Method, system and apparatus for localization-based historical obstacle handling
A method of obstacle handling for a mobile automation apparatus includes: obtaining an initial localization of the mobile automation apparatus in a frame of reference; detecting an obstacle by one or more sensors disposed on the mobile automation apparatus; generating and storing an initial location of the obstacle in the frame of reference, based on (i) the initial localization, and (ii) a detected position of the obstacle relative to the mobile automation apparatus; obtaining a correction to the initial localization of the mobile automation apparatus; and applying a positional adjustment, based on the correction, to the initial position of the obstacle to generate and store an updated position of the obstacle.
Latest Zebra Technologies Corporation Patents:
Environments in which objects are managed, such as retail facilities, may be complex and fluid. For example, a retail facility may include objects such as products for purchase, a distribution environment may include objects such as parcels or pallets, a manufacturing environment may include objects such as components or assemblies, a healthcare environment may include objects such as medications or medical devices.
A mobile automation apparatus may be employed to perform tasks within a facility, such as capturing data for use in identifying products that are out of stock, incorrectly located, and the like. The mobile automation apparatus may detect obstacles in the facility, and a navigational path may be generated, based in part on such obstacles, for the mobile automation apparatus to travel within the facility. Corrections to a localization of the mobile automation apparatus may cause navigational errors and reduce system efficiency.
The accompanying figures, where like reference numerals refer to identical or functionally similar elements throughout the separate views, together with the detailed description below, are incorporated in and form part of the specification, and serve to further illustrate embodiments of concepts that include the claimed invention, and explain various principles and advantages of those embodiments.
Skilled artisans will appreciate that elements in the figures are illustrated for simplicity and clarity and have not necessarily been drawn to scale. For example, the dimensions of some of the elements in the figures may be exaggerated relative to other elements to help to improve understanding of embodiments of the present invention.
The apparatus and method components have been represented where appropriate by conventional symbols in the drawings, showing only those specific details that are pertinent to understanding the embodiments of the present invention so as not to obscure the disclosure with details that will be readily apparent to those of ordinary skill in the art having the benefit of the description herein.
DETAILED DESCRIPTIONExamples disclosed herein are directed to a method of obstacle handling for a mobile automation apparatus including: obtaining an initial localization of the mobile automation apparatus in a frame of reference; detecting an obstacle by one or more sensors disposed on the mobile automation apparatus; generating and storing an initial location of the obstacle in the frame of reference, based on (i) the initial localization, and (ii) a detected position of the obstacle relative to the mobile automation apparatus; obtaining a correction to the initial localization of the mobile automation apparatus; and applying a positional adjustment, based on the correction, to the initial position of the obstacle to generate and store an updated position of the obstacle.
Additional examples disclosed herein are directed to a mobile automation apparatus, comprising: a memory; at least one navigational sensor; and a navigational controller connected to the memory and the at least one navigational sensor, the navigational controller configured to: obtain an initial localization of the mobile automation apparatus in a frame of reference; detect an obstacle via the at least one navigational sensor; generate and store, in the memory, an initial location of the obstacle in the frame of reference, based on (i) the initial localization, and (ii) a detected position of the obstacle relative to the mobile automation apparatus; obtain a correction to the initial localization; and apply a positional adjustment, based on the correction, to the initial position of the obstacle to generate and store an updated position of the obstacle.
Further examples disclosed herein are directed to a non-transitory computer readable medium storing computer readable instructions for execution by a navigational controller to: obtain an initial localization of a mobile automation apparatus in a frame of reference; detect an obstacle via at least one navigational sensor disposed on the mobile automation apparatus; generate and store an initial location of the obstacle in the frame of reference, based on (i) the initial localization, and (ii) a detected position of the obstacle relative to the mobile automation apparatus; obtain a correction to the initial localization; and apply a positional adjustment, based on the correction, to the initial position of the obstacle to generate and store an updated position of the obstacle.
The client computing device 105 is illustrated in
The retail facility in which the system 100 is deployed in the illustrated example includes a plurality of support structures such as shelf modules 110-1, 110-2, 110-3 and so on (collectively referred to as shelf modules 110, and generically referred to as a shelf module 110—this nomenclature may also be employed for other elements discussed herein). Each shelf module 110 supports a plurality of products 112. Each shelf module 110 includes a shelf back 116-1, 116-2, 116-3 and a support surface (e.g. support surface 117-3 as illustrated in
The shelf modules 110 are typically arranged in a plurality of aisles, each of which includes a plurality of modules 110 aligned end-to-end. In such arrangements, the shelf edges 118 face into the aisles, through which customers in the retail environment as well as the apparatus 103 may travel. As will be apparent from
The apparatus 103 is deployed within the retail facility, and communicates with the server 101 (e.g. via the link 107) to navigate, autonomously or partially autonomously, along a length 119 of at least a portion of the shelf modules 110. As will be described in greater detail below, the apparatus 103 is configured to navigate among the shelf modules 110 and other fixed (i.e. static) structural features of the facility, such as walls, pillars and the like. The apparatus 103 is also configured to navigate among transient obstacles such as customers, shopping carts and other objects, which may be detected dynamically. Navigational functions can be performed by the apparatus 103 and/or the server 101 with regard to a common frame of reference 102 previously established in the facility.
The apparatus 103 is equipped with a plurality of navigation and data capture sensors 104, such as image sensors (e.g. one or more digital cameras) and depth sensors (e.g. one or more Light Detection and Ranging (LIDAR) sensors, one or more depth cameras employing structured light patterns, such as infrared light, or the like). The apparatus 103 can be configured to employ the sensors 104 for navigational functions, including tracking of the location of the apparatus 103 relative to the frame of reference 102, detection of the above-mentioned transient obstacles, and the like. The apparatus 103 can also employ the sensors to capture shelf data (e.g. images and depth measurements depicting the products 112) during such navigation.
The server 101 includes a special purpose controller, such as a processor 120, specifically designed to control and/or assist the mobile automation apparatus 103 to navigate the environment and to capture data. The processor 120 can be further configured to obtain the captured data via a communications interface 124 for storage in a repository 128 and subsequent processing (e.g. to detect objects such as shelved products 112 in the captured data, and detect status information corresponding to the objects). The server 101 may also be configured to transmit status notifications (e.g. notifications indicating that products are out-of-stock, low stock or misplaced) to the client device 105 responsive to the determination of product status data. The client device 105 includes one or more controllers (e.g. central processing units (CPUs) and/or field-programmable gate arrays (FPGAs) and the like) configured to process (e.g. to display) notifications received from the server 101.
The above-mentioned communications interface 124 of the server 101 is interconnected with the processor 120, and includes suitable hardware (e.g. transmitters, receivers, network interface controllers and the like) allowing the server 101 to communicate with other computing devices—particularly the apparatus 103, the client device 105 and the dock 108—via the links 107 and 109. The links 107 and 109 may be direct links, or links that traverse one or more networks, including both local and wide-area networks. The specific components of the communications interface 124 are selected based on the type of network or other links that the server 101 is required to communicate over. In the present example, as noted earlier, a wireless local-area network is implemented within the retail environment via the deployment of one or more wireless access points. The links 107 therefore include either or both wireless links between the apparatus 103 and the mobile device 105 and the above-mentioned access points, and a wired link (e.g. an Ethernet-based link) between the server 101 and the access point.
The processor 120 is interconnected with a non-transitory computer readable storage medium, such as a memory 132, storing the above-mentioned repository 128 as well as computer readable instructions executable by the processor 120 for performing various functionality. Examples of such functionality include control of the apparatus 103 to capture shelf data, post-processing of the shelf data, and generating and providing certain navigational data to the apparatus 103, such as target locations at which to capture shelf data. The memory 132 includes a combination of volatile (e.g. Random Access Memory or RAM) and non-volatile memory (e.g. read only memory or ROM, Electrically Erasable Programmable Read Only Memory or EEPROM, flash memory). The processor 120 and the memory 132 each comprise one or more integrated circuits. In some embodiments, the processor 120 is implemented as one or more central processing units (CPUs) and/or graphics processing units (GPUs).
The computer readable instructions stored by the memory 132 can include at least one application executable by the processor 120. Execution of the above-mentioned instructions by the processor 120 configures the server 101 to perform various actions discussed herein. The applications stored in the memory 132 in the illustrated example include a control application 136, which may also be implemented as a suite of logically distinct applications. In general, via execution of the application 136 or subcomponents thereof and in conjunction with the other components of the server 101, the processor 120 is configured to implement various functionality related to controlling the apparatus 103 to navigate among the shelf modules 110 and capture data.
Turning now to
In the present example, the mast 205 supports seven digital cameras 207-1 through 207-7, and two LIDAR sensors 211-1 and 211-2. The mast 205 also supports a plurality of illumination assemblies 213, configured to illuminate the fields of view of the respective cameras 207. That is, the illumination assembly 213-1 illuminates the field of view of the camera 207-1, and so on. The sensors 207 and 211 are oriented on the mast 205 such that the fields of view of each sensor face a shelf module 110 along the length 119 of which the apparatus 103 is travelling. The apparatus 103 is configured to track a location (e.g. a location of the center of the chassis 201) and orientation of the apparatus 103 in the common frame of reference 102, permitting data captured by the mobile automation apparatus 103 to be registered to the common frame of reference 102. The above-mentioned location and orientation of the apparatus 103 within the frame of reference 102, also referred to as a localization, can be employed in the generation of paths for execution by the apparatus 103.
Turning to
The processor 220, when so configured by the execution of the application 228, may also be referred to as a navigational controller 220. Those skilled in the art will appreciate that the functionality implemented by the processor 220 via the execution of the application 228 may also be implemented by one or more specially designed hardware and firmware components, such as FPGAs, Application-Specific Integrated Circuits (ASICs) and the like in other embodiments.
The memory 222 may also store a repository 232 containing, for example, one or more maps of the environment in which the apparatus 103 operates, for use during the execution of the application 228. The repository 232, in the examples discussed below, contains a facility map, which may also be referred to as a permanent map. The facility map represents the positions of fixed structural features of the facility such as walls, shelf modules 110 and the like, according to the frame of reference 102. The apparatus 103 may communicate with the server 101, for example to receive instructions to navigate to specified locations and initiate data capture operations, via a communications interface 224 over the link 107 shown in
In the present example, the apparatus 103 is configured (via the execution of the application 228 by the processor 220) to generate navigational paths to travel through the environment, for example to reach goal locations provided by the server 101. The apparatus 103 is also configured to control the locomotive mechanism 203 to travel along the above-mentioned paths. To that end, the apparatus 103 is also configured, as will be discussed below in greater detail, to detect obstacles in the surroundings of the apparatus 103. Such obstacles, referred to earlier as transient obstacles, are distinguished from fixed structural features of the facility in which the apparatus 103 is deployed. The positions of obstacles relative to the frame of reference 102 are stored in the memory 222, e.g. in an obstacle map separate from the facility map, or as transient additions to the facility map itself. As will be discussed in greater detail below, the apparatus 103 is also configured to dynamically update the positions of at least some previously detected obstacles in response to certain changes in localization.
As will be apparent in the discussion below, other examples, some or all of the processing performed by the apparatus 103 may be performed by the server 101, and some or all of the processing performed by the server 101 may be performed by the apparatus 103. That is, although in the illustrated example the application 228 resides in the mobile automation apparatus 103, in other embodiments the actions performed by the apparatus 103 via execution of the application 228 may be performed by the processor 120 of the server 101, either in conjunction with or independently from the processor 220 of the mobile automation apparatus 103. As those of skill in the art will realize, distribution of navigational computations between the server 101 and the mobile automation apparatus 103 may depend upon respective processing speeds of the processors 120 and 220, the quality and bandwidth of the link 107, as well as criticality level of the underlying instruction(s).
The functionality of the application 228 will now be described in greater detail. In particular, the detection and updating of obstacle positions based on localization tracking of the apparatus 103 will be described as performed by the apparatus 103.
The apparatus 103 is configured to periodically update its localization according to the frame of reference 102 during navigation within the facility. Localization is updated based on sensor data, e.g. from any one or more of the image, depth and odometry sensors mentioned earlier. In other words, the apparatus 103 detects its location and orientation within the facility by comparing sensor data to the map stored in the repository 232. As will be apparent to those skilled in the art, the accuracy of localization of the apparatus 103 may vary over time. Certain updated localizations may therefore reflect not only physical movement of the apparatus 103, but also corrected localization accuracy.
Obstacles are also detected via the above-mentioned image and depth sensors (e.g. 207, 209, 211), and positions of the obstacles in the frame of reference 102 are stored, e.g. in the memory 222. When an obstacle is in the field of view of such sensors, corrections to the localization of the apparatus 103 are implicitly applied to the obstacle (i.e. the stored position of the obstacle is updated along with the localization of the apparatus 103). However, when a previously detected obstacle is not currently within the field of view of the above sensor, such implicit updates to stored obstacle positions may no longer occur. As a result, the localization of the apparatus 103 may sometimes be corrected to overlap with the stored position of an obstacle that is not currently visible to the apparatus 103. Although no actual collision has occurred, such an event may generate an error condition, interrupt operation of the apparatus or the like. The method 400 to be discussed below mitigates or avoids the above virtual collisions resulting from corrections to the localization of the apparatus 103.
At block 305, the apparatus 103 is configured to initiate navigation and localization tracking. For example, the apparatus 103 can receive an instruction from the server 101 to travel to at least one location in the facility and/or perform tasks such as data capture at such locations. In response to the instruction, the apparatus 103 can generate a navigational path based on the facility map stored in the repository 232. The apparatus 103 can then initiate execution of the path by controlling the locomotive mechanism 203. The apparatus 103 also begins tracking localization, generating an updated localization estimate at any suitable frequency (e.g. 10 Hz, although a wide variety of other localization frequencies can also be employed both above and below 10 Hz).
The apparatus 103 can also be configured, for each localization, to generate a confidence level. The confidence level, which may also be referred to as localization certainty level, indicates the probable accuracy of the localization, as assessed by the apparatus 103. Various mechanisms for generating localizations and associated confidence levels will occur to those skilled in the art, including mechanisms based on any one or more of odometry data (e.g. received at the processor 220 from a wheel sensor or the like included in the locomotive mechanism 203), inertial sensor data (e.g. from an inertial measurement unit (IMU)), lidar data, or the like. The localization confidence level is typically generated simultaneously with the localization itself, and may be expressed in a variety of formats, including as a fraction between zero and one, as a percentage, or the like.
Before proceeding to block 410, the apparatus 103 is assumed to have computed at least one localization (that is, a current localization is assumed to be available). At block 410, the apparatus 103 determines whether any obstacles have been detected via the above-mentioned sensors at the current localization. A variety of object detection and/or recognition mechanisms can be employed by the apparatus 103 to process sensor data and determine whether the sensor data represents an obstacle distinct from the features of the facility map.
Turning to
The map 500 need not be maintained in the memory 222 as a single file. Rather, the information shown in
As shown in
At block 425, having obtained an updated localization, the apparatus 103 is configured to determine whether the updated localization obtained at block 420 represents a correction to a preceding localization (i.e. from block 405, or from the preceding performance of block 420 if applicable). Referring to
The determination at block 425 includes determining a difference between the updated localization from block 420 and a combination of the preceding localization and odometry data. In other words, when the preceding localization, modified by odometry data representing movement of the apparatus 103, is equal to the updated localization, no correction has occurred. However, when the preceding localization modified by odometry data representing movement of the apparatus 103 is not equal to the updated localization, a correction has occurred. In the example illustrated in
At a subsequent performance of block 410, still referring to
In some examples, as illustrated in
Having stored the obstacle location at block 415, the apparatus 103 proceeds to block 420 to obtain a further updated localization (e.g. in response to further travel along the path 508). In the present example, the apparatus 103 may also be configured to alter the path 508 to avoid a collision with the obstacle 608. Turning to
At another performance of block 410, the determination is negative because, as seen in
The apparatus 103 therefore proceeds again to block 420 to obtain an updated localization, as illustrated in
The location of the obstacle 608 is also shown in
Referring again to
Returning to
In some examples, all stored historical obstacle locations can be updated as described above. That is, an adjustment equal to the localization correction can be applied to every historical obstacle location stored in the memory 222. Adjustments are not applied to obstacles that are within the field of view of the apparatus 103, because the stored locations of such visible obstacles are already based on the current localization, and they are not considered historical obstacles.
Turning to
Turning to
In other examples, rather than minimum and maximum radii, the apparatus 103 can store a default radius, which is incremented or decremented based on the confidence level associated with the current localization. More specifically, the radius may be decreased for each of a set of predefined steps above a confidence level of 0.5, or increased for each of a set of predefined steps below a confidence level of 0.5. Various other mechanisms for scaling the radius based on localization confidence level may also be employed.
In further examples, as illustrated in
In
Variations to the above systems and methods are contemplated. For example, in some embodiments the adjustments applied to obstacle locations can be portions of the localization correction based on the age of the stored obstacle locations. For example, at block 415 each detected obstacle location can be stored with a time of detection, and at block 430, obstacles with greater ages (i.e. earlier times of detection) may be adjusted by smaller portions of the localization correction.
In the foregoing specification, specific embodiments have been described. However, one of ordinary skill in the art appreciates that various modifications and changes can be made without departing from the scope of the invention as set forth in the claims below. Accordingly, the specification and figures are to be regarded in an illustrative rather than a restrictive sense, and all such modifications are intended to be included within the scope of present teachings.
The benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential features or elements of any or all the claims. The invention is defined solely by the appended claims including any amendments made during the pendency of this application and all equivalents of those claims as issued.
Moreover in this document, relational terms such as first and second, top and bottom, and the like may be used solely to distinguish one entity or action from another entity or action without necessarily requiring or implying any actual such relationship or order between such entities or actions. The terms “comprises,” “comprising,” “has”, “having,” “includes”, “including,” “contains”, “containing” or any other variation thereof, are intended to cover a non-exclusive inclusion, such that a process, method, article, or apparatus that comprises, has, includes, contains a list of elements does not include only those elements but may include other elements not expressly listed or inherent to such process, method, article, or apparatus. An element proceeded by “comprises . . . a”, “has . . . a”, “includes . . . a”, “contains . . . a” does not, without more constraints, preclude the existence of additional identical elements in the process, method, article, or apparatus that comprises, has, includes, contains the element. The terms “a” and “an” are defined as one or more unless explicitly stated otherwise herein. The terms “substantially”, “essentially”, “approximately”, “about” or any other version thereof, are defined as being close to as understood by one of ordinary skill in the art, and in one non-limiting embodiment the term is defined to be within 10%, in another embodiment within 5%, in another embodiment within 1% and in another embodiment within 0.5%. The term “coupled” as used herein is defined as connected, although not necessarily directly and not necessarily mechanically. A device or structure that is “configured” in a certain way is configured in at least that way, but may also be configured in ways that are not listed.
It will be appreciated that some embodiments may be comprised of one or more specialized processors (or “processing devices”) such as microprocessors, digital signal processors, customized processors and field programmable gate arrays (FPGAs) and unique stored program instructions (including both software and firmware) that control the one or more processors to implement, in conjunction with certain non-processor circuits, some, most, or all of the functions of the method and/or apparatus described herein. Alternatively, some or all functions could be implemented by a state machine that has no stored program instructions, or in one or more application specific integrated circuits (ASICs), in which each function or some combinations of certain of the functions are implemented as custom logic. Of course, a combination of the two approaches could be used.
Moreover, an embodiment can be implemented as a computer-readable storage medium having computer readable code stored thereon for programming a computer (e.g., comprising a processor) to perform a method as described and claimed herein. Examples of such computer-readable storage mediums include, but are not limited to, a hard disk, a CD-ROM, an optical storage device, a magnetic storage device, a ROM (Read Only Memory), a PROM (Programmable Read Only Memory), an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically Erasable Programmable Read Only Memory) and a Flash memory. Further, it is expected that one of ordinary skill, notwithstanding possibly significant effort and many design choices motivated by, for example, available time, current technology, and economic considerations, when guided by the concepts and principles disclosed herein will be readily capable of generating such software instructions and programs and ICs with minimal experimentation.
The Abstract of the Disclosure is provided to allow the reader to quickly ascertain the nature of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or meaning of the claims. In addition, in the foregoing Detailed Description, it can be seen that various features are grouped together in various embodiments for the purpose of streamlining the disclosure. This method of disclosure is not to be interpreted as reflecting an intention that the claimed embodiments require more features than are expressly recited in each claim. Rather, as the following claims reflect, inventive subject matter lies in less than all features of a single disclosed embodiment. Thus the following claims are hereby incorporated into the Detailed Description, with each claim standing on its own as a separately claimed subject matter.
Claims
1. A method of obstacle handling for a mobile automation apparatus, the method comprising:
- obtaining an initial localization of the mobile automation apparatus in a frame of reference;
- detecting an obstacle by one or more sensors disposed on the mobile automation apparatus;
- generating an initial location of the obstacle in the frame of reference, based on (i) the initial localization, and (ii) a detected position of the obstacle relative to the mobile automation apparatus;
- storing, in association with the initial location of the obstacle, a confidence level associated with the initial localization;
- obtaining a correction to the initial localization of the mobile automation apparatus;
- determining a positional adjustment to the initial position of the obstacle as a portion of the localization correction based on the confidence level, wherein the portion is inversely proportional to the confidence level; and
- applying the positional adjustment to generate an updated position of the obstacle.
2. The method of claim 1, wherein obtaining the correction to the initial localization includes:
- obtaining an updated localization of the mobile automation apparatus and odometry data; and
- determining a difference between (i) the updated localization and (ii) the initial localization modified by the odometry data.
3. The method of claim 2, further comprising:
- obtaining an adjustment radius; and
- determining a distance between the updated localization and the initial location of the obstacle;
- wherein the positional adjustment is null when the distance exceeds the adjustment radius.
4. The method of claim 3, further comprising: when the distance does not exceed the adjustment radius, generating the positional adjustment as a portion of the correction to the initial localization, the portion being inversely proportional to the distance.
5. The method of claim 3, further comprising: when the distance does not exceed the adjustment radius, generating the positional adjustment as equal to the correction to the initial localization.
6. The method of claim 3, wherein obtaining the adjustment radius includes:
- obtaining a confidence level associated with the updated localization; and
- increasing or decreasing a default adjustment radius according to the confidence level.
7. A mobile automation apparatus, comprising:
- a memory;
- at least one navigational sensor; and
- a navigational controller connected to the memory and the at least one navigational sensor, the navigational controller configured to: obtain an initial localization of the mobile automation apparatus in a frame of reference; detect an obstacle via the at least one navigational sensor; generate an initial location of the obstacle in the frame of reference, based on (i) the initial localization, and (ii) a detected position of the obstacle relative to the mobile automation apparatus; store, in association with the initial location of the obstacle, a confidence level associated with the initial localization; obtain a correction to the initial localization; determine a positional adjustment as a portion of the localization correction based on the confidence level, wherein the portion is inversely proportional to the confidence level; and apply the positional adjustment to generate an updated position of the obstacle.
8. The mobile automation apparatus of claim 7, wherein the navigational controller is configured, in order to obtain the correction to the initial localization, to:
- obtain an updated localization of the mobile automation apparatus and odometry data; and
- determine a difference between (i) the updated localization and (ii) the initial localization modified by the odometry data.
9. The mobile automation apparatus of claim 8, wherein the navigational controller is further configured to:
- obtain an adjustment radius; and
- determine a distance between the updated localization and the initial location of the obstacle;
- wherein the positional adjustment is null when the distance exceeds the adjustment radius.
10. The mobile automation apparatus of claim 9, wherein the navigational controller is further configured to: when the distance does not exceed the adjustment radius, generate the positional adjustment as a portion of the correction to the initial localization, the portion being inversely proportional to the distance.
11. The mobile automation apparatus of claim 9, wherein the navigational controller is further configured to: when the distance does not exceed the adjustment radius, generate the positional adjustment as equal to the correction to the initial localization.
12. The mobile automation apparatus of claim 9, wherein the navigational controller is further configured, in order to obtain the adjustment radius, to:
- obtain a confidence level associated with the updated localization; and
- increase or decrease a default adjustment radius according to the confidence level.
13. A non-transitory computer readable medium storing computer readable instructions for execution by a navigational controller, the instructions comprising:
- obtaining an initial localization of a mobile automation apparatus in a frame of reference;
- detecting an obstacle via at least one navigational sensor disposed on the mobile automation apparatus;
- generating an initial location of the obstacle in the frame of reference, based on (i) the initial localization, and (ii) a detected position of the obstacle relative to the mobile automation apparatus;
- storing, in association with the initial location of the obstacle, a confidence level associated with the initial localization;
- obtaining a correction to the initial localization;
- determining a positional adjustment to the initial position of the obstacle as a portion of the localization correction based on the confidence level, wherein the portion is inversely proportional to the confidence level; and
- applying the positional adjustment to generate an updated position of the obstacle.
14. The non-transitory computer readable medium of claim 13, wherein the instructions further comprise:
- obtaining an updated localization of the mobile automation apparatus and odometry data; and
- determining a difference between (i) the updated localization and (ii) the initial localization modified by the odometry data.
15. The non-transitory computer readable medium of claim 14, wherein the instructions further comprise obtaining an adjustment radius and determining a distance between the updated localization and the initial location of the obstacle, wherein the positional adjustment is null when the distance exceeds the adjustment radius.
16. The non-transitory computer readable medium of claim 15, wherein the instructions further comprise:
- when the distance does not exceed the adjustment radius, generating the positional adjustment as a portion of the correction to the initial localization, the portion being inversely proportional to the distance.
5209712 | May 11, 1993 | Ferri |
5214615 | May 25, 1993 | Bauer |
5408322 | April 18, 1995 | Hsu et al. |
5414268 | May 9, 1995 | McGee |
5423617 | June 13, 1995 | Marsh et al. |
5534762 | July 9, 1996 | Kim |
5566280 | October 15, 1996 | Fukui et al. |
5704049 | December 30, 1997 | Briechle |
5953055 | September 14, 1999 | Huang et al. |
5988862 | November 23, 1999 | Kacyra et al. |
6026376 | February 15, 2000 | Kenney |
6034379 | March 7, 2000 | Bunte et al. |
6075905 | June 13, 2000 | Herman et al. |
6115114 | September 5, 2000 | Berg et al. |
6141293 | October 31, 2000 | Amorai-Moriya et al. |
6304855 | October 16, 2001 | Burke |
6442507 | August 27, 2002 | Skidmore et al. |
6549825 | April 15, 2003 | Kurata |
6580441 | June 17, 2003 | Schileru-Key |
6711293 | March 23, 2004 | Lowe |
6721723 | April 13, 2004 | Gibson et al. |
6721769 | April 13, 2004 | Rappaport et al. |
6836567 | December 28, 2004 | Silver et al. |
6995762 | February 7, 2006 | Pavlidis et al. |
7090135 | August 15, 2006 | Patel |
7137207 | November 21, 2006 | Armstrong et al. |
7245558 | July 17, 2007 | Willins et al. |
7248754 | July 24, 2007 | Cato |
7277187 | October 2, 2007 | Smith et al. |
7373722 | May 20, 2008 | Cooper et al. |
7474389 | January 6, 2009 | Greenberg et al. |
7487595 | February 10, 2009 | Armstrong et al. |
7493336 | February 17, 2009 | Noonan |
7508794 | March 24, 2009 | Feather et al. |
7527205 | May 5, 2009 | Zhu et al. |
7605817 | October 20, 2009 | Zhang et al. |
7647752 | January 19, 2010 | Magnell |
7693757 | April 6, 2010 | Zimmerman |
7726575 | June 1, 2010 | Wang et al. |
7751928 | July 6, 2010 | Antony et al. |
7783383 | August 24, 2010 | Eliuk et al. |
7839531 | November 23, 2010 | Sugiyama |
7845560 | December 7, 2010 | Emanuel et al. |
7885865 | February 8, 2011 | Benson et al. |
7925114 | April 12, 2011 | Mai et al. |
7957998 | June 7, 2011 | Riley et al. |
7996179 | August 9, 2011 | Lee et al. |
8009864 | August 30, 2011 | Linaker et al. |
8049621 | November 1, 2011 | Egan |
8091782 | January 10, 2012 | Cato et al. |
8094902 | January 10, 2012 | Crandall et al. |
8094937 | January 10, 2012 | Teoh et al. |
8132728 | March 13, 2012 | Dwinell et al. |
8134717 | March 13, 2012 | Pangrazio et al. |
8189855 | May 29, 2012 | Opalach et al. |
8199977 | June 12, 2012 | Krishnaswamy et al. |
8207964 | June 26, 2012 | Meadow et al. |
8233055 | July 31, 2012 | Matsunaga et al. |
8260742 | September 4, 2012 | Cognigni et al. |
8265895 | September 11, 2012 | Willins et al. |
8277396 | October 2, 2012 | Scott et al. |
8284988 | October 9, 2012 | Sones et al. |
8423431 | April 16, 2013 | Rouaix et al. |
8429004 | April 23, 2013 | Hamilton et al. |
8463079 | June 11, 2013 | Ackley et al. |
8479996 | July 9, 2013 | Barkan et al. |
8520067 | August 27, 2013 | Ersue |
8542252 | September 24, 2013 | Perez et al. |
8571314 | October 29, 2013 | Tao et al. |
8599303 | December 3, 2013 | Stettner |
8630924 | January 14, 2014 | Groenevelt et al. |
8660338 | February 25, 2014 | Ma et al. |
8743176 | June 3, 2014 | Stettner et al. |
8757479 | June 24, 2014 | Clark et al. |
8812226 | August 19, 2014 | Zeng |
8923893 | December 30, 2014 | Austin et al. |
8939369 | January 27, 2015 | Olmstead et al. |
8954188 | February 10, 2015 | Sullivan et al. |
8958911 | February 17, 2015 | Wong et al. |
8971637 | March 3, 2015 | Rivard |
8989342 | March 24, 2015 | Liesenfelt et al. |
9007601 | April 14, 2015 | Steffey et al. |
9037287 | May 19, 2015 | Grauberger et al. |
9064394 | June 23, 2015 | Trundle |
9070285 | June 30, 2015 | Ramu et al. |
9072929 | July 7, 2015 | Rush et al. |
9120622 | September 1, 2015 | Elazary et al. |
9129277 | September 8, 2015 | MacIntosh |
9135491 | September 15, 2015 | Morandi et al. |
9159047 | October 13, 2015 | Winkel |
9171442 | October 27, 2015 | Clements |
9247211 | January 26, 2016 | Zhang et al. |
9329269 | May 3, 2016 | Zeng |
9349076 | May 24, 2016 | Liu et al. |
9367831 | June 14, 2016 | Besehanic |
9380222 | June 28, 2016 | Clayton et al. |
9396554 | July 19, 2016 | Williams et al. |
9400170 | July 26, 2016 | Steffey |
9424482 | August 23, 2016 | Patel et al. |
9517767 | December 13, 2016 | Kentley et al. |
9542746 | January 10, 2017 | Wu et al. |
9549125 | January 17, 2017 | Goyal et al. |
9562971 | February 7, 2017 | Shenkar et al. |
9565400 | February 7, 2017 | Curlander et al. |
9589353 | March 7, 2017 | Mueller-Fischer et al. |
9600731 | March 21, 2017 | Yasunaga et al. |
9600892 | March 21, 2017 | Patel et al. |
9612123 | April 4, 2017 | Levinson et al. |
9639935 | May 2, 2017 | Douady-Pleven et al. |
9697429 | July 4, 2017 | Patel et al. |
9766074 | September 19, 2017 | Roumeliotis et al. |
9778388 | October 3, 2017 | Connor |
9779205 | October 3, 2017 | Namir |
9791862 | October 17, 2017 | Connor |
9805240 | October 31, 2017 | Zheng et al. |
9811754 | November 7, 2017 | Schwartz |
9827683 | November 28, 2017 | Hance et al. |
9880009 | January 30, 2018 | Bell |
9928708 | March 27, 2018 | Lin et al. |
9953420 | April 24, 2018 | Wolski et al. |
9980009 | May 22, 2018 | Jiang et al. |
9994339 | June 12, 2018 | Colson et al. |
9996818 | June 12, 2018 | Ren et al. |
10019803 | July 10, 2018 | Venable et al. |
10111646 | October 30, 2018 | Nycz et al. |
10121072 | November 6, 2018 | Kekatpure |
10127438 | November 13, 2018 | Fisher et al. |
10133951 | November 20, 2018 | Mendonca et al. |
10197400 | February 5, 2019 | Jesudason et al. |
10210603 | February 19, 2019 | Venable et al. |
10229386 | March 12, 2019 | Thomas |
10248653 | April 2, 2019 | Blassin et al. |
10262294 | April 16, 2019 | Hahn et al. |
10265871 | April 23, 2019 | Hance et al. |
10289990 | May 14, 2019 | Rizzolo et al. |
10336543 | July 2, 2019 | Sills et al. |
10349031 | July 9, 2019 | DeLuca |
10352689 | July 16, 2019 | Brown et al. |
10373116 | August 6, 2019 | Medina et al. |
10394244 | August 27, 2019 | Song et al. |
10429487 | October 1, 2019 | Fowe |
11003188 | May 11, 2021 | Scott |
20010031069 | October 18, 2001 | Kondo et al. |
20010041948 | November 15, 2001 | Ross et al. |
20020006231 | January 17, 2002 | Jayant et al. |
20020059202 | May 16, 2002 | Hadzikadic et al. |
20020097439 | July 25, 2002 | Braica |
20020146170 | October 10, 2002 | Rom |
20020158453 | October 31, 2002 | Levine |
20020164236 | November 7, 2002 | Fukuhara et al. |
20030003925 | January 2, 2003 | Suzuki |
20030094494 | May 22, 2003 | Blanford et al. |
20030174891 | September 18, 2003 | Wenzel et al. |
20040021313 | February 5, 2004 | Gardner et al. |
20040084527 | May 6, 2004 | Bong et al. |
20040131278 | July 8, 2004 | Imagawa et al. |
20040240754 | December 2, 2004 | Smith et al. |
20050016004 | January 27, 2005 | Armstrong et al. |
20050114059 | May 26, 2005 | Chang et al. |
20050128195 | June 16, 2005 | Houston et al. |
20050174351 | August 11, 2005 | Chang |
20050213082 | September 29, 2005 | DiBernardo et al. |
20050213109 | September 29, 2005 | Schell et al. |
20050237320 | October 27, 2005 | Itoh et al. |
20060032915 | February 16, 2006 | Schwartz |
20060045325 | March 2, 2006 | Zavadsky et al. |
20060064286 | March 23, 2006 | Fink et al. |
20060106742 | May 18, 2006 | Bochicchio et al. |
20060279527 | December 14, 2006 | Zehner et al. |
20060285486 | December 21, 2006 | Roberts et al. |
20070036398 | February 15, 2007 | Chen |
20070074410 | April 5, 2007 | Armstrong et al. |
20070272732 | November 29, 2007 | Hindmon |
20080002866 | January 3, 2008 | Fujiwara |
20080025565 | January 31, 2008 | Zhang et al. |
20080027591 | January 31, 2008 | Lenser et al. |
20080077511 | March 27, 2008 | Zimmerman |
20080159634 | July 3, 2008 | Sharma et al. |
20080164310 | July 10, 2008 | Dupuy et al. |
20080175513 | July 24, 2008 | Lai et al. |
20080181529 | July 31, 2008 | Michel et al. |
20080183730 | July 31, 2008 | Enga |
20080238919 | October 2, 2008 | Pack |
20080294487 | November 27, 2008 | Nasser |
20090009123 | January 8, 2009 | Skaff |
20090024353 | January 22, 2009 | Lee et al. |
20090057411 | March 5, 2009 | Madej et al. |
20090059270 | March 5, 2009 | Opalach et al. |
20090060349 | March 5, 2009 | Linaker et al. |
20090063306 | March 5, 2009 | Fano et al. |
20090063307 | March 5, 2009 | Groenovelt et al. |
20090074303 | March 19, 2009 | Filimonova et al. |
20090088975 | April 2, 2009 | Sato et al. |
20090103773 | April 23, 2009 | Wheeler et al. |
20090125350 | May 14, 2009 | Lessing et al. |
20090125535 | May 14, 2009 | Basso et al. |
20090152391 | June 18, 2009 | McWhirk |
20090160975 | June 25, 2009 | Kwan |
20090192921 | July 30, 2009 | Hicks |
20090206161 | August 20, 2009 | Olmstead |
20090236155 | September 24, 2009 | Skaff |
20090252437 | October 8, 2009 | Li et al. |
20090287587 | November 19, 2009 | Bloebaum et al. |
20090323121 | December 31, 2009 | Valkenburg et al. |
20100017407 | January 21, 2010 | Beniyama et al. |
20100026804 | February 4, 2010 | Tanizaki et al. |
20100070365 | March 18, 2010 | Siotia et al. |
20100082194 | April 1, 2010 | Yabushita et al. |
20100091094 | April 15, 2010 | Sekowski |
20100118116 | May 13, 2010 | Tomasz et al. |
20100131234 | May 27, 2010 | Stewart et al. |
20100141806 | June 10, 2010 | Uemura et al. |
20100161569 | June 24, 2010 | Schreter |
20100171826 | July 8, 2010 | Hamilton et al. |
20100208039 | August 19, 2010 | Setettner |
20100214873 | August 26, 2010 | Somasundaram et al. |
20100235033 | September 16, 2010 | Yamamoto et al. |
20100241289 | September 23, 2010 | Sandberg |
20100257149 | October 7, 2010 | Cognigni et al. |
20100295850 | November 25, 2010 | Katz et al. |
20100315412 | December 16, 2010 | Sinha et al. |
20100326939 | December 30, 2010 | Clark et al. |
20110047636 | February 24, 2011 | Stachon et al. |
20110052043 | March 3, 2011 | Hyung et al. |
20110093306 | April 21, 2011 | Nielsen et al. |
20110137527 | June 9, 2011 | Simon et al. |
20110168774 | July 14, 2011 | Magal |
20110172875 | July 14, 2011 | Gibbs |
20110188759 | August 4, 2011 | Filimonova et al. |
20110216063 | September 8, 2011 | Hayes |
20110242286 | October 6, 2011 | Pace et al. |
20110246503 | October 6, 2011 | Bender et al. |
20110254840 | October 20, 2011 | Halstead |
20110286007 | November 24, 2011 | Pangrazio et al. |
20110288816 | November 24, 2011 | Thierman |
20110310088 | December 22, 2011 | Adabala et al. |
20120017028 | January 19, 2012 | Tsirkin |
20120019393 | January 26, 2012 | Wolinsky et al. |
20120022913 | January 26, 2012 | Volkmann et al. |
20120051730 | March 1, 2012 | Cote et al. |
20120069051 | March 22, 2012 | Hagbi et al. |
20120075342 | March 29, 2012 | Choubassi et al. |
20120133639 | May 31, 2012 | Kopf et al. |
20120307108 | December 6, 2012 | Forutanpour |
20120169530 | July 5, 2012 | Padmanabhan et al. |
20120179621 | July 12, 2012 | Moir et al. |
20120185112 | July 19, 2012 | Sung et al. |
20120194644 | August 2, 2012 | Newcombe et al. |
20120197464 | August 2, 2012 | Wang et al. |
20120201466 | August 9, 2012 | Funayama et al. |
20120209553 | August 16, 2012 | Doytchinov et al. |
20120236119 | September 20, 2012 | Rhee et al. |
20120249802 | October 4, 2012 | Taylor |
20120250978 | October 4, 2012 | Taylor |
20120269383 | October 25, 2012 | Bobbitt et al. |
20120278782 | November 1, 2012 | Pal et al. |
20120287249 | November 15, 2012 | Choo et al. |
20120323620 | December 20, 2012 | Hofman et al. |
20130030700 | January 31, 2013 | Miller et al. |
20130076586 | March 28, 2013 | Karhuketo et al. |
20130090881 | April 11, 2013 | Janardhanan et al. |
20130119138 | May 16, 2013 | Winkel |
20130132913 | May 23, 2013 | Fu et al. |
20130134178 | May 30, 2013 | Lu |
20130138246 | May 30, 2013 | Gutmann et al. |
20130138534 | May 30, 2013 | Herwig |
20130142421 | June 6, 2013 | Silver et al. |
20130144565 | June 6, 2013 | Miller |
20130154802 | June 20, 2013 | O'Haire et al. |
20130156292 | June 20, 2013 | Chang et al. |
20130162806 | June 27, 2013 | Ding et al. |
20130169681 | July 4, 2013 | Rasane et al. |
20130176398 | July 11, 2013 | Bonner et al. |
20130178227 | July 11, 2013 | Vartanian et al. |
20130182114 | July 18, 2013 | Zhang et al. |
20130226344 | August 29, 2013 | Wong et al. |
20130228620 | September 5, 2013 | Ahem et al. |
20130232039 | September 5, 2013 | Jackson et al. |
20130235165 | September 12, 2013 | Gharib et al. |
20130235206 | September 12, 2013 | Smith et al. |
20130236089 | September 12, 2013 | Litvak et al. |
20130278631 | October 24, 2013 | Border et al. |
20130299306 | November 14, 2013 | Jiang et al. |
20130299313 | November 14, 2013 | Baek, IV et al. |
20130300729 | November 14, 2013 | Grimaud |
20130303193 | November 14, 2013 | Dharwada et al. |
20130321418 | December 5, 2013 | Kirk |
20130329013 | December 12, 2013 | Metois et al. |
20130341400 | December 26, 2013 | Lancaster-Larocque |
20130342363 | December 26, 2013 | Paek et al. |
20140002597 | January 2, 2014 | Taguchi et al. |
20140003655 | January 2, 2014 | Gopalkrishnan et al. |
20140003727 | January 2, 2014 | Lortz et al. |
20140006229 | January 2, 2014 | Birch et al. |
20140016832 | January 16, 2014 | Kong et al. |
20140019311 | January 16, 2014 | Tanaka |
20140025201 | January 23, 2014 | Ryu et al. |
20140028837 | January 30, 2014 | Gao et al. |
20140047342 | February 13, 2014 | Breternitz et al. |
20140049616 | February 20, 2014 | Stettner |
20140052555 | February 20, 2014 | MacIntosh |
20140086483 | March 27, 2014 | Zhang et al. |
20140088761 | March 27, 2014 | Shamlian |
20140098094 | April 10, 2014 | Neumann et al. |
20140100813 | April 10, 2014 | Shaowering |
20140104413 | April 17, 2014 | McCloskey et al. |
20140112537 | April 24, 2014 | Frank et al. |
20140129027 | May 8, 2014 | Schnittman |
20140133740 | May 15, 2014 | Plagemann et al. |
20140156133 | June 5, 2014 | Cullinane et al. |
20140161359 | June 12, 2014 | Magri et al. |
20140192050 | July 10, 2014 | Qiu et al. |
20140195095 | July 10, 2014 | Elbit Systems Ltd |
20140195374 | July 10, 2014 | Bassemir et al. |
20140214547 | July 31, 2014 | Signorelli et al. |
20140214600 | July 31, 2014 | Argue et al. |
20140267614 | September 18, 2014 | Ding et al. |
20140267688 | September 18, 2014 | Aich et al. |
20140277691 | September 18, 2014 | Jacobus et al. |
20140277692 | September 18, 2014 | Buzan et al. |
20140279294 | September 18, 2014 | Field-Darragh et al. |
20140300637 | October 9, 2014 | Fan et al. |
20140316875 | October 23, 2014 | Tkachenko et al. |
20140330835 | November 6, 2014 | Boyer |
20140344401 | November 20, 2014 | Varney et al. |
20140351073 | November 27, 2014 | Murphy et al. |
20140369607 | December 18, 2014 | Patel et al. |
20150015602 | January 15, 2015 | Beaudoin |
20150019391 | January 15, 2015 | Kumar et al. |
20150029339 | January 29, 2015 | Kobres et al. |
20150032304 | January 29, 2015 | Nakamura et al. |
20150039458 | February 5, 2015 | Reid |
20150052029 | February 19, 2015 | Wu et al. |
20150088618 | March 26, 2015 | Basir et al. |
20150088701 | March 26, 2015 | Desmarais et al. |
20150088703 | March 26, 2015 | Yan |
20150092066 | April 2, 2015 | Geiss et al. |
20150106403 | April 16, 2015 | Haverinen et al. |
20150117788 | April 30, 2015 | Patel et al. |
20150139010 | May 21, 2015 | Jeong et al. |
20150154467 | June 4, 2015 | Feng et al. |
20150161793 | June 11, 2015 | Takahashi |
20150170256 | June 18, 2015 | Pettyjohn et al. |
20150181198 | June 25, 2015 | Baele et al. |
20150195491 | July 9, 2015 | Shaburov et al. |
20150212521 | July 30, 2015 | Pack et al. |
20150235157 | August 20, 2015 | Avegliano et al. |
20150243073 | August 27, 2015 | Chen et al. |
20150245358 | August 27, 2015 | Schmidt |
20150262116 | September 17, 2015 | Katircioglu et al. |
20150279035 | October 1, 2015 | Wolski et al. |
20150298317 | October 22, 2015 | Wang et al. |
20150310348 | October 29, 2015 | Dessouky |
20150310601 | October 29, 2015 | Rodriguez et al. |
20150332368 | November 19, 2015 | Vartiainen et al. |
20150352721 | December 10, 2015 | Wicks et al. |
20150353280 | December 10, 2015 | Brazeau et al. |
20150355639 | December 10, 2015 | Versteeg et al. |
20150363625 | December 17, 2015 | Wu et al. |
20150363758 | December 17, 2015 | Wu et al. |
20150365660 | December 17, 2015 | Wu et al. |
20150379704 | December 31, 2015 | Chandrasekar et al. |
20160026253 | January 28, 2016 | Bradski et al. |
20160042223 | February 11, 2016 | Suh et al. |
20160044862 | February 18, 2016 | Kocer |
20160061591 | March 3, 2016 | Pangrazio et al. |
20160070981 | March 10, 2016 | Sasaki et al. |
20160092943 | March 31, 2016 | Vigier et al. |
20160012588 | January 14, 2016 | Taguchi et al. |
20160104041 | April 14, 2016 | bowers et al. |
20160107690 | April 21, 2016 | Oyama et al. |
20160112628 | April 21, 2016 | Super et al. |
20160114488 | April 28, 2016 | Mascorro Medina et al. |
20160129592 | May 12, 2016 | Saboo et al. |
20160132815 | May 12, 2016 | Itoko et al. |
20160150217 | May 26, 2016 | Popov |
20160156898 | June 2, 2016 | Ren et al. |
20160163067 | June 9, 2016 | Williams et al. |
20160171336 | June 16, 2016 | Schwartz |
20160171429 | June 16, 2016 | Schwartz |
20160171707 | June 16, 2016 | Schwartz |
20160185347 | June 30, 2016 | Lefevre et al. |
20160191759 | June 30, 2016 | Somanath et al. |
20160224927 | August 4, 2016 | Pettersson |
20160253735 | September 1, 2016 | Scudillo et al. |
20160253844 | September 1, 2016 | Petrovskaya et al. |
20160259329 | September 8, 2016 | High et al. |
20160260051 | September 8, 2016 | Wu et al. |
20160260054 | September 8, 2016 | High et al. |
20160271795 | September 22, 2016 | Vicenti |
20160290805 | October 6, 2016 | Irish et al. |
20160313133 | October 27, 2016 | Zeng et al. |
20160328618 | November 10, 2016 | Patel et al. |
20160328767 | November 10, 2016 | Bonner et al. |
20160353099 | December 1, 2016 | Thomson et al. |
20160364634 | December 15, 2016 | Davis et al. |
20170004649 | January 5, 2017 | Collet Romea et al. |
20170011281 | January 12, 2017 | Dijkman et al. |
20170011308 | January 12, 2017 | Sun et al. |
20170030538 | February 2, 2017 | Geisler et al. |
20170032311 | February 2, 2017 | Rizzolo et al. |
20170041553 | February 9, 2017 | Cao et al. |
20170054965 | February 23, 2017 | Raab et al. |
20170066459 | March 9, 2017 | Singh |
20170074659 | March 16, 2017 | Giurgiu et al. |
20170083774 | March 23, 2017 | Solar et al. |
20170084037 | March 23, 2017 | Barajas Hernandez et al. |
20170109940 | April 20, 2017 | Guo et al. |
20170147966 | May 25, 2017 | Aversa et al. |
20170150129 | May 25, 2017 | Pangrazio |
20170178060 | June 22, 2017 | Schwartz |
20170178227 | June 22, 2017 | Gornish |
20170178301 | June 22, 2017 | Moraleda et al. |
20170178310 | June 22, 2017 | Gornish |
20170193434 | July 6, 2017 | Shah et al. |
20170205892 | July 20, 2017 | Petrovskaya et al. |
20170219338 | August 3, 2017 | Brown et al. |
20170219353 | August 3, 2017 | Alesiani |
20170227645 | August 10, 2017 | Swope et al. |
20170227647 | August 10, 2017 | Baik |
20170228885 | August 10, 2017 | Baumgartner |
20170261993 | September 14, 2017 | Venable et al. |
20170262724 | September 14, 2017 | Wu et al. |
20170280125 | September 28, 2017 | Brown et al. |
20170286773 | October 5, 2017 | Skaff et al. |
20170286901 | October 5, 2017 | Skaff et al. |
20170297478 | October 19, 2017 | Sherman et al. |
20170323253 | November 9, 2017 | Enssle et al. |
20170323376 | November 9, 2017 | Glaser et al. |
20170337508 | November 23, 2017 | Bogolea et al. |
20180001481 | January 4, 2018 | Shah et al. |
20180005035 | January 4, 2018 | Bogolea et al. |
20180005176 | January 4, 2018 | Williams et al. |
20180020145 | January 18, 2018 | Kotfis et al. |
20180051991 | February 22, 2018 | Hong |
20180053091 | February 22, 2018 | Savvides et al. |
20180053305 | February 22, 2018 | Gu et al. |
20180075403 | March 15, 2018 | Mascorro Medina et al. |
20180089613 | March 29, 2018 | Chen et al. |
20180101813 | April 12, 2018 | Paat et al. |
20180108120 | April 19, 2018 | Venable et al. |
20180108134 | April 19, 2018 | Venable et al. |
20180114183 | April 26, 2018 | Howell |
20180129201 | May 10, 2018 | Douglas et al. |
20180130011 | May 10, 2018 | Jacobsson |
20180143003 | May 24, 2018 | Clayton et al. |
20180174325 | June 21, 2018 | Fu et al. |
20180190160 | July 5, 2018 | Bryan et al. |
20180197139 | July 12, 2018 | Hill |
20180201423 | July 19, 2018 | Drzewiecki et al. |
20180204111 | July 19, 2018 | Zadeh et al. |
20180218218 | August 2, 2018 | Madan et al. |
20180251253 | September 6, 2018 | Taira et al. |
20180276596 | September 27, 2018 | Murthy et al. |
20180281191 | October 4, 2018 | Sinyayskiy et al. |
20180293442 | October 11, 2018 | Fridental et al. |
20180293543 | October 11, 2018 | Tiwari |
20180306958 | October 25, 2018 | Goss et al. |
20180313956 | November 1, 2018 | Rzeszutek et al. |
20180314260 | November 1, 2018 | Jen et al. |
20180314908 | November 1, 2018 | Lam |
20180315007 | November 1, 2018 | Kingsford et al. |
20180315065 | November 1, 2018 | Zhang et al. |
20180315173 | November 1, 2018 | Phan et al. |
20180315865 | November 1, 2018 | Haist et al. |
20180321692 | November 8, 2018 | Castillo-Effen et al. |
20180370727 | December 27, 2018 | Hance et al. |
20190025838 | January 24, 2019 | Artes et al. |
20190034854 | January 31, 2019 | Borodow et al. |
20190049962 | February 14, 2019 | Ouellette et al. |
20190057588 | February 21, 2019 | Savvides et al. |
20190065861 | February 28, 2019 | Savvides et al. |
20190073554 | March 7, 2019 | Rzeszutek |
20190073559 | March 7, 2019 | Rzeszutek et al. |
20190073627 | March 7, 2019 | Nakdimon et al. |
20190077015 | March 14, 2019 | Shibasaki et al. |
20190087663 | March 21, 2019 | Yamazaki et al. |
20190094876 | March 28, 2019 | Moore et al. |
20190108606 | April 11, 2019 | Komiyama |
20190108678 | April 11, 2019 | Hazeghi et al. |
20190160675 | May 30, 2019 | Paschal, II et al. |
20190178436 | June 13, 2019 | Mao et al. |
20190180150 | June 13, 2019 | Taylor et al. |
20190197439 | June 27, 2019 | Wang |
20190197728 | June 27, 2019 | Yamao |
20190236530 | August 1, 2019 | Cantrell et al. |
20190271984 | September 5, 2019 | Kingsford |
20190304132 | October 3, 2019 | Yoda et al. |
20190392212 | December 26, 2019 | Sawhney et al. |
20200049511 | February 13, 2020 | Sithiravel et al. |
20200053325 | February 13, 2020 | Deyle et al. |
20200068126 | February 27, 2020 | Fink et al. |
20200111267 | April 9, 2020 | Stauber et al. |
20200118064 | April 16, 2020 | Perrella et al. |
20200150655 | May 14, 2020 | Artes |
20200192388 | June 18, 2020 | Zhang et al. |
20200314333 | October 1, 2020 | Liang et al. |
20200341151 | October 29, 2020 | Yoshida |
20200410766 | December 31, 2020 | Swaminathan |
20210019939 | January 21, 2021 | Hu et al. |
20210163068 | June 3, 2021 | Zhu |
20210233305 | July 29, 2021 | Garcia et al. |
20210271238 | September 2, 2021 | Ko |
2835830 | November 2012 | CA |
3028156 | January 2018 | CA |
102214343 | October 2011 | CN |
104200086 | December 2014 | CN |
105989512 | October 2016 | CN |
107067382 | August 2017 | CN |
206952978 | February 2018 | CN |
766098 | April 1997 | EP |
1311993 | May 2007 | EP |
2309378 | April 2011 | EP |
2439487 | April 2012 | EP |
2472475 | July 2012 | EP |
2562688 | February 2013 | EP |
2662831 | November 2013 | EP |
2693362 | February 2014 | EP |
3400113 | November 2018 | EP |
3001567 | August 2014 | FR |
2323238 | September 1998 | GB |
2330265 | April 1999 | GB |
2014170431 | September 2014 | JP |
2016194834 | November 2016 | JP |
2017016539 | January 2017 | JP |
101234798 | January 2009 | KR |
1020190031431 | March 2019 | KR |
WO 99/23600 | May 1999 | WO |
WO 2003002935 | January 2003 | WO |
WO 2003025805 | March 2003 | WO |
WO 2006136958 | December 2006 | WO |
WO 2007042251 | April 2007 | WO |
WO 2008057504 | May 2008 | WO |
WO 2008154611 | December 2008 | WO |
WO 2012103199 | August 2012 | WO |
WO 2012103202 | August 2012 | WO |
WO 2012154801 | November 2012 | WO |
WO 2013165674 | November 2013 | WO |
WO 2014066422 | May 2014 | WO |
WO 2014092552 | June 2014 | WO |
WO 2014181323 | November 2014 | WO |
WO 2015127503 | September 2015 | WO |
WO 2016020038 | February 2016 | WO |
WO 2017175312 | October 2017 | WO |
WO 2017187106 | November 2017 | WO |
WO 2018018007 | January 2018 | WO |
WO 2018204308 | November 2018 | WO |
WO 2018204342 | November 2018 | WO |
WO 2019023249 | January 2019 | WO |
- Carreira et al., “Enhanced PCA-based localization using depth maps with missing data,” IEEE, pp. 1-8, Apr. 24, 2013.
- Castorena et al., “Autocalibration of lidar and optical cameras via edge alignment”, 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (Mar. 20. 2016).
- Chen et al. “Improving Octree-Based Occupancy Maps Using Environment Sparsity with Application to Aerial Robot Navigation” Robotics and Automation (ICRA), 2017 IEEE International Conference on IEEE, pp. 3656-3663, 2017.
- Clark, “Casino to open world's first NFC-enabled supermarket”, (Aug. 19, 2018), pp. 1-7.
- Clark, “Jogtek launches passive NFC shelf-edge labels”, (Sep. 19, 2018), pp. 1-6.
- Cleveland Jonas et al.: “Automated System for Semantic Object Labeling with Soft-Object Recognition and Dynamic Programming Segmentation”, IEEE Transactions on Automation Science and Engineering, IEEE Service Center, New York, NY (Apr. 1, 2017).
- Cook et al., “Distributed Ray Tracing” ACM SIGGRAPH Computer Graphics, vol. 18, No. 3, ACM pp. 137-145, 1984.
- Datta, A., et al. “Accurate camera calibration using iterative refinement of control points,” in Computer Vision Workshops (ICCV Workshops), 2009.
- Deschaud, et al., “A Fast and Accurate Place Detection algoritm for large noisy point clouds using filtered normals and voxel growing,” 3DPVT, May 2010, Paris, France, [hal-01097361].
- Douillard, Bertrand, et al. “On the segmentation of 3D Lidar point clouds.” Robotics and Automation (ICRA), 2011 IEEE International Conference on IEEE, 2011.
- Dubois, M., et al., 'A comparison of geometric and energy-based point cloud semantic segmentation methods, European Conference on Mobile Robots (ECMR), p. 88-93, Sep. 25-27, 2013.
- Duda, et al., “Use of the Hough Transformation to Detect Lines and Curves in Pictures”, Stanford Research Institute, Menlo Park, California, Graphics and Image Processing, Communications of the ACM, vol. 15, No. 1 (Jan. 1972).
- F.C.A. Groen et al., “The smallest box around a package,” Pattern Recognition, vol. 14, No. 1-6, Jan. 1, 1981, pp. 173-176, XP055237156, GB, ISSN: 0031-3203, DOI: 10.1016/0031-3203(81(90059-5 p. 176-p. 178.
- Federico Tombari et al. “Multimodal cue integration through Hypotheses Verification for RGB-D object recognition and 6DOF pose estimation”, IEEE International Conference on Robotics and Automation, Jan. 2013.
- Flores, et al., “Removing Pedestrians from Google Street View Images”, Computer Vision and Pattern Recognition Workshops, 2010 IEEE Computer Society Conference On, IEE, Piscataway, NJ, pp. 53-58 (Jun. 13, 2010).
- Glassner, “Space Subdivision for Fast Ray Tracing.” IEEE Computer Graphics and Applications, 4.10, pp. 15-24, 1984.
- Golovinskiy, Aleksey, et al. “Min-Cut based segmentation of point clouds.” Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on. IEEE, 2009.
- Hackel et al., “Contour Detection in unstructured 3D point clouds,”IEEE, 2016 Conference on Computer vision and Pattern recognition (CVPR), Jun. 27-30, 2016, pp. 1-9.
- Hao et al., “Structure-based object detection from scene point clouds,” Science Direct, V191, pp. 148-160 (2016).
- Hu et al., “An improved method of discrete point cloud filtering based on complex environment,” International Journal of Applied Mathematics and Statistics, v48, i18 (2013).
- International Search Report and Written Opinion for International Patent Application No. PCT/US2013/070996 dated Apr. 2, 2014.
- International Search Report and Written Opinion for International Patent Application No. PCT/US2013/053212 dated Dec. 1, 2014.
- International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2016/064110 dated Mar. 20, 2017.
- International Search Report and Written Opinion for corresponding International Patent Application No. PCT/US2017/024847 dated Jul. 7, 2017.
- International Search Report and Written Opinion for International Application No. PCT/CN2017/083143 dated Feb. 11, 2018.
- International Search Report and Written Opinion for International Application No. PCT/US2018/030419 dated Aug. 31, 2018.
- International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030345 dated Sep. 17, 2018.
- International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030360 dated Jul. 9, 2018.
- International Search Report and Written Opinion from International Patent Application No. PCT/US2018/030363 dated Jul. 9, 2018.
- International Search Report and Written Opinion for International Application No. PCT/US2019/025859 dated Jul. 3, 2019.
- International Search Report and Written Opinion from International Patent Application No. PCT/US2019/025849 dated Jul. 9, 2019.
- International Search Report and Written Opinion from International Patent Application No. PCT/US2019/049761 dated Nov. 15, 2019.
- International Search Report and Written Opinion from International Patent Application No. PCT/US2019/051312 dated Nov. 15, 2019.
- International Search Report and Written Opinion from International Patent Application No. PCT/US2019/054103 dated Jan. 6, 2020.
- International Search Report and Written Opinion for International Patent Application No. PCT/US2019/057007 dated Jan. 14, 2020.
- International Search Report and Written Opinion from International Patent Application No. PCT/US2019/064020 dated Feb. 19, 2020.
- International Search Report and Written Opinion for International Patent Application No. PCT/US2020/027948 dated Jul. 16, 2020.
- International Search Report and Written Opinion for International Patent Application No. PCT/US2020/028133 dated Jul. 24, 2020.
- International Search Report and Written Opinion from International Patent Application No. PCT/US2020/029134 dated Jul. 27, 2020.
- International Search Report and Written Opinion from International Patent Application No. PCT/US2020/028183 dated Jul. 24, 2020.
- International Search Report and Written Opinion from International Patent Application No. PCT/US2020/035285 dated Aug. 27, 2020.
- International Search Report and Written Opinion for International Patent Application No. PCT/US2021/024805 dated Aug. 2, 2021.
- International Search Report and Written Opinion for International Patent Application No. PCT/US2021/057388 dated Feb. 2, 2022.
- International Search Report and Written Opinion for International Patent Application No. PCT/IB2021/060948 dated Feb. 4, 2022.
- Jadhav et al. “Survey on Spatial Domain dynamic template matching technique for scanning linear barcode,” International Journal of science and research v 5 n 3, Mar. 2016)(Year: 2016).
- Jian Fan et al: “Shelf detection via vanishing point and radial projection”, 2014 IEEE International Conference on image processing (Icip), IEEE, (Oct. 27, 2014), pp. 1575-1578.
- Kaikai Liu et al., “Enabling Context-Aware Indoor Augmented Reality via Smartphone Sensing and Vision Tracking”, ACM Transactions on Multimedia Computing Communications and Applications, Association for Computer Machinery, US, vol. 12, No.
- Kang et al., “Kinematic Path-Tracking of Mobile Robot Using Iterative learning Control”, Journal of Robotic Systems, 2005, pp. 111-121.
- Kay et al. “Ray Tracing Complex Scenes.” ACM SIGGRAPH Computer Graphics, vol. 20, No. 4, ACM, pp. 269-278, 1986.
- Kelly et al., “Reactive Nonholonomic Trajectory Generation via Parametric Optimal Control”, International Journal of Robotics Research, vol. 22, No. 7-8, pp. 583-601 (Jul. 30, 2013).
- Lari, Z., et al., “An adaptive approach for segmentation of 3D laser point cloud.” International Archives of the Photogrammertry, Remote sensing and spatial information Sciences, vol. XXXVIII-5/W12, 2011, ISPRS Calgary 2011 Workshop, Aug. 29-31, 2011, Calgary, Canada.
- Lecking et al.: “Localization in a wide range of industrial environments using relative 3D ceiling features”, IEEE, pp. 333-337 (Sep. 15, 2008).
- Lee et al. “Statistically Optimized Sampling for Distributed Ray Tracing.” ACM SIGGRAPH Computer Graphics, vol. 19, No. 3, ACM, pp. 61-67, 1985.
- Li et al., “An improved RANSAC for 3D Point cloud plane segmentation based on normal distribution transformation cells,” Remote sensing, V9: 433, pp. 1-16 (2017).
- Likhachev, Maxim, and Dave Ferguson. “Planning Long dynamically feasible maneuvers for autonomous vehicles.” The international journal of Robotics Reasearch 28.8 (2009):933-945. (Year:2009).
- Marder-Eppstein et al., “The Office Marathon: robust navigation in an indoor office environment,” IEEE, 2010 International conference on robotics and automation, May 3-7, 2010, pp. 300-307.
- McNaughton, Matthew, et al. “Motion planning for autonomous driving with a conformal spatiotemporal lattice.” Robotics and Automation (ICRA), 2011 IEEE International Conference on. IEEE, 2011. (Year: 2011).
- Meyersohn, “Walmart turns to robots and apps in stores”, https://www.cnn.com/2018/12/07/business/walmart-robot-janitors-dotcom-store/index.html, Oct. 29, 2019.
- Mitra et al., “Estimating surface normals in noisy point cloud data,” International Journal of Computational geometry & applications, Jun. 8-10, 2003, pp. 322-328.
- N.D.F. Campbell et al. “Automatic 3D Object Segmentation in Multiple Views using Volumetric Graph-Cuts”, Journal of Image and Vision Computing, vol. 28, Issue 1, Jan. 2010, pp. 14-25.
- Ni et al., “Edge Detection and Feature Line Tracing in 3D-Point Clouds by Analyzing Geometric Properties of Neighborhoods,” Remote Sensing, V8 I9, pp. 1-20 (2016).
- Norriof et al., “Experimental comparison of some classical iterative learning control algorithms”, IEEE Transactions on Robotics and Automation, Jun. 2002, pp. 636-641.
- Notice of allowance for U.S. Appl. No. 13/568,175 dated Sep. 23, 2014.
- Notice of allowance for U.S. Appl. No. 13/693,503 dated Mar. 11, 2016.
- Notice of allowance for U.S. Appl. No. 14/068,495 dated Apr. 25, 2016.
- Notice of allowance for U.S. Appl. No. 14/518,091 dated Apr. 12, 2017.
- Notice of allowance for U.S. Appl. No. 15/211,103 dated Apr. 5, 2017.
- Olson, Clark F., et al. “Wide-Baseline Stereo Vision for terrain Mapping” in Machine Vision and Applications, Aug. 2010.
- Oriolo et al., “An iterative learning controller for nonholonomic mobile Robots”, the international Journal of Robotics Research, Aug. 1997, pp. 954-970.
- Ostafew et al., “Visual Teach and Repeat, Repeat, Repeat: Iterative learning control to improve mobile robot path tracking in challenging outdoor environment”, IEEE/RSJ International Conference on Intelligent robots and Systems, Nov. 2013, p. 176-.
- Park et al., “Autonomous mobile robot navigation using passive rfid in indoor environment,” IEEE, Transactions on industrial electronics, vol. 56, issue 7, pp. 2366-2373 (Jul. 2009).
- Perveen et al. (An overview of template matching methodologies and its application, International Journal of Research in Computer and Communication Technology, v2nl0, Oct. 2013) (Year: 2013).
- Pivtoraiko et al., “Differentially constrained mobile robot motion planning in state lattices”, journal of field robotics, vol. 26, No. 3, 2009, pp. 308-333.
- Pratt W K Ed: “Digital Image processing, 10-image enhancement, 17-image segmentation”, Jan. 1, 2001, Digital Image Processing: PIKS Inside, New York: John Wily & Sons, US, pp. 243-258, 551.
- Puwein, J., et al.“Robust Multi-view camera calibration for wide-baseline camera networks,”in IEEE Workshop on Applications of computer vision (WACV), Jan. 2011.
- Rusu, et al. “How to incrementally register pairs of clouds,” PCL Library, retrieved from internet on Aug. 22, 2016 [http://pointclouds.org/documentation/tutorials/pairwise_incremental_registration.php].
- Rusu, et al. “Spatial Change detection on unorganized point cloud data,” PCL Library, retrieved from internet on Aug. 19, 2016 [http://pointclouds.org/documentation/tutorials/octree_change.php].
- Rusu, et al. “Towards 3D Point cloud based object maps for household environments,” Science Direct, vol. 56, issue 11, pp. 927-947 [http://www.sciencedirect.com/science/article/pii/S0921889008001140], Nov. 30, 2008. Retrieved from the internet on Jun. 15, 2022.
- Schnabel et al. “Efficient RANSAC for Point-Cloud Shape Detection”, vol. 0, No. 0, pp. 1-12 (1981).
- Senthilkumaran, et al., “Edge Detection Techniques for Image Segmentation-A Survey of Soft Computing Approaches”, International Journal of Recent Trends in Engineering, vol. 1, No. 2 (May 2009).
- Szeliski, “Modified Hough Transform”, Computer Vision. Copyright 2011, pp. 251-254. Retrieved on Aug. 17, 2017 [http://szeliski.org/book/drafts/SzeliskiBook_20100903_draft.pdf].
- Tahir, Rabbani, et al., “Segmentation of point clouds using smoothness constraint,”International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36.5 (Sep. 2006): 248-253.
- Trevor et al., “Tables, Counters, and Shelves: Semantic Mapping of Surfaces in 3D,” Retrieved from Internet Jul. 3, 2018 @ http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.703.5365&rep=repl&type=p.
- Tseng, et al., “A Cloud Removal Approach for Aerial Image Visualization”, International Journal of Innovative Computing, Information & Control, vol. 9, No. 6, pp. 2421-2440 (Jun. 2013).
- Uchiyama, et al., “Removal of Moving Objects from a Street-View Image by Fusing Multiple Image Sequences”, Pattern Recognition, 2010, 20th International Conference On, IEEE, Piscataway, NJ pp. 3456-3459 (Aug. 23, 2010).
- United Kingdom Intellectual Property Office, “Combined Search and Examination Report” for GB Patent Application No. 1813580.6 dated Feb. 21, 2019.
- United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1417218.3.
- United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Jan. 22, 2016 for GB Patent Application No. 1521272.3.
- United Kingdom Intellectual Property Office, Combined Search and Examination Report dated Mar. 11, 2015 for GB Patent Application No. 1417218.3.
- United Kingdom Intellectual Property Office, Combined Search and Examination Report dated May 13, 2020 for GB Patent Application No. 1917864.9.
- Varol Gul et al: “Product placement detection based on image processing”, 2014 22nd Signal Processing and Communication Applications Conference (SIU), IEEE, Apr. 23, 2014.
- Varol Gul et al: “Toward Retail product recognition on Grocery shelves”, Visual Communications and image processing; Jan. 20, 2004; San Jose, (Mar. 4, 2015).
- Weber et al., “Methods for Feature Detection in Point clouds,” visualization of large and unstructured data sets—IRTG Workshop, pp. 90-99 (2010).
- Zhao Zhou et al.: “An Image contrast Enhancement Algorithm Using PLIP-based histogram Modification”, 2017 3rd IEEE International Conference on Cybernetics (CYBCON), IEEE, (Jun. 21, 2017).
- Ziang Xie et al., “Multimodal Blending for High-Accuracy Instance Recognition”, 2013 IEEE RSJ International Conference on Intelligent Robots and Systems, p. 2214-2221.
- Fan Zhang et al., “Parallax-tolerant Image Stitching”, 2014 Computer Vision Foundation, pp. 4321-4328.
- Kaimo Lin et al., “SEAGULL: Seam-guided Local Alignment for Parallax-tolerant Image Stitching”, Retrieved on Nov. 16, 2020 [http://publish.illinois.edu/visual-modeling-and-analytics/files/2016/08/Seagull.pdf].
- Julio Zaragoza et al., “As-Projective-As-Possible Image Stitching with Moving DLT”, 2013 Computer Vision Foundation, pp. 2339-2346.
- Zeng et al., Multi-view Self Supervised Deep Learning for 6D Pose Estimation in the Amazon Picking Challenge, May 7, 2017. Retrieved on Nov. 16, 2019 [https://arxiv.org/pdf/1609.09475.pdf].
- Zhang et al., “Mobile computing and industrial augmented reality for real-time data access”, Emerging Technologies and Factory Automation, 2001, 8th IEEE International Conference on Oct. 15-18, 2001, pp. 583-588, vol. 2.
- “Fair Billing with Automatic Dimensioning” pp. 1-4, undated, Copyright Mettler-Toledo International Inc.
- “Plane Detection in Point Cloud Data” dated Jan. 25, 2010 by Michael Ying Yang and Wolfgang Forstner, Technical Report 1, 2010, University of Bonn.
- “Swift Dimension” Trademark Omniplanar, Copyright 2014.
- Ajmal S. Mian et al., “Three-Dimensional Model Based Object Recognition and Segmentation in Cluttered Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 28, No. 10, Oct. 2006.
- Batalin et al., “Mobile robot navigation using a sensor network,” IEEE, International Conference on robotics and automation, Apr. 26, May 1, 2004, pp. 636-641.
- Bazazian et al., “Fast and Robust Edge Extraction in Unorganized Point clouds,” IEEE, 2015 International Conference on Digital Image Computing: Techniques and Applicatoins (DICTA), Nov. 23-25, 2015, pp. 1-8.
- Boden, “French retail chain to roll out NFC shelf edge labels to six hypermarkets” (Sep. 19, 2018), pp. 1-7.
- Biswas et al. “Depth Camera Based Indoor Mobile Robot Localization and Navigation” Robotics and Automation (ICRA), 2012 IEEE International Conference on IEEE, 2012.
- Bohm, Multi-Image Fusion for Occlusion-Free Faade Texturing, International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, pp. 867-872 (Jan. 2004).
- Bristow et al., “A Survey of Iterative Learning Control”, IEEE Control Systems, Jun. 2006, pp. 96-114.
- Buenaposada et al. “Realtime tracking and estimation of plane pose” Proceedings of the ICPR (Aug. 2002) vol. II, IEEE pp. 697-700.
Type: Grant
Filed: Dec 4, 2019
Date of Patent: Nov 22, 2022
Patent Publication Number: 20210173405
Assignee: Zebra Technologies Corporation (Lincolnshire, IL)
Inventors: Peter Arandorenko (Mississauga), Sadegh Tajeddin (Mississauga), Zi Cong Guo (Mississauga)
Primary Examiner: Ryan Rink
Assistant Examiner: Shahzab Hussain Shah
Application Number: 16/703,117
International Classification: G05D 1/02 (20200101); B25J 9/16 (20060101);