Surgical system with configurable rail-mounted mechanical arms
A robotic surgical system comprises a horizontal platform to support a patient, a rail positioned about the horizontal platform, a carriage operatively coupled to and configured to translate along the rail, and a robotic arm operatively coupled to the carriage and translated about the patient by the rail. The robotic arm is configured to operate on the patient in a variety of positions provided by the translating carriage. The rail provides a rounded path for the carriage, such as a U-shaped path. The U-shaped path may comprise a first leg and a second leg, the first leg longer than the second leg. Furthermore, the system may comprise a plurality of carriages operatively coupled to the rail and a plurality of robotic arms. Also, the system may further comprise a central base which the horizontal platform can articulate relative to, such as by translating horizontally or vertically, rotating, or titling.
Latest Auris Health, Inc. Patents:
This application is a continuation of U.S. application Ser. No. 15/094,179, filed Apr. 8, 2016, which claims the benefit of U.S. Provisional Application No. 62/145,418, filed Apr. 9, 2015, each of which is incorporated herein by reference.
The present invention relates to medical instruments, tools, and methods that may be incorporated into a robotic system, such as those disclosed in U.S. patent application Ser. No. 14/523,760, filed Oct. 24, 2014, U.S. Provisional Patent Application No. 62/019,816, filed Jul. 1, 2014, U.S. Provisional Patent Application No. 62/037,520, filed Aug. 14, 2014, and U.S. Provisional Patent Application No. 62/057,936, filed Sep. 30, 2014, the entire contents of which are incorporated herein by reference.
INCORPORATION BY REFERENCEAll publications and patent applications mentioned in this specification are herein incorporated by reference in their entirety to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.
FIELD OF THE INVENTIONThe field of the present invention relates to a robotics platform that may be used in a number of surgical procedures. More particularly, the field of the invention pertains to robotic platforms that enable robotically-controlled tools to perform diagnostic and therapeutic surgical procedures.
BACKGROUND OF THE RELATED ARTUse of robotic technologies presents a number of advantages over traditional, manual surgery procedures. In addition to other advantages, robotic surgeries often allow for greater precision, control, and access. Despite these advantages, however, the pre-existing robotics platforms have built-in limitations that are tied to their structural designs and underpinnings. In the absence of a truly flexible system, hospitals and health care practitioners are forced to acquire a variety of robotic systems in order to robotically perform a variety of procedures. The high capital costs, combined with the relatively specialization of the systems, have slowed adoption of robotics platforms for surgery.
Accordingly, there is a need for a robotics platform that is configurable for a number of procedures.
BRIEF SUMMARY OF THE INVENTIONIn general, the present invention provides a medical device that comprises a rail having a rounded path, a carriage configured to translate along the rail, the carriage being operatively coupled to the rail, a robotic arm operatively coupled to the carriage, and a horizontal platform proximate to the rail, wherein the robotic arms are configured to perform medical procedures on a patient on the platform. In one aspect, the rounded path is U-shaped. In one aspect, the U-shaped path comprises of a first leg and a second leg, wherein the first leg is longer than the second leg. In another aspect, the rail is configured around a central base. In one aspect, the central base is shaped like a column.
In another aspect, a horizontal platform is operatively coupled to the top of the base. In one aspect, the rail is disposed below the platform. In one aspect, the rail is around the platform. In one aspect, the arm is configured to be angled over platform.
In another aspect, the platform is a surgical bed, configured to support the weight of a patient. In one aspect, the surgical bed comprises a first part and a second part, wherein the second part is configured to articulate relative to the first part.
In another aspect, the rail is configured around a horizontal platform. In one aspect, the platform is a surgical bed, configured to support the weight of a patient.
In another aspect, the rounded path is circular. In one aspect, the rail is disposed below the platform. In one aspect, the rail is around the platform.
The invention will be described, by way of example, and with reference to the accompanying diagrammatic drawings, in which:
Although certain preferred embodiments and examples are disclosed below, inventive subject matter extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses, and to modifications and equivalents thereof. Thus, the scope of the claims appended hereto is not limited by any of the particular embodiments described below. For example, in any method or process disclosed herein, the acts or operations of the method or process may be performed in any suitable sequence and are not necessarily limited to any particular disclosed sequence. Various operations may be described as multiple discrete operations in turn, in a manner that may be helpful in understanding certain embodiments; however, the order of description should not be construed to imply that these operations are order dependent. Additionally, the structures, systems, and/or devices described herein may be embodied as integrated components or as separate components.
In clinical applications, the design of the base of the robotics platform often constrains the types of procedures that may be performed by the system. For example, in a system where robotic appendages are only available around the abdomen, urology procedures are precluded from being performed. Likewise, robotic arms below the abdomen may not be useful for laparoscopic procedures. Accordingly, the present invention provides a flexible design such that robotic arms may be delivered to multiple access points in a patient around a surgical bed.
Encircling the surgical bed 102, the rail 103 provides a structure to slidingly translate the mechanical arms 104 to a desired location around the surgical bed 102. The rail 103, which may be referred to as a “track”, and the mechanical arms 104 may be slidingly translated along it in order to facilitate access for the arms. The rail 103 also provides allows for the conveyance and reception of power, controls, fluidics, aspiration to the mechanical arms 104. The rail 103 may be fully circular and surround all sides of the surgical bed 102.
The mechanical arms 104 may be operatively coupled to the rail 103. The mechanical arms may also be robotic. The translation of the mechanical arms 104 may be actuated either manually or robotically. The mechanical arms 104 may be coupled independently to the rail 103 or in groups via a mechanical carriage that may slide around the rail 103. In addition to providing structural support to the mechanical arms 104, the carriage may be used to convey and receive power, controls, fluidics, and aspiration to and from the arms 104 to the rail 103.
In combination or individually, the support stand 105 and the system base 106 may be used to house electronics, fluidics, pneumatics, and aspiration. The electronics may be used from control, localization, navigation of the arms 104. Thus, as a robotically-driven platform, system 101 provides for a comprehensive surgical bed and tool solution that may be used to perform any number of procedures around a patient.
Running along the surgical bed 202, the rail 203 provides a structure to slidingly translate the mechanical arms 204 to a desired location around the surgical bed 202. Unlike rail 103, rail 203 uses a U-shape that enhances access the surgical bed 202. This may provide advantages when position the patient and accessing operative sites on a patient's lower abdomen. The longer leg of the rail 203 allows for the mechanical arms to be aligned to convey a medical instrument into the patient by means of a “virtual rail” such as one discussed in the aforementioned patent applications. As before, the rail 203 may be referred to as a “track”, and the mechanical arms 204 may be slidingly translated along it in order to facilitate access for the arms. The rail 203 also provides allows for the conveyance and reception of power, controls, fluidics, aspiration to the mechanical arms 204.
In combination or individually, the support stand 205 and the system base 206 may be used to house electronics, fluidics, pneumatics, and aspiration. The electronics may be used from control, localization, navigation of the arms 204. Thus, as a robotically-driven platform, system 201 provides for an improved, comprehensive surgical bed and tool solution that may be used to perform any number of procedures around a patient.
As deployed, the mechanical arms 104 from system 101 and mechanical arms 204 and system 201 are positioned to perform endolumenal procedures to access the access points in the lower abdomen (e.g., urology, ureteroscopy, hysteroscopy, or colonoscopy) and upper abdomen (e.g., bronchoscopy, gastro-intestinal).
Encircling the surgical bed 402, the rail 403 provides a structure to slidingly translate the mechanical arms 404 to a desired location around the surgical bed 402. The rail 403, which may be referred to as a “track”, and the mechanical arms 404 may be slidingly translated along it in order to facilitate access for the arms. The rail 403 also provides allows for the conveyance and reception of power, controls, fluidics, aspiration to the mechanical arms 404.
The mechanical arms 404 may be operatively coupled to the rail 403. The mechanical arms 404 may also be robotic. The translation of the mechanical arms 404 may be actuated either manually or robotically. The mechanical arms 404 may be coupled independently to the rail 403 or in groups via a mechanical carriage that may slide around the rail 403. In addition to providing structural support to the mechanical arms 404, the carriage may be used to convey and receive power, controls, fluidics, and aspiration to and from the arms 404 to the rail 403. The ability to translate the arms 404 and translate the bed 402 allows for nearly unlimited access to different portions of the anatomy of patient 407.
In combination or individually, the support stand 405 and the system base 406 may be used to house electronics, fluidics, pneumatics, and aspiration. The electronics may be used from control, localization, navigation of the arms 404. Thus, as a robotically-driven platform, system 401 provides for a comprehensive surgical bed and tool solution that may be used to perform any number of procedures around a patient. The support stand 405 may also translate vertically, allowing for easier access to the patient 407 and operative site.
As deployed in view 400, mechanical arms 404 may be positioned to access the abdomen of patient 407 for laparoscopic procedures.
Encircling the surgical bed 502, the rail 503 provides a structure to slidingly translate the mechanical arms 504, 505, 506 to a desired location around the surgical bed 502. The rail 503, which may be referred to as a “track”, and the mechanical arms 504, 505, 506 may be slidingly translated along it in order to facilitate access for the arms 504, 505, 506. The rail 503 also provides allows for the conveyance and reception of power, controls, fluidics, aspiration to the mechanical arms 504, 505, 506.
The mechanical arms 504, 505, 506 may be operatively coupled to the rail 503. The mechanical arms 504, 505, 506 may also be robotic. The translation of the mechanical arms 504, 505, 506 may be actuated either manually or robotically. The mechanical arms 504, 505, 506 may be coupled independently to the rail 503 or individually or in groups via mechanical carriages that may slide around the rail 503. In addition to providing structural support to the mechanical arms 504, 505, 506 a carriage may be used to convey and receive power, controls, fluidics, and aspiration to and from the arms 504, 505, 506 to the rail 503. The ability to translate the arms 504, 505, 506 and translate the bed 502 allows for nearly unlimited access to different portions of the anatomy of a patient.
In combination or individually, the support stand 507 and the system base 508 may be used to house electronics, fluidics, pneumatics, and aspiration. The electronics may be used from control, localization, navigation of the arms 504, 505, 506. Thus, as a robotically-driven platform, system 501 provides for a comprehensive surgical bed and tool solution that may be used to perform any number of procedures around a patient. The support stand 507 may also translate vertically, allowing for easier access to the patient and operative site.
As deployed in view 500, mechanical arms 504, 505, 506 may be positioned to access the abdomen of patient for laparoscopic procedures, while the carriages on the other side of rail 503 may be positioned to hold mechanical arms to create a virtual rail for access points in the lower abdomen (e.g., urology, ureteroscopy, or hysteroscopy).
Underneath the surgical bed 602, the rail 603 provides a structure to slidingly translate the mechanical arms 604, 605 to a desired location around the surgical bed 602. The rail 603, which may be referred to as a “track”, and the mechanical arms 604, 605 may be slidingly translated along it in order to facilitate access for the arms 604, 605. The rail 603 also provides allows for the conveyance and reception of power, controls, fluidics, aspiration to the mechanical arms 604, 605. As shown in
The mechanical arms 604, 605 may be operatively coupled to the rail 603. The mechanical arms 604, 605 may also be robotic. The translation of the mechanical arms 604, 605 may be actuated either manually or robotically. The mechanical arms 604, 605 may be coupled independently to the rail 603 or individually or in groups (as shown) via a mechanical carriage 608 that may slide around the rail 603. In addition to providing structural support to the mechanical arms 604, 605, the carriage 606 may be used to convey and receive power, controls, fluidics, and aspiration to and from the arms 604, 605 to the rail 603. The ability to translate the arms 604, 605 and translate the bed 602 allows for nearly unlimited access to different portions of the anatomy of a patient.
Not shown, system 601 may also incorporate a support stand and the system base to house electronics, fluidics, pneumatics, and aspiration. The electronics may be used from control, localization, navigation of the arms 604, 605. Thus, as a robotically-driven platform, system 601 provides for a comprehensive surgical bed and tool solution that may be used to perform any number of procedures around a patient. The support stand may also translate vertically, allowing for easier access to the patient and operative site. The support stand may also support vertical translation of the rail 603 in order to facilitate access to particular anatomical access points.
As deployed in view 600, mechanical arms 604, 605 on carriage 608 may be positioned to access the abdomen of patient for procedures, such as laparoscopy or endoscopy, while a carriage 609 on the other side of rail 603 may be positioned to hold additional mechanical arms.
Underneath the surgical bed 702, the rail 703 provides a structure to slidingly translate the mechanical arms 704, 705, 706, 708 to a desired location around the surgical bed 702. The rail 703, which may be referred to as a “track” and the mechanical arms 704, 705 may be slidingly translated along it in order to facilitate access for the arms 704, 705, 706, 708. The rail 703 also provides allows for the conveyance and reception of power, controls, fluidics, aspiration to the mechanical arms 704, 705, 706, 708.
The mechanical arms 704, 705, 706, 708 may be operatively coupled to the rail 703. The mechanical arms 704, 705, 706, 708 may also be robotic. The translation of the mechanical arms 704, 705, 706, 708 may be actuated either manually or robotically. The mechanical arms 704, 705, 706, 708 may be coupled independently to the rail 703 or individually or in groups via a mechanical carriage that may slide around the rail 703. In addition to providing structural support to the mechanical arms 704, 705, 706, 708, the carriage may be used to convey and receive power, controls, fluidics, and aspiration to and from the arms 704, 705, 706, 708 to the rail 703. The ability to translate the arms 704, 705, 706, 708 and translate the bed 702 allows for nearly unlimited access to different portions of the anatomy of a patient.
System 701 may also incorporate support stand 710 and system base 711 to house electronics, fluidics, pneumatics, and aspiration. The electronics may be used from control, localization, navigation of the arms 704, 705, 706, 708. Thus, as a robotically-driven platform, system 701 provides for a comprehensive surgical bed and tool solution that may be used to perform any number of procedures around a patient. The rail 703 on support stand 710 may also translate vertically, allowing for easier access to the patient and operative site. The support stand may also telescope.
As deployed in view 700, mechanical arms 704, 705, 706, 708 may be positioned to access the abdomen of patient 709 for laparoscopic procedures, using a variety of rigid or semi-rigid laparoscopic instruments.
Underneath the surgical bed 802, the rail 803 provides a structure to slidingly translate the mechanical arms 804, 805 to a desired location around the surgical bed 802. The rail 803, which may be referred to as a “track”, and the mechanical arms 804, 805 may be slidingly translated along it in order to facilitate access for the arms. The rail 803 also provides allows for the conveyance and reception of power, controls, fluidics, aspiration to the mechanical arms.
The mechanical arms may be operatively coupled to the rail 803. The mechanical arms may also be robotic. The translation of the mechanical arms 804, 805 may be actuated either manually or robotically. The mechanical arms 804, 805 may be coupled independently to the rail 803 or individually or in groups via a mechanical carriage that may slide around the rail 803. In addition to providing structural support to the mechanical arms 804, 805 the carriage may be used to convey and receive power, controls, fluidics, aspiration to and from the arms 804, 805 to the support base 806. The ability to translate the arms 804, 805 and translate the bed 802 allows for nearly unlimited access to different portions of the anatomy of a patient.
System 801 may also incorporate support stand 806 to house electronics, fluidics, pneumatics, and aspiration. The electronics may be used from control, localization, navigation of the arms 804, 805. Thus, as a robotically-driven platform, system 801 provides for a comprehensive surgical bed and tool solution that may be used to perform any number of procedures around a patient. The rail 803 on support stand 806 may also translate vertically, allowing for easier access to the patient and operative site. The support stand may also telescope.
As deployed in view 800, mechanical arms 804, 805 may be positioned to access the abdomen of a patient for laparoscopic procedures, using a variety of rigid or semi-rigid laparoscopic instruments.
The aforementioned embodiments of the present invention may be designed to interface with robotics instrument device manipulators, tools, hardware, and software such as those disclosed in the aforementioned patent applications that are incorporated by reference. For example, the embodiments in this specification may be configured to be driven by an instrument drive mechanism or an instrument device manipulator that is attached to the distal end of a robotic arm through a sterile interface, such as a drape. As part of a larger robotics system, robotic control signals may be communicated from a remotely-located user interface, down the robotic arm, and to the instrument device manipulator to control the instrument or tool.
For purposes of comparing various embodiments, certain aspects and advantages of these embodiments are described. Not necessarily all such aspects or advantages are achieved by any particular embodiment. Thus, for example, various embodiments may be carried out in a manner that achieves or optimizes one advantage or group of advantages as taught herein without necessarily achieving other aspects or advantages as may also be taught or suggested herein.
Elements or components shown with any embodiment herein are exemplary for the specific embodiment and may be used on or in combination with other embodiments disclosed herein. While the invention is susceptible to various modifications and alternative forms, specific examples thereof have been shown in the drawings and are herein described in detail. The invention is not limited, however, to the particular forms or methods disclosed, but to the contrary, covers all modifications, equivalents and alternatives thereof.
Claims
1. A medical system comprising:
- a base;
- a stand coupled to the base;
- a bed supported by the stand, the bed having a first edge and a second edge, the first edge being longer than the second edge;
- a first rail portion extending along of the first edge of the bed;
- at least one arm attached to the first rail portion; and
- control electronics configured to (i) stow the at least one arm by moving the at least one arm towards the second edge and beneath the bed supported by the stand, wherein the at least one arm is stowed within a perimeter defined by the bed when viewed from above, and (ii) raise the at least one arm over the first edge to perform a medical procedure.
2. The medical system of claim 1, further comprising a second rail portion extending along a length of the bed and at least one arm attached to the second rail portion.
3. The medical system of claim 1, wherein the bed is configured to translate horizontally relative to the first rail portion.
4. The medical system of claim 1, wherein the bed comprises a hinge such that a lower portion of the bed can be declined at a different angle from remaining portions of the bed.
5. The medical system of claim 1, wherein the control electronics are configured to stow the at least one arm by slidingly translating the at least one arm along the first rail portion toward the second edge.
6. The medical system of claim 1, wherein the at least one arm attached to the first rail portion comprises two arms forming a virtual rail to guide an endoscopic device.
7. The medical system of claim 1, further comprising a second rail portion extending along a third edge of the bed opposite the first edge, and at least one arm attached to the second rail portion, wherein the control electronics are further configured to control the at least one arm attached to the first rail portion and the at least one arm attached to the second rail portion to extend upwardly over the opposing first and third edges of the bed to perform the medical procedure.
8. The medical system of claim 1, further comprising:
- a second rail portion extending along a length of the bed; and
- at least two arms attached to the second rail portion.
9. The medical system of claim 1, wherein the at least one arm attached to the first rail portion comprises at least two arms, and wherein the control electronics are configured to stow the at least two arms by moving the at least two arms together towards the second edge and beneath the bed.
10. The medical system of claim 1, wherein the bed has a longitudinal centerline bisecting the second edge, and wherein the control electronics are configured to stow the at least one arm in a position overlapping the longitudinal centerline and between the second edge and the stand.
11. A medical system comprising:
- a base;
- a stand coupled to the base;
- a bed supported by the stand, the bed having a substantially rectangular shape defining a longitudinal centerline extending over the stand;
- first and second rail portions extending along the bed on opposing sides of the stand;
- a first arm attached to the first rail portion;
- a second arm attached to the second rail portion; and
- control electronics configured to (i) stow the first arm and the second arm by moving the first arm and the second arm to positions beneath the bed with the first arm overlapping the longitudinal centerline, wherein the first arm and the second arm are stowed within a perimeter defined by the bed when viewed from above, and (ii) raise the first arm and the second arm over the bed to perform a medical procedure.
12. The medical system of claim 11, wherein the first arm and the second arm are each capable of robotic control.
13. The medical system of claim 11, wherein the first rail portion and the second rail portion are capable of vertical translation.
14. The medical system of claim 11, further comprising:
- a third arm attached to the first portion,
- wherein the first and third arms form a virtual rail to guide an endoscopic device into an anatomical lumen.
15. The medical system of claim 14, wherein the endoscopic device is a tool used for ureteroscopy, hysteroscopy or colonoscopy.
16. The medical system of claim 11, wherein the first arm is coupled to a carriage that translates along the first rail portion.
17. The medical system of claim 11, wherein the first arm and the second arm are capable of extending upwardly over opposing sides of the bed.
18. The medical system of claim 11, further comprising:
- a third arm attached to the first rail portion; and
- a fourth arm attached to the second rail portion,
- wherein the first to fourth arms are capable of manual and robotic control.
19. A medical system comprising:
- a base;
- a stand coupled to the base;
- a bed supported by the stand;
- a rail extending along the bed;
- a first arm attached to the rail;
- a second arm attached to the rail; and
- control electronics configured to: drive the first and second arms to move to a first configuration in which the first and second arms are positioned together along the rail for stowage, wherein the first arm and the second arm are stowed within a perimeter defined by the bed when viewed from above, and drive the first and second arms to move to a second configuration in which the first and second arms are spaced apart along the rail to perform a medical procedure.
20. The medical system of claim 19, further comprising:
- a first carriage supporting the first arm and slidingly attached to the rail portion; and
- a second carriage supporting the second arm and slidingly attached to the rail portion,
- wherein control electronics are further configured to: drive the first and second carriages to slidingly translate to a position together on the rail portion to stow the first and second arms beneath the bed, and drive the first and second carriages to slidingly translate to a position spaced apart on the rail portion to position the first and second arms for the medical procedure.
21. The medical system of claim 19, wherein the control electronics are further configured to:
- drive first and second carriages to slidingly translate towards an end of the bed to stow the first and second arms beneath the bed, and
- drive the first and second carriages to slidingly translate along a longitudinal side of the bed to perform the medical procedure.
4878494 | November 7, 1989 | Phillips et al. |
5013018 | May 7, 1991 | Sicek |
5160106 | November 3, 1992 | Monick |
5259365 | November 9, 1993 | Nishikori |
5555897 | September 17, 1996 | Lathrop, Jr. et al. |
5571072 | November 5, 1996 | Kronner |
5597146 | January 28, 1997 | Putman |
5762458 | June 9, 1998 | Wang et al. |
5814038 | September 29, 1998 | Jensen et al. |
5926875 | July 27, 1999 | Okamoto et al. |
5944476 | August 31, 1999 | Bacchi et al. |
6170102 | January 9, 2001 | Kreuzer |
6202230 | March 20, 2001 | Borders |
6620174 | September 16, 2003 | Jensen et al. |
6676669 | January 13, 2004 | Charles et al. |
6804581 | October 12, 2004 | Wang |
7025761 | April 11, 2006 | Wang et al. |
7074179 | July 11, 2006 | Wang et al. |
7763015 | July 27, 2010 | Cooper et al. |
7789874 | September 7, 2010 | Yu et al. |
7850642 | December 14, 2010 | Moll et al. |
7963288 | June 21, 2011 | Rosenberg et al. |
7972298 | July 5, 2011 | Wallace et al. |
7974681 | July 5, 2011 | Wallace et al. |
7976539 | July 12, 2011 | Hlavka et al. |
7979157 | July 12, 2011 | Anvari |
7996110 | August 9, 2011 | Lipow et al. |
8005537 | August 23, 2011 | Hlavka et al. |
8021326 | September 20, 2011 | Moll et al. |
8052636 | November 8, 2011 | Moll et al. |
8108069 | January 31, 2012 | Stahler et al. |
8142420 | March 27, 2012 | Schena |
8146874 | April 3, 2012 | Yu |
8172747 | May 8, 2012 | Wallace et al. |
8190238 | May 29, 2012 | Moll et al. |
8230863 | July 31, 2012 | Ravikumar et al. |
8257303 | September 4, 2012 | Moll et al. |
8311626 | November 13, 2012 | Hlavka et al. |
8343096 | January 1, 2013 | Kirschenman et al. |
8348931 | January 8, 2013 | Cooper et al. |
8394054 | March 12, 2013 | Wallace et al. |
8400094 | March 19, 2013 | Schena |
8409136 | April 2, 2013 | Wallace et al. |
8409172 | April 2, 2013 | Moll et al. |
8414598 | April 9, 2013 | Brock et al. |
8425404 | April 23, 2013 | Wilson et al. |
8469945 | June 25, 2013 | Schena |
8498691 | July 30, 2013 | Moll et al. |
8506556 | August 13, 2013 | Schena |
8512353 | August 20, 2013 | Rosielle et al. |
8515576 | August 20, 2013 | Lipow et al. |
8617102 | December 31, 2013 | Moll et al. |
8641698 | February 4, 2014 | Sanchez et al. |
8801661 | August 12, 2014 | Moll et al. |
8897920 | November 25, 2014 | Wang et al. |
8911429 | December 16, 2014 | Olds et al. |
8926603 | January 6, 2015 | Hlavka et al. |
8960622 | February 24, 2015 | von Pechmann et al. |
8968333 | March 3, 2015 | Yu et al. |
8974408 | March 10, 2015 | Wallace et al. |
9023060 | May 5, 2015 | Cooper et al. |
9078686 | July 14, 2015 | Schena |
9259281 | February 16, 2016 | Griffiths et al. |
9314306 | April 19, 2016 | Yu |
9326822 | May 3, 2016 | Lewis et al. |
9358076 | June 7, 2016 | Moll et al. |
9408669 | August 9, 2016 | Kokish et al. |
9452018 | September 27, 2016 | Yu |
9457168 | October 4, 2016 | Moll et al. |
9504604 | November 29, 2016 | Alvarez |
9554865 | January 31, 2017 | Olds et al. |
9561083 | February 7, 2017 | Yu et al. |
9566201 | February 14, 2017 | Yu |
9615889 | April 11, 2017 | Jensen |
9622827 | April 18, 2017 | Yu et al. |
9629682 | April 25, 2017 | Wallace et al. |
9636184 | May 2, 2017 | Lee et al. |
9713499 | July 25, 2017 | Bar et al. |
9713509 | July 25, 2017 | Schuh et al. |
9727963 | August 8, 2017 | Mintz et al. |
9737371 | August 22, 2017 | Romo et al. |
9737373 | August 22, 2017 | Schuh |
9744335 | August 29, 2017 | Jiang |
9763741 | September 19, 2017 | Alvarez et al. |
9788910 | October 17, 2017 | Schuh |
9795454 | October 24, 2017 | Seeber et al. |
9820819 | November 21, 2017 | Olson |
9844412 | December 19, 2017 | Bogusky et al. |
9850924 | December 26, 2017 | Vogtherr et al. |
9867635 | January 16, 2018 | Alvarez et al. |
9907458 | March 6, 2018 | Schena |
9918681 | March 20, 2018 | Wallace et al. |
9931025 | April 3, 2018 | Graetzel et al. |
9949749 | April 24, 2018 | Noonan et al. |
9955986 | May 1, 2018 | Shah |
9962228 | May 8, 2018 | Schuh et al. |
9980785 | May 29, 2018 | Schuh |
9993313 | June 12, 2018 | Schuh et al. |
9999476 | June 19, 2018 | Griffiths |
10016900 | July 10, 2018 | Meyer et al. |
10022192 | July 17, 2018 | Ummalaneni |
10080576 | September 25, 2018 | Romo et al. |
10136959 | November 27, 2018 | Mintz et al. |
10145747 | December 4, 2018 | Lin et al. |
10149720 | December 11, 2018 | Romo |
10159532 | December 25, 2018 | Ummalaneni et al. |
10159533 | December 25, 2018 | Moll et al. |
10169875 | January 1, 2019 | Mintz et al. |
10231867 | March 19, 2019 | Alvarez et al. |
10524866 | January 7, 2020 | Srinivasan et al. |
20020162926 | November 7, 2002 | Nguyen |
20020165524 | November 7, 2002 | Sanchez et al. |
20020170116 | November 21, 2002 | Borders |
20030191455 | October 9, 2003 | Sanchez et al. |
20040243147 | December 2, 2004 | Lipow |
20040261179 | December 30, 2004 | Blumenkranz |
20050222554 | October 6, 2005 | Wallace et al. |
20060069383 | March 30, 2006 | Bogaerts |
20060149418 | July 6, 2006 | Anvari |
20060200026 | September 7, 2006 | Wallace et al. |
20080027464 | January 31, 2008 | Moll et al. |
20080039867 | February 14, 2008 | Feussner |
20080082109 | April 3, 2008 | Moll et al. |
20080167750 | July 10, 2008 | Stahler |
20080195081 | August 14, 2008 | Moll et al. |
20080218770 | September 11, 2008 | Moll et al. |
20080245946 | October 9, 2008 | Yu |
20090036900 | February 5, 2009 | Moll |
20090062602 | March 5, 2009 | Rosenberg et al. |
20090163928 | June 25, 2009 | Schena |
20100185211 | July 22, 2010 | Herman |
20100204713 | August 12, 2010 | Ruiz |
20100286712 | November 11, 2010 | Won et al. |
20110028894 | February 3, 2011 | Foley et al. |
20110238083 | September 29, 2011 | Moll et al. |
20110270273 | November 3, 2011 | Moll et al. |
20120191079 | July 26, 2012 | Moll et al. |
20120191083 | July 26, 2012 | Moll et al. |
20120191086 | July 26, 2012 | Moll et al. |
20120241576 | September 27, 2012 | Yu |
20120253332 | October 4, 2012 | Moll |
20120266379 | October 25, 2012 | Hushek |
20120296161 | November 22, 2012 | Wallace et al. |
20130041219 | February 14, 2013 | Hasegawa et al. |
20130190741 | July 25, 2013 | Moll et al. |
20130255425 | October 3, 2013 | Schena |
20130338679 | December 19, 2013 | Rosielle et al. |
20140142591 | May 22, 2014 | Alvarez et al. |
20140180309 | June 26, 2014 | Seeber et al. |
20140188132 | July 3, 2014 | Kang |
20140249546 | September 4, 2014 | Shvartsberg et al. |
20140276391 | September 18, 2014 | Yu |
20140276647 | September 18, 2014 | Yu |
20140276935 | September 18, 2014 | Yu |
20140277333 | September 18, 2014 | Lewis et al. |
20140277334 | September 18, 2014 | Yu et al. |
20140309649 | October 16, 2014 | Alvarez et al. |
20140357984 | December 4, 2014 | Wallace et al. |
20140364870 | December 11, 2014 | Alvarez et al. |
20150038981 | February 5, 2015 | Kilroy et al. |
20150051592 | February 19, 2015 | Kintz |
20150119638 | April 30, 2015 | Yu et al. |
20150164594 | June 18, 2015 | Romo et al. |
20150164596 | June 18, 2015 | Romo |
20150335389 | November 26, 2015 | Greenberg |
20150335480 | November 26, 2015 | Alvarez et al. |
20160001038 | January 7, 2016 | Romo et al. |
20160100896 | April 14, 2016 | Yu |
20160157942 | June 9, 2016 | Gombert et al. |
20160235946 | August 18, 2016 | Lewis et al. |
20160270865 | September 22, 2016 | Landey et al. |
20160279394 | September 29, 2016 | Moll et al. |
20160287279 | October 6, 2016 | Bovay et al. |
20160338785 | November 24, 2016 | Kokish et al. |
20160346052 | December 1, 2016 | Rosielle et al. |
20160354582 | December 8, 2016 | Yu et al. |
20160374541 | December 29, 2016 | Agrawal et al. |
20160374771 | December 29, 2016 | Mirbagheri |
20170007337 | January 12, 2017 | Dan |
20170007343 | January 12, 2017 | Yu |
20170071692 | March 16, 2017 | Taylor et al. |
20170071693 | March 16, 2017 | Taylor |
20170086929 | March 30, 2017 | Moll et al. |
20170100199 | April 13, 2017 | Yu et al. |
20170105804 | April 20, 2017 | Yu |
20170119413 | May 4, 2017 | Romo |
20170119481 | May 4, 2017 | Romo et al. |
20170135771 | May 18, 2017 | Auld et al. |
20170165011 | June 15, 2017 | Bovay et al. |
20170172673 | June 22, 2017 | Yu et al. |
20170202627 | July 20, 2017 | Sramek et al. |
20170209073 | July 27, 2017 | Sramek et al. |
20170209217 | July 27, 2017 | Jensen |
20170215976 | August 3, 2017 | Nowlin et al. |
20170215978 | August 3, 2017 | Wallace et al. |
20170290631 | October 12, 2017 | Lee et al. |
20170304021 | October 26, 2017 | Hathaway |
20170325906 | November 16, 2017 | Piecuch et al. |
20170333679 | November 23, 2017 | Jiang |
20170340353 | November 30, 2017 | Ahluwalia et al. |
20170340396 | November 30, 2017 | Romo et al. |
20170367782 | December 28, 2017 | Schuh et al. |
20180025666 | January 25, 2018 | Ho et al. |
20180078439 | March 22, 2018 | Cagle et al. |
20180078440 | March 22, 2018 | Koenig et al. |
20180079090 | March 22, 2018 | Koenig et al. |
20180116758 | May 3, 2018 | Schlosser |
20180177383 | June 28, 2018 | Noonan et al. |
20180177556 | June 28, 2018 | Noonan et al. |
20180214011 | August 2, 2018 | Graetzel et al. |
20180221038 | August 9, 2018 | Noonan et al. |
20180221039 | August 9, 2018 | Shah |
20180250083 | September 6, 2018 | Schuh et al. |
20180271616 | September 27, 2018 | Schuh et al. |
20180279852 | October 4, 2018 | Rafii-Tari et al. |
20180280660 | October 4, 2018 | Landey et al. |
20180289243 | October 11, 2018 | Landey et al. |
20180289431 | October 11, 2018 | Draper et al. |
20180325499 | November 15, 2018 | Landey et al. |
20180333044 | November 22, 2018 | Jenkins |
20180360435 | December 20, 2018 | Romo |
20190000559 | January 3, 2019 | Berman et al. |
20190000560 | January 3, 2019 | Berman et al. |
20190000566 | January 3, 2019 | Graetzel et al. |
20190000568 | January 3, 2019 | Connolly et al. |
20190000576 | January 3, 2019 | Mintz et al. |
20190105776 | April 11, 2019 | Ho et al. |
20190105785 | April 11, 2019 | Meyer |
20190107454 | April 11, 2019 | Lin |
20190110839 | April 18, 2019 | Rafii-Tari et al. |
20190110843 | April 18, 2019 | Ummalaneni et al. |
20190151148 | May 23, 2019 | Alvarez et al. |
20190228528 | July 25, 2019 | Mintz et al. |
20190167366 | June 6, 2019 | Ummalaneni |
20190175009 | June 13, 2019 | Mintz |
20190175062 | June 13, 2019 | Rafii-Tari et al. |
20190175287 | June 13, 2019 | Hill |
20190175799 | June 13, 2019 | Hsu |
20190183585 | June 20, 2019 | Rafii-Tari et al. |
20190183587 | June 20, 2019 | Rafii-Tari et al. |
20190216548 | July 18, 2019 | Ummalaneni |
20190216550 | July 18, 2019 | Eyre |
20190216576 | July 18, 2019 | Eyre |
20190223974 | July 25, 2019 | Romo |
20190228525 | July 25, 2019 | Mintz et al. |
20190246882 | August 15, 2019 | Graetzel et al. |
20190262086 | August 29, 2019 | Connolly et al. |
20190269468 | September 5, 2019 | Hsu et al. |
20190274764 | September 12, 2019 | Romo |
20190290109 | September 26, 2019 | Agrawal et al. |
20190298160 | October 3, 2019 | Ummalaneni et al. |
20190298460 | October 3, 2019 | Al-Jadda |
20190298465 | October 3, 2019 | Chin |
20190328213 | October 31, 2019 | Landey et al. |
20190336238 | November 7, 2019 | Yu |
20190365209 | December 5, 2019 | Ye et al. |
20190365479 | December 5, 2019 | Rafii-Tari |
20190365486 | December 5, 2019 | Srinivasan et al. |
20190374297 | December 12, 2019 | Wallace et al. |
20190375383 | December 12, 2019 | Alvarez |
20190380787 | December 19, 2019 | Ye |
20190380797 | December 19, 2019 | Yu |
20200000530 | January 2, 2020 | DeFonzo |
20200000533 | January 2, 2020 | Schuh |
202314134 | July 2012 | CN |
WO 10/068005 | June 2010 | WO |
- International search report and written opinion dated Jul. 13, 2016 for PCT/US2016/026783.
Type: Grant
Filed: Nov 19, 2018
Date of Patent: Jul 7, 2020
Patent Publication Number: 20190083183
Assignee: Auris Health, Inc. (Redwood City, CA)
Inventors: Frederic H. Moll (San Francisco, CA), Alan Lau Yu (Union City, CA)
Primary Examiner: Nicholas F Polito
Application Number: 16/195,206
International Classification: A61B 34/30 (20160101); A61B 50/10 (20160101); A61B 90/50 (20160101); A61G 13/06 (20060101); A61G 13/10 (20060101); A61B 34/20 (20160101); A61B 34/00 (20160101); A61B 1/00 (20060101); A61G 13/04 (20060101); A61B 90/57 (20160101); A61B 1/313 (20060101); A61B 1/267 (20060101); A61B 1/31 (20060101); A61B 1/303 (20060101); A61B 1/307 (20060101); A61B 1/273 (20060101);