Ball bat with decoupled barrel
A ball bat includes outer shell segments longitudinally spaced apart from each other to form a gap between them. A joint connects the segments. A first outer shell segment may include a barrel portion of the ball bat and at least part of a tapered portion of the ball bat. A second outer shell segment may include at least part of the tapered portion. The joint may include a tubular element having a first portion positioned within the first outer shell segment and at least partially overlapping an interior surface of the first outer shell segment, and a second portion positioned within the second outer shell segment and at least partially overlapping an interior surface of the second outer shell segment. The tubular element may include an elastomeric material. In some embodiments, the joint may be formed by an elastomeric material connecting the outer shell segments in the gap.
Latest EASTON DIAMOND SPORTS, LLC Patents:
Baseball and softball governing bodies have imposed various bat performance limits over the years with the goal of regulating batted ball speeds. Each association generally develops various regulations to achieve a desired level of play. Some of these regulations are specifically aimed at regulating the performance of a bat, such as BBCOR, or “Bat-Ball Coefficient of Restitution.”
BBCOR can be perceived as a measure of the “trampoline effect” a bat exhibits during impact with a ball. Higher BBCOR values generally indicate that less energy will be lost during the bat-ball impact, which suggests a higher performance bat. Lower BBCOR values indicate that more energy will be lost during the impact, which suggests a lower performance bat. Some associations or regulatory bodies dictate a maximum allowable BBCOR value. Accordingly, bat designers look for ways to improve bats while meeting performance regulations, such as BBCOR.
In addition, when a ball bat strikes a ball or another object, the impact causes waves of vibration that players sense as shock. Vibration and shock in a ball bat can cause a player discomfort or injury. Accordingly, bat designers look for ways to reduce vibration and shock in a ball bat without overly reducing performance, feel, or the quality of the sound of an impact. For example, players generally do not want a ball bat to feel or sound like a “wet newspaper” during a hit.
SUMMARYRepresentative embodiments of the present technology include a ball bat having a first outer shell segment, a second outer shell segment longitudinally spaced from the first outer shell segment to form a gap between the first outer shell segment and the second outer shell segment, and a joint connecting the first outer shell segment to the second outer shell segment. The first outer shell segment may include a barrel portion of the ball bat and at least part of a tapered portion of the ball bat. The second outer shell segment may include at least part of the tapered portion. The joint may include a tubular element having a first portion positioned within the first outer shell segment and at least partially overlapping an interior surface of the first outer shell segment, and a second portion positioned within the second outer shell segment and at least partially overlapping an interior surface of the second outer shell segment. The tubular element may include an elastomeric material. In some embodiments, the ball bat may further include a second tubular element positioned within the first tubular element to reinforce the first tubular element.
Another representative embodiment of the present technology may include a ball bat with a first outer shell segment, the first outer shell segment forming a barrel portion of the ball bat, and a second outer shell segment, the second outer shell segment forming at least part of a tapered portion of the ball bat, the second outer shell segment being longitudinally spaced from the first outer shell segment by a gap. The ball bat may include an elastomeric material positioned between the first outer shell segment and the second outer shell segment to join the first outer shell segment to the second outer shell segment, the elastomeric material being configured to flex to facilitate relative movement between the first outer shell segment and the second outer shell segment.
Another representative embodiment of the present technology includes a method of making a ball bat. The method may include forming outer shell segments to be longitudinally spaced apart from each other, and forming a joint to connect the outer shell segments. The joint may include an elastomeric material.
Ball bats according to embodiments of the present technology provide sufficient performance to meet association rules without being undesirably underperforming. Embodiments of the present technology also provide sufficient durability and comfort during swings and hits, as well as a satisfying impact sound.
Other features and advantages will appear hereinafter. The features described above can be used separately or together, or in various combinations of one or more of them.
In the drawings, wherein the same reference number indicates the same element throughout the views:
The present technology is directed to ball bats with decoupled barrels, and associated systems and methods. Various embodiments of the technology will now be described. The following description provides specific details for a thorough understanding and enabling description of these embodiments. One skilled in the art will understand, however, that the invention may be practiced without many of these details. Additionally, some well-known structures or functions, such as those common to ball bats and composite materials may not be shown or described in detail so as to avoid unnecessarily obscuring the relevant description of the various embodiments. Accordingly, embodiments of the present technology may include additional elements or exclude some of the elements described below with reference to
The terminology used in this description is intended to be interpreted in its broadest reasonable manner, even though it is being used in conjunction with a detailed description of certain specific embodiments of the invention. Certain terms may even be emphasized below; however, any terminology intended to be interpreted in any restricted manner will be overtly and specifically defined as such in this detailed description section.
Where the context permits, singular or plural terms may also include the plural or singular term, respectively. Moreover, unless the word “or” is expressly limited to mean only a single item exclusive from the other items in a list of two or more items, then the use of “or” in such a list is to be interpreted as including (a) any single item in the list, (b) all the items in the list, or (c) any combination of items in the list. Further, unless otherwise specified, terms such as “attached” or “connected” are intended to include integral connections, as well as connections between physically separate components.
Specific details of several embodiments of the present technology are described herein with reference to ball bats. Embodiments of the present technology can be used in baseball, softball, cricket, or similar sports.
As shown in
The proportions of the ball bat 100, such as the relative sizes of the barrel portion 110, the handle portion 120, and the tapered portion 130, are not drawn to scale and may have any relative proportions suitable for use in a ball bat. Accordingly, the ball bat 100 may have any suitable dimensions. For example, the bat 100 may have an overall length of 20 to 40 inches, or 26 to 34 inches. The overall barrel diameter may be 2.0 to 3.0 inches, or 2.25 to 2.75 inches. Typical ball bats have diameters of 2.25, 2.625, or 2.75 inches. Bats having various combinations of these overall lengths and barrel diameters, or any other suitable dimensions, are contemplated herein. The specific preferred combination of bat dimensions is generally dictated by the user of the ball bat 100, and may vary greatly among users.
Also shown in
The ball bat 100 may be substantially hollow. In some embodiments, it may only be partially hollow. As described in detail below, the joint 180 connects a first outer shell segment 185 (which may span all or part of the barrel portion 110) to a second outer shell segment 190 (which may span all or part of the tapered portion 130 and the handle portion 120). Because the joint 180 may be positioned in various suitable locations, the first outer shell segment 185 and the second outer shell segment 190 may include various combinations of portions of the tapered portion 130 and the barrel portion 110. The joint 180 provides a decoupled configuration in which the first outer shell segment 185 is not contiguous with the second outer shell segment 190. As described in further detail below, such a configuration allows the shell segments 185, 190 to flex or move relative to each other, which may reduce performance (BBCOR, for example, to maintain compliance with association limits) or reduce the shock or vibration felt by a player in the handle portion 120.
In a particular example, the joint 180 may decouple the some or all of the bat's hitting surface (which may include the barrel portion 110 and distal areas of the tapered portion 130) from the handle portion 120. The joint 180 decouples the ball impact from the remainder of (or majority of) the mass of the ball bat 100 (such as most of the handle portion 120 and tapered portion 130). Accordingly, only a portion of the bat's overall mass is effective in propelling the ball, resulting in reduced performance.
In some embodiments, the outer shell segments 185, 190 may be formed with one or more layers of composite materials, such as composite laminate materials. Some examples of suitable composite materials include plies reinforced with fibers of carbon, glass, graphite, boron, aramid (such as Kevlar®), ceramic, or silica (such as Astroquartz®). Accordingly, in various embodiments, a number of different composite plies suitable for use in ball bats may be used in one or both of the outer shell segments 185, 190, including, for example, composites formed from carbon fiber, fiberglass, aramid fibers, or other composite materials or combinations of matrices, resins, fibers, laminates, and meshes forming composite materials.
In some embodiments, one or both of the outer shell segments 185, 190 may include layers or plies made of the same material (for example, each ply or layer may be formed from carbon fiber), while in further embodiments, one or both of the outer shell segments 185, 190 may include layers or plies made of multiple different materials (for example, one or more plies or layers may be formed with carbon fiber, and one or more other plies or layers may be formed with fiberglass). In some embodiments, the outer shell segments 185, 190 may be formed with metal or metal alloys, such as aluminum, steel, titanium, magnesium, or another suitable metal or metal alloy. In some embodiments, the first outer shell segment 185 is made of the same material as the second outer shell segment 190. In some embodiments, the outer shell segments 185, 190 are made of different materials.
As shown in
The joint 180 may include a main tubular element 310 positioned inside the hollow interior 200 of the ball bat 100. The main tubular element 310 overlaps or coextends with an interior surface of the first outer shell segment 185 along a distance O1 from a distal end of the gap 300, and overlaps or coextends with an interior surface of the second outer shell segment 190 by a distance O2 from the proximal end of the gap 300. The main tubular element 310 may be attached to each of the outer shell segments 185, 190 by being glued, pinned, or otherwise suitably secured to the segments 185, 190 along all or part of each overlap distance O1, O2. In some embodiments, the main tubular element 310 is laid up with the outer shell segments 185, 190 during manufacturing and cured to be integral with one or both of the outer shell segments 185, 190. In some embodiments, the main tubular element 310 is injected into the gap 300 between the outer shell segments 185, 190 and an optional reinforcing tubular element 330 (described below).
In some embodiments, the main tubular element 310 may have a uniform wall thickness t, and it may coextend circumferentially with the radially interior sides of the outer shell segments 185, 190. In some embodiments, it may be discontinuous, have non-uniform wall thickness, holes in the wall, or other features. Accordingly, the main tubular element 310 is not limited to being a uniform tube.
The main tubular element 310 may have a circumferential or at least partially circumferential protrusion 320 extending at least partially into the gap 300. For example, the protrusion 320 may be in the form of a ring filling the gap 300 to form a smooth surface transition between the outer shell segments 185, 190. In some embodiments, the protrusion 320 may only extend partially into the gap 300. In some embodiments, the protrusion 320 may be integral with the main tubular element 310, while in other embodiments, it may be a discrete element secured to the main tubular element 310 with adhesive or another suitable attachment means.
The main tubular element 310 may include an elastomer or elastomeric material, such as polyurethane, thermoplastic polyurethane, elastomeric epoxy, elastomeric acrylic, cyanoacrylate, silicone, or ethylene-vinyl acetate (EVA) foam, or another suitable material with resilience and strength. In other embodiments, other elastomers or elastomeric materials suitable for providing at least some structural support between the outer shell segments 185, 190, and at least some resilience, may be used.
In some embodiments, the elastomer or elastomeric material in the main tubular element 310 may include or be augmented with various materials to form an elastomeric composite or elastomeric composite ply. For example, the main tubular element 310 may include fibers, weaves, or meshes made of carbon, glass, polyester, graphite, boron, aramid (such as Kevlar®), ceramic, or silica (such as Astroquartz®). In some embodiments, an elastomeric composite may be formed with an elastomeric material as the composite matrix material for the reinforcing fibers, instead of a stiff epoxy or stiff resin material.
In some embodiments, the material forming the main tubular element 310 may have a hardness value between Shore 20A and Shore 90A. The hardness value may depend on the level of desired performance, weight, the size of the main tubular element, the strength and surface area of bonds between components, the strength of the elastomeric material (such as tensile, compressive, and tear strength), or other factors. In some embodiments, a stiffer or harder material may be used when the main tubular element is thinner and has less overlap with the outer shell segments. In some embodiments, a similar apparent stiffness feel may be achieved when the main tubular element includes a softer and thicker material with more overlap with the outer shell segments. In an exemplary embodiment, a semi-rigid thermoplastic material having hardness of approximately Shore 90D may be used.
In some embodiments in which materials with lower hardness values are used, the tear strength of the material may be relatively low compared to materials with higher hardness values, so, in some embodiments, reinforcing layers may be included in the main tubular element 310, such as a layer of flexible knit, fabric, or thread, to increase durability. For example, in a particular embodiment, an open polyester knit may be co-molded between sheets or layers of polyurethane (such as thermoplastic polyurethane, or TPU) to form a tear-resistant tubular element 310. Elastomeric composites may also increase tear resistance.
The protrusion 320 may be formed from the same material as the main tubular element 310, or it may include one or more other materials, including any materials contemplated for the main tubular element 310.
The joint 180 provides a decoupling between the first outer shell segment 185 and the second outer shell segment 190 while providing a sufficient connection to keep the segments 185, 190 from separating during a swing or hit. The main tubular element 310 allows the outer shell segments 185, 190 to flex relative to each other, which reduces performance (e.g., batted ball speed) to comply with regulations. It also reduces transfer of shock or vibration. For example, when a ball impacts the first outer shell segment 185, the vibration or shock may be at least partially absorbed by the joint 180, including the main tubular element 310.
Some embodiments of the present technology may include additional hollow tubular elements. For example, as illustrated in
In some embodiments, additional tubular elements formed with materials similar to the main tubular element 310 or the reinforcing tubular element 330 may be included in the joint 180. The reinforcing tubular elements (such as the reinforcing tubular element 330 shown in
The hardness and thickness of the material used for the main tubular element 310 and the optional reinforcing tubular elements (such as reinforcing tubular element 330 or further inwardly concentric tubular elements) may affect the flexibility of the joint 180 and the performance of the ball bat 100. Designs with softer or thinner elastomers will flex more, reducing bat performance, while designs with harder or thicker elastomers will flex less, resulting in relatively higher performance. In some embodiments, the thickness t of the main tubular element 310 may be between 0.010 inches and 0.50 inches. In a particular embodiment, the main tubular element 310 may have a thickness t between 0.030 inches and 0.250 inches.
The overlap O1 between the main tubular element 310 and the first outer shell segment 185, and the overlap O2 between the main tubular element 310 and the second outer shell segment 190, also affect the flexibility of the joint 180 and, consequently, the performance of the ball bat 100. Longer overlaps may provide additional bending and axial tensile or compressive strength for the overall bat assembly. Longer overlaps may reduce the amount of flex between the outer shell segments 185, 190, which may tend to increase performance. Shorter overlaps O1, O2 may cause more flex in the joint 180, reducing performance. The overlap lengths O1, O2 may also affect durability. For example, shorter overlaps O1, O2 may reduce the durability of the joint 180 relative to longer overlaps.
In some embodiments, one or both of the overlap lengths O1, O2 may be between 0.040 inches and 4.0 inches. For example, in a particular embodiment, each overlap O1, O2 may be at least 0.125 inches. In another particular embodiment, each overlap O1, O2 may be approximately one inch.
In addition, the width G1 of the gap 300 along the longitudinal axis x will affect the relative flex between the outer shell segments 185, 190. For example, a larger gap width G1 may result in more flex than a smaller gap width G1, which translates to decreased performance and shock experienced by a user. In some embodiments, the gap width G1 may be between 0.040 inches and 0.375 inches along the longitudinal axis x, or the gap width G1 may have other values.
The gap width G1 may vary depending on design goals and material selections. In some embodiments, a longer gap width G1 may be useful when the main tubular element 310 or the circumferential protrusion 320 are made with materials having lower compressive strength. A shorter gap width G1 may be associated with less material to distribute stresses and strains during flexing between the outer shell segments. In some embodiments, a designer may prioritize weight savings over durability and may choose a smaller gap width G1, although material selection and other factors may also affect the relationship between weight and durability.
With reference to
In some embodiments, the joint 180 may be centered around the center of percussion (COP) of the ball bat 100, or centered around an area that is within approximately three inches of the COP. The COP may be determined by the ASTM F2398-11 Standard. In some embodiments, the joint 180 may be centered around a “sweet spot” of the ball bat 100, or centered around an area that is within approximately three inches of the sweet spot. The sweet spot is typically located near COP. The sweet spot may be defined as the ball-bat impact location where the transfer of energy from the bat 100 to a ball is generally maximal, while the transfer of energy to a player's hands is generally minimal. Another way to define the location of the sweet spot is between the first node of the first bending mode and the second node of the second bending mode.
In some embodiments, the reinforcing tubular element may be omitted. In some embodiments, instead of cutting in step 430, the composite plies may be wrapped such that the wrapping leaves the gap (300). In some embodiments, a metal bat may be cut and re-connected using the main tubular element and, optionally, the reinforcing tubular element. Various embodiments of the present technology may be assembled in other ways.
In embodiments like the embodiment illustrated in
In other embodiments, one or more sections of a wall of a hollow ball bat may include a composite stack made up of layers of flexible and resilient elastomeric composite adjacent to stiffer epoxy or resin-based layers of composite material. For example, the wall of a hollow handle portion, a barrel wall, or a wall in a tapered portion may include a plurality of plies of composite material (such as twelve plies), with several plies in a selected section of the handle portion being elastomeric composite material. In a particular example, all but four of the plies in the section may be an elastomeric composite material, with the remaining plies being a stiffer composite material (such as an epoxy composite material) for structural support. Although one embodiment may involve all but four of the plies being an elastomeric composite material, any suitable number of plies may be an elastomeric composite material.
In a particular embodiment, the outermost (around the outer diameter of the bat) and the innermost (around the inner diameter of the bat) plies may include elastomeric composite plies, while stiffer epoxy composite plies may be sandwiched in between the outermost and innermost groups of elastomeric composite plies. The selected section of the bat with the composite stack having elastomeric composite layers provides a localized flex zone to absorb shock and vibration. In some embodiments, elastomeric resin may be used as the composite matrix instead of epoxy in one or more parts of the bat, resulting in a generally contiguous wall or shell with tailored flexibility characteristics.
In some embodiments, such as in bats required to meet BBCOR limitations, the stiffer epoxy composite layers may be positioned on the outermost layers (around the outer diameter of the bat) and around the innermost layers (around the inner diameter of the bat), while one or more plies of elastomeric composite material may be positioned or sandwiched between the stiffer outermost and innermost epoxy composite layers. Such embodiments may provide a means for complying with the Accelerated Break-In (ABI) portion of the BBCOR standard because if the outermost layer is cracked or broken from rolling or abuse, the bat becomes a soft and slow-reacting bat with reduced performance. Accordingly, the selected section of the bat with the composite stack having elastomeric composite layers or plies may be positioned in any suitable location along the length of the bat.
In other embodiments, one or more layers or plies of elastomeric composite material may be distributed in the composite stack in various manners, such as alternating layers of elastomeric composite and layers of epoxy or resin composite.
The proportion of the elastomeric material relative to the more rigid epoxy or resin material may correlate with the overall flexibility and durability of the ball bat. In some embodiments, up to 75 percent of a composite ply stack forming an outer shell of the ball bat or a barrel wall may include an elastomeric composite material.
In another embodiment, an elastomeric or elastomeric composite material may form one or more layers within a stack of materials forming a composite bat wall along a full length of the hitting surface of a ball bat, while the remainder of the stack of materials may include a stiffer or more rigid composite material with varying thickness along the length of the hitting surface, to tailor the overall flexibility and barrel compression characteristics along the length of the hitting surface. For example, in an exemplary embodiment, the rigid composite material may be thinner near the end cap 170 and tapered portion 130 and thicker toward the middle of the hitting surface. Such an embodiment may comply with BBCOR regulations by providing a more rigid section near the middle of the hitting surface.
From the foregoing, it will be appreciated that specific embodiments of the disclosed technology have been described for purposes of illustration, but that various modifications may be made without deviating from the technology, and elements of certain embodiments may be interchanged with those of other embodiments, and that some embodiments may omit some elements. For example, in some embodiments, the main tubular element (such as the main tubular element 310) may be made with rigid or semi-rigid composite material or metal material.
Further, while advantages associated with certain embodiments of the disclosed technology have been described in the context of those embodiments, other embodiments may also exhibit such advantages, and not all embodiments need necessarily exhibit such advantages to fall within the scope of the technology. Accordingly, the disclosure and associated technology may encompass other embodiments not expressly shown or described herein, and the invention is not limited except as by the appended claims.
Claims
1. A ball bat, comprising:
- a first outer shell segment;
- a second outer shell segment spaced apart from the first outer shell segment along a longitudinal axis of the ball bat to form a gap between the first outer shell segment and the second outer shell segment; and
- a joint connecting the first outer shell segment to the second outer shell segment; wherein
- the first outer shell segment comprises a barrel portion of the ball bat and at least part of a tapered portion of the ball bat;
- the second outer shell segment comprises at least part of the tapered portion;
- the joint comprises a first tubular element comprising an elastomeric material and having a first portion positioned within the first outer shell segment and at least partially overlapping an interior surface of the first outer shell segment, and a second portion positioned within the second outer shell segment and at least partially overlapping an interior surface of the second outer shell segment; and
- the ball bat further comprises a second tubular element positioned within the first tubular element to reinforce the first tubular element, wherein the second tubular element extends along only a portion of the first tubular element or is coextensive with the first tubular element along the longitudinal axis of the ball bat.
2. The ball bat of claim 1 wherein the second outer shell segment further comprises a handle portion of the ball bat.
3. The ball bat of claim 1 wherein the gap is positioned in the tapered portion of the ball bat.
4. The ball bat of claim 1 wherein the first tubular element comprises an at least partially circumferential protrusion that extends at least partially into the gap.
5. The ball bat of claim 1 wherein the elastomeric material has a first stiffness and the second tubular element comprises a material having a second stiffness that is greater than the first stiffness.
6. The ball bat of claim 1 wherein at least one of the first outer shell segment or the second outer shell segment comprises a composite laminate material.
7. The ball bat of claim 1 wherein the elastomeric material comprises an elastomeric composite having reinforcing fibers.
8. The ball bat of claim 1 wherein the elastomeric material comprises one or more of polyurethane, epoxy, acrylic, cyanoacrylate, silicone, or ethylene-vinyl acetate (EVA) foam.
9. A ball bat, comprising:
- a first outer shell segment, the first outer shell segment forming a barrel portion of the ball bat;
- a second outer shell segment, the second outer shell segment forming at least part of a tapered portion of the ball bat, the second outer shell segment being spaced apart from the first outer shell segment along a longitudinal axis of the ball bat to form a gap between the first outer shell segment and the second outer shell segment;
- an elastomeric material positioned between the first outer shell segment and the second outer shell segment to join the first outer shell segment to the second outer shell segment, the elastomeric material being configured to flex to facilitate relative movement between the first outer shell segment and the second outer shell segment; and
- a reinforcing tubular element positioned adjacent to the elastomeric material in a radially inward direction;
- wherein the reinforcing tubular element extends along only a portion of the elastomeric material or is coextensive with the elastomeric material along the longitudinal axis of the ball bat.
10. The ball bat of claim 9 wherein the second outer shell segment further forms a handle portion of the ball bat.
11. The ball bat of claim 9 wherein the elastomeric material comprises one or more layers of an elastomeric composite material including reinforcing fibers.
12. The ball bat of claim 11 wherein the elastomeric composite material includes one or more fibers of carbon, glass graphite, boron, aram id, ceramic, or silica.
13. The ball bat of claim 9 wherein the elastomeric material comprises one or more of polyurethane, epoxy, acrylic, cyanoacrylate, silicone, or ethylene-vinyl acetate (EVA) foam.
14. The ball bat of claim 9 wherein the first outer shell segment further forms at least part of the tapered portion of the ball bat.
15. The ball bat of claim 9 wherein the gap is between approximately one inch and two inches wide along a longitudinal axis of the ball bat.
16. The ball bat of claim 9, wherein the elastomeric material has a first stiffness and the reinforcing tubular element has a second stiffness greater than the first stiffness.
537927 | April 1895 | Kennedy |
546540 | September 1895 | Kennedy |
1026990 | May 1912 | Matson |
1509733 | September 1924 | Langford et al. |
1650183 | November 1927 | Brooks et al. |
3116926 | January 1964 | Owen et al. |
3830496 | August 1974 | Reizer |
3861682 | January 1975 | Fujii |
3876204 | April 1975 | Moore et al. |
3877698 | April 1975 | Volpe |
3897058 | July 1975 | Koch |
3955816 | May 11, 1976 | Bratt |
3963239 | June 15, 1976 | Fujii |
4025377 | May 24, 1977 | Tanikawa |
4032143 | June 28, 1977 | Mueller et al. |
4056267 | November 1, 1977 | Krieger |
4113248 | September 12, 1978 | Yanagioka |
4323239 | April 6, 1982 | Ishii |
4351786 | September 28, 1982 | Mueller |
4399996 | August 23, 1983 | Boyce |
4505479 | March 19, 1985 | Souders |
4569521 | February 11, 1986 | Mueller |
4572508 | February 25, 1986 | You |
4600193 | July 15, 1986 | Merritt |
4746117 | May 24, 1988 | Noble et al. |
4834370 | May 30, 1989 | Noble et al. |
4848745 | July 18, 1989 | Bohannan et al. |
4898386 | February 6, 1990 | Anderson et al. |
4951948 | August 28, 1990 | Peng |
4961576 | October 9, 1990 | Meredith |
5104123 | April 14, 1992 | Okitsu et al. |
5114144 | May 19, 1992 | Baum |
5131651 | July 21, 1992 | You |
5180163 | January 19, 1993 | Lanctot et al. |
5219164 | June 15, 1993 | Peng |
5277421 | January 11, 1994 | Rewolinski |
5303917 | April 19, 1994 | Uke |
D347671 | June 7, 1994 | Weiss et al. |
5380003 | January 10, 1995 | Lanctot |
5409214 | April 25, 1995 | Cook |
5415398 | May 16, 1995 | Eggiman |
5456461 | October 10, 1995 | Sullivan |
5511777 | April 30, 1996 | McNeely |
5516097 | May 14, 1996 | Huddleston |
5593158 | January 14, 1997 | Filice et al. |
5674138 | October 7, 1997 | Nolan |
5676609 | October 14, 1997 | Mollebaek et al. |
5711726 | January 27, 1998 | Powers et al. |
5722908 | March 3, 1998 | Feeney et al. |
5820438 | October 13, 1998 | Horton |
5833561 | November 10, 1998 | Kennedy et al. |
6048283 | April 11, 2000 | Albarelli et al. |
6050908 | April 18, 2000 | Muhlhausen |
6053828 | April 25, 2000 | Pitsenberger |
6056655 | May 2, 2000 | Feeney et al. |
6099422 | August 8, 2000 | Rappaport |
6173610 | January 16, 2001 | Pace et al. |
6280353 | August 28, 2001 | Brundage et al. |
6287222 | September 11, 2001 | Pitsenberger |
6344007 | February 5, 2002 | Feeney et al. |
6398675 | June 4, 2002 | Eggiman et al. |
6402634 | June 11, 2002 | Lee et al. |
6406387 | June 18, 2002 | Ryan et al. |
6432006 | August 13, 2002 | Tribble |
6482114 | November 19, 2002 | Eggiman et al. |
6485382 | November 26, 2002 | Chen |
6497631 | December 24, 2002 | Fritzke et al. |
6511392 | January 28, 2003 | Chohan |
6547673 | April 15, 2003 | Roark |
6569042 | May 27, 2003 | LaChance et al. |
6612945 | September 2, 2003 | Anderson |
6625848 | September 30, 2003 | Schneider |
6663517 | December 16, 2003 | Buiatti et al. |
D485876 | January 27, 2004 | Andrews |
6729983 | May 4, 2004 | Vakili et al. |
6733404 | May 11, 2004 | Fritzke et al. |
6743127 | June 1, 2004 | Eggiman et al. |
6758771 | July 6, 2004 | Tribble et al. |
6761653 | July 13, 2004 | Higginbotham et al. |
6808464 | October 26, 2004 | Nguyen |
6824482 | November 30, 2004 | Tribble |
6872156 | March 29, 2005 | Ogawa et al. |
6878080 | April 12, 2005 | Chang |
6939237 | September 6, 2005 | Voden et al. |
6945886 | September 20, 2005 | Eggiman et al. |
7011588 | March 14, 2006 | Fritzke et al. |
7014580 | March 21, 2006 | Forsythe et al. |
7097578 | August 29, 2006 | Guenther et al. |
7140248 | November 28, 2006 | Brundage |
7140987 | November 28, 2006 | Davis et al. |
7140988 | November 28, 2006 | Hinman et al. |
7147580 | December 12, 2006 | Nutter et al. |
7163475 | January 16, 2007 | Giannetti |
7171697 | February 6, 2007 | Vito et al. |
7201679 | April 10, 2007 | Nguyen et al. |
7235024 | June 26, 2007 | Lefebvre et al. |
7297077 | November 20, 2007 | Battaglino |
7320653 | January 22, 2008 | Fitzgerald et al. |
7344461 | March 18, 2008 | Van Nguyen |
7377866 | May 27, 2008 | Van Nguyen |
7377867 | May 27, 2008 | Vacek et al. |
7381141 | June 3, 2008 | Van Nguyen |
7410433 | August 12, 2008 | Guenther et al. |
7419446 | September 2, 2008 | Nguyen et al. |
7442134 | October 28, 2008 | Giannetti et al. |
7442135 | October 28, 2008 | Giannetti et al. |
7534180 | May 19, 2009 | Vacek et al. |
7572197 | August 11, 2009 | Chauvin et al. |
7585235 | September 8, 2009 | Misono et al. |
7704159 | April 27, 2010 | McDonald et al. |
7749115 | July 6, 2010 | Cruz et al. |
7798926 | September 21, 2010 | Hsu et al. |
7837579 | November 23, 2010 | Hughes et al. |
7850553 | December 14, 2010 | Goldsmith et al. |
7862456 | January 4, 2011 | Halko et al. |
7867114 | January 11, 2011 | Sutherland et al. |
7909705 | March 22, 2011 | Andersen et al. |
7942764 | May 17, 2011 | Chung et al. |
7955200 | June 7, 2011 | Cruz et al. |
8052547 | November 8, 2011 | Nusbaum et al. |
8142382 | March 27, 2012 | Falone et al. |
8197365 | June 12, 2012 | Tokieda |
8206250 | June 26, 2012 | Cruz et al. |
8226505 | July 24, 2012 | Burger et al. |
8277343 | October 2, 2012 | Chang |
8297601 | October 30, 2012 | Falone et al. |
8313397 | November 20, 2012 | Watari |
8317640 | November 27, 2012 | Cruz et al. |
8413262 | April 9, 2013 | Falone et al. |
8425353 | April 23, 2013 | Jones et al. |
8449412 | May 28, 2013 | Vander Pol et al. |
8491423 | July 23, 2013 | Biggio et al. |
8512174 | August 20, 2013 | Epling et al. |
8512175 | August 20, 2013 | Epling et al. |
8512176 | August 20, 2013 | Mathew et al. |
8545966 | October 1, 2013 | Falone et al. |
8694518 | April 8, 2014 | Schultz et al. |
8715118 | May 6, 2014 | Epling et al. |
D711989 | August 26, 2014 | Goodwin et al. |
8814733 | August 26, 2014 | Tsukamoto |
8827846 | September 9, 2014 | Shocklee |
8894518 | November 25, 2014 | Chung |
8998753 | April 7, 2015 | Tinti |
8998754 | April 7, 2015 | MacKey et al. |
9101810 | August 11, 2015 | Carlson et al. |
9115833 | August 25, 2015 | Crompton et al. |
9149697 | October 6, 2015 | Epling et al. |
9242156 | January 26, 2016 | Flood et al. |
9265999 | February 23, 2016 | Falone et al. |
9308424 | April 12, 2016 | Thurman et al. |
9457248 | October 4, 2016 | Long et al. |
9486680 | November 8, 2016 | Burger et al. |
9511267 | December 6, 2016 | Thurman et al. |
9669277 | June 6, 2017 | Haas et al. |
20030148836 | August 7, 2003 | Falone et al. |
20040053716 | March 18, 2004 | Wu et al. |
20050070384 | March 31, 2005 | Fitzgerald et al. |
20060293129 | December 28, 2006 | Kobayashi et al. |
20070155546 | July 5, 2007 | Chauvin |
20070219027 | September 20, 2007 | Chong |
20080070726 | March 20, 2008 | Watari et al. |
20090029810 | January 29, 2009 | Fitzgerald et al. |
20090215560 | August 27, 2009 | McNamee et al. |
20090280934 | November 12, 2009 | Watari |
20090280935 | November 12, 2009 | Watari et al. |
20100113194 | May 6, 2010 | Tokieda |
20110098141 | April 28, 2011 | Burger |
20110195808 | August 11, 2011 | Chauvin et al. |
20120108371 | May 3, 2012 | Epling |
20140080641 | March 20, 2014 | Epling et al. |
20140080642 | March 20, 2014 | Epling et al. |
20140272245 | September 18, 2014 | Livingston-Peters et al. |
20150040349 | February 12, 2015 | Malia et al. |
20150157908 | June 11, 2015 | Van Nguyen |
20170340935 | November 30, 2017 | Gray et al. |
20190143185 | May 16, 2019 | Hunt et al. |
H07163693 | June 1995 | JP |
- U.S. Appl. No. 15/935,896, filed Mar. 26, 2018, Douglas et al.
- Grainger, Inc., “½”—14 Brass Hydraulic Coupler Body, ½“ Body Size”, available at https://www.grainger.com/product/31A959?cm_mmc=PPC:+Google+PLA&s_kwcid=AL!2966!3!50916770997!!!g!82128241917!&ef_id=Wamb7gAAAHQQ3Qhf:20180104235230:s&kwid=productads-adid%5e50916770997-device%5ec-plaid%5e82128241917-sku%5e31A959-adType%5ePLA. Exact publication date unknown, website visited Jan. 23, 2018. 2 pages.
- Russell, Daniel A., “Do Flexible Handles affect the Performance of Baseball or Softball Bats?”, Pennsylvania State University, Graduate Program in Acoustics. Exact publication date unknown, last modified Feb. 23, 2007, website visited Jan. 23, 2018. 9 pgs.
- Russell, Daniel A., “Explaining the 98-mph BBS standard for ASA softball”, Pennsylvania State University, Graduate Program in Acoustics, available at http://www.acs.psu.edu/drussel/bats/bbs-asa.html, Exact publication date unknown, last modified May 12, 2008, website visited Feb. 9, 2018. 6 pgs.
- Russell, Daniel A., “Measuring the Vibrational Behavior of a Baseball/Softball Bat”, Science & Mathematics Department, Kettering University, Flint, MI, available at http://www.acs.psu.edu/drussell/bats/modal.html, exact publication date unknown, last modified Mar. 17, 2004, website visited Nov. 15, 2017, 3 pgs.
- Russell, Daniel A., “Vibrational Modes of a Baseball Bat”, Applied Physics, Kettering University, available at http://www.acs.psu.edu/drussell/bats/batvibes.html, exact publication date unknown, website visited Nov. 15, 2017, 4 pgs.
- Sharkbite Plumbing Solutions, “Couplings”, available at http://www.sharkbite.com/product/couplings/, exact publication date unknown, website visited Jan. 23, 2018.
- USPTO, “Final Office Action”, for U.S. Appl. No. 15/815,423, dated Feb. 11, 2019.
- USPTO, “Non-Final Office Action”, for U.S. Appl. No. 15/815,423, dated Oct. 16, 2018.
- USPTO, “Non-Final Office Action”, for U.S. Appl. No. 15/935,896, dated Feb. 5, 2019.
- ASTM International, “F2398-11: Standard Test Method for Measuring Moment of Inertia and Center of Percussion of a Baseball or Softball Bat” USA Baseball ABI Protocol, edition approved Apr. 1, 2011, published May 2011. 3 pages.
- Composites World, “Carbon-Kevlar Hinge, Besting metal hardware in weight, thickness, 3X load capacity and 1 million fatigue cycles with no degradation,” available at https://www.compositesworld.com/blog/post/carbon-kevlar-hinge-, Oct. 30, 2017. 5 pages.
- European Space Agency “Passive Damped Deployment of Full Composite Structures” available at http://www.esa.int/Our_Activities/Space_Engineering_Technology/Shaping_the_Future/Passive_Damped_Deployment_of_Full_Composite_Structures. Exact publication date unknown; website visited Feb. 9, 2018. 2 pages.
- Tech Briefs “Locking Mechanism for a Flexible Composite Hinge” available at https://www.techbriefs.com/component/content/article/tb/techbriefs/mechanics-and-machinery/26023, Dec. 1, 2016. 7 pages.
- USPTO, International Search Report and Written Opinion for International Application No. PCT/US2011/024224 by Easton Sports, Inc., dated May 13, 2011. 6 pages.
Type: Grant
Filed: May 10, 2018
Date of Patent: Jul 14, 2020
Patent Publication Number: 20190344140
Assignee: EASTON DIAMOND SPORTS, LLC (Thousand Oaks, CA)
Inventors: Dewey Chauvin (Simi Valley, CA), Linda Hunt (Simi Valley, CA), Ian Montgomery (Simi Valley, CA), Frederic St-Laurent (Oak Park, CA)
Primary Examiner: Jeffrey S Vanderveen
Application Number: 15/976,746
International Classification: A63B 60/54 (20150101); A63B 59/54 (20150101); B29C 70/30 (20060101); B29C 70/86 (20060101); B29L 31/52 (20060101); A63B 102/18 (20150101); A63B 102/20 (20150101); A63B 59/51 (20150101);