portion 64 is located within the movable range of the restriction member 88 when the detected portion 60 is located at the released position. Therefore, while the restriction member 88 is returned from the release position to the restrict position, the restriction member 88 may act on the restriction portion 64 easily.
This configuration may enable, for example, to estimate a deterioration level of ink stored in an ink cartridge 30 left not attached to the printer 10 for a while. In a case where the cartridge holder 11 is capable of accommodating various types of ink cartridges 30 having respective different viscosity, this configuration may enable to specify a type of each of the ink cartridges 30.
According to the illustrative embodiment, when the restriction member 88 is located at the restrict position, the restriction member 88 is in contact with the detector 59 located at the restricted position, thereby surely restricting the movement of the detector 59 located at the restricted position.
According to the illustrative embodiment, the distance L1 is longer than the distance L2. With this configuration, when the detector 59 rotates between the restricted position and the released position, the detection portion 62 travels longer than the float 63. Therefore, a component tolerance and/or mounting error of the components may less influence the measurement of the moving time of the detector 59.
According to the illustrative embodiment, the third arm 73 is shorter than the second arm 72, and thus, a radius of a circle defined by movement of the restriction portion 64 moves by a small distance when the restriction portion 64 rotates. Therefore, a distance that the restriction member 88 needs to move for releasing the restriction on the movement of the restriction portion 64 (e.g., a distance from the restrict position to the release position) may be reduced, whereby this configuration may enable reduction in size of the ink cartridge 30 or increase in ink storage capacity of the ink cartridge 30. This configuration may further enable the moving distance of the float 63 to be increased. Therefore, the moving time of the detector 59 elapsed until the detector 59 reaches the released position from the restricted position may be extended, thereby improving accuracy of the ink viscosity estimation.
According to the illustrative embodiment, the restriction member 88 is in engagement with the valve 77. With this configuration, as the valve 77 moves between the first position and the second position by a particular distance in a particular direction, the restriction member 88 moves between the restrict position and the release position by the same distance in the same direction (e.g., selectively in the insertion direction 51 and in the removal direction 51) as the valve 77. Therefore, the configuration of the ink cartridge 30 may be simplified. The moving direction and the moving distance of the valve 77 and the restriction member 88 might not necessarily be the same as each other. In other embodiments, for example, one of the moving direction and the moving distance of the valve 77 may be different from the moving direction and the moving distance of the restriction member 88. In this case, a link mechanism may be provided between the valve 77 and the restriction member 88.
According to the illustrative embodiment, the coil spring 87 that urges the valve 77 toward the first position from the second position is provided. Therefore, the removal of the external force that moves the valve 77 toward the second position may allow the valve 77, the restriction member 88, and the detector 59 to automatically move to the first position, the restrict position, and the restricted position, respectively.
According to the illustrative embodiment, the valve 77 closes the opening 46B at the first position and opens the opening 46B at the second position. That is, the valve 77 functions as a valve for closing and opening the opening 46B, thereby reducing parts counts of the ink cartridge 30.
The float 63 receives relatively high viscous and inertial resistance from ink when moving within the surrounded area 154. Therefore, the time elapsed from the timing at which the restriction member 88 reaches the release position to the timing at which the detector 59 reaches the released position becomes longer, thereby improving accuracy of the ink viscosity estimation. In the surrounded area 154A, a space defined by the float 63 and the detector 59 that is located at the restricted position is smaller than a space defined by the float 63 and the detector 59 that is located at the released position. Therefore, when the detector 59 is located at the restricted position, entry of air bubbles into the surrounded area 154 from the ink chamber 36 may be reduced. Accordingly, a change in the moving speed of the detector 59 that may be caused by adhesion of air bubbles to the float 63 may be restricted.
This configuration may enable, for example, to estimate a deterioration level of ink stored in an ink cartridge 30 left not attached to the printer 10 for a while. In a case where the cartridge holder 11 is capable of accommodating various types of ink cartridges 30 having respective different viscosity, this configuration may enable to specify a type of each of the ink cartridges 30.
According to the illustrative embodiment, the second inner wall 44 extends along a moving path of the float 63. Therefore, the float 63 receives higher viscous and inertial resistance from ink stored in the surrounded area 154. Accordingly, the moving time of the detector 59 elapsed until the detector 59 reaches the released position from the restricted position may become longer, thereby improving accuracy of the ink viscosity estimation.
According to the illustrative embodiment, the opening 155 is defined in the second inner wall 44 that faces the ink outlet 60. Therefore, this configuration may allow ink to easily flow into the ink outlet 60 from the surrounded area 154 through the opening 155.
According to the illustrative embodiment, the float 63 functioning as the resist unit is disposed within the surrounded area 154, and therefore, adhesion of air bubbles to the float 63 may be reduced. Thus, the change in the moving speed of the detector 59 may be reduced, thereby restricting lowering of accuracy of the ink viscosity estimation.
According to the illustrative embodiment, there is no member or component disposed between the float 63 and the lower wall 42 in the up-down direction 5453. Therefore, the float 63 may come to a close vicinity of the lower wall 42, whereby the amount of ink remaining in the surrounded area 154 may be reduced.
In the illustrative embodiment, the float 63, which constitutes a portion of the detector 59, functions as the resist unit. Nevertheless, in other embodiments, for example, another portion of the detector 59 may correspond to the resist unit. In one example, the detection portion 62 may be disposed in a surrounded area that may be provided separate from the ink chamber 36 and defined by walls. In this case, the detection portion 62 may function as the resist unit. In another example, an entire portion of the detector 59 may be disposed in a surrounded area that may be provided separate from the ink chamber 36 and defined by walls. In this case, the detection portion 62 may function as the resist unit. As described above, at least a portion of the detector 59 may be required to function as the resist unit.
In other embodiments, for example, a surface 44A (refer to
According to the above configuration, the unsmooth surface 44A may reduce or prevent the float 63 from having surface contact with the second inner wall 44 when the float 63 moves in the surrounded area 154. Therefore, this configuration may reduce or prevent interruption of the movement of the float 63.
As depicted in
When the first curvature radius is greater than the second curvature radius, the float 63 and the second inner wall 44 may be reduced or prevented from coming into surface contact with each other.
In the illustrative embodiment, an upper end of the surrounded area 154 is open to provide communication therethrough between the surrounded area 154 and the ink chamber 36 with each other. Nevertheless, in other embodiments, the upper end of the surrounded area 154 may be closed to the ink chamber 36. As depicted in
Therefore, this configuration may reduce entry of air bubbles into the surrounded area 154 from the ink chamber 36.
In the illustrative embodiment, the second arm 72 extends from the ink chamber 36 to the surrounded area 154 through the opening 156 of the second inner wall 44. Nevertheless, in other embodiments, for example, the second arm 72 may extend from the ink chamber 36 to the surrounded area 154 via the upper open end of the surrounded area 154. In a case where the upper end of the surrounded area 154 is closed to the ink chamber 36 by the fourth inner wall 159, the fourth inner wall 159 may have an opening that may allow the second arm 72 to pass therethrough. In this case, the second arm 72 may extends from the ink chamber 36 to the surrounded area 154 through the opening of the fourth inner wall 159.
In other embodiments, for example, when the detector 59 is located at the restricted position, a portion of the detector 59 may be located at the opening 155 of the second inner wall 44. In one example, a portion of the float 63 may be located at the opening 155 of the second inner wall 44. In this case, the opening 155 may have a dimension in the right-left direction 5556 longer than a dimension of the float 63 of the detector 59 in the right-left direction 5556. In this case, the opening 155 is a notch. As depicted in
As depicted in
[First Variation]
In the illustrative embodiment, the detector 59 is configured to move between the released position and the restricted position by its rotation. Nevertheless, in other embodiments, for example, the detector 59 may be configured to move between the released position and the restricted position in another manner.
As depicted in
The frame 31 may have a substantially rectangular parallelepiped external shape. The frame 31 may be relatively narrow in the right-left direction 5556, that is, the frame 31 has a greater dimension both in an up-down direction 5453 and in an insertion-removal direction 51 than a dimension in the right-left direction 5556. The frame 31 includes a front wall 40 as another example of the first wall), a rear wall 41 (as another example of the second wall), an upper wall 39, and a lower wall 42. The front wall 40 and the rear wall 41 at least partially overlap each other when viewed in the insertion direction 51 or in the removal direction 52. The upper wall 39 and the lower wall 42 at least partially overlap each other when viewed in the downward direction 53 or in the upward direction 54. The wall facing forward (e.g., the direction toward which the ink cartridge 30 is inserted) at the time of inserting the ink cartridge 30 into the cartridge holder 110 may function as the front wall 40 and the wall facing backward (e.g., the direction toward which the ink cartridge 30 is removed) at the time of inserting the ink cartridge 30 into the cartridge holder 110 may function as the rear wall 41.
The upper wall 39 connects between an upper end of the front wall 40 and an upper end of the rear wall 41. The lower wall 42 connects between a lower end of the front wall 40 and a lower end of the rear wall 41. A raised portion 37 protrudes in the upward direction 54 from the upper wall 39. At least the upper wall 39 including the raised portion 37 allows light emitted from the light emitting portion of the sensor 103 to pass therethrough.
The frame 31 has open ends in the right-left direction 5556. The right and left open ends of the frame 31 are sealed by respective films (not depicted). The film for sealing the right open end of the frame 31 has a shape that corresponds to an outline of the frame 31 when viewed in the rightward direction 55. The film for sealing the left open end of the frame 31 has a shape that corresponds to an outline of the frame 31 when viewed in the leftward direction 56. The films constitute right and left walls, respectively, of the ink chamber 36. The films are adhered to right and left ends, respectively, of the upper wall 39, the front wall 40, the rear wall 41, and the lower wall 42 by heat to close the right and left open ends of the ink chamber 36 tightly. Therefore, the ink chamber 36 is defined by the upper wall 39, the front wall 40, the rear wall 41, the lower wall 42, and the films and thus is capable of storing ink therein.
The ink tank 32 further includes a projection 48 inside the frame 31. The projection 48 extends from a first inner wall 43 in the rightward direction 55. A detector 59 is disposed inside the ink chamber 36. The projection 48 supports the detector 59.
[Ink Chamber 36]
As depicted in
[Ink Outlet 60]
As depicted in
The cylindrical wall 46 extends between the inside of the ink chamber 36 and the outside of the ink chamber 36. The cylindrical wall 46 has an opening 46A and an opening 46B (as another example of the liquid outlet) at opposite ends in an insertion-removal direction 5152. More specifically, the cylindrical wall 46 has the opening 46A at one end that faces the direction toward which the ink cartridge 30 is removed (e.g., at one end that is located inside the ink chamber 36). The cylindrical wall 46 has the opening 46B at the other end that faces the direction the ink cartridge 30 is inserted (e.g., at the other end that is located outside the ink chamber 36 (e.g., an exposed end)). With this configuration, the ink chamber 36 is in communication with the outside of the ink cartridge 30 through the valve chamber 47. Thus, the ink outlet 60 allows ink stored in the ink chamber 36 to flow to the outside of the ink cartridge 30. The exposed end, e.g., a distal end, of the cylindrical wall 46 is attached with the sealer 76 and the cap 79.
The valve chamber 47 is connected with the first air communication passage and the second air communication passage. The first air communication passage allows air to flow therethrough between the valve chamber 47 and the outside of the ink cartridge 30. That is, the first air communication passage allows the valve chamber 47 to be exposed to the outside air. The first air communication passage extends to the outside of the ink cartridge 30 from a first hole via a groove. The first hole provides communication between the inside and the outside of the cylindrical wall 46.
The second air communication passage allows air to flow therethrough between the valve chamber 47 and the ink chamber 36. The second air communication passage extends to the ink chamber 36 from a second hole via a groove. The second hole provides communication between the inside and the outside of the cylindrical wall 46. The second hole is spaced from the first hole in the removal direction 52. The second air communication passage is connected with the ink chamber 36 at a location higher than a level of ink stored in an ink chamber 36 of a not-yet-used ink cartridge 30.
As depicted in
The cap 79 is fitted over the exposed end of the cylindrical wall 46. The cap 79 and the cylindrical wall 46 sandwiches the sealer 76 therebetween. The cap 79 has a through hole 69 at a substantially middle portion thereof. The through hole 69 penetrates the cap 79 in a thickness direction of the cap 79. The through hole 69 has a diameter that is greater than a diameter of the through hole 68. The cap 79 retains the sealer 76 at the exposed end of the cylindrical wall 46.
[Valve 77, Sealing Member 78, and Coil Spring 87]
As depicted in
The valve 77 includes a circular plug 83, a rod 84, a plurality of first protrusions 85, and a plurality of second protrusions 86. The rod 84 extends from the plug 83 in the removal direction 52. The first protrusions 85 and the second protrusions 86 protrude from the rod 84 in respective directions with respect to a diameter direction of the rod 84. The valve 77 is disposed within the valve chamber 47 while the plug 83 is oriented toward the exposed end of the cylindrical wall 46. In this state, the valve 77 is movable selectively in the insertion direction 51 or in the removal direction 52. A distal end of the rod 84 that is opposite to the end connected with the plug 83 protrudes to the ink chamber 36 beyond the valve chamber 47. That is, the valve 77 extends between the ink outlet 60 and the ink chamber 36. Nevertheless, in other embodiments, for example, the rod 84 might not necessarily protrude to the ink chamber 36 beyond the valve chamber 47. In this case, the valve 77 may be disposed within the ink outlet 60.
The valve 77 has an outside diameter that is smaller than the inside diameter of the cylindrical wall 46. Thus, the valve 77 is capable of moving selectively in the insertion direction 51 and in the removal direction 52. For example, the valve 77 is capable of moving between a first position (e.g., a position of the valve 77 depicted in
The plug 83 has an outside diameter that is slightly larger than the diameter of the through hole 68 of the sealer 76. With this configuration, as depicted in
The rod 84 has an outside diameter that is smaller than the outside diameter of the plug 83.
As depicted in
The sealing member 78 may be made of an elastic material, for example, rubber. As depicted in
The cylindrical portion 95 is disposed between the plurality of first protrusions 85 and the plurality of second protrusions 86 while having the rod 84 of the valve 77 inserted therethrough. The cylindrical portion 95 has an inside diameter that is larger than the outside diameter of the rod 84. Therefore, in a state where the rod 84 penetrates the cylindrical portion 95, clearance is left between the cylindrical portion 95 and the rod 84. An empty space inside the cylindrical portion 95 is exposed through a gap between each adjacent two of the first protrusions 85 and a gap between each adjacent two of the second protrusions 86. With this configuration, the empty space inside the cylindrical portion 95 provides communication therethrough between a space of the valve chamber 47 leading to the opening 46A and another space of the valve chamber 47 leading to the opening 46B.
The cylindrical portion 95 includes one end that is in contact with the plurality of first protrusions 85 and the other end that is in contact with the plurality of second protrusions 86. With this configuration, the sealing member 78 is capable of moving together with the valve 77 within the valve chamber 47 selectively in the insertion direction 51 and in the removal direction 52.
The first sealing portion 96 is spaced from the second sealing portion 97 in the insertion direction 51.
The first sealing portion 96 and the second sealing portion 97 hermetically and closely contact the inner surface of the cylindrical wall 46. In a state where the sealing member 78 is not disposed in the valve chamber 47, an outside diameter of each of the first sealing portion 96 and the second sealing portion 97 is slightly larger than the inside diameter of the cylindrical wall 46. Therefore, in a state where the sealing member 78 is disposed in the valve chamber 47, the first sealing portion 96 and the second sealing portion 97 are in hermetical contact with the inner surface of the cylindrical wall 46 while being elastically deformed in a direction such that the first sealing portion 96 and the second sealing portion 97 decrease their outside diameter. As the valve 77 moves in the insertion-removal direction 5152, the first sealing portion 96 and the second sealing portion 97 slide relative to the inner surface of the cylindrical wall 46.
The coil spring 87 is disposed between the opening 46A and the plurality of second protrusions 86. The coil spring 87 urges the valve 77 in the insertion direction 51. For example, the coil spring 87 urges the valve 77 toward the first position from the second position. Thus, in the valve chamber 47, the valve 77 is retained while being in contact with the sealer 76 (refer to
[Detector 59]
As depicted in
The ink cartridge 30 includes the detector 59 and the float 114. In the first variation, the detector 59 includes the float 114, an arm 115, and a detected portion 116.
The float 114 is restricted from moving in the directions other than the downward direction 53 and the upward direction 54 by the guide member 113 while being permitted to move only within backlash or play in the directions other than the downward direction 53 and the upward direction 54. The float 114 may be made of material having a lower specific gravity than ink stored in the ink chamber 36.
The float 114 has a substantially rectangular parallelepiped shape. The float 114 has a cavity 117 that opens upward. The cavity 117 extends from side to side (e.g., between a right end and a left end) of the float 114. The cavity 117 is defined by a first surface 118 (as an example of an inclined surface) and a second surface 119. The first surface 118 is angled relative to the removal direction 52. The second surface 119 extends in the upward direction 54 contiguous from the first surface 118.
The arm 115 extends from the float 114 in the upward direction 54. The detected portion 116 is disposed at a distal end of the arm 115 and is supported by the arm 115. The detected portion 116 has a plate-like shape. The detected portion 116 may be made of material that blocks light outputted from the light emitting portion.
The detector 59 is movable between a released position (e.g., a position of the detector 59 depicted in
When the detector 59 is located at the released position, the detected portion 116 is located between the light emitting portion and the light receiving portion of the sensor 103. That is, the detected portion 116 is located on an optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is blocked by the detected portion 116, thereby not reaching the light receiving portion. Thus, when the detector 59 is located at the released position, the detected portion 116 is detected by the sensor 103 from the outside of the ink cartridge 30. When the detector 59 is located at a position other than the released position, the detected portion 116 is not located between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion reaches the light receiving portion.
[Restriction Member 88]
As depicted in
The restriction member 88 is movable between a restrict position (e.g., a position of the restriction member 88 depicted in
When the restriction member 88 is located at the restrict position, the restriction member 88 is in contact with the first surface 118 of the float 114 of the detector 59 from above. In this state, the restriction member 88 receives a force having a vector component in the removal direction 52 from the first surface 118 of the cavity 117 due to a buoyant force of the float 114. Nevertheless, since the urging force of the coil spring 87 acting in the insertion direction 51 is greater than the force of the coil spring 78 acting in the removal direction 52, the restriction member 88 is restricted from moving in the removal direction 52, whereby the detector 59 is restricted from moving in the upward direction 54. That is, the detector 59 is restricted from moving from the restricted position. In the first variation, for example, the movement of the detector 59 in the upward direction 54 from the restricted position is restricted while the detector 59 is permitted to move only within backlash or play at the restricted position. The restriction member 88 might not necessarily restrict the movement of the detector 59 in the downward direction 53 from the restricted position. In other variations, for example, when the restriction member 88 is located at the restrict position, the restriction member 88 may be in contact with an upper surface 114A of the float 114 from above, instead of being contact with the first surface 118.
When the restriction member 88 is located at the release position, the restriction member 88 is located separate from the first surface 118 (refer to
[Placement/Removal of Ink Cartridge 30 to/from Cartridge Holder 110]
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, and the detector 59 behave in a process of placing the ink cartridge 30 to the cartridge holder 110. In the description below, it is assumed that an amount of ink remaining in the ink chamber 36 is more than the amount of ink remaining in the ink chamber 36 in a near-empty state.
In a state where the ink cartridge 30 is not placed in the cartridge holder 110, the valve 77 is located at the first position due to the urging force of the coil spring 87 as depicted in
When the valve 77 is located at the first position, the valve 77 is in contact with the sealer 76 by the urging force of the coil spring 87. In this state, the plug 83 is in tight contact with the edge of the through hole 68 of the sealer 76. Thus, the through hole 68 is closed, whereby ink is not allowed to flow to the outside of the ink cartridge 30 from the ink chamber 36.
When the valve 77 is located at the first position, the first hole is located between the first sealing portion 96 and the second sealing portion 97. Therefore, the second sealing portion 97 blocks the communication between the first air communication passage and the second air communication passage. Thus, the ink chamber 36 is maintained at a negative pressure.
When the valve 77 is located at the first position, the restriction member 88 is located at the restrict position. When the restriction member 88 is located at the restrict position, the detector 59 is located at the restricted position. In this state, the restriction member 88 is in contact with the first surface 118 of the float 114 of the detector 59 from above, thereby restricting the detector 59 from moving in the upward direction 54 from the restricted position.
When the detector 59 is located at the restricted position, the float 114 is located near the lower wall 42 of the frame 31. That is, the float 114 is submerged in ink stored in the ink chamber 36.
When the detector 59 is located at the restricted position, the detected portion 116 is not located on the optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is allowed to reach the light receiving portion. Thus, when the detector 59 is located at the restricted position, the sensor 103 outputs a high-level signal to the controller 130.
While the ink cartridge 30 is not placed at a particular position in the cartridge holder 110, a corresponding cartridge sensor 107 is free from pressure of the front end 58 of the cartridge cover 33 of the ink cartridge 30. Therefore, the cartridge sensor 107 outputs a low-level signal to the controller 130.
In this state, the cover of the cartridge holder 110 is opened and then the ink cartridge 30 is inserted into the cartridge holder 110. That is, the ink cartridge 30 is placed at the particular portion in the cartridge holder 110. In other words, the ink cartridge 30 becomes in the use position.
When the ink cartridge 30 reaches a vicinity of the inner back surface 151 of the cartridge holder 110 by its movement in the insertion direction 51, the front wall 40 of the ink cartridge 30 presses the corresponding cartridge sensor 107. In response to this, the cartridge sensor 107 outputs a high-level signal to the controller 130. Thus, counting for measuring a moving time of the detector 59 is started.
When the ink cartridge 30 reaches a vicinity of the inner back surface 151 of the cartridge holder 110 by its movement in the insertion direction 51, the plug 83 of the valve 77 comes into contact with a corresponding ink needle 102. In this state, as the ink cartridge 30 further moves in the insertion direction 51, the valve 77 is pressed by a reaction force from the ink needle 102. Thus, the valve 77 moves in the removal direction 52 from the first position to the second position against the urging force of the coil spring 87.
When the valve 77 is located at the second position, the valve 77 is located separate from the sealer 76 and thus the through hole 68 is opened. Therefore, ink is allowed to flow from the ink chamber 36 to the outside of the ink cartridge 30.
When the valve 77 is located at the second position, both of the first and second holes are located between the first sealing portion 96 and the second sealing portion 97. Thus, the first air communication passage and the second air communication passage are in communication with each other. Accordingly, the ink chamber 36 comes into communication with the outside air, whereby the inside pressure of the ink chamber 36 changes from a negative pressure to the atmospheric pressure.
As depicted in
As the detector 59 becomes movable, the float 114, which has been kept submerged in ink, moves in the upward direction 54 by its buoyant force. That is, the detector 59 moves from the restricted position to the released position by the float 114 that moves upward in response to the movement of the restriction member 88 to the release position while the ink cartridge 30 is in the use position (e.g., while the ink cartridge 30 is completely placed in the cartridge holder 110).
The float 114 keeps moving in the upward direction 54 until the detected portion 116 comes into contact with a surface 37A that defines an internal space of a raised portion 37.
When the detector 59 is located at the released position, the detected portion 116 is located between the light emitting portion and the light receiving portion of the sensor 103. That is, the detected portion 116 is located on the optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is not allowed to reach the light receiving portion. Thus, when the detector 59 is located at the released position, the sensor 103 outputs a low-level signal (as an example of a detection signal) indicating the presence of the detector 59 at the released position. Thus, the counting for measuring the moving time of the detector 59 is ended. Through this process, the ink cartridge 30 is completely placed in the cartridge holder 110.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, and the detector 59 behave in a process of removing the ink cartridge 30 from the cartridge holder 110. In the description below, it is assumed that the amount of ink remaining in the ink chamber 36 is more than the amount of ink remaining in the ink chamber 36 in the near-empty state.
As depicted in
A portion of the detector 59 may preferably be in contact with the guide member 113 also when the detector 59 is located at the released position.
As the ink cartridge 30 moves in the removal direction 52 for removing the ink cartridge 30 from the cartridge holder 110, the valve 77 separates from the ink needle 102, whereby the valve 77 moves from the second position to the first position by the urging force of the coil spring 87. As the valve 77 moves from the second position to the first position, the restriction member 88 moves together with the valve 77 from the release position to the restrict position. While the restriction member 88 moves from the release position to the restrict position, the restriction member 88 comes into contact with the first surface 118 of the float 114 of the detector 59. The restriction member 88 moves from the release position to the restrict position while being in contact with the first surface 118 from above. Thus, the float 114 is pressed in the downward direction 53 by the restriction member 88, whereby the detector 59 moves from the released position to the restricted position.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, and the detector 59 behave as the amount of ink remaining in the ink chamber 36 decreases due to consumption of ink in the recording head 21 after the ink cartridge 30 is completely placed in the cartridge holder 110.
Ink stored in the ink chamber 36 decreases due to consumption of ink by ink ejection from the nozzles 29 of the recording head 21 and thus the ink level becomes lower than a portion of the float 114. In a state where the ink level is lower than the portion of the float 114, the float 114 moves downward with the ink level lowering. In accordance with the downward movement of the float 114, the detector 59 moves in the downward direction 53 from the released position toward the restricted position (refer to
[Ink Viscosity Abnormality Determination by Controller 130]
In the first variations, the controller 130 executes processing for determining whether an abnormality is present or absence in viscosity of ink stored in the ink chamber 36 of the ink cartridge 30 similar to the ink viscosity abnormality determination processing of the illustrative embodiment.
[Effects Obtained by First Variation]
According to the first variation, as the restriction member 88 moves from the restrict position to the release position, the detector 59 moves from the restricted position to the released position. The detector 59 moves through ink while receiving viscous and inertial resistance from ink, whereby the moving speed of the detector 59 depends on the ink viscosity. Therefore, the viscosity of ink stored in the ink cartridge 30 may be estimated through the measurement of the time elapsed from the timing at which the restriction member 88 reaches the release position to the timing at which the detector 59 reaches the released position. According to the ink cartridge 30 of the first variation, due to return of the restriction member 88 from the release position to the restrict position, the movement of the detector 59 is restricted again at the restricted position. Accordingly, the repeating return of the restriction member 88 to the restrict position may enable a repeating estimation of the viscosity of ink stored in the ink cartridge 30.
This configuration may enable, for example, to estimate a deterioration level of ink stored in an ink cartridge 30 left not attached to the printer 10 for a while. In a case where the cartridge holder 11 is capable of accommodating various types of ink cartridges 30 having respective different viscosity, this configuration may enable to specify a type of each of the ink cartridges 30.
According to the illustrative embodiment, the coil spring 87 that urges the valve 77 toward the first position from the second position is provided. Therefore, the removal of the external force that moves the valve 77 toward the second position may allow the valve 77, the restriction member 88, and the detector 59 to automatically move the first position, the restrict position, and the restricted position, respectively.
According to the illustrative embodiment, the valve 77 closes the opening 46B at the first position and opens the opening 46B at the second position. That is, the valve 77 functions as a valve for closing and opening the opening 46B, thereby reducing parts counts of the ink cartridge 30.
[Second Variation]
In the first variation, the restriction member 88 and the valve 77 have a one-piece structure. Nevertheless, in other variations, for example, the restriction member 88 and the valve 77 are separate components.
For example, in a second variation, as depicted in
The detector 59 of the second variation has a similar configuration to the detector 59 of the first variation except that the detector 59 of the second variation does not have a cavity 117 in a float 114 thereof.
As depicted in
The restriction member 88 includes a body 123 and a projecting portion 124. The body 123 has an inclined surface 122 that is angled relative to the removal direction 52 (e.g. a direction from the front wall 40 toward the rear wall 41) and extends downward in the removal direction 52. The projecting portion 124 protrudes from the body 123 in the removal direction 52.
A coil spring 121 (as another example of the urging member) is disposed between the restriction member 88 and an upper wall 39 of an ink tank 32 in the up-down direction 5453. The coil spring 121 has one end connected with the restriction member 88 and the other end connected with the upper wall 39. This configuration allows the restriction member 88 to move up and down as the coil spring 121 contracts and extends. In other variations, for example, a leaf spring may be used as the urging member, instead of the coil spring 121.
The restriction member 88 is movable between a restrict position (e.g., a position of the restriction member 88 depicted in
When the restriction member 88 is located at the restrict position, the projecting portion 124 of the restriction member 88 is in contact with an upper surface 114A of the float 114 of the detector 59 from above. Thus, the detector 59 is restricted from moving in the upward direction 54. That is, the detector 59 is restricted from moving from the restricted position. In the second variation, for example, the movement of the detector 59 in the upward direction 54 from the restricted position is restricted while the detector 59 is permitted to move only within backlash or play at the restricted position. The restriction member 88 might not necessarily restrict the movement of the detector 59 in the downward direction 53 from the restricted position.
When the restriction member 88 is located at the release position, the restriction member 88 is located separate from the upper surface 114A of the float 114. Therefore, in this state, the detector 59 is permitted to move in the upward direction 54. That is, the detector 59 is permitted to move from the restricted position to the released position.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, and the detector 59 behave in a process of placing the ink cartridge 30 to the cartridge holder 110 in the second variation. In the description below, it is assumed that an amount of ink remaining in the ink chamber 36 is more than the amount of ink remaining in the ink chamber 36 in the near-empty state.
In a state where the ink cartridge 30 is not placed in the cartridge holder 110, the valve 77 of the ink cartridge 30 of the second variation is in the same or similar state to the valve 77 of the ink cartridge 30 of the illustrative embodiment.
When the valve 77 is located at the first position, the valve 77 is located separate from the restriction member 88. In this state, the restriction member 88 is located at the restrict position. When the restriction member 88 is located at the restrict position, the detector 59 is located at the restricted position. In this state, the restriction member 88 is in contact with the upper surface 114A of the float 114 of the detector 59 from above, thereby restricting the detector 59 from moving in the upward direction 54 from the restricted position.
When the detector 59 is located at the restricted position, the float 114 is located near the lower wall 42 of the frame 31. That is, the float 114 is submerged in ink stored in the ink chamber 36.
When the detector 59 is located at the restricted position, the detected portion 116 is not located on the optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is allowed to reach the light receiving portion. Thus, when the detector 59 is located at the restricted position, the sensor 103 outputs a high-level signal to the controller 130.
While the ink cartridge 30 is not placed at a particular position in the cartridge holder 110, a corresponding cartridge sensor 107 is free from pressure of the front end 58 of the cartridge cover 33 of the ink cartridge 30. Therefore, the cartridge sensor 107 outputs a low-level signal to the controller 130.
In this state, the cover of the cartridge holder 110 is opened and then the ink cartridge 30 is inserted into the cartridge holder 110. That is, the ink cartridge 30 is placed at the particular portion in the cartridge holder 110. In other words, the ink cartridge 30 becomes in the use position.
Similar to the illustrative embodiment, when the ink cartridge 30 reaches a vicinity of the inner back surface 151 of the cartridge holder 110 by its movement in the insertion direction 51, the cartridge sensor 107 outputs a high-level signal to the controller 130. Thus, counting for measuring a moving time of the detector 59 is started. In accordance with the movement of the ink cartridge 30 in the insertion direction 51, the valve 77 moves from the first position to the second position, whereby ink is permitted to flow from the ink chamber 36 to the outside of the ink cartridge 30. Further, the ink chamber 36 comes into communication with the outside air, whereby the inside pressure of the ink chamber 36 changes from a negative pressure to the atmospheric pressure.
As depicted in
As the detector 59 becomes movable, the float 114, which has been kept submerged in ink, moves in the upward direction 54 by its buoyant force. That is, the detector 59 moves from the restricted position to the released position by the float 114 that moves upward in response to the movement of the restriction member 88 to the release position while the ink cartridge 30 is in the use position (e.g., while the ink cartridge 30 is completely placed in the cartridge holder 110).
The float 114 keeps moving in the upward direction 54 until the upper surface 114A of the float 114 comes into contact with the projecting portion 124 of the restriction member 88 located at the release position.
When the detector 59 is located at the released position, the detected portion 116 is located between the light emitting portion and the light receiving portion of the sensor 103. That is, the detected portion 116 is located on the optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is not allowed to reach the light receiving portion. Thus, when the detector 59 is located at the released position, the sensor 103 outputs a low-level signal to the controller 130, whereby the counting for measuring the moving time of the detector 59 is ended. Through this process, the ink cartridge 30 is completely placed in the cartridge holder 110.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, and the detector 59 behave in a process of removing the ink cartridge 30 from the cartridge holder 110. In the description below, it is assumed that the amount of ink remaining in the ink chamber 36 is more than the amount of ink remaining in the ink chamber 36 in the near-empty state.
As depicted in
As the ink cartridge 30 moves in the removal direction 52 for removing the ink cartridge 30 from the cartridge holder 110, the valve 77 separates from the ink needle 102, whereby the valve 77 moves from the second position to the first position by the urging force of the coil spring 87 to separate from the restriction member 88. As the valve 77 separates from the restriction member 88, the restriction member 88 moves in the downward direction 53 from the release position to the restrict position by the urging force of the coil spring 121. While the restriction member 88 moves in the downward direction 53, the projecting portion 124 of the restriction member 88 presses the upper surface 114A of the float 114 of the detector 59 in the downward direction 53, whereby the detector 59 moves from the released position to the restricted position.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, and the detector 59 behave as the amount of ink remaining in the ink chamber 36 decreases due to consumption of ink in the recording head 21 after the ink cartridge 30 is completely placed in the cartridge holder 110.
Ink stored in the ink chamber 36 decreases due to consumption of ink by ink ejection from the nozzles 29 of the recording head 21 and thus the ink level becomes lower than a portion of the float 114. In a state where the ink level is lower than the portion of the float 114, the float 114 moves downward with the ink level lowering. In accordance with the downward movement of the float 114, the detector 59 moves in the downward direction 53 from the released position toward the restricted position (refer to
[Third Variation]
In the first and second variations, the detector 59 is configured to move from the restricted position to the released position using a buoyant force of the float 114. Nevertheless, in other variations, for example, a detector 59 may be configured to move from the restricted position to the released position using a downward movement of a weight 125. An example of this configuration will be described below in a third variation. Common parts have the same reference numerals as those of the above-described illustrative embodiment, the first variation, or the second variation, and the detailed description of the common parts will be omitted.
In the third variation, as depicted in
The first arm 127 extends from the axial portion 126 in one direction with respect to a diameter direction of the axial portion 126. The second arm 128 extends from the axial portion 126 in another direction with respect to the diameter direction so as to extend in a different direction from the direction that the first arm 127 extends.
The detection portion 129 is disposed at a distal end of the first arm 127 and is supported by the first arm 127. The detection portion 129 has a plate-like shape. The detection portion 129 may be made of material that blocks light outputted from the light emitting portion. The detection portion 129 is configured to block light outputted from the light emitting portion in a similar manner to the detection portion 62 of the illustrative embodiment.
The restriction portion 138 is disposed at a distal end of the second arm 128. The restriction portion 138 constitutes a portion of the second arm 128 and includes the distal end of the second arm 128. The restriction portion 138 is configured to contact and separate from the weight 125. In other variations, for example, the restriction portion 138 and the second arm 128 may be separate parts. In this case, the restriction portion 138 may be supported by the second arm 128.
The detector 59 is disposed inside the ink chamber 36 while the first arm 127 extends obliquely upward in the removal direction 52 and the second arm 128 extends obliquely upward in the insertion direction 51.
The detector 59 is movable (e.g., rotatable) between a released position (e.g., a position of the detector 59 depicted in
The detector 59 may be made of material having a higher specific gravity than ink stored in the ink chamber 36. The first arm 127 is longer in length than the second arm 128. With this configuration, when the detector 59 is located at the released position, the first arm 127 tends to move in a direction of an arrow 127A, e.g., in a direction that the first arm 127 moves closer to a lower wall 42 of the ink cartridge 30 through ink, while the second arm 128 tends to move in a direction of an arrow 128A, e.g., in a direction that the second arm 128 moves away from the lower wall 42 of the ink 30 through ink. While the second arm 128 moves in the direction of the arrow 127A, the second arm 128 comes in contact with a bottom surface 125A of the weight 125. At the time the second arm 128 comes into contact with the bottom surface 125A of the weight 125, the detector 59 is located at the restricted position.
The weight 125 may be made of material having a higher specific gravity than ink stored in the ink chamber 36. The weight 125 is supported by a restriction member 88 within the ink chamber 36.
The frame 31 of an ink tank 32 includes a guide member 139. The guide member 139 protrudes in the downward direction 53 from an upper wall 39 of the frame 31. The guide member 139 surrounds the weight 125 on four sides, for example, the right side, the left side, the side that faces the direction toward which the ink cartridge 30 is inserted (e.g., the side that faces a rear wall 40 of the frame 31), and the side that faces the direction toward which the ink cartridge 30 is removed (e.g., the side that faces a rear wall 41 of the frame 31). While the weight 125 is movable up and down along the guide member 139, the weight 125 is permitted to move only within backlash or play in the insertion-removal direction 5152 and in the rightward-leftward direction 5556. That is, the guide member 139 allows the weight 125 to move straightly along the up-down direction 5453.
The weight 125 is disposed above the second arm 128 in the vertical direction. Thus, the weight 125 is capable of contacting the second arm 128 from above.
The weight 125 is movable between a higher position (e.g., a position of the weight 125 depicted in
When the valve 77 is located at the first position, the weight 125 is located at the higher position. When the weight 125 is located at the higher position, the weight 125 retains the detector 59 at the restricted position by contacting the second arm 128. When the valve 77 is located at the second position, the weight 125 is located at the lower position. When the weight 125 is located at the lower position, the weight 125 retains the detector 59 at the released position by contacting the second arm 128 from above. As the valve 77 moves from the first position to the second position, the weight 125 moves from the higher position to the lower position. As the valve 77 moves from the second position to the first position, the weight 125 moves from the lower position to the higher position.
The weight 125 has a cavity 140 that opens downward. The cavity 140 extends from side to side (e.g., between a right end and a left end) of the weight 125. The cavity 140 is defined by a first surface 141 (as an example of an inclined surface) and a second surface 142. The first surface 141 is angled relative to the removal direction 52 (e.g. a direction from the front wall 40 toward the rear wall 41). The first surface 141 extends upward in the removal direction 52. The second surface 142 extends in the downward direction 53 contiguous from the first surface 141.
As depicted in
The restriction member 88 is movable between a restrict position (e.g., a position of the restriction member 88 depicted in
When the restriction member 88 is located at the restrict position, the restriction member 88 supports the weight 125 by contacting the first surface 141 of the weight 125 from below. Thus, the weight 125 is restricted from moving in the downward direction 53 from the higher position. In the third variation, for example, the movement of the weight 125 in the downward direction 53 from the higher position is restricted while the weight 125 is permitted to move only within backlash or play at the higher position. The restriction member 88 might not necessarily restrict the movement of the weight 125 from the higher position in the upward direction 54. The movement of the weight 125 is restricted by the restriction member 88, whereby the detector 59 does not move from the restricted position. That is, the restriction member 88 restricts the movement of the detector 59 from the restricted position indirectly. In other variations, for example, when the restriction member 88 is located at the restrict position, the restriction member 88 may support the weight 125 by contacting a bottom surface 125A of the weight 125 from below, instead of contacting the first surface 141 of the weight 125.
When the restriction member 88 is located at the release position, the restriction member 88 is located separate from the first surface 141 of the weight 125 located at the higher position. Therefore, in this state, the weight 125 is permitted to move in the downward direction 53 by force of gravity. That is, when the restriction member 88 is located at the release position, the restriction member 88 permits the weight 125 to move from the higher position to the lower position. The detector 59 rotates from the restricted position to the released position by pressure of the weight 125 that moves from the higher position to the lower position. In other words, when the restriction member 88 is located at the release position, the restriction member 88 permits the movement of the detector 59.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, the weight 125, and the detector 59 behave in a process of placing the ink cartridge 30 to the cartridge holder 110 in the third variation. In the description below, it is assumed that an amount of ink remaining in the ink chamber 36 is more than the amount of ink remaining in the ink chamber 36 in the near-empty state.
In a state where the ink cartridge 30 is not placed in the cartridge holder 110, the valve 77 of the ink cartridge 30 of the third variation is in the same or similar state to the valve 77 of the ink cartridge 30 of the illustrative embodiment.
When the valve 77 is located at the first position, the weight 125 is retained at the higher position by the support of the restriction member 88. When the weight 125 is located at the higher position, the detector 59 is located at the restricted position. In this state, the bottom surface 125A of the weight 125 is in contact with the restriction portion 138 of the second arm 128 of the detector 59.
When the detector 59 is located at the restricted position, the detection portion 129 is not located on the optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is allowed to reach the light receiving portion. Thus, when the detector 59 is located at the restricted position, the sensor 103 outputs a high-level signal to the controller 130.
While the ink cartridge 30 is not placed at a particular position in the cartridge holder 110, a corresponding cartridge sensor 107 is free from pressure of the front end 58 of the cartridge cover 33 of the ink cartridge 30. Therefore, the cartridge sensor 107 outputs a low-level signal to the controller 130.
In this state, the cover of the cartridge holder 110 is opened and then the ink cartridge 30 is inserted into the cartridge holder 110. That is, the ink cartridge 30 is placed at the particular portion in the cartridge holder 110. In other words, the ink cartridge 30 becomes in the use position.
Similar to the illustrative embodiment, when the ink cartridge 30 reaches a vicinity of the inner back surface 151 of the cartridge holder 110 by its movement in the insertion direction 51, the cartridge sensor 107 outputs a high-level signal to the controller 130. Thus, counting for measuring a moving time of the detector 59 is started. As the valve 77 receives an external force by pressing of the ink needle 102, the valve 77 moves from the first position to the second position, whereby ink is permitted to flow from the ink chamber 36 to the outside of the ink cartridge 30. Further, the ink chamber 36 comes in communication with the outside air, whereby the inside pressure of the ink chamber 36 changes from a negative pressure to the atmospheric pressure.
As depicted in
While the weight 125 moves from the higher position to the lower position, the weight 125 presses the detection portion 129 of the detector 59 downward. Thus, the detector 59 rotates toward the released position from the restricted position.
The weight 125 keeps moving in the downward direction 53 until the first surface 141 of the recess 143 comes into contact with the restriction member 88.
When the detector 59 is located at the released position, the detected portion 116 is located between the light emitting portion and the light receiving portion of the sensor 103. That is, the detected portion 116 is located on the optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is not allowed to reach the light receiving portion. Thus, when the detector 59 is located at the released position, the sensor 103 outputs a low-level signal to the controller 130, whereby the counting for measuring the moving time of the detector 59 is ended. Through this process, the ink cartridge 30 is completely placed in the cartridge holder 110.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, the weight 125, and the detector 59 behave in a process of removing the ink cartridge 30 from the cartridge holder 110. In the description below, it is assumed that the amount of ink remaining in the ink chamber 36 is more than the amount of ink remaining in the ink chamber 36 in the near-empty state.
As depicted in
As the ink cartridge 30 moves in the removal direction 52 for removing the ink cartridge 30 from the cartridge holder 110, the valve 77 separates from the ink needle 102, whereby the valve 77 moves from the second position to the first position by an urging force of a coil spring 87. As the valve 77 moves from the second position to the first position, the restriction member 88 moves from the release position to the restrict position together with the valve 77. The restriction member 88 moves from the release position to the restrict position while being in contact with the first surface 141 of the weight 125 from below. Thus, the weight 125 is pressed in the upward direction 54 by the restriction member 88, thereby moving from the lower position to the higher position. As the weight 125 separates from the detector 59 by its movement toward the higher position, the detector 59 rotates from the released position to the restricted position. Accordingly, the restriction member 88 allows the detector 59 to rotate toward the restricted position while the restriction member 88 moves from the release position to the restrict position.
[Fourth Variation]
In a fourth variation, another example configuration in which a detector 59 is movable from the restricted position to the released position using a downward movement of a weight 125 will be described. Common parts have the same reference numerals as those of the above-described illustrative embodiment or the third variation, and the detailed description of the common parts will be omitted.
As depicted in
A weight 125 may be made of material having a higher specific gravity than ink stored in the ink chamber 36. The weight 125 is supported by a restriction member 88 within the ink chamber 36. The weight 125 of the fourth variation has a similar configuration to the weight 125 of the third variation except that the weight 125 of the fourth variation does not have a cavity 140. Therefore, a detailed description for the weight 125 of the fourth variation will be omitted. The frame 31 of an ink tank 32 includes a guide member 139 that allows the weight 125 to move straightly in the vertical direction. The guide member 139 of the fourth variation also has a similar configuration to the guide member 139 of the third variation. Therefore, a detailed description for the guide member 139 of the fourth variation will be omitted.
As depicted in
The restriction member 88 includes a body 145 and a projecting portion 146. The body 145 has an inclined surface 144 that is angled relative to the removal direction 52 (e.g. a direction from the front wall 40 toward the rear wall 41) and extends upward in the removal direction 52. The projecting portion 146 protrudes from the body 145 in the removal direction 52.
A coil spring 147 (as another example of the urging member) is disposed between the restriction member 88 and a lower wall 42 of an ink tank 32 in the up-down direction 5453. The coil spring 147 has one end connected with the restriction member 88 and the other end connected with the lower wall 42. This configuration allows the restriction member 88 to move up and down as the coil spring 147 contracts and extends. In other variations, for example, a leaf spring may be used as the urging member, instead of the coil spring 147.
The restriction member 88 is movable between a restrict position (e.g., a position of the restriction member 88 depicted in
When the restriction member 88 is located at the restrict position, the restriction member 88 supports the weight 125 by contacting a bottom surface 125A (more specifically, a lowermost fin 164 of the weight 125) of the weight 125 from below. Thus, the weight 125 is restricted from moving in the downward direction 53 from the higher position. In the fourth variation, for example, the movement of the weight 125 in the downward direction 53 from the higher position is restricted while the weight 125 is permitted to move only within backlash or play at the higher position. The restriction member 88 might not necessarily restrict the movement of the weight 125 in the upward direction 54 from the higher position. The movement of the weight 125 is restricted, whereby the detector 59 does not move from the restricted position. That is, the restriction member 88 restricts the movement of the detector 59 from the restricted position indirectly.
When the restriction member 88 is located at the release position, the restriction member 88 is located separate from the bottom surface 125A of the weight 125 located at the higher position. Therefore, in this state, the weight 125 is permitted to move in the downward direction 53 by force of gravity. That is, when the restriction member 88 is located at the release position, the restriction member 88 permits the weight 125 to move from the higher position to the lower position. As the weight 125 moves from the higher position to the lower position, the detector 59 rotates from the restricted position to the released position by downward pressing of the weight 125. That is, when the restriction member 88 is located at the release position, the restriction member 88 permits the movement of the detector 59.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, the weight 125, and the detector 59 behave in a process of placing the ink cartridge 30 to the cartridge holder 110 in the fourth variation. In the description below, it is assumed that an amount of ink remaining in the ink chamber 36 is more than the amount of ink remaining in the ink chamber 36 in the near-empty state.
In a state where the ink cartridge 30 is not placed in the cartridge holder 110, the valve 77 of the ink cartridge 30 of the fourth variation is in the same or similar state to the valve 77 of the ink cartridge 30 of the illustrative embodiment.
When the valve 77 is located at the first position, the weight 125 is retained at the higher position by the support of the restriction member 88. When the weight 125 is located at the higher position, the detector 59 is located at the restricted position. In this state, the bottom surface 125A of the weight 125 is in contact with the restriction portion 138 of the second arm 128 of the detector 59.
When the detector 59 is located at the restricted position, the detection portion 129 is not located on the optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is allowed to reach the light receiving portion. Thus, when the detector 59 is located at the restricted position, the sensor 103 outputs a high-level signal to the controller 130.
While the ink cartridge 30 is not placed at a particular position in the cartridge holder 110, a corresponding cartridge sensor 107 is free from pressure of the front end 58 of the cartridge cover 33 of the ink cartridge 30. Therefore, the cartridge sensor 107 outputs a low-level signal to the controller 130.
In this state, the cover of the cartridge holder 110 is opened and then the ink cartridge 30 is inserted into the cartridge holder 110. That is, the ink cartridge 30 is placed at the particular portion in the cartridge holder 110. In other words, the ink cartridge 30 becomes in the use position.
Similar to the illustrative embodiment, when the ink cartridge 30 reaches a vicinity of the inner back surface 151 of the cartridge holder 110 by its movement in the insertion direction 51, the cartridge sensor 107 outputs a high-level signal to the controller 130. Thus, counting for measuring a moving time of the detector 59 is started. As the valve 77 receives an external force by pressing of the ink needle 102, the valve 77 moves from the first position to the second position, whereby ink is permitted to flow from the ink chamber 36 to the outside of the ink cartridge 30. Further, the ink chamber 36 comes in communication with the outside air, whereby the inside pressure of the ink chamber 36 changes from a negative pressure to the atmospheric pressure.
As depicted in
While the weight 125 moves from the higher position to the lower position, the weight 125 presses the detection portion 129 of the detector 59 downward. Thus, the detector 59 rotates toward the released position from the restricted position.
The weight 125 keeps moving in the downward direction 53 until the bottom surface 125A of the weight 125 comes into contact with a projecting portion 146 of the restriction member 88.
When the detector 59 is located at the released position, the detected portion 116 is located between the light emitting portion and the light receiving portion of the sensor 103. That is, the detected portion 116 is located on the optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is not allowed to reach the light receiving portion. Thus, when the detector 59 is located at the released position, the sensor 103 outputs a low-level signal to the controller 130, whereby the counting for measuring the moving time of the detector 59 is ended. Through this process, the ink cartridge 30 is completely placed in the cartridge holder 110.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, the weight 125, and the detector 59 behave in a process of removing the ink cartridge 30 from the cartridge holder 110. In the description below, it is assumed that the amount of ink remaining in the ink chamber 36 is more than the amount of ink remaining in the ink chamber 36 in the near-empty state.
As depicted in
As the ink cartridge 30 moves in the removal direction 52 for removing the ink cartridge 30 from the cartridge holder 110, the valve 77 separates from the ink needle 102, whereby the valve 77 moves from the second position to the first position by an urging force of a coil spring 87. As the valve 77 moves from the second position to the first position, the restriction member 88 moves in the upward direction 54 from the release position to the restrict position by the urging force of the coil spring 121. While the restriction member 88 moves in the upward direction 54, the projecting portion 146 of the restriction member 88 presses the bottom surface 125A of the weight 125 in the upward direction 54. Thus, the weight 125 moves from the lower position to the higher position. As the weight 125 separates from the detector 59 by its movement toward the higher position, the detector 59 rotates from the released position to the restricted position. Accordingly, the restriction member 88 allows the detector 59 to rotate toward the restricted position while the restriction member 88 moves from the release position to the restrict position.
[Fifth Variation]
In a fifth variation, other example configuration in which a detector 59 is movable up and down will be described. In the fifth variation, as depicted in
The guide member 113 includes a bottom wall 113A, a first sidewall 113B, a second sidewall 113C, a third sidewall (not depicted), and a fourth sidewall (not depicted). The first sidewall 113B protrudes in the upward direction 54 from one end of the bottom wall 113A in the insertion-removal direction 5152 (e.g., an end that faces the direction toward which an ink cartridge 30 is inserted). The second sidewall 113C protrudes in the upward direction 54 from the other end of the bottom wall 113A in the insertion-removal direction 5152 (e.g., an end that is opposite to the one end and faces the direction toward which the ink cartridge 30 is removed). The third sidewall protrudes in the upward direction 54 from one end of the bottom wall 113A in the right-left direction 5556 (e.g., a right end). The fourth sidewall protrudes in the upward direction 54 from the other end of the bottom wall 113A in the right-left direction 5556 (e.g., a left end). The first sidewall 113B connects between one end of the third sidewall (e.g., an end that faces the direction toward which an ink cartridge 30 is inserted) and one end of the fourth sidewall in the insertion-removal direction 5152 (e.g., an end that faces the direction toward which an ink cartridge 30 is inserted). The second sidewall 113C connects between the other end of the third sidewall (e.g., an end that is opposite to the one end and faces the direction toward which the ink cartridge 30 is removed) and the other end of the fourth sidewall in the insertion-removal direction 5152 (e.g., an end that is opposite to the one end and faces the direction toward which the ink cartridge 30 is removed). The guide member 113 has an open upper end.
An internal space of the guide member 113 defined by the bottom wall 113A, the first sidewall 113B, the second sidewall 113C, the third sidewall. The bottom wall 113A, the first sidewall 113B, the second sidewall 113C, the third sidewall
The bottom wall 113A has a through hole 157. The through hole 157 penetrates the bottom wall 113A in the insertion-removal direction 5152. The second sidewall 113C has a through hole 158 (as an example of an opening) at a lower end portion thereof. The through hole 158 penetrates the second sidewall 113C in insertion-removal direction 5152. The through hole 158 provides communication between the ink chamber 36 and the internal space of the guide member 113.
The detector 59 includes the float 114, an arm 115, and a detected portion 116.
The float 114 is restricted from moving in the directions other than the downward direction 53 and the upward direction 54 by the guide member 113 while being permitted to move only within backlash or play in the directions other than the downward direction 53 and the upward direction 54. The float 114 may be made of material having a lower specific gravity than ink stored in the ink chamber 36.
The float 114 has a cavity 117. The cavity 117 is recessed toward the insertion direction 51 relative to a surface that faces toward which the direction the ink cartridge 30 is removed.
The arm 115 extends from the float 114 in the upward direction 54. The detected portion 116 is disposed at a distal end of the arm 115 and is supported by the arm 115. The detected portion 116 has a plate-like shape. The detected portion 116 may be made of material that blocks light outputted from the light emitting portion of a sensor 103. The detected portion 116 is configured to block light outputted from the light emitting portion in a similar manner to the detection portion 62 of the illustrative embodiment.
The detector 59 is movable between a released position (e.g., a position of the detector 59 depicted in
When the detector 59 is located at the released position, the detected portion 116 is located between the light emitting portion and the light receiving portion of the sensor 103. That is, the detected portion 116 is located on an optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is blocked by the detected portion 116, thereby not reaching the light receiving portion. Thus, when the detector 59 is located at the released position, the detected portion 116 is detected by the sensor 103 from the outside of the ink cartridge 30. When the detector 59 is located at a position other than the released position, the detected portion 116 is not located between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion reaches the light receiving portion.
When the detector 59 is located at the restricted position, the cavity 117 is aligned with the through hole 158 in the insertion-removal direction 5152. That is, the cavity 117 and the through hole 158 are located side by side in the insertion-removal direction 5152.
As depicted in
The restriction member 88 includes a first portion 88A, a second portion 88B, a third portion 88C, a fourth portion 88D, and a fifth portion 88E. The first portion 88A extends in the removal direction 51 from the end 120 of the valve 70. The second portion 88B extends in the downward direction 53 from the first portion 88A. The third portion 88C extends in the removal direction 51 from the second portion 88B. The fourth portion 88D extends in the upward direction 54 from the third portion 88C. The fifth portion 88E extends in the insertion direction 51 from the fourth portion 88D.
The third portion 88C penetrates the bottom wall 113A of the guide member 113 through the through hole 157. The fourth portion 88D is disposed adjacent to the guide member 113 in the removal direction 52 (e.g., the fourth portion 88D is closer to the rear wall 41 than the guide member 113 in the insertion-removal direction 5152). The fifth portion 88E is located where the fifth portion 88E is capable of engaging with the cavity 117 of the float 114 that is located at the restricted position, via the through hole 158.
The restriction member 88 is movable between a restrict position (e.g., a position of the restriction member 88 depicted in
When the restriction member 88 is located at the restrict position, the fifth portion 88E of the restriction member 88 is in engagement with the cavity 117 via the through hole 158. For example, when the restriction member 88 is located at the restrict position, the fifth portion 88E of the restriction member 88 penetrates in the cavity 117 from the ink chamber 36 via the through hole 158. Thus, the detector 59 is restricted from moving in the upward direction 54. That is, the detector 59 is restricted from moving from the restricted position. In the fifth variation, for example, the movement of the detector 59 in the upward direction 54 from the restricted position is restricted while the detector 59 is permitted to move only within backlash or play. The restriction member 88 might not necessarily restrict the movement of the detector 59 from the restricted position in the downward direction 53.
When the restriction member 88 is located at the release position, the fifth portion 88E of the restriction member 88 is located separate from the cavity 117 (refer to
In the fifth variation, when the restriction member 88 moves from the restrict position to the release position in a state where the float 114 is in contact with the bottom wall 113A of the guide member 113, the detector 59 moves from the restricted position to the released position. Nevertheless, even when the restriction member 88 moves from the release position to the restrict position in a state where the detector 59 is located at the released position (e.g., the float 114 is floating in ink), the fifth portion 88E of the guide member 113 might not engage with the cavity 117 of the float 114. Therefore, the position of the detector 59 is not changed to the restricted position.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, and the detector 59 behave in a process of placing the ink cartridge 30 to the cartridge holder 110 in the fifth variation. In the description below, it is assumed that an amount of ink remaining in the ink chamber 36 is more than the amount of ink remaining in the ink chamber 36 in the near-empty state.
In a state where the ink cartridge 30 is not placed in the cartridge holder 110, the valve 77 of the ink cartridge 30 of the fifth variation is in the same or similar state to the valve 77 of the ink cartridge 30 of the illustrative embodiment.
When the valve 77 is located at the first position, the restriction member 88 is located at the restrict position. When the restriction member 88 is located at the restrict position, the detector 59 is located at the restricted position. In this state, the fifth portion 88E of the restriction member 88 is in engagement with the cavity 117 of the float 114 via the through hole 158, thereby restricting the detector 59 from moving in the upward direction 54 from the restricted position.
When the detector 59 is located at the restricted position, the float 114 is in contact with the bottom wall 113A of the guide member 113. In this state, the float 114 does not float in ink or on the surface of ink stored in the ink chamber 36.
When the detector 59 is located at the restricted position, the detected portion 116 is not located on the optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is allowed to reach the light receiving portion. Thus, when the detector 59 is located at the restricted position, the sensor 103 outputs a high-level signal to the controller 130.
While the ink cartridge 30 is not placed at a particular position in the cartridge holder 110, a corresponding cartridge sensor 107 is free from pressure of the front end 58 of the cartridge cover 33 of the ink cartridge 30. Therefore, the cartridge sensor 107 outputs a low-level signal to the controller 130.
In this state, the cover of the cartridge holder 110 is opened and then the ink cartridge 30 is inserted into the cartridge holder 110. That is, the ink cartridge 30 is placed at the particular portion in the cartridge holder 110. In other words, the ink cartridge 30 becomes in the use position.
Similar to the illustrative embodiment, when the ink cartridge 30 reaches a vicinity of the inner back surface 151 of the cartridge holder 110 by its movement in the insertion direction 51, the cartridge sensor 107 outputs a high-level signal to the controller 130. Thus, counting for measuring a moving time of the detector 59 is started. In accordance with the movement of the ink cartridge 30 in the insertion direction 51, the valve 77 moves from the first position to the second position, whereby ink is permitted to flow from the ink chamber 36 to the outside of the ink cartridge 30. Further, the ink chamber 36 comes into communication with the outside air, whereby the inside pressure of the ink chamber 36 changes from a negative pressure to the atmospheric pressure.
As depicted in
As the detector 59 becomes movable, the float 114, which has been kept submerged in ink, moves in the upward direction 54 by its buoyant force. That is, the detector 59 moves from the restricted position to the released position by the float 114 that moves upward in response to the movement of the restriction member 88 to the release position while the ink cartridge 30 is in the use position (e.g., while the ink cartridge 30 is completely placed in the cartridge holder 110).
The float 114 keeps moving in the upward direction 54 until the detected portion 116 comes into contact with a surface 37A that defines an internal space of a raised portion 37.
When the detector 59 is located at the released position, the detected portion 116 is located between the light emitting portion and the light receiving portion of the sensor 103. That is, the detected portion 116 is located on the optical axis 111 extending between the light emitting portion and the light receiving portion of the sensor 103. Therefore, light outputted from the light emitting portion is not allowed to reach the light receiving portion. Thus, when the detector 59 is located at the released position, the sensor 103 outputs a low-level signal to the controller 130. Thus, the counting for measuring the moving time of the detector 59 is ended. Through this process, the ink cartridge 30 is completely placed in the cartridge holder 110.
Hereinafter, a description will be provided on how the valve 77, the restriction member 88, and the detector 59 behave as the amount of ink remaining in the ink chamber 36 decreases due to consumption of ink in the recording head 21 after the ink cartridge 30 is completely placed in the cartridge holder 110.
Ink stored in the ink chamber 36 decreases due to consumption of ink by ink ejection from the nozzles 29 of the recording head 21 and thus the ink level becomes lower than a portion of the float 114. In a state where the ink level is lower than the portion of the float 114, the float 114 moves downward with the ink level lowering. In accordance with the downward movement of the float 114, the detector 59 moves in the downward direction 53 from the released position toward the restricted position (refer to
According to the configuration of the ink cartridge 30 of the fifth variation, when the restriction member 88 is located at the restrict position, the restriction member 88 protrudes in the internal space of the guide member 113 from the ink chamber 36 via the through hole 158 to restrict the movement of the detector 59 located at the restricted position. Therefore, when the detector 59 is located at the restricted position (e.g., when the restriction member 88 is located at the restrict position), an opening area of the through hole 158 is smaller than the opening area of the through hole 158 when the detector 59 is not located at the restricted position. Accordingly, entry of air bubbles into the internal space of the guide member 113 from the ink chamber 36 may be further reduced.
[Other Variations]
In the illustrative embodiment, the detection portion 62 is always located within the ink chamber 36 irrespective of the position of the detector 59. Nevertheless, in other variations, for example, a detection portion 62 may have another configuration as long as the detector 59 is configured to block light outputted from the light emitting portion of the sensor 103 to the light receiving portion of the sensor 103 when the detector 59 is located at the released position. In one example, a detection portion 62 may be configured to be located outside the ink chamber 36 when the detector 59 is located at the restricted position. The detection portion 62 may be further configured to enter the inside of the ink chamber 36 while a detector 59 moves from the restricted position to the released position. In still other variations, a detection portion 62 may be located outside of the ink chamber 36 at all times irrespective of the position of a detector 59.
In the illustrative embodiment, the measurement of the moving time of the detector 59 is started when the ink cartridge 30 is completely placed at a particular portion in the cartridge holder 110 (e.g., when the cartridge sensor 107 outputs a high-level signal). Through use of the existing sensor (e.g., the cartridge sensor 107), the processing for estimating the ink viscosity may be implemented without changing the configuration of the ink supply unit 100 significantly. Nevertheless, in other variations, for example, the measurement of the moving time of the detector 59 may be started at any arbitrary timing that the controller 130 may detect.
In one example, as depicted in
In another example, as depicted in
In the illustrative embodiment, when the controller 130 determines that the moving time is out of the threshold range (e.g., NO in step S18), the operation of the recording head 21 is restricted, e.g., the routine skips step S36. Therefore, this control may reduce or prevent an occurrence of a problem in the recording head 21 due to ejection of ink whose viscosity has been greatly changed. Nevertheless, the processing of step S36 might not necessarily be skipped. In one example, the controller 130 may execute the processing of notifying an abnormality of the ink viscosity (e.g., step S37) and it may be left up to a user to determine whether to proceed to operate the recording head 21. In this case, the control routine of the controller 130 may be different from the control routine of
In another example, when the controller 130 determines that the abnormal flag is “ON” (e.g., YES in step S32), the controller 130 may control the head control board 17A to control the level of a drive voltage to be applied to the piezoelectric elements 29A for the nozzles 29 in the image recording of step S36 without skipping the processing of steps S35 and S36.
More specifically, the controller 130 may change a control signal to be outputted to the head control board 17A to control the level of a drive voltage to be applied to the piezoelectric elements 29A such that the amount of ink to be ejected from each nozzle 29 is substantially the same in both of a case in which the moving time is included within the threshold range and a case in which the moving time is out of the threshold range. For example, when the moving time is below the lower limit of the threshold range (e.g., when the ink viscosity is too low), the controller 130 may control the level of the drive voltage to be applied to the piezoelectric elements 29A to be lower than the level of the drive voltage to be applied when the moving time is included within the threshold range. When the moving time exceeds the upper limit of the threshold range (e.g., when the ink viscosity is too high), the controller 130 may control the level of the drive voltage to be applied to the piezoelectric elements 29A to be higher than the level of the drive voltage to be applied when the moving time is included within the threshold range.
According to the above configuration, in a case where various types of ink cartridges 30 each storing ink having viscosity different from one another are placed simultaneously in the cartridge holder 110, a drive voltage having an appropriate level may be applied to each of the piezoelectric elements 29A in accordance of the ink type. In the illustrative embodiment, the plurality of piezoelectric elements 29A is used as an example of an actuator. Nevertheless, in other variations, for example, a thermal actuator may be used. In this case, the thermal actuator may be configured to generate air bubbles in ink by heat and cause the nozzles 29 to eject ink therefrom.
The viscosity of ink stored in an ink cartridge 30 may change under the influence of the temperature surrounding the ink cartridge 30. More specifically, the ink viscosity tends to become lower with higher temperature and become higher with lower temperature. In the illustrative embodiment, the controller 130 controls the head control board 17A to control the level of drive voltage to be applied to the piezoelectric elements 29A in accordance with the temperature. More specifically, when the ambient temperature is relatively high, the controller 130 outputs a particular control signal to the head control board 17A such that a relatively low drive voltage is applied to the piezoelectric elements 29A. When the ambient temperature is relatively low, the controller 130 outputs another control signal to the head control board 17A such that a relatively high drive voltage is applied to the piezoelectric elements 29A. There is an optimal threshold of ink viscosity corresponding to drive voltage to be applied to the piezoelectric elements 29A. Therefore, it may be preferable that the threshold range of ink viscosity may be determined in accordance with the temperature. In the illustrative embodiment, an appropriate threshold range is determined in accordance with the temperature. The manner of determining an appropriate threshold range is not limited to the specific example. In one example, a threshold range appropriate for the temperature may be selected from a plurality of threshold ranges prestored in the ROM 132. In another example, an upper limit or a lower limit of the threshold range may be calculated using a function using the temperature as an input parameter. In other variations, a drive voltage to be applied to the piezoelectric element 29A might not be controlled in accordance with the temperature. In this case, the processing of step S17 in which the threshold range is determined based on a signal outputted from the temperature sensor 106 may be omitted, and a fixed threshold range may be used.
In the illustrative embodiment, the controller 130 measures the moving time of the detector 59 by counting. More specifically, the controller 130 starts counting in response to output of a high-level signal from the cartridge sensor 107 and ends the count of the measurement in response to output of a low-level signal from the sensor 103. Then, the controller 130 determines the time elapsed from the start of the count to the end of the count as the moving time of the detector 59. Nevertheless, in other variations, for example, a controller 130 may determine by taking a difference between the time at which the cartridge sensor 107 outputs a high-level signal and the time at which the sensor 103 outputs a low-level signal as the moving time of the detector 59.
In the illustrative embodiment, the controller 130 stores the abnormal flag in the EEPROM 134. Nevertheless, in other variations, for example, a controller 130 may store the abnormal flag in a memory of an integrated circuit mounted on an ink cartridge 30. In the illustrative embodiment, the controller 130 includes both the CPU 131 and the ASIC 135. Nevertheless, in other variations, a controller 130 may include an ASIC 135 only. All processing of
In the illustrative embodiment, ink is used as an example of liquid. Nevertheless, in other variations, a pretreatment liquid to be ejected onto a recording sheet prior to ink ejection at the time of printing may be used as an example of the liquid, instead of ink.
Claims
1. A liquid cartridge comprising:
- a liquid chamber;
- a liquid outlet configured to supply the liquid from an interior of the liquid chamber to an exterior of the liquid chamber in response to opening a valve in the liquid outlet, and to block the supply of the liquid from the interior of the liquid chamber to the exterior of the liquid chamber in response to closing the valve in the liquid outlet;
- a detector positioned in the chamber,
- the detector being movable between a restricted position in which the detector is not detectable from the exterior of the chamber and a released position in which the detector is detectable from the exterior of the chamber; and
- a restriction member positioned in the chamber, the restriction member being movable between a restrict position in which movement of the detector from the restricted position to the released position is restricted and a release position in which the detector is movable, wherein the restriction member is configured to move from the release position to the restrict position in response to closing the valve in the liquid outlet,
- wherein the detector is configured to move from the released position to the restricted position in response to movement of the restriction member from the release position to the restrict position, and wherein the restriction member is not located in a track of movement of the detector between the restricted position and the released position when the restriction member is in the release position.
2. The liquid cartridge according to claim 1,
- wherein the detector includes a weight, wherein when the detector is in the restricted position the weight is positioned higher than when the detector is in the released position, and wherein the weight is submerged in fluid contained in the chamber when the detector is in the restricted position;
- wherein the weight is movable between an upper position and a lower position that is lower relative to the upper position, and
- wherein the detector is movable from the restricted position to the released position in response to movement of the weight from the upper position to the lower position.
3. The liquid cartridge of claim 2 further comprising at least one guide extending in an upward direction,
- wherein the guide is configured to guide movement of the detector from the restricted position toward the released position.
4. The liquid cartridge according to claim 3,
- wherein the detector is rotatable around an axis,
- wherein the detector comprises a first arm extending from the axis and a second arm extending from the axis,
- wherein the detector comprises a detection portion detectable from an exterior of the liquid cartridge, the detection portion being supported by the first arm, and
- wherein the weight contacts the second arm to position the detector in the restricted position.
5. The liquid cartridge according to claim 2, wherein the restriction member is positioned below the weight and contacts the weight in the restrict position, and
- wherein the restriction member is configured to separate from the weight in the release position.
6. The liquid cartridge according to claim 5, wherein the weight is formed with a cavity facing downward, and the restriction member is positioned in the cavity.
7. The liquid cartridge according to claim 6, wherein the cavity includes an inclined surface that is inclined upwardly, and
- wherein the restriction member is positioned below the inclined surface and configured to move from the release position to the restrict position while keeping contact with the inclined surface.
8. The liquid cartridge according to claim 5 further comprising an urging member urging the restrict member toward the restrict position,
- wherein the cavity includes an inclined surface extending upward toward the rear wall,
- wherein the actuator is positioned above the inclined surface and configured to move from the first position to the second position while keeping contact with the inclined surface against urging force of the urging member.
9. The liquid cartridge according to claim 1, further comprising:
- a front wall;
- a rear wall opposite the front wall; and
- at least one guide extending in an upward direction;
- wherein the guide is configured to guide movement of the detector from the restricted position toward the released position.
10. The liquid cartridge according to claim 9, wherein the actuator comprises an inclined surface that is inclined downwardly relative to a direction from the front wall toward the rear wall and a restriction member configured to move between a release position closer to the rear wall than the restriction position, in which the detector is movable to the released position, and a restrict position in which the restriction member contacts the detector to position the detector in the restricted position,
- wherein the restriction member is positioned above the inclined surface in the restriction position,
- wherein the restriction member is configured to separate from the inclined surface in the release position, and
- wherein the restriction member is configured to keep contact with the inclined surface during movement from the release position to the restrict position.
11. The liquid cartridge according to claim 9, wherein the actuator comprises an inclined surface that is inclined downwardly relative to a direction from the front wall toward the rear wall and a restriction member configured to move between a release position, closer to the rear wall than the restriction position, in which the detector is movable to the released position, and a restrict position in which the restriction member contacts the detector to position the detector in the restricted position in response to movement of the actuator,
- wherein the restriction member is positioned on the detector in the restricted position,
- wherein the restriction member is configured to separate from the inclined surface in the release position, and
- wherein the actuator is configured to keep contact with the inclined surface during movement from the first position to the second position.
12. The liquid cartridge according to claim 11, the restriction member is positioned on the detector positioned in the released position.
13. The liquid cartridge of claim 1 further comprising an actuator being movable between a first position in which the liquid outlet is closed, and a second position in which the liquid outlet is open.
14. The liquid cartridge of claim 1, wherein a part of the detector in the released position is positioned in a track of movement of the restriction member between the restrict position and the release position, and
- the restriction member is configured to apply a force towards the restricted position to the part of the detector in response to movement of the restriction member from the restrict position to the release position.
6378971 | April 30, 2002 | Tamura et al. |
7188939 | March 13, 2007 | Sasaki |
9676200 | June 13, 2017 | Nukui |
20100103231 | April 29, 2010 | Iwamura et al. |
20100110154 | May 6, 2010 | Iwamura et al. |
20150160111 | June 11, 2015 | Lewis et al. |
20160039209 | February 11, 2016 | Sugahara |
20160039215 | February 11, 2016 | Sugahara |
20160279954 | September 29, 2016 | Ono |
2 165 837 | March 2010 | EP |
9-277560 | October 1997 | JP |
2001-232806 | August 2001 | JP |
2005-145126 | June 2005 | JP |
2008-93862 | April 2008 | JP |
2010-69757 | April 2010 | JP |
2010-105238 | May 2010 | JP |
2010-105239 | May 2010 | JP |
2010-105268 | May 2010 | JP |
2011-140128 | July 2011 | JP |
- U.S. Appl. No. 15/009,914, filed Jan. 29, 2016.
- U.S. Office Action issued related U.S. Appl. No. 15/009,914, dated Jul. 21, 2016.
- U.S. Office Action issued in related U.S. Appl. No. 15/009,914, dated Nov. 3, 2016.
- International Search Report and Written Opinion issued in related International Patent Application No. PCT/JP2016/000466, dated Oct. 6, 2016.
- International Search Report and Written Opinion issued in related International Patent Application No. PCT/JP2016/000469, dated Oct. 14, 2016.
- Office Action (Notice of Reasons for Rejection) issued in related Japanese Patent Application No. 2015-066106, dated Feb. 12, 2019.
- U.S. office action issued in related U.S. Appl. No. 15/794,512, dated Jul. 23, 2018.
- Office Action issued in related U.S. Appl. No. 15/794,512, dated Nov. 29, 2018.
- Office Action issued in related U.S. Appl. No. 15/794,512, dated Sep. 10, 2019.
- Office Action issued in related U.S. Appl. No. 15/794,512, dated Dec. 20, 2019.
- Notice of Allowance issued in related U.S. Appl. No. 15/794,512, dated Apr. 17, 2020.
Type: Grant
Filed: Jun 12, 2017
Date of Patent: Jun 30, 2020
Patent Publication Number: 20170326885
Assignee: BROTHER KOGYO KABUSHIKI KAISHA (Nagoya-Shi, Aichi-Ken)
Inventors: Kosuke Nukui (Nagoya), Suguru Tomoguchi (Okazaki), Tetsuro Kobayashi (Nagoya), Naoya Okazaki (Gifu-ken), Hiroaki Takahashi (Nagoya)
Primary Examiner: Alejandro Valencia
Application Number: 15/619,867
International Classification: B41J 2/175 (20060101); B41J 29/38 (20060101);