Oscillating blade with universal arbor engagement portion

- Imperial Blades

An oscillating blade for attachment to and use with an oscillating power tool, and the blade includes, an anchor with a tool arbor engagement portion defined by a side wall and a cap wall, and a locking point joined to the tool arbor engagement portion for engaging a corresponding lug on a power tool.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation of U.S. application Ser. No. 15/678,850, filed Aug. 16, 2017, now U.S. Pat. No. 10,843,282, the disclosure of which is incorporated by reference herein.

FIELD AND BACKGROUND OF THE INVENTION

The present invention is generally directed to oscillating blades used with hand-held oscillating power tools, and more particularly to an oscillating blade with a universal tool arbor engagement portion for attaching the oscillating blade to a variety of oscillating power tool arbor shapes and connecting devices.

Oscillating tools are hand-held electrically or air powered devices that apply or transfer torque to an oscillating blade. The blade includes an anchor joined to the tool and a cutting edge that is moved in an oscillating fashion and cuts material into which the blade edge is brought into contact.

Oscillating blades are well known, and include bodies with cutting edges and anchor portions. The anchor portions are typically dedicated designs to match arbor and anchor shapes of particular tool manufacturers. Some tool manufacturers manufacture oscillating blades to fit their tools specifically, and the blades cannot be used with the oscillating tools of other manufacturers. Some blade manufacturers have developed blade designs that can be used with a variety of oscillating tools. For example, the anchor portions are perforated with a variety of hole shapes and orientations to match arbor anchor projections from different tool manufacturers.

In some designs, the anchor positions have been raised from the blade bodies to define a “bottle cap” design common with some manufacturers. In others, arbors of the oscillating tools project axially through a hole in the anchor portions, while others are inserted through openings in the backs of the anchor portions. To accommodate both styles, some blade anchor portions are shaped with central arbor holes and a rearwardly open arbor slot or opening, so that the blades can be attached regardless of tool arbor design.

Nonetheless, as tools and arbor designs continue to change, not all blades can be used with all arbor or tool designs. Further, torque transfer from tool arbors and blade anchor designs can be inefficient. Thus, there is a need for an oscillating blade with an anchor portion that is not only adaptable to various tools designs, but is an improvement over the known attachment methods.

SUMMARY OF THE INVENTION

In accordance with the present invention, an oscillating blade is provided having: an anchor disposed at least partially in a first plane; a working portion joined to the anchor; a tool arbor engagement portion joined to the anchor and having a side wall extending away from the first plane, and a cap wall joined to the side wall and disposed at least partially in a second plane, and the side wall and the cap wall define an arbor opening; and a lock point joined to and extending outwardly from the side wall.

The oscillating blade side wall can be substantially perpendicular to the first plane or be disposed at an angle less than 90°. The side wall can define an arcuate shape, and/or be formed integrally with the anchor.

The oscillating blade cap wall can define an arbor engagement aperture and/or define a plurality of arbor engagement apertures extending substantially radially outwardly from the arbor opening or a radial engagement slot.

The oscillating blade lock point can extend substantially radially outwardly from the side wall, and various numbers of lock points can be used.

The oscillating blade can also include a cutting edge joined to the working portion. Also, the oscillating blade anchor working portion can be disposed in a third plane.

Further improvements and features of the present invention are described below.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of oscillating blade in accordance with the present invention;

FIG. 2 is a top view of the oscillating blade of FIG. 1;

FIG. 3 is a side view of the oscillating blade of FIG. 1;

FIG. 4 is a rear view of the oscillating blade of FIG. 1;

FIG. 5 is a perspective view of a second embodiment of an oscillating blade anchor in accordance with the present invention;

FIG. 6 is a plan view of the second blade anchor embodiment of FIG. 5;

FIG. 7 is a perspective view of a third embodiment of an oscillating blade anchor in accordance with the present invention;

FIG. 8 is a plan view of the third blade anchor embodiment of FIG. 7;

FIG. 9 is a partial cross section view of an anchor portion of the present invention engaged by a power tool arbor and connection device taken along line 9-9 in FIG. 6; and

FIG. 10 is a partial cross section view of an anchor portion of the present invention engaged by a power tool arbor and connection device taken along line 10-10 in FIG. 6.

DETAILED DESCRIPTION OF THE INVENTION

In the following detailed description of the drawings, the same reference numeral will be used for the same or similar element in each of the figures.

In accordance with the present invention, as seen in FIGS. 1 through 8, there are depicted various embodiments of oscillating blades 20, each having an anchor 22 with a working portion 24 and a tool arbor engagement portion 26. The oscillating blade 20 in each embodiment is sized and shaped as a replaceable cutting or abrading implement for attachment to an oscillating tool described in more detail below.

The oscillating blade 20 anchor 22 provides a foundation to which a blade body 30 can be joined. FIGS. 1 through 4 illustrate that the blade body 30 includes saw teeth 32, which can be specific for the type of material to be cut or a more generic type of saw teeth to cut a variety of materials. The blade body 30 could also be an abrasive material for abrading materials such as plaster, tile grout, or other types of materials. (FIGS. 5 through 8 illustrate anchors 22, but for simplicity, no blade body is illustrated.)

The illustrated blade body 30 includes the saw teeth 32, a shank portion 34, and a connecting end 36, which is joined to the anchor 22 in any suitable manner such as the projection welding technique illustrated. The blade body 30 can be made of any suitable material for the tasks to which it will be applied. It can also have any desired shape including the illustrated shape.

The anchor 22 preferably has an attachment portion 40, a ramp 42, and a base 44. The anchor 22 can be made of any suitable material, including materials that are the same as or different from the blade body 30. The illustrated shape of the anchor 22 working portion 24 is also optional, but preferred, because it provides a generic platform to which a variety of blade bodies 30 can be attached.

As stated above, the attachment portion 40 is attached to the blade body 30. The ramp 42 is optional, but it provides clearance from the oscillating tool and improved access to a material to be cut. The ramp 42 could be omitted altogether or replaced with other shapes or extensions that provide tool clearance and access to the materials to be cut.

The base 44 is preferably an essentially flat portion of the oscillating blade 20 and it is at least partially disposed in a first plane, below which (as illustrated) are the ramp 42, and the attachment portion 40. The base 44 could be other shapes and include portions that are not in the first plane, but the base 44 has at least a portion that is in a different plane than the tool arbor engagement portion 26.

Extending upwardly from the base 44 (and the first plane) is the tool arbor engagement portion 26 of the present invention. The tool arbor engagement portion 26 includes at least a side wall 50 and a cap wall 52. The side wall 50 preferably extends away from the base 44 (and the first plane) at an angle that is preferably as close to 90° as possible while still providing a release angle from a blade forming or stamping tool. (Not illustrated). Thus, the angle of the side wall 50 is preferably “essentially 90°” from the base 44 to leave only enough of an angle for being released from a die, stamp or other forming device. Nonetheless, the departure angle of the side wall 50 could be other angles less than 90°, as well, so that it matches a corresponding mounting element on an oscillating power tool.

At least a portion of the cap wall 52 is disposed in a second plane that is spaced apart from the first plane. The size and shape of the cap wall 52 are selected to correspond to a clamping mechanism on a power tool to which the oscillating blade 20 will be attached, so portions of the cap wall 52 can be outside of the second plane.

In the illustrated embodiment, the attachment portion 40 and the blade body 30 are preferably disposed in a third plane spaced apart from the first and second planes, but other spacing arrangements and blade configurations are possible.

The cap wall 52 preferably defines a number of apertures 58 that are sized, shaped, and disposed to mate with connecting projections on an oscillating power tool connection device. A central arbor hole 60 is also provided, so that a power tool arbor can be inserted (downward, as illustrated) through the central arbor hole 60 for assembly. The hole 60 is positioned to be substantially concentric with a drive axis of the arbor.

In the embodiments illustrated in FIGS. 1 through 6, both the side wall 50 and the cap wall 52 define an arbor opening 64 through which an arbor can be inserted as the oscillating blade 20 is moved laterally into the oscillating tool for attachment. The combination of the central arbor hole 60 with the arbor opening 64 allows the oscillating blade 20 to be used with a variety of different oscillating tool arbor and connection device arrangements.

The arbor opening 64 of the first embodiment (FIGS. 1 through 4) is shaped differently from the arbor opening 64 of the second embodiment (FIGS. 5 and 6), as best seen in a comparison of plan view FIG. 2 and FIG. 6. For example, the base 44 of the second embodiment extends rearwardly to include a portion 45, for additional stability. Similarly, (as seen in FIGS. 5 and 6) the side wall 50 of the second embodiment extends rearwardly to the arbor opening 64, whereas the first embodiment (FIGS. 1 through 4) has a side wall 50 that terminates at approximately the same location as the corresponding base 44.

In the embodiment illustrated in FIGS. 7 and 8, there is central arbor hole 60, but no rear arbor opening 64. This design is slightly less adaptable to some oscillating machines, but this configuration mates with specific tools for efficient torque transfer from an arbor to the tool arbor engagement portion 26. In this embodiment, the base 44, the side wall 50, and the cap wall 52 are closed in the back of the tool arbor engagement portion 26.

The oscillating blade 20 further includes at least one lock point 70 to engage a corresponding recess in some oscillating power tools connection devices. In such devices, a clamp portion is secured to the top of the tool arbor engagement portion 26, and described below. As illustrated, the oscillating blade 20 includes three lock points 70 joined to or formed in the side wall 50, but other quantities can be used to mate with any desired oscillating power tool connection device. Due to the efficiency of power transfer from the power tool arbor to the oscillating blade 20 through the lock point(s) 70, there can be fewer lock points 70 than the power tool has mating recesses, so it is unnecessary for the blade 20 to include an exact match between lock points 70 and the mating lugs of the oscillating power tool. Nonetheless, the third embodiment (FIG. 8) illustrates an additional lock point 70 in the rear.

Preferably, the lock points 70 are formed in the side wall 50, but other means for forming the lock points 70 can be used, such as joining separate parts to the side wall 50. As illustrated, the lock points 70 are formed of the same material as the rest of the side wall 50, but the lock points 70 can be made of any material and/or be coated with materials that enhance the interface between the lock points 70 and the oscillating power tool connection device. Also, preferably, the lock point 70 is sized and shaped to mate with a snap fit with recesses in the oscillating power tool connection device. A snap fit provides an audible and tactile indication of proper engagement, as well as a snug interface for efficient and reliable power transfer. The blade 20 with such an arrangement is also easily removed from the recess because it is tapered, as seen in the figures.

FIGS. 9 and 10 illustrate an example of an oscillating blade 20 engaged to a power tool connection device 76. The power tool 77 includes the connection device 76 having an arbor 78 with a clamp 80 disposed over the tool arbor engagement portion 26. The tool arbor engagement portion 26 is secured to the clamp 80 by a pair of spreading arms 82 that are closed when being inserted through the central arbor hole 60, but are spread, as seen in FIGS. 9 and 10, by a tool (not illustrated) that is either separate from or incorporated into a power tool.

FIG. 9 illustrates a cross section of the tool arbor engagement portion 26, the connection device arbor 78, clamp 80, and spreading arms 82. This portion of the tool arbor engagement portion 26 includes lock points 70 engaged with recesses in the clamp 80. FIG. 10, on the other hand, is a cross section taken at a location where there are no lock points.

The foregoing detailed description is provided for clearness of understanding only, and no unnecessary limitations therefrom should be read into the following claims.

Claims

1. An oscillating blade comprising:

an anchor disposed at least partially in a first plane and including: a tool arbor engagement portion defining a longitudinal axis, and the tool arbor engagement portion includes: a side wall extending away from the first plane; a cap wall joined to the side wall and disposed at least partially in a second plane, and the cap wall at least partially defines an arbor opening axially aligned with the longitudinal axis; and a plurality of spaced apart lock points extending radially outwardly from the side wall, and the lock points are spaced apart by an arcuate segment of the side wall having an arc length greater than an arc length of each individual lock point.

2. The oscillating blade of claim 1, wherein the side wall at least partially defines the arbor opening.

3. The oscillating blade of claim 1, wherein the cap wall defines a plurality of arbor engagement apertures extending substantially radially from the arbor opening.

4. The oscillating blade of claim 1, wherein the lock points extend substantially radially from a central portion of the cap wall.

5. The oscillating blade of claim 1, wherein the cap wall defines a plurality of arbor engagement apertures extending radially outwardly toward a portion of the side wall between the spaced apart lock points.

6. The oscillating blade of claim 1, and further comprising:

a working portion joined to the anchor, and the working portion is disposed at least partially in a third plane spaced apart from the first plane.

7. The oscillating blade of claim 1, and further comprising:

a working portion joined to the anchor, and the working portion is disposed at least partially in a third plane spaced apart from the first plane; and
a blade body joined to the working portion.

8. The oscillating blade of claim 1, and further comprising:

a working portion disposed at least partially in a third plane, and the third plane is spaced apart from the first plane, and the first plane is disposed between the second plane and the third plane.

9. The oscillating blade of claim 1, wherein the arbor opening extends through a rear portion of the cap wall and the oscillating blade further comprises:

a working portion joined to a front portion of the anchor.

10. The oscillating blade of claim 1, wherein the lock points are snap-fitting lock points.

11. The oscillating blade of claim 1, wherein the plurality of lock points includes a lock point aligned with the longitudinal axis and two lateral lock points disposed perpendicularly to the longitudinal axis.

12. An oscillating power tool comprising:

a power tool connection clamp defining a clamp recess; and
an oscillating blade having: an anchor disposed at least partially in a first plane and including: a tool arbor engagement portion defining a longitudinal axis, and the tool arbor engagement portion includes: a side wall extending away from the first plane; a cap wall joined to the side wall and disposed at least partially in a second plane, and the cap wall at least partially defines an arbor opening axially aligned with the longitudinal axis; and a plurality of spaced apart lock points extending radially outwardly from the side wall, and the lock points are spaced apart by an arcuate segment of the side wall having an arc length greater than an arc length of each individual lock point.

13. The oscillating power tool of claim 12, wherein the side wall at least partially defines the arbor opening.

14. The oscillating power tool of claim 12, wherein the cap wall defines a plurality of arbor engagement apertures extending substantially radially from the arbor opening.

15. The oscillating power tool of claim 12, wherein the lock points extend substantially radially from a central portion of the cap wall.

16. The oscillating power tool of claim 12, wherein the cap wall defines a plurality of arbor engagement apertures extending radially outwardly toward a portion of the side wall between the spaced apart lock points.

17. The oscillating power tool of claim 12, and further comprising:

a working portion joined to the anchor, and the working portion is disposed at least partially in a third plane spaced apart from the first plane.

18. The oscillating power tool of claim 12, and further comprising:

a working portion joined to the anchor, and the working portion is disposed at least partially in a third plane spaced apart from the first plane; and
a blade body joined to the working portion.

19. The oscillating power tool of claim 12, and further comprising:

a working portion disposed at least partially in a third plane, and the third plane is spaced apart from the first plane, and the first plane is disposed between the second plane and the third plane.

20. The oscillating power tool of claim 12, wherein the arbor opening extends through a rear portion of the cap wall and the oscillating blade further comprises:

a working portion joined to a front portion of the anchor.

21. The oscillating power tool of claim 12, wherein the lock points are snap-fitting lock points.

22. The oscillating power tool of claim 12, wherein the plurality of lock points includes a lock point aligned with the longitudinal axis and two lateral lock points disposed perpendicularly to the longitudinal axis.

Referenced Cited
U.S. Patent Documents
6678959 January 20, 2004 Phillip et al.
6782781 August 31, 2004 Rack
7001403 February 21, 2006 Hausmann et al.
D525707 July 25, 2006 Kullmer et al.
7691106 April 6, 2010 Schenberger et al.
D639833 June 14, 2011 Inkster
7997586 August 16, 2011 Ziegler
8216262 July 10, 2012 O'Donoghue
D678367 March 19, 2013 Inkster
D681081 April 30, 2013 Neal, Jr. et al.
D681082 April 30, 2013 Neal, Jr. et al.
D685826 July 9, 2013 Inkster
8518045 August 27, 2013 Szanto
8568204 October 29, 2013 Steiger et al.
8636739 January 28, 2014 Fisher et al.
8672943 March 18, 2014 Fisher et al.
8685028 April 1, 2014 Kim
8875611 November 4, 2014 Mann
9072526 July 7, 2015 Carusillo
9192390 November 24, 2015 Delrio et al.
D762751 August 2, 2016 Bernardy
9707634 July 18, 2017 Grolimund et al.
9848900 December 26, 2017 Witt et al.
10065248 September 4, 2018 Klabunde et al.
20010006017 July 5, 2001 Osada et al.
20020104421 August 8, 2002 Wurst
20050065530 March 24, 2005 Stauch et al.
20050178261 August 18, 2005 Thomaschewski
20080172890 July 24, 2008 Shetterly
20080201964 August 28, 2008 Camargo et al.
20090013540 January 15, 2009 Bohne
20090320299 December 31, 2009 Kuhn et al.
20100288099 November 18, 2010 Steiger
20110030524 February 10, 2011 Inkster
20110316241 December 29, 2011 Zhang
20130331013 December 12, 2013 Neal, Jr. et al.
20140082948 March 27, 2014 Staub
20140116224 May 1, 2014 Kern et al.
20140190328 July 10, 2014 Karlen
20140325855 November 6, 2014 Bozic
20150020671 January 22, 2015 Meindorfer
20150063933 March 5, 2015 Faessler et al.
20150273706 October 1, 2015 Martin
20160199919 July 14, 2016 Klabunde et al.
20160257010 September 8, 2016 Jones
20170028525 February 2, 2017 Bek et al.
20170182570 June 29, 2017 Dvorak et al.
20170348780 December 7, 2017 Zhang et al.
20180029190 February 1, 2018 Nagy
20180200812 July 19, 2018 Kaye, Jr. et al.
Foreign Patent Documents
703107 November 2011 CH
204209649 March 2015 CN
204209650 March 2015 CN
105196260 December 2015 CN
205057976 March 2016 CN
105522220 April 2016 CN
205342080 June 2016 CN
105904414 August 2016 CN
205685281 November 2016 CN
106272268 January 2017 CN
206241375 June 2017 CN
19613538 July 1997 DE
10100630 June 2002 DE
202011108736 June 2012 DE
102013112888 May 2015 DE
102015100781-0016 October 2015 DE
301638099-0004 January 2010 EM
301724295-0005 June 2010 EM
301965286-0001 January 2012 EM
302067546-0049 July 2012 EM
301389860-0001 November 2013 EM
002418616-0005 March 2014 EM
502758342-0011 August 2015 EM
2808137 December 2014 EP
2777856 May 2016 EP
2357058 June 2001 GB
2359509 March 2002 GB
2457249 August 2009 GB
53/028966 April 2003 WO
53/041920 May 2003 WO
2004/105623 December 2004 WO
2006/050310 May 2006 WO
2008/151866 December 2008 WO
2011/038979 April 2011 WO
2011/044615 April 2011 WO
2011/102776 August 2011 WO
2013/091965 June 2013 WO
2013/113432 August 2013 WO
2014/150560 September 2014 WO
2014/159674 October 2014 WO
2015/048880 April 2015 WO
2016/132320 August 2016 WO
2019/035025 February 2019 WO
Other references
  • International Search Report and Written Opinion for PCT/IB2018/056162, dated Dec. 5, 2018, 13 pages.
  • Stryker Replacement Blades, in public use, on sale, or otherwise available to the public in 2016, https://www.microaire.com/Pages/ItemClass_Catalog.aspx?ItemClassNo=55, 2 pages.
  • Saw Blades, in public use, on sale, or otherwise available to the public in 2016, http://www.atlanticsurgical.ie/product/saw-blades/, 3 pages.
  • De Soutter Replacement Saw Blades, in public use, on sale, or otherwise available to the public in 2016, http://www.barbermedical.com/de-soutter-replacement-saw-blades.html, 2 pages.
  • KM-3231SS Sterile Sternum Saw Blade, in public use, on sale, or otherwise available to the public in 2016, http://busamedical.com/news-events/km-3231ss-available-now/, 2 pages.
  • “2½ In. StarlockPlus® Bi-Metal Plunge Cut Blade, in public use, on sale, or otherwise available to the public in 2016, https://www.boschtools.com/us/en/boschtools-ocs/starlockplus-multi-tool-cuttingaccessories-osp212f-142620-p/, 5 pages.”
  • “1¼ In. StarlockPlus® High-Carbon Steel Plunge Cut Blade, in public use, on sale, or otherwise available to the public in 2016, https://www.boschtools.com/us/en/boschtools-ocs/starlockplus-multi-tool-cuttingaccessories-osp114-142614-p/, 5 pages.”
  • Ryker Hardware 15 Piece Variety Pack of Quick Release Oscillating Saw Blades—For Wood and Metal, in public use, on sale, or otherwise available to the public before 2017, https://www.rykerhardware.com/collections/all-products/products/15-piece-universal-quick-release-oscillating-multitool, 6 pages.
  • DeWalt Oscillating Carbide Grout Removal Blade—DWA4219, in public use, on sale, or otherwise available to the public before 2017, https://www.dewalt.com/products/accessories/oscillating-accessories/oscillating-carbide-grout-removal-blade/dwa4219, 4 pages.
  • Integra® Tools Platinum Blades™ 7 Piece Flooring Tile and Grout Blade Pack Oscillating MutliTool Blades, in public use, on sale, or otherwise available to the public before 2017, https://platinumsupplypro.com/products/copy-of-integra-tools-platinum-blades-3-piece-flooring-tile-and-grout-blade-pack-oscillating-multitool-blades, 4 pages.
  • XXGO Universal Carbide Semicircle Finger Grit Grout Grinding Removal and Rasp Oscillating Multi Tool Blades Pack of 2, in public use, on sale, or otherwise available to the public before 2017, https://www.wantitall.co.za/tools/xxgo-universal-carbide-semicircle-finger-grit-grout-grinding-removal-and-rasp-oscillating-multi-tool_b06ww9qcxw, 5 pages.
  • MM500 ⅛″ Grout Removal Blade, in public use, on sale, or otherwise available to the public before 2017, https://www.dremel.com/en_US/products/-/show-product/accessories/mm500-1-8-grout-removal-blade, 2 pages.
Patent History
Patent number: 11344960
Type: Grant
Filed: Oct 20, 2020
Date of Patent: May 31, 2022
Patent Publication Number: 20210031284
Assignee: Imperial Blades (Sun Prairie, WI)
Inventor: Gregory C. Churchill (Portage, WI)
Primary Examiner: Stephen Choi
Application Number: 17/074,719
Classifications
Current U.S. Class: Longitudinal Screw Clamp (279/8)
International Classification: B23D 61/00 (20060101);