Fine-motion virtual-reality or augmented-reality control using radar
This document describes techniques for fine-motion virtual-reality or augmented-reality control using radar. These techniques enable small motions and displacements to be tracked, even in the millimeter or sub-millimeter scale, for user control actions even when those actions are small, fast, or obscured due to darkness or varying light. Further, these techniques enable fine resolution and real-time control, unlike conventional RF-tracking or optical-tracking techniques.
Latest Google Patents:
This application is a continuation of U.S. application Ser. No. 16/689,519, filed on Nov. 20, 2019, which is a continuation of U.S. application Ser. No. 15/287,253, filed on Oct. 6, 2016, which is now U.S. Pat. No. 10,540,001, issued on Jan. 21, 2020, which claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Patent Application Ser. No. 62/237,975, filed on Oct. 6, 2015, the disclosures of which are incorporated by reference herein in their entireties.
BACKGROUNDCurrent virtual reality (VR) and augmented reality (AR) often use visual tracking of large-body movements. Visual tracking uses optical or infrared cameras to track major body motions to control a user's VR or AR environment. These cameras, however, suffer from inadequate spatial resolution and sensitivity to light and darkness.
Some VR and AR systems use hand-held controllers. These controllers, however, do not permit the great breadth of control that is often desired to control a VR/AR world, as they are limited by the number and orientation of buttons or inadequate motion-sensing sensors, such as accelerometers. Further, hand-held controllers often are nearly worthless for VR, as in VR it is desirable to know a user's body and hand orientation within the VR world, which hand-held controllers do not provide.
A partial solution to this problem involves radio-frequency (RF) techniques that track a point on a moving object. These current RF techniques, however, struggle to determine small motions without having large, complex, or expensive radar systems due to the resolution of the radar tracking system being constrained by the hardware of the radar system.
SUMMARYThis document describes techniques for fine-motion virtual-reality or augmented-reality control using radar. These techniques enable small motions and displacements to be tracked, even in the millimeter or sub-millimeter scale, for user control actions even when those actions are small, fast, or obscured due to darkness or varying light. Further, these techniques enable fine resolution and real-time control, unlike conventional RF-tracking or optical-tracking techniques.
This summary is provided to introduce simplified concepts concerning fine-motion virtual-reality or augmented-reality control using radar, which is further described below in the Detailed Description. This summary is not intended to identify essential features of the claimed subject matter, nor is it intended for use in determining the scope of the claimed subject matter.
Embodiments of techniques and devices for fine-motion virtual-reality or augmented-reality (VR/AR) control using radar are described with reference to the following drawings. The same numbers are used throughout the drawings to reference like features and components:
Overview
Techniques are described herein that enable fine-motion VR/AR control using radar. These techniques enable small motions and displacements to be tracked, even in the millimeter or sub-millimeter scale, for user control actions in the VR/AR world.
Consider, for example, a conventional optical or IR camera-enabled tracking system for VR/AR environments. Users often prefer that control in the VR/AR world be in-the-air, or performed without a need for a physical object to be manipulated. Thus, use of a track pad, game controller, mouse, keyboard, and the like are not preferred, as they interfere with the feel of the VR/AR world. Nothing quite pulls a user out of the VR/AR experience as a real-world controller reminding the user that the experience is simulated. Further, use of a real-world controller, even a simple one, requires that the user have such a controller with them to enable that control. Many users do not wish to carry objects for control, especially in an AR environment—users just want it work as is.
Partial solutions to using physical controllers in the VR/AR control involve in-the-air gestures, but current techniques permit only large-body motions, with little ability to make fine-motion control. Further, current techniques can be sensitive to background movements, lighting variances, occlusions, and differences in types of users or their clothing. These partial solutions fail to permit fine control, and, for the VR world, a user represented by these conventional systems will not show finger orientation, finger movement, clothing movement or detail, as the resolution and these conventional optical or IR cameras is simply insufficient.
Consider, in addition to optical tracking techniques, a conventional RF system for tracking motions and objects. The resolution of these conventional RF systems is constrained by their antenna-beam width and bandwidth, both of which are based on the hardware of the conventional radar system. While somewhat better resolution can be obtained through multiple antennas, this increases complexity and cost while increasing lag-time between an action and that action being shown or its control made to the game or VR/AR world. Even with a dozen antennas, the resolution is inferior to a single antenna using the disclosed techniques.
In contrast to these inferior conventional techniques, consider techniques for fine motion VR/AR control using radar, which overcome hardware limitations of conventional radar systems and conventional in-the-air movement recognition. Consider two examples illustrated in
In the second example, a user 114 is using fine-motion control 116 in an augmented-reality environment, shown through AR computing spectacles 118. Here the user 114 is manipulating a VR/AR controller 120. The VR/AR controller 120 is illustrated as the user 114 would see it looking through a viewport 122 of the AR computing spectacles 118. The user's hands 124 are real hands, and thus they are not shown through the viewport 122. Here the user 114 sees his or her real fingers tapping a number pad, with the numbers on the number pad changing color (shown in part) as each is pressed to show that AR environment has correctly received the selections. Assume that the numbers are a phone number, which initiates a phone call through the AR computing spectacles 118, all without needing to touch a real object (many spectacles can make phone calls and include audio output and input, which here is assumed).
This document now turns to an example computing device in which fine-motion VR/AR control using radar can be used, and then follows with an example computing device, an example radio field and occluded portion of a user's hand, a method, example RF wave propagations, and ends with an example computing system.
Example Computing Device
Having generally described example uses of fine motion VR/AR control using radar, now consider
The computing device 202 includes one or more computer processors 204 and computer-readable media 206. Applications 208 and/or an operating system (not shown) embodied as computer-readable instructions on the computer-readable media 206 can be executed by the processors 204 to invoke or interface with some or all of the functionalities described herein, such as through user control and VR/AR Application Programming Interfaces (APIs) 210. These applications 208 may include game applications, augmented reality programs, or virtual reality programs, through other programs may instead by used, such as to control media, web browsing, and so forth.
The user control and VR/AR APIs 210 (APIs 210) provide programming access into various routines and functionality incorporated into VR/AR radar system 212 (radar system 212). In some embodiments, the APIs 210 provide high-level access into the radar system 212 in order to abstract implementation details and/or hardware access from a calling program, request notifications related to identified events, query for results, and so forth. The APIs 210 can also provide low-level access to the radar system 212, where a calling program can control direct or partial hardware configuration of the radar system 212. In some cases, the APIs 210 provide programmatic access to input configuration parameters that configure transmit signals and/or select VR/AR or user-control recognition algorithms. These APIs enable programs, such as the applications 208, to incorporate the functionality provided by the radar system 212 into executable code. For instance, the applications 208 can call or invoke APIs 210 to register for, or request, an event notification when a particular fine-motion user control has been detected, enable or disable wireless gesture recognition in the computing device 202, and so forth. At times, the APIs 210 can access and/or include low-level hardware drivers that interface with hardware implementations of the radar system 212. Alternately or additionally, the APIs 210 can be used to access various algorithms that reside on the radar system 212 to configure algorithms, extract additional information (such as 3D tracking information, angular extent, reflectivity profiles from different aspects, correlations between transforms/features from different channels), change an operating mode of the radar system 212, and so forth.
The radar system 212 is shown separate from the computer-readable media 206, though it may contain computer-readable instructions. Thus, the radar system 212 can be implemented in part as a chip embedded within the computing device 202, such as a System-on-Chip (SoC), one or more Integrated Circuits (ICs), as a processor with embedded processor instructions, or configured to access processor instructions stored in memory, as hardware with embedded firmware, a printed circuit board with various hardware components, or any combination thereof. Here, the radar system 212 includes a radar-emitting element 214, one or more antennas 216, a digital signal processor 218, a machine-learning component 220, and a user-control and VR/AR library 222. In conjunction with fine-motion tracking module 224, VR/AR VR/AR control module 226, and/or user representation module 228 (each described below), the radar system 212 can enable advanced VR/AR control, even for millimeter-scale movements or small object movement (e.g., fingers, lips, tongue).
Generally, the radar-emitting element 214 is configured to provide a radar field. The radar field is configured to at least partially reflect off a target object. The radar field can also be configured to penetrate fabric or other obstructions and reflect from human tissue. These fabrics or obstructions can include wood, glass, plastic, cotton, wool, nylon and similar fibers, and so forth, while reflecting from human tissues, such as a person's hand. The radar field may also reflect from objects, such as a stylus, finger-worn ring, or bracelet.
A radar field can be a small size, such as 1 millimeter to 15 centimeters, moderate, such as 10 centimeters to 1.5 meters, or moderately large, such as 0.5 to 8 meters (or larger). It is to be appreciated that these sizes are merely for discussion purposes, and that any other suitable range can be used. The radar system 212 and modules 224, 226, or 228 can receive and process reflections of the radar field to provide large-body gestures based on reflections from human tissue caused by body, arm, or leg movements, either alone or in conjunction with small motions. Multiple radar fields can be used, or one field that enables determination of both small and large movements as noted below. Example uses of both large and small motion and position detection include determining a position of a user in three dimensions and large movements for the user, such as arm, leg, or a larger object's position or movement. These, along with small movements, such as fingers and the like, can be combined for realistic VR representations of the user or user control actions, like both moving an arm and rubbing two fingers together.
The antennas 216 receive RF signals. These antennas 216 (or a single antenna) can receive various types of reflections, such as a radar signal representing a superposition of reflections of two or more points within the radar field provided by the radar-emitting element 214 of the radar system 212. Often, a point will be obscured or optically occluded. Example occlusions include food, gloves, clothing, books, other electronic devices, and so forth. Furthermore, often one of these points will be visually obscured. A point on an object is visually obscured with the lighting of that point is dark or otherwise difficult to optically capture, such as when the point is dark relative to at least another of the two or more points or to an ambient lighting of objects within the radar field. Consider, for example, the user 102 of
These antennas 216 can be configured as a dipole antenna, a parabolic antenna, a helical antenna, a monopole antenna, and so forth. In some embodiments, the antennas 216 are constructed on-chip (e.g., as part of an SoC), while in other embodiments, the antennas 216 are separate components, metal, hardware, etc. that attach to, or are included within, the radar system 212. The placement, size, and/or shape of the antennas 212 can be chosen to enhance a specific transmission pattern or diversity scheme, such as a pattern or scheme designed to capture information about a fine-gesture performed by a user's hand.
The digital signal processor 218 generally represents digitally capturing and processing a signal. For instance, the digital signal processor 218 samples analog RF signals received by the antennas 216 to generate digital samples that represent the RF signals, and then processes these samples to extract information about the target object. Alternately or additionally, the digital signal processor 218 controls the configuration of signals generated and transmitted by the radar-emitting element 214 and/or antennas 216, such as configuring a plurality of signals to form a specific diversity scheme like a beamforming diversity scheme. In some cases, the digital signal processor 218 receives input configuration parameters that control an RF signal's transmission parameters (e.g., frequency channel, power level), such as through the APIs 210. In turn, the digital signal processor 218 modifies the RF signal based upon the input configuration parameter. At times, the signal processing functions of the digital signal processor 218 are included in a library of signal processing functions or algorithms that are also accessible and/or configurable via the APIs 210. The digital signal processor 218 can be implemented in hardware, software, firmware, or any combination thereof.
Among other things, the machine-learning component 220 receives information processed or extracted by the digital signal processor 218, and uses that information to classify or recognize various aspects of the target object. In some cases, the machine-learning component 220 applies one or more algorithms to probabilistically determine which gesture has occurred given an input signal and previously learned gesture features. As in the case of the digital signal processor 218, the machine-learning component 220 can include a library of multiple machine-learning algorithms, such as a Random Forrest algorithm, deep-learning algorithms (e.g., artificial neural network algorithms, convolutional neural net algorithms), clustering algorithms, Bayesian algorithms, and so forth. The machine-learning component 220 can be trained on how to identify various gestures using input data that consists of example gesture(s) to learn. In turn, the machine-learning component 220 uses the input data to learn what features can be attributed to a specific gesture. These features are then used to identify when the specific gesture occurs. In some embodiments, the APIs 210 can be used to configure the machine-learning component 220 and/or its corresponding algorithms.
The user control and VR library 222 represents data used by the digital signal processor 218, the machine-learning component 220, and/or modules of
In addition, certain data stored in user control and VR library 222 may be altered before it is stored or used, so that personally identifiable information is removed. For example, a user's identity may be treated so that no personally identifiable information can be determined for the user, or a user's geographic location may be generalized where location information is obtained (such as to a city, postal code, or state/province level), so that a particular location of a user cannot be determined. Thus, the user may have control over what information is collected about the user, how that information is used, and what information is provided to the user.
Generally, the fine-motion tracking module 224 is configured to track one or more points within a radar field effective to track user actions. These actions can be with a virtual object, such as a VR/AR controller. As noted, these tracked user actions include fine-motions in a millimeter or sub-millimeter range. To do so, the fine-motion tracking module 224 may determine displacement or velocity of a point, or a relative displacement or velocity between points, determined from a radar signal representing reflections of one or more points within the radar field. In the case of a single point, the fine-motion tracking module 224 is configured to differentiate the point from other points, and then, based on an energy and velocity of the part of the signal associated with the point, determine a velocity of the point and a displacement if desired. In the case of multiple points, the fine-motion tracking module 224 is configured to determine a relative displacement or velocity between a first and second point of the multiple points. At least one of these points is associated with a user, though another point can be something touched by the user, such as a stylus, or relative to the user, such as an object near or worn by the user. The fine-motion tracking module 224 is able to spatially resolve the first and second points to provide at least a relative velocity or displacement of the points relative to each other or some third point, even if one of those points is obscured or occluded. As noted in part above, the resolving can be at a resolution finer than a wavelength of the radar field provided by the radar system. Thus, as the wavelength is a constraint of the hardware of the system, the techniques described herein overcome that hardware constraint.
In more detail, the fine-motion tracking module 224 may determine a relative displacement by measuring a radial distance for each of the first and second points using a time delay between transmittal of the radar field and receiving the radar signal, measuring a radial velocity through an observed Doppler frequency for each of the first and second points, and measuring a reflected energy for each of the first and second points. This may be performed instead or in conjunction by components of the radar system 212 as well. Assume, for example, that the radar signal includes two sets of data, each set of data from one of two radar emitter-antenna pairs. In such a case, measuring the radial velocity can be through a range-Doppler map for one of the first or second points, per set of data. Also, this relative displacement can be calculated over a time series effective to track the first and second points over multiple relative displacements over time.
The fine-motion tracking module 224 may also, prior to determining the displacement, distinguish the point or points. In some cases this is performed by tracking temporal changes in the radar signal. This distinguishing can be performed by determine a micro-Doppler centroid for each point of interest, respectively. Thus, distinguishing points can be based on one of the first or second point having a different characteristic to a signal associated with the one of the first or second points than another signal associated with another of the first or second points.
In the case of occlusions, the fine-motion tracking module 224 can distinguish points prior to one of the points being optically occluded by tracking the points over time and then determining that one of the points is optically occluded based on an alteration of a characteristic of a signal associated with the optically occluded point. With this alteration known, further distinguishing and tracking can be performed based on the altered characteristic of the signal associated the occluded point. And, when the point that is occluded ceases to be occluded this change to the signal can also be noted, and back and forth. Thus, fingers performing an in-the-air action can be tracked prior to occlusion, then when one finger is occluded by another finger or some object, the controller can track that point as an occluded point based on the altered signal. When that finger is no longer occluded by the other finger or object, the finger is tracked with the alteration no longer preset.
Consider, for example,
Returning to
Any of the modules may pass a control input caused by the user action. In some cases this is responsive to the VR/AR controller being moved or altered to a control orientation. Examples include turning a wheel just enough to turn a virtual reality car or a small wheel enough move down a volume on a real-world stereo from 14 volume units to 13 volume units (e.g., see
The action that causes the alteration to the VR/AR control can be many different types and sizes, from fine motion, millimeter-scale control of a level or button or wheel, a partially-occluded in-the-air gesture of a hand and fingers, a user slashing with a virtual sword, or even jumping or dodging to avoid a VR game-world snare. The VR/AR control module 226, in some cases, recognizes movements that are previously cataloged or simply determine the motion and pass the motion in a format usable by one of the applications 208 through the APIs 210. A fine motion of sliding a small virtual slider or a large of putting up a virtual shield up to deflect a virtual blow need not be cataloged or a previously known gesture or action. Some actions and movements, however, are known and, in such cases, the VR/AR library 222 is used to determine the particular command or action desired by the movement. Thus, the user control need not be a particular gesture, but may instead by a movement, e.g., that the user 102 has turned a virtual flight simulator control some number of degrees in a direction and then pulled the control toward himself or herself five millimeter for a slight turn and thrust of the virtual plane.
Generally, the user representation module 228 is configured to present, in the virtual world, a portion of a user performing the user actions interacting with the VR/AR controller. This not only allows for fine motions and accurate displacements of a user's actions, but also permits the user to see his or her actions as they change the VR/AR controller, providing valuable feedback. The user representation module 228 may also determine a user's representation based on a displacement or relative displacement of points associated with the user, which may include data that is solely in the millimeter scale but may also include data that is of a larger scale, whether provided by the radar system or other sensing system. Thus, the user representation module 228 may determine fine motions based on displacement or motion from the fine-motion tracking module 224, but may also, from the radar system or even an optical or IR camera, receiving data indicating a user's stance, position, or large motions.
In more detail, the user representation module 228 is configured to determine a location in three dimensions, or relative to a user, for one or more points based on a displacement or relative displacement between points. All of the user's positions of each part of the user can be with fine motion and displacement. In some cases, however, data from another entity that indicates a position of the user may be used. Thus, assume that the user representation module 228 knows a user's general body location of feet, legs, arms, and centroid of a hand (but not detail of the hand) from a lower-resolution system, such as conventional RF techniques. Based on this, the user representation module 228 may place the fingers for the hand based on the fine displacement from the described advanced radar techniques, and well as their fine, real-time movement for the hand With this, the game or VR world is given sufficient information to accurately place the user and the user's fine motions in the game or VR world.
The computing device 202 may also include one or more network interfaces 230 for communicating data over wired, wireless, or optical networks and a display 232. The network interface 230 may communicate data over a local-area-network (LAN), a wireless local-area-network (WLAN), a personal-area-network (PAN), a wide-area-network (WAN), an intranet, the Internet, a peer-to-peer network, point-to-point network, a mesh network, and the like. The display 232 can be integral with the computing device 202 or associated with it, such as with the desktop computer 202-6.
Having described the computing device 202 in accordance with one or more embodiments, now consider example methods for fine motion VR/AR control using radar.
Example Method
At 402, a radar field is provided, such as shown in
At 404, a VR/AR controller is presented within a virtual world or an augmented-reality viewport. This controller can be shown in three or two dimensions, as in some cases a sheet-like two dimensional control can be valuable, such as when various layers of control are desired (e.g., stacked layers of controls). This can be presented prior to, or after receiving some input or movement from a user, such as an in-the-air gesture to select a virtual keyboard or other type of controller be virtually presented.
At 406, user actions interacting with the VR/AR controller are tracked. These tracked interactions can include fine-motions in a millimeter or sub-millimeter range, though larger motions and displacements can also be tracked. Tracking user actions can be performed in one or more of the many examples provided above. Thus, a radar signal representing a superposition of reflections of points of a user's hand, etc., within the radar field is received. Examples of this are shown in
At 408, an orientation of the VR/AR controller is altered responsive to and corresponding to the tracked user actions. This orientation change can be in many degrees of freedom, from various lateral movements, twists, turns, and so forth, with both velocity and displacement shown. These alterations can be in real time and with fine-motion appearance changes, such as changes in the millimeter or sub-millimeter range. Thus, if a user moves his hand five millimeters right while holding a virtual staff, the VR/AR controller is shown moving that virtual staff five millimeters, and in real time. By so doing, the VR/AR world looks and behaves like the real world.
Optionally, at 410, a user is represented and his or her movements are shown. This is not required in the AR world, though in the VR world this representation makes the virtual world appear more real and responsive. Thus, the VR/AR control module 226 can present the VR/AR controller within the VR world while showing a portion of a user performing the user actions interacting with the VR/AR controller, such as the user's body, hands, and fingers. The representation can be shown in contact with the VR/AR controller, such as is shown in
At 412, responsive to the altered orientation of the VR/AR controller corresponding to a control orientation, a control input corresponding to the control orientation is passed to an application or entity. This pass of the control input is effective to control the virtual world, the augmented-reality world, or an application or device external to the virtual world or the augment-reality world. Thus, it turns down a real-world stereo, drives a real-world car, or controls a VR or AR game. In some cases this passing is instead simple control of the entity, application, or VR/AR environment.
Through operations of method 400 and as noted above, relative dynamics are extracted from the radar signal representing the superposition of the reflections of multiple points within the radar field. These relative dynamics indicate a displacement of points relative one to another, from which fine-motions and larger movements can be determined, though a single point can also be tracked. As noted above, in some cases extracting relative dynamics from the superposition determines micro-Doppler centroids for the points. These micro-Doppler centroids enable computationally light super-resolution velocity estimates to be determined. Thus, the computational resources needed are relatively low compared to conventional radar techniques, further enabling use of these RF-based fine-motion techniques in small or resource-limited devices, such as some wearable devices and appliances. Not only can these techniques be used on resource-limited devices, but the computationally light determination can permit faster response to a user action, such as in real time as a small, fine motion to move a VR/AR controller.
Further, the RF-based fine-motion techniques, by using micro-Doppler centroids, permits greater robustness to noise and clutter than use of Doppler profile peaks. To increase resolution, the fine-motion tracking module 224 may use the phase change of the radar signal to extract millimeter and sub-millimeter displacements for high-frequency movements of the points.
Example RF Signal Propagation
Having discussed example apparatuses and methods for fine-motion VR/AR control using radar, the discussion now turns to example manners in which RF radar can be used. Consider
Environment 500 includes a source device 502 and an object 504. The source device 502 includes an emitter/receive antenna 506, which generally represents functionality configured to transmit and receive electromagnetic waves in the form of an RF signal. The emitter/receiver antenna 506 can be coupled to a source, such as a radar-emitting element (e.g., the radar-emitting element 214), to achieve transmission of a signal. In this example, the source device 502 transmits a series of RF pulses, illustrated here as the RF pulse 508-1, the RF pulse 508-2, and the RF pulse 508-3. As indicated by their ordering and distance from the source device 502, the RF pulse 508-3 is transmitted first in time, followed by the RF pulse 508-2, and then the RF pulse 508-1. For discussion purposes, these RF pulses have the same pulse width, power level, and transmission periodicity between pulses, but another suitable type of signal with alternate configurations can be transmitted without departing from the scope of the claimed subject matter.
Generally speaking, electromagnetic waves can be characterized by the frequency or wavelength of their corresponding oscillations. Being a form of electromagnetic radiation, RF signals adhere to various wave and particle properties, such as reflection. When an RF signal reaches an object, it will undergo some form of transition. Specifically, there will be some reflection off the object. The environment 500 also illustrates the reflection of RF pulses 508-1, 2, and 3 reflecting off of the object 504, where an RF pulse 510-1 corresponds to a reflection originating from the RF pulse 508-1 reflecting off of the object 504, the RF pulse 510-2 corresponds to a reflection originating from the RF pulse 508-2, and so forth. In this simple case, the source device 502 and the object 504 are stationary, and the RF pulses 508-1, 2, and 3 are transmitted via a single antenna (the antenna 506) over a same RF channel, and are transmitted directly towards the object 504 with a perpendicular impact angle. Similarly, the RF pulses 510-1, 2, and 3 are shown as reflecting directly back to the source device 502, rather than with some angular deviation. However, as one skilled in the art will appreciate, these signals can alternately be transmitted or reflected with variations in their transmission and reflection directions based upon the configuration of the source device 502, the object 504, transmission parameters, variations in real-world factors, and so forth. Upon receiving and capturing the RF pulses 510-1, 2, and 3, the source device 502 can then analyze the pulses, either individually or in combination, to identify characteristics related to the object 504. For example, the source device 502 can analyze all of the received RF pulses to obtain temporal information and/or spatial information about the object 504. Accordingly, the source device 502 can use knowledge about a transmission signal's configuration (such as pulse widths, spacing between pulses, pulse power levels, phase relationships, and so forth), and further analyze a reflected RF pulse to identify various characteristics about the object 504, such as size, shape, movement speed, movement direction, surface smoothness, material composition, and so forth.
Now consider
When the RF signals 608 reach the hand 604, they generate reflected RF signals 610. Similar to the discussion of
Thus, each antenna can receive reflected signals generated by transmissions from another antenna. By analyzing the various return times of each reflected signal, the source device 602 can determine shape and corresponding distance information associated with the hand 604. When reflected pulses are analyzed over time, the source device 602 can additionally discern movement. Thus, by analyzing various properties of the reflected signals, as well as the transmitted signals, various information about the hand 604 can be extracted, as further described below. It is to be appreciated that the above example has been simplified for discussion purposes, and is not intended to be limiting.
As in the case of
Example Computing System
The computing system 700 includes communication devices 702 that enable wired and/or wireless communication of device data 704 (e.g., received data, data that is being received, data scheduled for broadcast, data packets of the data, etc.). Device data 704 or other device content can include configuration settings of the device, media content stored on the device, and/or information associated with a user of the device (e.g., an identity of an actor performing an action). Media content stored on the computing system 700 can include any type of audio, video, and/or image data. The computing system 700 includes one or more data inputs 706 via which any type of data, media content, and/or inputs can be received, such as human utterances, interactions with a radar field, user-selectable inputs (explicit or implicit), messages, music, television media content, recorded video content, and any other type of audio, video, and/or image data received from any content and/or data source.
The computing system 700 also includes communication interfaces 708, which can be implemented as any one or more of a serial and/or parallel interface, a wireless interface, any type of network interface, a modem, and as any other type of communication interface. Communication interfaces 708 provide a connection and/or communication links between the computing system 700 and a communication network by which other electronic, computing, and communication devices communicate data with the computing system 700.
The computing system 700 includes one or more processors 710 (e.g., any of microprocessors, controllers, and the like), which process various computer-executable instructions to control the operation of the computing system 700 and to enable techniques for, or in which can be embodied, fine-motion VR/AR control using radar. Alternatively or in addition, the computing system 700 can be implemented with any one or combination of hardware, firmware, or fixed logic circuitry that is implemented in connection with processing and control circuits, which are generally identified at 712. Although not shown, the computing system 700 can include a system bus or data transfer system that couples the various components within the device. A system bus can include any one or combination of different bus structures, such as a memory bus or memory controller, a peripheral bus, a universal serial bus, and/or a processor or local bus that utilizes any of a variety of bus architectures.
The computing system 700 also includes computer-readable media 714, such as one or more memory devices that enable persistent and/or non-transitory data storage (in contrast to mere signal transmission), examples of which include random access memory (RAM), non-volatile memory (e.g., any one or more of a read-only memory (ROM), flash memory, EPROM, EEPROM), and a disk storage device. A disk storage device may be implemented as any type of magnetic or optical storage device, such as a hard disk drive, a recordable and/or rewriteable compact disc (CD), any type of a digital versatile disc (DVD), and the like. The computing system 700 can also include a mass storage media device (storage media) 716 and the user control and VR radar system 212 and its various components.
The computer-readable media 714 provides data storage mechanisms to store the device data 704, as well as various device applications 718 and any other types of information and/or data related to operational aspects of the computing system 700. For example, an operating system 720 can be maintained as a computer application with the computer-readable media 714 and executed on the processors 710. The device applications 718 may include a device manager, such as any form of a control application, software application, signal-processing and control module, code that is native to a particular device, an abstraction module or gesture module and so on. The device applications 718 also include system components, engines, or managers to implement fine-motion VR/AR control using radar, such as the fine-motion tracking module 224, the VR/AR control module 226, and the user representation module 228.
The computing system 700 may also include, or have access to, one or more of radar systems, such as the radar system 212 having the radar-emitting element 214 and the antennas 216. While not shown, one or more components of the fine-motion tracking module 224, the VR/AR control module 226, or the user representation module 228 may be operated, in whole or in part, through hardware or firmware.
CONCLUSIONAlthough techniques using, and apparatuses including, fine-motion virtual-reality or augmented-reality control using radar have been described in language specific to features and/or methods, it is to be understood that the subject of the appended claims is not necessarily limited to the specific features or methods described. Rather, the specific features and methods are disclosed as example implementations of ways in which to determine fine-motion virtual-reality or augmented-reality control using radar.
Claims
1. A system comprising:
- at least one processor; and
- computer-readable storage media comprising instructions that, when executed by the at least one processor, cause the system to: cause a display to present a virtual-reality (VR) or augmented-reality (AR) object within a VR world or an AR viewport; track a user interaction with the VR/AR object over time, the tracking comprising: causing a radar system to transmit a radar field over time; receiving, from the radar system, a radar signal representing a superposition of reflections of the radar field off two or more spatially separated points of a hand of a user that performs the user interaction over time; determining, based on the received radar signal, relative velocities between the spatially separated points of the hand over time; determining, based on the relative velocities, movement of the hand of the user over time; and determining, based on the received radar signal, locations of the hand of the user over time, the tracking based on the movement and the locations of the hand of the user over time; and cause the display to change the presentation of the VR/AR object in real time according to the user interaction.
2. The system of claim 1, further comprising the display.
3. The system of claim 1, further comprising the radar system.
4. The system of claim 3, wherein the radar system is configured to transmit the radar field and receive the radar signal through fabric.
5. The system of claim 4, wherein the system is configured to be disposed in a pocket or bag of a user performing the user interaction.
6. The system of claim 3, further comprising the display.
7. The system of claim 6, wherein the system is comprised by smart glasses or VR goggles.
8. The system of claim 6, wherein the system is comprised by a smartphone.
9. The system of claim 1, wherein:
- the VR/AR object comprises a number pad or virtual keyboard; and
- the user interaction is a button press on the number pad or the virtual keyboard.
10. The system of claim 1, wherein:
- the VR/AR object is a button, knob, or slider; and
- the user interaction is a press of the button, a turn of the knob, or a movement of the slider.
11. The system of claim 1, wherein:
- the VR/AR object is a steering wheel; and
- the user interaction is a turn of the steering wheel.
12. The system of claim 1, wherein the user interaction is a selection corresponding to the VR/AR object.
13. The system of claim 1, wherein:
- the causing of the display to present the VR/AR object comprises causing the display to present the VR/AR object superimposed on a real-world object;
- the user interaction corresponds to the real-world object; and
- the causing of the display to change the presentation of the VR/AR object comprises causing the display to change the presentation of the VR/AR object according to the user interaction with the real-world object.
14. The system of claim 1, wherein the causing of the display to change the presentation of the VR/AR object comprises causing the display to present a visual indication of the user interaction with the VR/AR object.
15. The system of claim 14, wherein the causing of the display to present the visual indication comprises causing the display to alter an appearance of the VR/AR object.
16. The system of claim 15, wherein the causing of the display to alter the appearance comprises causing the display to change a color of a portion of the VR/AR object.
17. The system of claim 1, wherein:
- the radar signal further represents reflections of the radar field off another spatially separated point over time; and
- the tracking of the user interaction is further based on the reflections of the radar field off the other spatially separated point.
18. The system of claim 17, wherein the other spatially separated point is not on the hand of the user.
19. The system of claim 1, wherein the spatially separated points are on respective fingers of the hand of the user.
20. The system of claim 19, wherein the movement comprises a first finger crossing a second finger.
21. The system of claim 1, wherein at least one of the spatially separated points is visually obscured from the system.
22. The system of claim 21, wherein at least one of the spatially separated points is visually obscured by another of the spatially separated points.
23. The system of claim 1, wherein the tracking of the user interaction is on a millimeter or sub-millimeter scale.
24. The system of claim 1, wherein the instructions further cause the system to pass a control input corresponding to the user interaction effective to control the VR world, the AR viewport, or an application or device external to the VR world or the AR viewport.
25. The system of claim 1, wherein the VR/AR object comprises a virtual controller.
26. A system comprising:
- at least one processor; and
- computer-readable storage media comprising instructions that, when executed by the at least one processor, cause the system to: cause a display to present a virtual-reality (VR) or augmented-reality (AR) object within a VR world or an AR viewport; track a user interaction with the VR/AR object over time, the tracking comprising: causing a radar system to transmit a radar field over time; receiving, from the radar system, a radar signal representing a superposition of reflections of the radar field off two or more spatially separated points of a portion of a user that performs the user interaction over time; distinguishing the reflections of the spatially separated points by determining respective Doppler centroids within the radar signal for the spatially separated points; spatially resolving, based on the respective Doppler centroids, the spatially separated points over time; and determining, based on the spatially resolving, locations and movement of the portion of the user over time, the tracking based on the determined locations and movement of the portion of the user over time; and cause the display to change the presentation of the VR/AR object in real time according to the user interaction.
27. The system of claim 26, further comprising the display.
28. The system of claim 26, further comprising the radar system.
29. The system of claim 28, wherein the radar system is configured to transmit the radar field and receive the radar signal through fabric.
30. The system of claim 29, wherein the system is configured to be disposed in a pocket or bag of a user performing the user interaction.
31. The system of claim 28, further comprising the display.
32. The system of claim 31, wherein the system is comprised by smart glasses or VR goggles.
33. The system of claim 31, wherein the system is comprised by a smartphone.
34. The system of claim 26, wherein:
- the VR/AR object comprises a number pad or virtual keyboard; and
- the user interaction is a button press on the number pad or the virtual keyboard.
35. The system of claim 26, wherein:
- the VR/AR object is a button, knob, or slider; and
- the user interaction is a press of the button, a turn of the knob, or a movement of the slider.
36. The system of claim 26, wherein:
- the VR/AR object is a steering wheel; and
- the user interaction is a turn of the steering wheel.
37. The system of claim 26, wherein the user interaction is a selection corresponding to the VR/AR object.
38. The system of claim 26, wherein:
- the causing of the display to present the VR/AR object comprises causing the display to present the VR/AR object superimposed on a real-world object;
- the user interaction corresponds to the real-world object; and
- the causing of the display to change the presentation of the VR/AR object comprises causing the display to change the presentation of the VR/AR object according to the user interaction with the real-world object.
39. The system of claim 26, wherein the causing of the display to change the presentation of the VR/AR object comprises causing the display to present a visual indication of the user interaction with the VR/AR object.
40. The system of claim 39, wherein the causing of the display to present the visual indication comprises causing the display to alter an appearance of the VR/AR object.
41. The system of claim 40, wherein the causing of the display to alter the appearance comprises causing the display to change a color of a portion of the VR/AR object.
42. The system of claim 26, wherein:
- the radar signal further represents reflections of the radar field off another spatially separated point over time; and
- the tracking of the user interaction is further based on the reflections of the radar field off the other spatially separated point.
43. The system of claim 42, wherein the other spatially separated point is not on the portion of the user.
44. The system of claim 26, wherein the spatially separated points are on respective fingers of a hand of the user.
45. The system of claim 44, wherein the movement comprises a first finger crossing a second finger.
46. The system of claim 26, wherein at least one of the spatially separated points is visually obscured from the system.
47. The system of claim 46, wherein at least one of the spatially separated points is visually obscured by another of the spatially separated points.
48. The system of claim 26, wherein the tracking of the user interaction is on a millimeter or sub-millimeter scale.
49. The system of claim 26, wherein the instructions further cause the system to pass a control input corresponding to the user interaction effective to control the VR world, the AR viewport, or an application or device external to the VR world or the AR viewport.
50. The system of claim 26, wherein the VR/AR object comprises a virtual controller.
3570312 | March 1971 | Kreith |
3610874 | October 1971 | Gagliano |
3752017 | August 1973 | Lloyd et al. |
3953706 | April 27, 1976 | Harris et al. |
4104012 | August 1, 1978 | Ferrante |
4321930 | March 30, 1982 | Jobsis et al. |
4654967 | April 7, 1987 | Thenner |
4700044 | October 13, 1987 | Hokanson et al. |
4795998 | January 3, 1989 | Dunbar et al. |
4838797 | June 13, 1989 | Dodier |
5016500 | May 21, 1991 | Conrad et al. |
5024533 | June 18, 1991 | Egawa et al. |
5121124 | June 9, 1992 | Spivey et al. |
5298715 | March 29, 1994 | Chalco et al. |
5309916 | May 10, 1994 | Hatschek |
5341979 | August 30, 1994 | Gupta |
5410471 | April 25, 1995 | Alyfuku et al. |
5468917 | November 21, 1995 | Brodsky et al. |
5564571 | October 15, 1996 | Zanotti |
5656798 | August 12, 1997 | Kubo et al. |
5724707 | March 10, 1998 | Kirk et al. |
5798798 | August 25, 1998 | Rector et al. |
6032450 | March 7, 2000 | Blum |
6037893 | March 14, 2000 | Lipman |
6080690 | June 27, 2000 | Lebby et al. |
6101431 | August 8, 2000 | Niwa et al. |
6129673 | October 10, 2000 | Fraden |
6179785 | January 30, 2001 | Martinosky et al. |
6210771 | April 3, 2001 | Post et al. |
6254544 | July 3, 2001 | Hayashi |
6303924 | October 16, 2001 | Adan et al. |
6313825 | November 6, 2001 | Gilbert |
6340979 | January 22, 2002 | Beaton et al. |
6380882 | April 30, 2002 | Hegnauer |
6386757 | May 14, 2002 | Konno |
6440593 | August 27, 2002 | Ellison et al. |
6492980 | December 10, 2002 | Sandbach |
6493933 | December 17, 2002 | Post et al. |
6513833 | February 4, 2003 | Breed et al. |
6513970 | February 4, 2003 | Tabata et al. |
6524239 | February 25, 2003 | Reed et al. |
6543668 | April 8, 2003 | Fujii et al. |
6616613 | September 9, 2003 | Goodman |
6711354 | March 23, 2004 | Kameyama |
6717065 | April 6, 2004 | Hosaka et al. |
6802720 | October 12, 2004 | Weiss et al. |
6805672 | October 19, 2004 | Martin et al. |
6833807 | December 21, 2004 | Flacke et al. |
6835898 | December 28, 2004 | Eldridge et al. |
6854985 | February 15, 2005 | Weiss |
6929484 | August 16, 2005 | Weiss et al. |
6970128 | November 29, 2005 | Dwelly et al. |
6997882 | February 14, 2006 | Parker et al. |
7019682 | March 28, 2006 | Louberg et al. |
7134879 | November 14, 2006 | Sugimoto et al. |
7158076 | January 2, 2007 | Fiore et al. |
7164820 | January 16, 2007 | Eves et al. |
7194371 | March 20, 2007 | McBride et al. |
7205932 | April 17, 2007 | Fiore |
7209775 | April 24, 2007 | Bae et al. |
7223105 | May 29, 2007 | Weiss et al. |
7230610 | June 12, 2007 | Jung et al. |
7249954 | July 31, 2007 | Weiss |
7266532 | September 4, 2007 | Sutton et al. |
7299964 | November 27, 2007 | Jayaraman et al. |
7310236 | December 18, 2007 | Takahashi et al. |
7317416 | January 8, 2008 | Flom et al. |
7348285 | March 25, 2008 | Dhawan et al. |
7365031 | April 29, 2008 | Swallow et al. |
7421061 | September 2, 2008 | Boese et al. |
7462035 | December 9, 2008 | Lee et al. |
7528082 | May 5, 2009 | Krans et al. |
7544627 | June 9, 2009 | Tao et al. |
7578195 | August 25, 2009 | DeAngelis et al. |
7644488 | January 12, 2010 | Aisenbrey |
7647093 | January 12, 2010 | Bojovic et al. |
7670144 | March 2, 2010 | Ito et al. |
7677729 | March 16, 2010 | Vilser et al. |
7691067 | April 6, 2010 | Westbrook et al. |
7698154 | April 13, 2010 | Marchosky |
7750841 | July 6, 2010 | Oswald et al. |
7791700 | September 7, 2010 | Bellamy |
7834276 | November 16, 2010 | Chou et al. |
7845023 | December 7, 2010 | Swatee |
7941676 | May 10, 2011 | Glaser |
7952512 | May 31, 2011 | Delker et al. |
7999722 | August 16, 2011 | Beeri et al. |
8062220 | November 22, 2011 | Kurtz et al. |
8063815 | November 22, 2011 | Valo et al. |
8169404 | May 1, 2012 | Boillot |
8179604 | May 15, 2012 | Prada Gomez et al. |
8193929 | June 5, 2012 | Siu et al. |
8199104 | June 12, 2012 | Park et al. |
8282232 | October 9, 2012 | Hsu et al. |
8289185 | October 16, 2012 | Alonso |
8301232 | October 30, 2012 | Albert et al. |
8314732 | November 20, 2012 | Oswald et al. |
8326313 | December 4, 2012 | McHenry et al. |
8334226 | December 18, 2012 | Nhan et al. |
8341762 | January 1, 2013 | Balzano |
8344949 | January 1, 2013 | Moshfeghi |
8367942 | February 5, 2013 | Howell et al. |
8374668 | February 12, 2013 | Hayter et al. |
8475367 | July 2, 2013 | Yuen et al. |
8505474 | August 13, 2013 | Kang et al. |
8509882 | August 13, 2013 | Albert et al. |
8514221 | August 20, 2013 | King et al. |
8527146 | September 3, 2013 | Jackson et al. |
8549829 | October 8, 2013 | Song et al. |
8560972 | October 15, 2013 | Wilson |
8562526 | October 22, 2013 | Heneghan et al. |
8569189 | October 29, 2013 | Bhattacharya et al. |
8576110 | November 5, 2013 | Valentine |
8614689 | December 24, 2013 | Nishikawa et al. |
8655004 | February 18, 2014 | Prest et al. |
8700137 | April 15, 2014 | Albert |
8758020 | June 24, 2014 | Burdea et al. |
8759713 | June 24, 2014 | Sheats |
8764651 | July 1, 2014 | Tran |
8785778 | July 22, 2014 | Streeter et al. |
8790257 | July 29, 2014 | Libbus et al. |
8814574 | August 26, 2014 | Selby et al. |
8819812 | August 26, 2014 | Weber et al. |
8854433 | October 7, 2014 | Rafii |
8860602 | October 14, 2014 | Nohara et al. |
8921473 | December 30, 2014 | Hyman |
8926509 | January 6, 2015 | Magar et al. |
8948839 | February 3, 2015 | Longinotti-Buitoni et al. |
9055879 | June 16, 2015 | Selby et al. |
9075429 | July 7, 2015 | Karakotsios et al. |
9093289 | July 28, 2015 | Vicard et al. |
9125456 | September 8, 2015 | Chow |
9141194 | September 22, 2015 | Keyes et al. |
9148949 | September 29, 2015 | Zhou et al. |
9223494 | December 29, 2015 | DeSalvo et al. |
9229102 | January 5, 2016 | Wright et al. |
9230160 | January 5, 2016 | Kanter |
9235241 | January 12, 2016 | Newham et al. |
9316727 | April 19, 2016 | Sentelle et al. |
9331422 | May 3, 2016 | Nazzaro et al. |
9335825 | May 10, 2016 | Rautiainen et al. |
9346167 | May 24, 2016 | O'Connor et al. |
9354709 | May 31, 2016 | Heller et al. |
9412273 | August 9, 2016 | Ricci |
9508141 | November 29, 2016 | Khachaturian et al. |
9511877 | December 6, 2016 | Masson |
9524597 | December 20, 2016 | Ricci |
9569001 | February 14, 2017 | Mistry et al. |
9575560 | February 21, 2017 | Poupyrev et al. |
9582933 | February 28, 2017 | Mosterman et al. |
9588625 | March 7, 2017 | Poupyrev |
9594443 | March 14, 2017 | VanBlon et al. |
9600080 | March 21, 2017 | Poupyrev |
9693592 | July 4, 2017 | Robinson et al. |
9699663 | July 4, 2017 | Jovancevic |
9729986 | August 8, 2017 | Crawley et al. |
9746551 | August 29, 2017 | Scholten et al. |
9766742 | September 19, 2017 | Papakostas |
9778749 | October 3, 2017 | Poupyrev |
9807619 | October 31, 2017 | Tsai et al. |
9811164 | November 7, 2017 | Poupyrev |
9817109 | November 14, 2017 | Saboo et al. |
9837760 | December 5, 2017 | Karagozler et al. |
9848780 | December 26, 2017 | DeBusschere et al. |
9870056 | January 16, 2018 | Yao |
9921660 | March 20, 2018 | Poupyrev |
9933908 | April 3, 2018 | Poupyrev |
9947080 | April 17, 2018 | Nguyen et al. |
9958541 | May 1, 2018 | Kishigami et al. |
9971414 | May 15, 2018 | Gollakota et al. |
9971415 | May 15, 2018 | Poupyrev et al. |
9983747 | May 29, 2018 | Poupyrev |
9994233 | June 12, 2018 | Diaz-Jimenez et al. |
10016162 | July 10, 2018 | Rogers et al. |
10027923 | July 17, 2018 | Chang |
10034630 | July 31, 2018 | Lee et al. |
10063427 | August 28, 2018 | Brown |
10064582 | September 4, 2018 | Rogers |
10073590 | September 11, 2018 | Dascola et al. |
10080528 | September 25, 2018 | DeBusschere et al. |
10082950 | September 25, 2018 | Lapp |
10088908 | October 2, 2018 | Poupyrev et al. |
10139916 | November 27, 2018 | Poupyrev |
10155274 | December 18, 2018 | Robinson et al. |
10175781 | January 8, 2019 | Karagozler et al. |
10203405 | February 12, 2019 | Mazzaro et al. |
10203763 | February 12, 2019 | Poupyrev et al. |
10222469 | March 5, 2019 | Gillian et al. |
10241581 | March 26, 2019 | Lien et al. |
10268321 | April 23, 2019 | Poupyrev |
10285456 | May 14, 2019 | Poupyrev et al. |
10300370 | May 28, 2019 | Amihood et al. |
10304567 | May 28, 2019 | Kitagawa et al. |
10310620 | June 4, 2019 | Lien et al. |
10310621 | June 4, 2019 | Lien et al. |
10376195 | August 13, 2019 | Reid et al. |
10379621 | August 13, 2019 | Schwesig et al. |
10401490 | September 3, 2019 | Gillian et al. |
10409385 | September 10, 2019 | Poupyrev |
10459080 | October 29, 2019 | Schwesig et al. |
10492302 | November 26, 2019 | Karagozler et al. |
10496182 | December 3, 2019 | Lien et al. |
10503883 | December 10, 2019 | Gillian et al. |
10509478 | December 17, 2019 | Poupyrev et al. |
10540001 | January 21, 2020 | Poupyrev et al. |
10572027 | February 25, 2020 | Poupyrev et al. |
10579150 | March 3, 2020 | Gu et al. |
10642367 | May 5, 2020 | Poupyrev |
10660379 | May 26, 2020 | Poupyrev et al. |
10664059 | May 26, 2020 | Poupyrev |
10664061 | May 26, 2020 | Poupyrev |
10705185 | July 7, 2020 | Lien et al. |
10768712 | September 8, 2020 | Schwesig et al. |
10817065 | October 27, 2020 | Lien et al. |
10817070 | October 27, 2020 | Lien et al. |
10823841 | November 3, 2020 | Lien et al. |
10908696 | February 2, 2021 | Amihood et al. |
10931934 | February 23, 2021 | Richards et al. |
10936081 | March 2, 2021 | Poupyrev |
10936085 | March 2, 2021 | Poupyrev et al. |
10948996 | March 16, 2021 | Poupyrev et al. |
11080556 | August 3, 2021 | Gillian et al. |
11103015 | August 31, 2021 | Poupyrev et al. |
11132065 | September 28, 2021 | Gillian et al. |
11140787 | October 5, 2021 | Karagozler et al. |
11169988 | November 9, 2021 | Poupyrev et al. |
11175743 | November 16, 2021 | Lien et al. |
11221682 | January 11, 2022 | Poupyrev |
11256335 | February 22, 2022 | Poupyrev et al. |
11385721 | July 12, 2022 | Lien et al. |
11481040 | October 25, 2022 | Gillian et al. |
20010030624 | October 18, 2001 | Schwoegler |
20010035836 | November 1, 2001 | Miceli et al. |
20020009972 | January 24, 2002 | Amento et al. |
20020080156 | June 27, 2002 | Abbott et al. |
20020170897 | November 21, 2002 | Hall |
20030005030 | January 2, 2003 | Sutton et al. |
20030036685 | February 20, 2003 | Goodman |
20030071750 | April 17, 2003 | Benitz |
20030093000 | May 15, 2003 | Nishio et al. |
20030100228 | May 29, 2003 | Bungo et al. |
20030119391 | June 26, 2003 | Swallow et al. |
20030122677 | July 3, 2003 | Kail |
20040008137 | January 15, 2004 | Hassebrock et al. |
20040009729 | January 15, 2004 | Hill et al. |
20040046736 | March 11, 2004 | Pryor et al. |
20040102693 | May 27, 2004 | DeBusschere et al. |
20040157662 | August 12, 2004 | Tsuchiya |
20040249250 | December 9, 2004 | McGee et al. |
20040259391 | December 23, 2004 | Jung et al. |
20050069695 | March 31, 2005 | Jung et al. |
20050128124 | June 16, 2005 | Greneker et al. |
20050148876 | July 7, 2005 | Endoh et al. |
20050195330 | September 8, 2005 | Zacks |
20050231419 | October 20, 2005 | Mitchell |
20050267366 | December 1, 2005 | Murashita et al. |
20060035554 | February 16, 2006 | Glaser et al. |
20060040739 | February 23, 2006 | Wells |
20060047386 | March 2, 2006 | Kanevsky et al. |
20060061504 | March 23, 2006 | Leach, Jr. et al. |
20060100517 | May 11, 2006 | Phillips |
20060125803 | June 15, 2006 | Westerman et al. |
20060136997 | June 22, 2006 | Telek et al. |
20060139162 | June 29, 2006 | Flynn |
20060139314 | June 29, 2006 | Bell |
20060148351 | July 6, 2006 | Tao et al. |
20060157734 | July 20, 2006 | Onodero et al. |
20060166620 | July 27, 2006 | Sorensen |
20060170584 | August 3, 2006 | Romero et al. |
20060183980 | August 17, 2006 | Yang |
20060209021 | September 21, 2006 | Yoo et al. |
20060244654 | November 2, 2006 | Cheng et al. |
20060258205 | November 16, 2006 | Locher et al. |
20060284757 | December 21, 2006 | Zemany |
20070024488 | February 1, 2007 | Zemany et al. |
20070024946 | February 1, 2007 | Panasyuk et al. |
20070026695 | February 1, 2007 | Lee et al. |
20070027369 | February 1, 2007 | Pagnacco et al. |
20070030195 | February 8, 2007 | Steinway et al. |
20070118043 | May 24, 2007 | Oliver et al. |
20070161921 | July 12, 2007 | Rausch |
20070164896 | July 19, 2007 | Suzuki et al. |
20070176821 | August 2, 2007 | Flom et al. |
20070192647 | August 16, 2007 | Glaser |
20070197115 | August 23, 2007 | Eves et al. |
20070197878 | August 23, 2007 | Shklarski |
20070210074 | September 13, 2007 | Maurer et al. |
20070237423 | October 11, 2007 | Tico et al. |
20070276262 | November 29, 2007 | Banet et al. |
20070276632 | November 29, 2007 | Banet et al. |
20080001735 | January 3, 2008 | Tran |
20080002027 | January 3, 2008 | Kondo et al. |
20080015422 | January 17, 2008 | Wessel |
20080024438 | January 31, 2008 | Collins et al. |
20080039731 | February 14, 2008 | McCombie et al. |
20080059578 | March 6, 2008 | Albertson et al. |
20080065291 | March 13, 2008 | Breed |
20080074307 | March 27, 2008 | Boric-Lubecke et al. |
20080122796 | May 29, 2008 | Jobs et al. |
20080134102 | June 5, 2008 | Movold et al. |
20080136775 | June 12, 2008 | Conant |
20080168396 | July 10, 2008 | Matas et al. |
20080168403 | July 10, 2008 | Westerman et al. |
20080194204 | August 14, 2008 | Duet et al. |
20080194975 | August 14, 2008 | MacQuarrie et al. |
20080211766 | September 4, 2008 | Westerman et al. |
20080233822 | September 25, 2008 | Swallow et al. |
20080278450 | November 13, 2008 | Lashina |
20080282665 | November 20, 2008 | Speleers |
20080291158 | November 27, 2008 | Park et al. |
20080303800 | December 11, 2008 | Elwell |
20080316085 | December 25, 2008 | Rofougaran et al. |
20080320419 | December 25, 2008 | Matas et al. |
20090002220 | January 1, 2009 | Lovberg et al. |
20090018408 | January 15, 2009 | Ouchi et al. |
20090018428 | January 15, 2009 | Dias et al. |
20090033585 | February 5, 2009 | Lang |
20090053950 | February 26, 2009 | Surve |
20090056300 | March 5, 2009 | Chung et al. |
20090058820 | March 5, 2009 | Hinckley |
20090113298 | April 30, 2009 | Jung et al. |
20090115617 | May 7, 2009 | Sano et al. |
20090118648 | May 7, 2009 | Kandori et al. |
20090149036 | June 11, 2009 | Lee et al. |
20090177068 | July 9, 2009 | Stivoric et al. |
20090203244 | August 13, 2009 | Toonder |
20090226043 | September 10, 2009 | Angell et al. |
20090253585 | October 8, 2009 | Diatchenko et al. |
20090270690 | October 29, 2009 | Roos et al. |
20090278915 | November 12, 2009 | Kramer et al. |
20090288762 | November 26, 2009 | Wolfel |
20090292468 | November 26, 2009 | Wu et al. |
20090295712 | December 3, 2009 | Ritzau |
20090299197 | December 3, 2009 | Antonelli et al. |
20090303100 | December 10, 2009 | Zemany |
20090319181 | December 24, 2009 | Khosravy et al. |
20100013676 | January 21, 2010 | Do et al. |
20100045513 | February 25, 2010 | Pett et al. |
20100050133 | February 25, 2010 | Nishihara et al. |
20100053151 | March 4, 2010 | Marti et al. |
20100060570 | March 11, 2010 | Underkoffler et al. |
20100065320 | March 18, 2010 | Urano |
20100069730 | March 18, 2010 | Bergstrom et al. |
20100071205 | March 25, 2010 | Graumann et al. |
20100094141 | April 15, 2010 | Puswella |
20100107099 | April 29, 2010 | Frazier et al. |
20100109938 | May 6, 2010 | Oswald et al. |
20100152600 | June 17, 2010 | Droitcour et al. |
20100179820 | July 15, 2010 | Harrison et al. |
20100198067 | August 5, 2010 | Mahfouz et al. |
20100201586 | August 12, 2010 | Michalk |
20100204550 | August 12, 2010 | Heneghan et al. |
20100205667 | August 12, 2010 | Anderson et al. |
20100208035 | August 19, 2010 | Pinault et al. |
20100225562 | September 9, 2010 | Smith |
20100234094 | September 16, 2010 | Gagner et al. |
20100241009 | September 23, 2010 | Petkie |
20100002912 | January 7, 2010 | Solinsky |
20100281438 | November 4, 2010 | Latta et al. |
20100292549 | November 18, 2010 | Schuler |
20100306713 | December 2, 2010 | Geisner et al. |
20100313414 | December 16, 2010 | Sheats |
20100324384 | December 23, 2010 | Moon et al. |
20100325770 | December 30, 2010 | Chung et al. |
20110003664 | January 6, 2011 | Richard |
20110010014 | January 13, 2011 | Oexman et al. |
20110018795 | January 27, 2011 | Jang |
20110029038 | February 3, 2011 | Hyde et al. |
20110073353 | March 31, 2011 | Lee et al. |
20110083111 | April 7, 2011 | Forutanpour et al. |
20110093820 | April 21, 2011 | Zhang et al. |
20110118564 | May 19, 2011 | Sankai |
20110119640 | May 19, 2011 | Berkes et al. |
20110166940 | July 7, 2011 | Bangera et al. |
20110181509 | July 28, 2011 | Rautiainen et al. |
20110181510 | July 28, 2011 | Hakala et al. |
20110193939 | August 11, 2011 | Vassigh et al. |
20110197263 | August 11, 2011 | Stinson, III |
20110202404 | August 18, 2011 | van der Riet |
20110213218 | September 1, 2011 | Weiner et al. |
20110221666 | September 15, 2011 | Newton et al. |
20110234492 | September 29, 2011 | Ajmera et al. |
20110239118 | September 29, 2011 | Yamaoka et al. |
20110242305 | October 6, 2011 | Peterson et al. |
20110245688 | October 6, 2011 | Arora et al. |
20110279303 | November 17, 2011 | Smith |
20110286585 | November 24, 2011 | Hodge |
20110303341 | December 15, 2011 | Meiss et al. |
20110307842 | December 15, 2011 | Chiang et al. |
20110316888 | December 29, 2011 | Sachs et al. |
20110318985 | December 29, 2011 | McDermid |
20120001875 | January 5, 2012 | Li et al. |
20120013571 | January 19, 2012 | Yeh et al. |
20120019168 | January 26, 2012 | Noda et al. |
20120029369 | February 2, 2012 | Icove et al. |
20120047468 | February 23, 2012 | Santos et al. |
20120068876 | March 22, 2012 | Bangera et al. |
20120069043 | March 22, 2012 | Narita et al. |
20120075958 | March 29, 2012 | Hintz |
20120092284 | April 19, 2012 | Rofougaran et al. |
20120105358 | May 3, 2012 | Momeyer et al. |
20120123232 | May 17, 2012 | Najarian et al. |
20120127082 | May 24, 2012 | Kushler et al. |
20120144934 | June 14, 2012 | Russell et al. |
20120146950 | June 14, 2012 | Park et al. |
20120150493 | June 14, 2012 | Casey et al. |
20120154313 | June 21, 2012 | Au et al. |
20120156926 | June 21, 2012 | Kato et al. |
20120174299 | July 12, 2012 | Balzano |
20120174736 | July 12, 2012 | Wang et al. |
20120182222 | July 19, 2012 | Moloney |
20120191223 | July 26, 2012 | Dharwada et al. |
20120193801 | August 2, 2012 | Gross et al. |
20120200600 | August 9, 2012 | Demaine |
20120220835 | August 30, 2012 | Chung |
20120243374 | September 27, 2012 | Dahl et al. |
20120248093 | October 4, 2012 | Ulrich et al. |
20120254810 | October 4, 2012 | Heck et al. |
20120268310 | October 25, 2012 | Kim |
20120268416 | October 25, 2012 | Pirogov et al. |
20120270564 | October 25, 2012 | Gum et al. |
20120276849 | November 1, 2012 | Hyde et al. |
20120280900 | November 8, 2012 | Wang et al. |
20120298748 | November 29, 2012 | Factor et al. |
20120310665 | December 6, 2012 | Xu et al. |
20130016070 | January 17, 2013 | Starner et al. |
20130027218 | January 31, 2013 | Schwarz et al. |
20130035563 | February 7, 2013 | Angellides |
20130046544 | February 21, 2013 | Kay et al. |
20130053653 | February 28, 2013 | Cuddihy et al. |
20130076649 | March 28, 2013 | Myers et al. |
20130076788 | March 28, 2013 | Ben Zvi |
20130078624 | March 28, 2013 | Holmes et al. |
20130079649 | March 28, 2013 | Mestha et al. |
20130082922 | April 4, 2013 | Miller |
20130083173 | April 4, 2013 | Geisner et al. |
20130086533 | April 4, 2013 | Stienstra |
20130096439 | April 18, 2013 | Lee et al. |
20130102217 | April 25, 2013 | Jeon |
20130104084 | April 25, 2013 | Mlyniec et al. |
20130106710 | May 2, 2013 | Ashbrook |
20130113647 | May 9, 2013 | Sentelle et al. |
20130113830 | May 9, 2013 | Suzuki |
20130117377 | May 9, 2013 | Miller |
20130132931 | May 23, 2013 | Bruns et al. |
20130147833 | June 13, 2013 | Aubauer et al. |
20130150735 | June 13, 2013 | Cheng |
20130154919 | June 20, 2013 | An et al. |
20130161078 | June 27, 2013 | Li |
20130169471 | July 4, 2013 | Lynch |
20130176161 | July 11, 2013 | Derham et al. |
20130176258 | July 11, 2013 | Dahl et al. |
20130194173 | August 1, 2013 | Zhu et al. |
20130195330 | August 1, 2013 | Kim et al. |
20130196716 | August 1, 2013 | Khurram |
20130207962 | August 15, 2013 | Oberdorfer et al. |
20130222232 | August 29, 2013 | Kong et al. |
20130229508 | September 5, 2013 | Li et al. |
20130241765 | September 19, 2013 | Kozma et al. |
20130245986 | September 19, 2013 | Grokop et al. |
20130249793 | September 26, 2013 | Zhu et al. |
20130253029 | September 26, 2013 | Jain et al. |
20130260630 | October 3, 2013 | Ito et al. |
20130263029 | October 3, 2013 | Rossi et al. |
20130278499 | October 24, 2013 | Anderson |
20130278501 | October 24, 2013 | Bulzacki |
20130281024 | October 24, 2013 | Rofougaran et al. |
20130283203 | October 24, 2013 | Batraski et al. |
20130310700 | November 21, 2013 | Wiard et al. |
20130322729 | December 5, 2013 | Mestha et al. |
20130332438 | December 12, 2013 | Li et al. |
20130345569 | December 26, 2013 | Mestha et al. |
20140005809 | January 2, 2014 | Frei et al. |
20140022108 | January 23, 2014 | Alberth et al. |
20140028539 | January 30, 2014 | Newham et al. |
20140035737 | February 6, 2014 | Rashid et al. |
20140049487 | February 20, 2014 | Konertz et al. |
20140050354 | February 20, 2014 | Heim et al. |
20140051941 | February 20, 2014 | Messerschmidt |
20140070957 | March 13, 2014 | Longinotti-Buitoni et al. |
20140072190 | March 13, 2014 | Wu et al. |
20140073486 | March 13, 2014 | Ahmed et al. |
20140073969 | March 13, 2014 | Zou et al. |
20140081100 | March 20, 2014 | Muhsin et al. |
20140095480 | April 3, 2014 | Marantz et al. |
20140097979 | April 10, 2014 | Nohara et al. |
20140121540 | May 1, 2014 | Raskin |
20140135631 | May 15, 2014 | Brumback et al. |
20140139422 | May 22, 2014 | Mistry et al. |
20140139430 | May 22, 2014 | Leung |
20140139616 | May 22, 2014 | Pinter et al. |
20140143678 | May 22, 2014 | Mistry et al. |
20140145955 | May 29, 2014 | Gomez et al. |
20140149859 | May 29, 2014 | Van Dyken et al. |
20140181509 | June 26, 2014 | Liu |
20140184496 | July 3, 2014 | Gribetz et al. |
20140184499 | July 3, 2014 | Kim |
20140188989 | July 3, 2014 | Stekkelpak et al. |
20140191939 | July 10, 2014 | Penn et al. |
20140200416 | July 17, 2014 | Kashef et al. |
20140201690 | July 17, 2014 | Holz |
20140203080 | July 24, 2014 | Hintz |
20140208275 | July 24, 2014 | Mongia et al. |
20140215389 | July 31, 2014 | Walsh et al. |
20140239065 | August 28, 2014 | Zhou et al. |
20140244277 | August 28, 2014 | Krishna Rao et al. |
20140246415 | September 4, 2014 | Wittkowski |
20140247212 | September 4, 2014 | Kim et al. |
20140250515 | September 4, 2014 | Jakobsson |
20140253431 | September 11, 2014 | Gossweiler et al. |
20140253709 | September 11, 2014 | Bresch et al. |
20140262478 | September 18, 2014 | Harris et al. |
20140265642 | September 18, 2014 | Utley et al. |
20140270698 | September 18, 2014 | Luna et al. |
20140275854 | September 18, 2014 | Venkatraman et al. |
20140276104 | September 18, 2014 | Tao et al. |
20140280295 | September 18, 2014 | Kurochikin et al. |
20140281975 | September 18, 2014 | Anderson |
20140282877 | September 18, 2014 | Mahaffey et al. |
20140297006 | October 2, 2014 | Sadhu |
20140298266 | October 2, 2014 | Lapp |
20140300506 | October 9, 2014 | Alton et al. |
20140306936 | October 16, 2014 | Dahl et al. |
20140309855 | October 16, 2014 | Tran |
20140316261 | October 23, 2014 | Lux et al. |
20140318699 | October 30, 2014 | Longinotti-Buitoni et al. |
20140324888 | October 30, 2014 | Xie et al. |
20140329567 | November 6, 2014 | Chan et al. |
20140333467 | November 13, 2014 | Inomata |
20140343392 | November 20, 2014 | Yang |
20140347295 | November 27, 2014 | Kim et al. |
20140357369 | December 4, 2014 | Callens et al. |
20140368378 | December 18, 2014 | Crain et al. |
20140368441 | December 18, 2014 | Touloumtzis |
20140376788 | December 25, 2014 | Xu et al. |
20150002391 | January 1, 2015 | Chen |
20150009096 | January 8, 2015 | Lee et al. |
20150026815 | January 22, 2015 | Barrett |
20150029050 | January 29, 2015 | Driscoll et al. |
20150030256 | January 29, 2015 | Brady et al. |
20150040040 | February 5, 2015 | Balan et al. |
20150046183 | February 12, 2015 | Cireddu |
20150062033 | March 5, 2015 | Ishihara |
20150068069 | March 12, 2015 | Tran et al. |
20150077282 | March 19, 2015 | Mohamadi |
20150077345 | March 19, 2015 | Hwang et al. |
20150084855 | March 26, 2015 | Song et al. |
20150085060 | March 26, 2015 | Fish et al. |
20150091820 | April 2, 2015 | Rosenberg et al. |
20150091858 | April 2, 2015 | Rosenberg et al. |
20150091859 | April 2, 2015 | Rosenberg et al. |
20150091903 | April 2, 2015 | Costello et al. |
20150095987 | April 2, 2015 | Potash et al. |
20150099941 | April 9, 2015 | Tran |
20150100328 | April 9, 2015 | Kress et al. |
20150106770 | April 16, 2015 | Shah et al. |
20150109164 | April 23, 2015 | Takaki |
20150112606 | April 23, 2015 | He et al. |
20150133017 | May 14, 2015 | Liao et al. |
20150143601 | May 28, 2015 | Longinotti-Buitoni et al. |
20150145805 | May 28, 2015 | Liu |
20150162729 | June 11, 2015 | Reversat et al. |
20150177374 | June 25, 2015 | Driscoll et al. |
20150177866 | June 25, 2015 | Hwang et al. |
20150185314 | July 2, 2015 | Corcos et al. |
20150199045 | July 16, 2015 | Robucci et al. |
20150204973 | July 23, 2015 | Nohara et al. |
20150205358 | July 23, 2015 | Lyren |
20150223733 | August 13, 2015 | Al-Alusi |
20150226004 | August 13, 2015 | Thompson |
20150229885 | August 13, 2015 | Offenhaeuser |
20150256763 | September 10, 2015 | Niemi |
20150257653 | September 17, 2015 | Hyde et al. |
20150261320 | September 17, 2015 | Leto |
20150268027 | September 24, 2015 | Gerdes |
20150268799 | September 24, 2015 | Starner et al. |
20150276925 | October 1, 2015 | Scholten et al. |
20150277569 | October 1, 2015 | Sprenger et al. |
20150280102 | October 1, 2015 | Tajitsu et al. |
20150285906 | October 8, 2015 | Hooper et al. |
20150287187 | October 8, 2015 | Redtel |
20150297105 | October 22, 2015 | Pahlevan et al. |
20150301167 | October 22, 2015 | Sentelle et al. |
20150312041 | October 29, 2015 | Choi |
20150314780 | November 5, 2015 | Stenneth et al. |
20150317518 | November 5, 2015 | Fujimaki et al. |
20150323993 | November 12, 2015 | Levesque et al. |
20150332075 | November 19, 2015 | Burch |
20150341550 | November 26, 2015 | Lay |
20150346701 | December 3, 2015 | Gordon et al. |
20150346820 | December 3, 2015 | Poupyrev et al. |
20150350902 | December 3, 2015 | Baxley et al. |
20150351703 | December 10, 2015 | Phillips et al. |
20150370250 | December 24, 2015 | Bachrach et al. |
20150375339 | December 31, 2015 | Sterling et al. |
20160011668 | January 14, 2016 | Gilad-Bachrach et al. |
20160018948 | January 21, 2016 | Parvarandeh et al. |
20160026253 | January 28, 2016 | Bradski et al. |
20160026768 | January 28, 2016 | Singh et al. |
20160038083 | February 11, 2016 | Ding et al. |
20160041617 | February 11, 2016 | Poupyrev |
20160041618 | February 11, 2016 | Poupyrev |
20160042169 | February 11, 2016 | Polehn |
20160045706 | February 18, 2016 | Gary et al. |
20160048235 | February 18, 2016 | Poupyrev |
20160048236 | February 18, 2016 | Poupyrev |
20160048672 | February 18, 2016 | Lux et al. |
20160054792 | February 25, 2016 | Poupyrev |
20160054803 | February 25, 2016 | Poupyrev |
20160054804 | February 25, 2016 | Gollakata et al. |
20160055201 | February 25, 2016 | Poupyrev et al. |
20160075015 | March 17, 2016 | Izhikevich et al. |
20160075016 | March 17, 2016 | Laurent et al. |
20160077202 | March 17, 2016 | Hirvonen et al. |
20160085296 | March 24, 2016 | Mo et al. |
20160089042 | March 31, 2016 | Saponas et al. |
20160090839 | March 31, 2016 | Stolarcyzk |
20160096270 | April 7, 2016 | Ibarz Gabardos et al. |
20160098089 | April 7, 2016 | Poupyrev |
20160100166 | April 7, 2016 | Dragne et al. |
20160103500 | April 14, 2016 | Hussey et al. |
20160106328 | April 21, 2016 | Mestha et al. |
20160124579 | May 5, 2016 | Tokutake |
20160131741 | May 12, 2016 | Park |
20160140872 | May 19, 2016 | Palmer et al. |
20160145776 | May 26, 2016 | Roh |
20160146931 | May 26, 2016 | Rao et al. |
20160170491 | June 16, 2016 | Jung |
20160171293 | June 16, 2016 | Li et al. |
20160186366 | June 30, 2016 | McMaster |
20160206244 | July 21, 2016 | Rogers |
20160213331 | July 28, 2016 | Gil et al. |
20160216825 | July 28, 2016 | Forutanpour |
20160220152 | August 4, 2016 | Meriheina et al. |
20160234365 | August 11, 2016 | Alameh et al. |
20160238696 | August 18, 2016 | Hintz |
20160249698 | September 1, 2016 | Berzowska et al. |
20160252607 | September 1, 2016 | Saboo et al. |
20160252965 | September 1, 2016 | Mandella et al. |
20160253044 | September 1, 2016 | Katz |
20160259037 | September 8, 2016 | Molchanov et al. |
20160262685 | September 15, 2016 | Wagner et al. |
20160282988 | September 29, 2016 | Poupyrev |
20160283101 | September 29, 2016 | Schwesig et al. |
20160284436 | September 29, 2016 | Fukuhara et al. |
20160287172 | October 6, 2016 | Morris et al. |
20160291143 | October 6, 2016 | Cao et al. |
20160299526 | October 13, 2016 | Inagaki et al. |
20160306034 | October 20, 2016 | Trotta et al. |
20160320852 | November 3, 2016 | Poupyrev |
20160320853 | November 3, 2016 | Lien et al. |
20160320854 | November 3, 2016 | Lien et al. |
20160321428 | November 3, 2016 | Rogers |
20160338599 | November 24, 2016 | DeBusschere et al. |
20160345638 | December 1, 2016 | Robinson et al. |
20160349790 | December 1, 2016 | Connor |
20160349845 | December 1, 2016 | Poupyrev et al. |
20160377712 | December 29, 2016 | Wu et al. |
20170011210 | January 12, 2017 | Cheong et al. |
20170013417 | January 12, 2017 | Zampini, II |
20170029985 | February 2, 2017 | Tajitsu et al. |
20170052618 | February 23, 2017 | Lee et al. |
20170060254 | March 2, 2017 | Molchanov et al. |
20170060298 | March 2, 2017 | Hwang et al. |
20170075481 | March 16, 2017 | Chou et al. |
20170075496 | March 16, 2017 | Rosenberg et al. |
20170097413 | April 6, 2017 | Gillian et al. |
20170097684 | April 6, 2017 | Lien |
20170115777 | April 27, 2017 | Poupyrev |
20170124407 | May 4, 2017 | Micks et al. |
20170125940 | May 4, 2017 | Karagozler et al. |
20170131395 | May 11, 2017 | Reynolds et al. |
20170164904 | June 15, 2017 | Kirenko |
20170168630 | June 15, 2017 | Khoshkava et al. |
20170192523 | July 6, 2017 | Poupyrev |
20170192629 | July 6, 2017 | Takada et al. |
20170196513 | July 13, 2017 | Longinotti-Buitoni et al. |
20170224280 | August 10, 2017 | Bozkurt et al. |
20170231089 | August 10, 2017 | Van Keymeulen |
20170232538 | August 17, 2017 | Robinson et al. |
20170233903 | August 17, 2017 | Jeon |
20170249033 | August 31, 2017 | Podhajny et al. |
20170258366 | September 14, 2017 | Tupin et al. |
20170291301 | October 12, 2017 | Gabardos et al. |
20170322633 | November 9, 2017 | Shen et al. |
20170325337 | November 9, 2017 | Karagozler et al. |
20170325518 | November 16, 2017 | Poupyrev et al. |
20170329412 | November 16, 2017 | Schwesig et al. |
20170329425 | November 16, 2017 | Karagozler et al. |
20170356992 | December 14, 2017 | Scholten et al. |
20180000354 | January 4, 2018 | DeBusschere et al. |
20180000355 | January 4, 2018 | DeBusschere et al. |
20180004301 | January 4, 2018 | Poupyrev |
20180005766 | January 4, 2018 | Fairbanks et al. |
20180046258 | February 15, 2018 | Poupyrev |
20180095541 | April 5, 2018 | Gribetz et al. |
20180106897 | April 19, 2018 | Shouldice et al. |
20180113032 | April 26, 2018 | Dickey et al. |
20180157330 | June 7, 2018 | Gu et al. |
20180160943 | June 14, 2018 | Fyfe et al. |
20180177464 | June 28, 2018 | DeBusschere et al. |
20180196527 | July 12, 2018 | Poupyrev et al. |
20180256106 | September 13, 2018 | Rogers et al. |
20180296163 | October 18, 2018 | DeBusschere et al. |
20180321841 | November 8, 2018 | Lapp |
20190030713 | January 31, 2019 | Gabardos et al. |
20190033981 | January 31, 2019 | Poupyrev |
20190138109 | May 9, 2019 | Poupyrev et al. |
20190155396 | May 23, 2019 | Lien et al. |
20190208837 | July 11, 2019 | Poupyrev et al. |
20190232156 | August 1, 2019 | Amihood et al. |
20190243464 | August 8, 2019 | Lien et al. |
20190257939 | August 22, 2019 | Schwesig et al. |
20190278379 | September 12, 2019 | Gribetz et al. |
20190321719 | October 24, 2019 | Gillian et al. |
20190391667 | December 26, 2019 | Poupyrev |
20190394884 | December 26, 2019 | Karagozler et al. |
20200064471 | February 27, 2020 | Gatland et al. |
20200064924 | February 27, 2020 | Poupyrev et al. |
20200089314 | March 19, 2020 | Poupyrev et al. |
20200150776 | May 14, 2020 | Poupyrev et al. |
20200218361 | July 9, 2020 | Poupyrev |
20200229515 | July 23, 2020 | Poupyrev et al. |
20200264765 | August 20, 2020 | Poupyrev et al. |
20200278422 | September 3, 2020 | Lien et al. |
20200326708 | October 15, 2020 | Wang et al. |
20200393912 | December 17, 2020 | Lien et al. |
20200409472 | December 31, 2020 | Lien et al. |
20210096653 | April 1, 2021 | Amihood et al. |
20210132702 | May 6, 2021 | Poupyrev |
20210326642 | October 21, 2021 | Gillian et al. |
20210365124 | November 25, 2021 | Gillian et al. |
20220019291 | January 20, 2022 | Lien et al. |
20220058188 | February 24, 2022 | Poupyrev et al. |
20220066567 | March 3, 2022 | Lien et al. |
20220066568 | March 3, 2022 | Lien et al. |
1299501 | June 2001 | CN |
1462382 | December 2003 | CN |
1862601 | November 2006 | CN |
101349943 | January 2009 | CN |
101636711 | January 2010 | CN |
101751126 | June 2010 | CN |
101910781 | December 2010 | CN |
102031615 | April 2011 | CN |
102160471 | August 2011 | CN |
102184020 | September 2011 | CN |
102414641 | April 2012 | CN |
102473032 | May 2012 | CN |
102782612 | November 2012 | CN |
102819315 | December 2012 | CN |
102893327 | January 2013 | CN |
106342197 | February 2013 | CN |
202887794 | April 2013 | CN |
103076911 | May 2013 | CN |
103091667 | May 2013 | CN |
103502911 | January 2014 | CN |
103534664 | January 2014 | CN |
102660988 | March 2014 | CN |
103675868 | March 2014 | CN |
103907405 | July 2014 | CN |
104035552 | September 2014 | CN |
104094194 | October 2014 | CN |
104115118 | October 2014 | CN |
104838336 | August 2015 | CN |
103355860 | January 2016 | CN |
106154270 | November 2016 | CN |
10011263 | September 2001 | DE |
102011075725 | November 2012 | DE |
102013201359 | July 2014 | DE |
0161895 | November 1985 | EP |
1785744 | May 2007 | EP |
1815788 | August 2007 | EP |
2177017 | April 2010 | EP |
2417908 | February 2012 | EP |
2637081 | September 2013 | EP |
2770408 | August 2014 | EP |
2014165476 | October 2014 | EP |
2953007 | December 2015 | EP |
2923642 | March 2017 | EP |
3201726 | August 2017 | EP |
3017722 | August 2015 | FR |
2070469 | September 1981 | GB |
2443208 | April 2008 | GB |
113860 | April 1999 | JP |
11168268 | June 1999 | JP |
H11168268 | June 1999 | JP |
H11237477 | August 1999 | JP |
2001208828 | August 2001 | JP |
2003500759 | January 2003 | JP |
2003280049 | October 2003 | JP |
2005231450 | September 2005 | JP |
2006514382 | April 2006 | JP |
2006163886 | June 2006 | JP |
2006234716 | September 2006 | JP |
2007011873 | January 2007 | JP |
2007132768 | May 2007 | JP |
2007266772 | October 2007 | JP |
2007333385 | December 2007 | JP |
2008287714 | November 2008 | JP |
2008293501 | December 2008 | JP |
2009037434 | February 2009 | JP |
2010048583 | March 2010 | JP |
2010049583 | March 2010 | JP |
2011003202 | January 2011 | JP |
2011086114 | April 2011 | JP |
2011102457 | May 2011 | JP |
2011253241 | December 2011 | JP |
2012068854 | April 2012 | JP |
201218583 | September 2012 | JP |
2012185833 | September 2012 | JP |
2012198916 | October 2012 | JP |
2012208714 | October 2012 | JP |
2013016060 | January 2013 | JP |
2013037674 | February 2013 | JP |
2013196047 | September 2013 | JP |
2013251913 | December 2013 | JP |
2014503873 | February 2014 | JP |
2014532332 | December 2014 | JP |
2015507263 | March 2015 | JP |
2015509634 | March 2015 | JP |
2021085256 | June 2021 | JP |
1020080102516 | November 2008 | KR |
100987650 | October 2010 | KR |
20130045222 | May 2013 | KR |
1020130137005 | December 2013 | KR |
20140027837 | March 2014 | KR |
20140053988 | May 2014 | KR |
1020140055985 | May 2014 | KR |
20140138779 | December 2014 | KR |
20150002718 | January 2015 | KR |
101999712 | January 2017 | KR |
101914850 | October 2018 | KR |
201425974 | July 2014 | TW |
9001895 | March 1990 | WO |
0130123 | April 2001 | WO |
2001027855 | April 2001 | WO |
0175778 | October 2001 | WO |
2002082999 | October 2002 | WO |
2004004557 | January 2004 | WO |
2004053601 | June 2004 | WO |
2005033387 | April 2005 | WO |
2005103863 | November 2005 | WO |
2007125298 | November 2007 | WO |
2008061385 | May 2008 | WO |
2009032073 | March 2009 | WO |
2009083467 | July 2009 | WO |
2009148064 | December 2009 | WO |
2010032173 | March 2010 | WO |
2010101697 | September 2010 | WO |
2012026013 | March 2012 | WO |
2012064847 | May 2012 | WO |
2012152476 | November 2012 | WO |
2013082806 | June 2013 | WO |
2013084108 | June 2013 | WO |
2013137412 | September 2013 | WO |
2013154864 | October 2013 | WO |
2013186696 | December 2013 | WO |
2013191657 | December 2013 | WO |
2013192166 | December 2013 | WO |
2014019085 | February 2014 | WO |
2014032984 | March 2014 | WO |
2014085369 | June 2014 | WO |
2014116968 | July 2014 | WO |
2014124520 | August 2014 | WO |
2014136027 | September 2014 | WO |
2014138280 | September 2014 | WO |
2014160893 | October 2014 | WO |
2014165476 | October 2014 | WO |
2014204323 | December 2014 | WO |
2015017931 | February 2015 | WO |
2015018675 | February 2015 | WO |
2015022671 | February 2015 | WO |
2015099796 | July 2015 | WO |
2015149049 | October 2015 | WO |
2016053624 | April 2016 | WO |
2016118534 | July 2016 | WO |
2016154560 | September 2016 | WO |
2016154568 | September 2016 | WO |
2016176471 | November 2016 | WO |
2016176600 | November 2016 | WO |
2016176606 | November 2016 | WO |
2016178797 | November 2016 | WO |
2017019299 | February 2017 | WO |
2017062566 | April 2017 | WO |
2017079484 | May 2017 | WO |
2017200570 | November 2017 | WO |
2017200571 | November 2017 | WO |
20170200949 | November 2017 | WO |
2018106306 | June 2018 | WO |
- “Advisory Action”, U.S. Appl. No. 16/689,519, dated Jun. 30, 2021, 2 pages.
- “Advisory Action”, U.S. Appl. No. 14/504,139, dated Aug. 28, 2017, 3 pages.
- “Advisory Action”, U.S. Appl. No. 15/704,825, dated Feb. 10, 2021, 4 pages.
- “Apple Watch Used Four Sensors to Detect your Pulse”, retrieved from http://www.theverge.com/2014/9/9/6126991 / apple-watch-four-back-sensors-detect-activity on Sep. 23, 2017 as cited in PCT search report for PCT Application No. PCT/US2016/026756 dated Nov. 10, 2017; The Verge, paragraph 1, Sep. 9, 2014, 4 pages.
- “Cardiio”, Retrieved From: <http://www.cardiio.com/> Apr. 15, 2015 App Information Retrieved From: <https://itunes.apple.com/us/app/cardiio-touchless-camera-pulse/id542891434?ls=1&mt=8> Apr. 15, 2015, Feb. 24, 2015, 6 pages.
- “Clever Toilet Checks on Your Health”, CNN.Com; Technology, Jun. 28, 2005, 2 pages.
- “Combined Search and Examination Report”, GB Application No. 1620892.8, dated Apr. 6, 2017, 5 pages.
- “Combined Search and Examination Report”, GB Application No. 1620891.0, dated May 31, 2017, 9 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Sep. 17, 2018, 10 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Jan. 6, 2021, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 16/560,085, dated Jan. 28, 2021, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 16/744,626, dated Feb. 3, 2021, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 16/669,842, dated Feb. 18, 2021, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 16/563,124, dated Jul. 23, 2021, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 17/005,207, dated Aug. 2, 2021, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 16/843,813, dated Aug. 6, 2021, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 16/503,234, dated Aug. 19, 2021, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 16/252,477, dated Sep. 30, 2020, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Jan. 15, 2020, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 16/560,085, dated Dec. 14, 2020, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Dec. 18, 2020, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Dec. 19, 2016, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Dec. 27, 2016, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 6, 2017, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Feb. 23, 2017, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Mar. 20, 2017, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 14/930,220, dated May 11, 2017, 2 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 28, 2016, 4 pages.
- “Corrected Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Jan. 23, 2017, 4 pages.
- “EP Appeal Decision”, EP Application No. 10194359.5, dated May 28, 2019, 20 pages.
- “European Search Report”, European Application No. 16789735.4, dated Nov. 14, 2018, 4 pages.
- “Extended European Search Report”, European Application No. 19164113.3, dated Jun. 13, 2019, 11 pages.
- “Extended European Search Report”, EP Application No. 15170577.9, dated Nov. 5, 2015, 12 pages.
- “Extended European Search Report”, EP Application No. 21156948.8, dated Aug. 27, 2021, 15 pages.
- “Extended European Search Report”, European Application No. 19158625.4, dated May 8, 2019, 16 pages.
- “Extended European Search Report”, EP Application No. 20174555.1, dated Oct. 13, 2020, 9 pages.
- “Final Office Action”, U.S. Appl. No. 15/462,957, dated Nov. 8, 2019, 10 Pages.
- “Final Office Action”, U.S. Appl. No. 14/504,061, dated Mar. 9, 2016, 10 pages.
- “Final Office Action”, U.S. Appl. No. 14/681,625, dated Dec. 7, 2016, 10 pages.
- “Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 2, 2019, 10 pages.
- “Final Office Action”, U.S. Appl. No. 15/398,147, dated Jun. 30, 2017, 11 pages.
- “Final Office Action”, U.S. Appl. No. 15/287,155, dated Apr. 10, 2019, 11 pages.
- “Final Office Action”, U.S. Appl. No. 14/959,799, dated Jul. 19, 2017, 12 pages.
- “Final Office Action”, U.S. Appl. No. 14/731,195, dated Oct. 11, 2018, 12 pages.
- “Final Office Action”, U.S. Appl. No. 16/689,519, dated Apr. 29, 2021, 13 pages.
- “Final Office Action”, U.S. Appl. No. 15/595,649, dated May 23, 2018, 13 pages.
- “Final Office Action”, U.S. Appl. No. 14/715,454, dated Sep. 7, 2017, 14 pages.
- “Final Office Action”, U.S. Appl. No. 16/503,234, dated Dec. 30, 2020, 14 pages.
- “Final Office Action”, U.S. Appl. No. 14/504,139, dated May 1, 2018, 14 pages.
- “Final Office Action”, U.S. Appl. No. 15/286,512, dated Dec. 26, 2018, 15 pages.
- “Final Office Action”, U.S. Appl. No. 15/142,619, dated Feb. 8, 2018, 15 pages.
- “Final Office Action”, U.S. Appl. No. 16/238,464, dated Jul. 25, 2019, 15 pages.
- “Final Office Action”, U.S. Appl. No. 15/287,359, dated Feb. 19, 2020, 16 Pages.
- “Final Office Action”, U.S. Appl. No. 14/504,121, dated Aug. 8, 2017, 16 pages.
- “Final Office Action”, U.S. Appl. No. 14/959,730, dated Nov. 22, 2017, 16 pages.
- “Final Office Action”, U.S. Appl. No. 15/142,689, dated Jun. 1, 2018, 16 pages.
- “Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 4, 2018, 17 pages.
- “Final Office Action”, U.S. Appl. No. 14/720,632, dated Jan. 9, 2018, 18 pages.
- “Final Office Action”, U.S. Appl. No. 15/704,825, dated Nov. 23, 2020, 18 pages.
- “Final Office Action”, U.S. Appl. No. 14/518,863, dated May 5, 2017, 18 pages.
- “Final Office Action”, U.S. Appl. No. 14/959,901, dated May 30, 2019, 18 pages.
- “Final Office Action”, U.S. Appl. No. 14/959,901, dated Aug. 25, 2017, 19 pages.
- “Final Office Action”, U.S. Appl. No. 15/093,533, dated Mar. 21, 2018, 19 pages.
- “Final Office Action”, U.S. Appl. No. 14/715,454, dated Apr. 17, 2018, 19 pages.
- “Final Office Action”, U.S. Appl. No. 15/286,537, dated Apr. 19, 2019, 21 pages.
- “Final Office Action”, U.S. Appl. No. 14/518,863, dated Apr. 5, 2018, 21 pages.
- “Final Office Action”, U.S. Appl. No. 15/596,702, dated Jun. 13, 2019, 21 pages.
- “Final Office Action”, U.S. Appl. No. 14/959,901, dated Jun. 15, 2018, 21 pages.
- “Final Office Action”, U.S. Appl. No. 15/287,308, dated Feb. 8, 2019, 23 pages.
- “Final Office Action”, U.S. Appl. No. 14/599,954, dated Aug. 10, 2016, 23 pages.
- “Final Office Action”, U.S. Appl. No. 14/504,038, dated Sep. 27, 2016, 23 pages.
- “Final Office Action”, U.S. Appl. No. 14/504,121, dated Jul. 9, 2018, 23 pages.
- “Final Office Action”, U.S. Appl. No. 15/286,152, dated Jun. 26, 2018, 25 pages.
- “Final Office Action”, U.S. Appl. No. 15/704,615, dated Dec. 11, 2020, 26 pages.
- “Final Office Action”, U.S. Appl. No. 15/142,471, dated Jun. 20, 2019, 26 pages.
- “Final Office Action”, U.S. Appl. No. 15/596,702, dated Apr. 14, 2020, 27 Pages.
- “Final Office Action”, U.S. Appl. No. 15/403,066, dated Oct. 5, 2017, 31 pages.
- “Final Office Action”, U.S. Appl. No. 15/267,181, dated Jun. 7, 2018, 31 pages.
- “Final Office Action”, U.S. Appl. No. 14/312,486, dated Jun. 3, 2016, 32 pages.
- “Final Office Action”, U.S. Appl. No. 15/166,198, dated Sep. 27, 2018, 33 pages.
- “Final Office Action”, U.S. Appl. No. 15/287,394, dated Sep. 30, 2019, 38 Pages.
- “Final Office Action”, U.S. Appl. No. 14/699,181, dated May 4, 2018, 41 pages.
- “Final Office Action”, U.S. Appl. No. 14/715,793, dated Sep. 12, 2017, 7 pages.
- “Final Office Action”, U.S. Appl. No. 14/809,901, dated Dec. 13, 2018, 7 pages.
- “Final Office Action”, Korean Application No. 10-2016-7036023, dated Feb. 19, 2018, 8 pages.
- “Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 30, 2017, 9 pages.
- “Final Office Action”, U.S. Appl. No. 14/874,955, dated Jun. 11, 2018, 9 pages.
- “First Action Interview OA”, U.S. Appl. No. 14/715,793, dated Jun. 21, 2017, 3 pages.
- “First Action Interview Office Action”, U.S. Appl. No. 15/142,471, dated Feb. 5, 2019, 29 pages.
- “First Action Interview Office Action”, U.S. Appl. No. 16/080,293, dated Jul. 23, 2020, 3 Pages.
- “First Action Interview Office Action”, U.S. Appl. No. 14/959,901, dated Apr. 14, 2017, 3 pages.
- “First Action Interview Office Action”, U.S. Appl. No. 14/731,195, dated Jun. 21, 2018, 4 pages.
- “First Action Interview Office Action”, U.S. Appl. No. 15/286,152, dated Mar. 1, 2018, 5 pages.
- “First Action Interview Office Action”, U.S. Appl. No. 15/917,238, dated Jun. 6, 2019, 6 pages.
- “First Action Interview Office Action”, U.S. Appl. No. 15/166,198, dated Apr. 25, 2018, 8 pages.
- “First Action Interview Pilot Program Pre-Interview Communication”, U.S. Appl. No. 14/731,195, dated Aug. 1, 2017, 3 pages.
- “First Exam Report”, EP Application No. 15754352.1, dated Mar. 5, 2018, 7 pages.
- “First Examination Report”, GB Application No. 1621332.4, dated May 16, 2017, 7 pages.
- “Foreign Notice of Allowance”, KR Application No. 10-2021-7009474, dated Sep. 2, 2021, 2 pages.
- “Foreign Office Action”, Chinese Application No. 201580034536.8, dated Oct. 9, 2018.
- “Foreign Office Action”, CN Application No. 201680006327.7, dated Nov. 13, 2020.
- “Foreign Office Action”, Korean Application No. 1020187029464, dated Oct. 30, 2018, 1 page.
- “Foreign Office Action”, KR Application No. 10-2016-7036023, dated Aug. 11, 2017, 10 pages.
- “Foreign Office Action”, CN Application No. 201680020123.9, dated Nov. 29, 2019, 10 pages.
- “Foreign Office Action”, Chinese Application No. 201580034908.7, dated Feb. 19, 2019, 10 pages.
- “Foreign Office Action”, Chinese Application No. 201611159602.7, dated Jul. 23, 2020, 10 pages.
- “Foreign Office Action”, Chinese Application No. 201611191179.9, dated Aug. 28, 2019, 10 pages.
- “Foreign Office Action”, KR Application No. 10-2021-7007454, dated Apr. 29, 2021, 11 pages.
- “Foreign Office Action”, CN Application No. 201710922856.8, dated Jun. 19, 2020, 11 pages.
- “Foreign Office Action”, Japanese Application No. 2018-501256, dated Jul. 24, 2018, 11 pages.
- “Foreign Office Action”, JP Application No. 2019-078554, dated Jul. 21, 2020, 12 pages.
- “Foreign Office Action”, KR Application No. 10-2016-7036396, dated Jan. 3, 2018, 12 pages.
- “Foreign Office Action”, Chinese Application No. 201580036075.8, dated Jul. 4, 2018, 14 page.
- “Foreign Office Action”, European Application No. 16725269.1, dated Nov. 26, 2018, 14 pages.
- “Foreign Office Action”, Chinese Application No. 201680021212.5, dated Sep. 3, 2019, 14 pages.
- “Foreign Office Action”, JP Application No. 2016-563979, dated Sep. 21, 2017, 15 pages.
- “Foreign Office Action”, Japanese Application No. 1020187027694, dated Nov. 23, 2018, 15 pages.
- “Foreign Office Action”, CN Application No. 201611159870.9, dated Dec. 17, 2019, 15 pages.
- “Foreign Office Action”, European Application No. 16725269.1, dated Mar. 24, 2020, 15 pages.
- “Foreign Office Action”, JP Application No. 2020027181, dated Nov. 17, 2020, 16 pages.
- “Foreign Office Action”, CN Application No. 201580034908.7, dated Jul. 3, 2018, 17 pages.
- “Foreign Office Action”, Chinese Application No. 201510300495.4, dated Jun. 21, 2018, 18 pages.
- “Foreign Office Action”, Chinese Application No. 201680020567.2, dated Sep. 26, 2019, 19 pages.
- “Foreign Office Action”, KR Application No. 10-2019-7004803, dated Oct. 14, 2019, 2 pages.
- “Foreign Office Action”, KR Application No. 10-2019-7004803, dated Dec. 6, 2019, 2 pages.
- “Foreign Office Action”, Chinese Application No. 201611159602.7, dated Oct. 11, 2019, 20 pages.
- “Foreign Office Action”, Chinese Application No. 201580035246.5, dated Jan. 31, 2019, 22 pages.
- “Foreign Office Action”, Chinese Application No. 201680021213.X, dated Oct. 28, 2019, 26 pages.
- “Foreign Office Action”, European Application No. 16725269.1, dated Feb. 9, 2021, 26 pages.
- “Foreign Office Action”, CN Application No. 201680038897.4, dated Jun. 29, 2020, 28 pages.
- “Foreign Office Action”, Japanese Application No. 2018156138, dated May 22, 2019, 3 pages.
- “Foreign Office Action”, GB Application No. 1621191.4, dated Sep. 10, 2021, 3 pages.
- “Foreign Office Action”, JP Application No. 2018156138, dated Sep. 30, 2019, 3 pages.
- “Foreign Office Action”, Korean Application No. 10-2016-7036015, dated Oct. 15, 2018, 3 pages.
- “Foreign Office Action”, GB Application No. 1621332.4, dated Nov. 6, 2019, 3 pages.
- “Foreign Office Action”, Japanese Application No. 2018501256, dated Feb. 26, 2019, 3 pages.
- “Foreign Office Action”, Japanese Application No. 2018156138, dated Apr. 22, 2020, 3 pages.
- “Foreign Office Action”, Japanese Application No. 2016-567839, dated Apr. 3, 2018, 3 pages.
- “Foreign Office Action”, Japanese Application No. 2018-021296, dated Apr. 9, 2019, 3 pages.
- “Foreign Office Action”, European Application No. 16784352.3, dated May 16, 2018, 3 pages.
- “Foreign Office Action”, Japanese Application No. 2016-563979, dated May 21, 2018, 3 pages.
- “Foreign Office Action”, Chinese Application No. 201721290290.3, dated Jun. 6, 2018, 3 pages.
- “Foreign Office Action”, CN Application No. 201680038897.4, dated Feb. 1, 2021, 30 pages.
- “Foreign Office Action”, European Application No. 15170577.9, dated Dec. 21, 2018, 31 pages.
- “Foreign Office Action”, GB Application No. 1621191.4, dated Jun. 23, 2021, 4 pages.
- “Foreign Office Action”, Japanese Application No. 2016-575564, dated Jan. 10, 2019, 4 pages.
- “Foreign Office Action”, GB Application No. 1621191.4, dated Dec. 31, 2020, 4 pages.
- “Foreign Office Action”, CN Application No. 201721290290.3, dated Mar. 9, 2018, 4 pages.
- “Foreign Office Action”, Korean Application No. 10-2016-7036023, dated Apr. 12, 2018, 4 pages.
- “Foreign Office Action”, Japanese Application No. 2016-575564, dated Jul. 10, 2018, 4 pages.
- “Foreign Office Action”, KR Application No. 10-2021-7009474, dated May 10, 2021, 5 pages.
- “Foreign Office Action”, KR Application No. 1020217011901, dated Jun. 4, 2021, 5 pages.
- “Foreign Office Action”, GB Application No. 1621192.2, dated Jun. 17, 2020, 5 pages.
- “Foreign Office Action”, KR Application No. 10-2016-7035397, dated Sep. 20, 2017, 5 pages.
- “Foreign Office Action”, Japanese Application No. 2018169008, dated Jan. 14, 2020, 5 pages.
- “Foreign Office Action”, JP Application No. 2018501256, dated Oct. 23, 2019, 5 pages.
- “Foreign Office Action”, Korean Application No. 10-2017-7027877, dated Nov. 23, 2018, 5 pages.
- “Foreign Office Action”, Japanese Application No. 2017-541972, dated Nov. 27, 2018, 5 pages.
- “Foreign Office Action”, European Application No. 15754352.1, dated Nov. 7, 2018, 5 pages.
- “Foreign Office Action”, EP Application No. 16784352.3, dated Dec. 9, 2020, 5 pages.
- “Foreign Office Action”, European Application No. 16789735.4, dated Dec. 12, 2018, 5 pages.
- “Foreign Office Action”, Japanese Application No. 2016-575564, dated Dec. 5, 2017, 5 pages.
- “Foreign Office Action”, UK Application No. 1620891.0, dated Dec. 6, 2018, 5 pages.
- “Foreign Office Action”, Chinese Application No. 201580036075.8, dated Feb. 19, 2019, 5 pages.
- “Foreign Office Action”, Japanese Application No. 2016-563979, dated Feb. 7, 2018, 5 pages.
- “Foreign Office Action”, KR Application No. 1020187004283, dated Sep. 11, 2020, 5 pages.
- “Foreign Office Action”, British Application No. 1912334.8, dated Sep. 11, 2019, 5 pages.
- “Foreign Office Action”, KR Application No. 10-2019-7004803, dated Jan. 21, 2021, 6 pages.
- “Foreign Office Action”, EP Application No. 16724775.8, dated May 27, 2021, 6 pages.
- “Foreign Office Action”, Korean Application No. 1020197019768, dated Sep. 30, 2019, 6 pages.
- “Foreign Office Action”, JP Application No. 2016-567813, dated Jan. 16, 2018, 6 pages.
- “Foreign Office Action”, Korean Application No. 10-2017-7027871, dated Nov. 23, 2018, 6 pages.
- “Foreign Office Action”, Chinese Application No. 201510300495.4, dated Apr. 10, 2019, 6 pages.
- “Foreign Office Action”, KR Application No. 10-2019-7004803, Apr. 26, 2019, 6 pages.
- “Foreign Office Action”, Korean Application No. 1020187012629, dated May 24, 2018, 6 pages.
- “Foreign Office Action”, EP Application No. 15170577.9, dated May 30, 2017, 7 pages.
- “Foreign Office Action”, Korean Application No. 1020197023675, dated Jul. 13, 2020, 7 pages.
- “Foreign Office Action”, KR Application No. 2019-7020454, dated Aug. 26, 2020, 7 pages.
- “Foreign Office Action”, European Application No. 16716351.8, dated Mar. 15, 2019, 7 pages.
- “Foreign Office Action”, Chinese Application No. 201680021213.X, dated Aug. 27, 2020, 7 pages.
- “Foreign Office Action”, IN Application No. 201747044162, dated Sep. 3, 2020, 7 pages.
- “Foreign Office Action”, JP Application No. 2016-567813, dated Sep. 22, 2017, 8 pages.
- “Foreign Office Action”, Korean Application No. 1020187004283, dated Jan. 3, 2020, 8 pages.
- “Foreign Office Action”, Japanese Application No. 2018021296, dated Dec. 25, 2018, 8 pages.
- “Foreign Office Action”, EP Application No. 15754323.2, dated Mar. 9, 2018, 8 pages.
- “Foreign Office Action”, European Application No. 16724775.8, dated Nov. 23, 2018, 9 pages.
- “Foreign Office Action”, DE Application No. 102016014611.7, dated Sep. 28, 2020, 9 pages.
- “Foreign Office Action”, KR Application No. 10-2016-7032967, English Translation, dated Sep. 14, 2017, 4 pages.
- “Foreign Office Acton”, EP Application No. 21156948.8, dated May 21, 2021, 15 pages.
- “Frogpad Introduces Wearable Fabric Keyboard with Bluetooth Technology”, Retrieved From: <http://www.geekzone.co.nz/content.asp?contentid=3898> Mar. 16, 2015, Jan. 7, 2005, 2 pages.
- “Galaxy S4 Air Gesture”, Galaxy S4 Guides, retrieved from: hftps://allaboutgalaxys4.com/galaxy-s4-features-explained/air-gesture/ on Sep. 3, 2019, 4 pages.
- “International Preliminary Report on Patentability”, PCT Application No. PCT/US2017/051663, dated Jun. 20, 2019, 10 pages.
- “International Preliminary Report on Patentability”, PCT Application No. PCT/US2016/063874, dated Nov. 29, 2018, 12 pages.
- “International Preliminary Report on Patentability”, Application No. PCT/US2015/030388, dated Dec. 15, 2016, 12 pages.
- “International Preliminary Report on Patentability”, Application No. PCT/US2015/043963, dated Feb. 16, 2017, 12 pages.
- “International Preliminary Report on Patentability”, Application No. PCT/US2015/050903, dated Apr. 13, 2017, 12 pages.
- “International Preliminary Report on Patentability”, Application No. PCT/US2015/043949, dated Feb. 16, 2017, 13 pages.
- “International Preliminary Report on Patentability”, PCT Application No. PCT/US2017/032733, dated Nov. 29, 2018, 7 pages.
- “International Preliminary Report on Patentability”, PCT Application No. PCT/US2016/026756, dated Oct. 19, 2017, 8 pages.
- “International Preliminary Report on Patentability”, Application No. PCT/US2015/044774, dated Mar. 2, 2017, 8 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/060399, dated Jan. 30, 2017, 11 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/065295, dated Mar. 14, 2017, 12 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2015/044774, dated Nov. 3, 2015, 12 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/042013, dated Oct. 26, 2016, 12 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/062082, dated Feb. 23, 2017, 12 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2017/047691, dated Nov. 16, 2017, 13 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/024267, dated Jun. 20, 2016, 13 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/024273, dated Jun. 20, 2016, 13 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/032307, dated Aug. 25, 2016, 13 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/034366, dated Nov. 17, 2016, 13 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/029820, dated Jul. 15, 2016, 14 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/055671, dated Dec. 1, 2016, 14 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/030177, dated Aug. 2, 2016, 15 pages.
- “International Search Report and Written Opinion”, PCT Application No. PCT/US2017/051663, dated Nov. 29, 2017, 16 pages.
- “International Search Report and Written Opinion”, Application No. PCT/U52015/043963, dated Nov. 24, 2015, 16 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/024289, dated Aug. 25, 2016, 17 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2015/043949, dated Dec. 1, 2015, 18 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2015/050903, dated Feb. 19, 2016, 18 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/030115, dated Aug. 8, 2016, 18 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/063874, dated May 11, 2017, 19 pages.
- “International Search Report and Written Opinion”, Application No. PCT/US2016/033342, dated Oct. 27, 2016, 20 pages.
- “Life:X Lifestyle eXplorer”, Retrieved from <https://web.archive.org/web/20150318093841/http://research.microsoft.com/en-us/projects/lifex >, Feb. 3, 2017, 2 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Jan. 4, 2019, 10 pages.
- “Non-Final Office Action”, U.S. Appl. No. 16/153,395, dated Oct. 22, 2019, 10 Pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/286,837, dated Oct. 26, 2018, 10 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Jan. 27, 2017, 10 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/959,799, dated Jan. 27, 2017, 10 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Mar. 9, 2017, 10 pages.
- “Non-Final Office Action”, U.S. Appl. No. 16/843,813, dated Mar. 18, 2021, 12 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 18, 2017, 12 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/287,155, dated Dec. 10, 2018, 12 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Feb. 3, 2017, 12 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/424,263, dated May 23, 2019, 12 pages.
- “Non-Final Office Action”, U.S. Appl. No. 16/669,842, dated Sep. 3, 2020, 12 pages.
- “Non-Final Office Action”, U.S. Appl. No. 16/252,477, dated Jan. 10, 2020, 13 Pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 9, 2017, 13 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/809,901, dated May 24, 2018, 13 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/959,730, dated Jun. 23, 2017, 14 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/462,957, dated May 24, 2019, 14 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/862,409, dated Jun. 22, 2017, 15 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/930,220, dated Sep. 14, 2016, 15 pages.
- “Non-Final Office Action”, U.S. Appl. No. 16/238,464, dated Mar. 7, 2019, 15 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/286,512, dated Jul. 19, 2018, 15 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/142,829, dated Aug. 16, 2018, 15 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated Jun. 14, 2017, 16 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/142,619, dated Aug. 25, 2017, 16 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/959,799, dated Sep 8, 2017, 16 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/715,454, dated Jan. 11, 2018, 16 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/595,649, dated Oct. 31, 2017, 16 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/504,139, dated Oct. 5, 2018, 16 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/976,518, dated Nov. 25, 2020, 16 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Oct. 14, 2016, 16 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Jan. 26, 2017, 16 pages.
- “Non-Final Office Action”, U.S. Appl. No. 16/822,601, dated Mar. 15, 2021, 17 pages.
- “Non-Final Office Action”, U.S. Appl. No. 16/503,234, dated Mar. 18, 2021, 17 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/862,409, dated Dec. 14, 2017, 17 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/599,954, dated Feb. 2, 2016, 17 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Apr. 5, 2018, 17 pages.
- “Non-Final Office Action”, U.S. Appl. No. 16/503,234, dated Aug. 5, 2020, 18 Pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/093,533, dated Aug. 24, 2017, 18 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/142,689, dated Oct. 4, 2017, 18 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/287,308, dated Oct. 15, 2018, 18 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/286,537, dated Nov. 19, 2018, 18 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/287,359, dated Jun. 26, 2020, 19 Pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/504,121, dated Jan. 2, 2018, 19 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/287,359, dated Oct. 28, 2020, 19 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/287,253, dated Sep. 7, 2018, 20 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/518,863, dated Sep. 29, 2017, 20 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/720,632, dated May 18, 2018, 20 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Jan. 8, 2018, 21 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Oct. 21, 2019, 21 Pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/704,825, dated Jun. 1, 2020, 22 Pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/791,044, dated Sep. 30, 2019, 22 Pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/959,901, dated Oct. 11, 2018, 22 pages.
- “Non-Final Office Action”, U.S. Appl. No. 16/689,519, dated Oct. 20, 2020, 22 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Feb. 26, 2016, 22 pages.
- “Non-Final Office Action”, U.S. Appl. No. 17/005,207, dated Apr. 1, 2021, 23 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/312,486, dated Oct. 23, 2015, 25 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/596,702, dated Aug. 19, 2020, 27 Pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/286,152, dated Oct. 19, 2018, 27 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/286,537, dated Sep. 3, 2019, 28 Pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/704,615, dated Jun. 1, 2020, 29 Pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/267,181, dated Feb. 8, 2018, 29 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/403,066, dated May 4, 2017, 31 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/699,181, dated Oct. 18, 2017, 33 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/504,038, dated Mar. 22, 2017, 33 pages.
- “Non-Final Office Action”, U.S. Appl. No. 16/875,427, dated Oct. 5, 2021, 37 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/287,394, dated Mar. 22, 2019, 39 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/166,198, dated Feb. 21, 2019, 48 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/398,147, dated Sep. 8, 2017, 7 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 8, 2018, 7 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Mar. 6, 2017, 7 pages.
- “Non-Final Office Action”, U.S. Appl. No. 15/586,174, dated Jun. 18, 2018, 7 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/504,061, dated Nov. 4, 2015, 8 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/874,955, dated Feb. 27, 2017, 8 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/513,875, dated Feb. 21, 2017, 9 pages.
- “Non-Final Office Action”, U.S. Appl. No. 16/744,626, dated Sep. 23, 2020, 9 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/582,896, dated Jan. 29, 2016, 9 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/681,625, dated Aug. 12, 2016, 9 pages.
- “Non-Final Office Action”, U.S. Appl. No. 14/666,155, dated Aug. 24, 2016, 9 pages.
- “Non-Invasive Quantification of Peripheral Arterial Volume Distensibilitiy and its Non-Lineaer Relationship with Arterial Pressure”, Journal of Biomechanics, Pergamon Press, vol. 42, No. 8; as cited in the search report for PCT/US2016/013968 citing the whole document, but in particular the abstract, May 29, 2009, 2 pages.
- “Notice of Allowability”, U.S. Appl. No. 16/560,085, dated Nov. 12, 2020, 2 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/744,626, dated Jan. 1, 2021, 10 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/238,464, dated Nov. 4, 2019, 10 Pages.
- “Notice of Allowance”, U.S. Appl. No. 15/424,263, dated Nov. 14, 2019, 10 Pages.
- “Notice of Allowance”, U.S. Appl. No. 15/287,394, dated Mar. 4, 2020, 11 Pages.
- “Notice of Allowance”, U.S. Appl. No. 14/599,954, dated May 24, 2017, 11 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/153,395, dated Feb. 20, 2020, 13 Pages.
- “Notice of Allowance”, U.S. Appl. No. 15/917,238, dated Aug. 21, 2019, 13 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/287,253, dated Aug. 26, 2019, 13 Pages.
- “Notice of Allowance”, U.S. Appl. No. 15/286,512, dated Apr. 9, 2019, 14 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/312,486, dated Oct. 7, 2016, 15 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/401,611, dated Jun. 10, 2020, 17 Pages.
- “Notice of Allowance”, U.S. Appl. No. 15/287,308, dated Jul. 17, 2019, 17 Pages.
- “Notice of Allowance”, U.S. Appl. No. 14/504,038, dated Aug. 7, 2017, 17 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/403,066, dated Jan. 8, 2018, 18 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/287,200, dated Nov. 6, 2018, 19 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/286,152, dated Mar. 5, 2019, 23 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/356,748, dated Feb. 11, 2020, 5 Pages.
- “Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Jul. 6, 2018, 5 pages.
- “Notice of Allowance”, U.S. Appl. No. 17/005,207, dated Jul. 14, 2021, 5 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/093,533, dated Jul. 16, 2020, 5 Pages.
- “Notice of Allowance”, U.S. Appl. No. 15/286,495, dated Jan. 17, 2019, 5 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Jan. 3, 2019, 5 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/715,793, dated Dec. 18, 2017, 5 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Feb. 20, 2018, 5 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/582,896, dated Nov. 7, 2016, 5 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/703,511, dated Apr. 16, 2019, 5 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/586,174, dated Sep. 24, 2018, 5 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/287,359, dated Apr. 14, 2021, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/513,875, dated Jun. 28, 2017, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/666,155, dated Jul 10, 2017, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/142,471, dated Aug. 6, 2020, 7 Pages.
- “Notice of Allowance”, U.S. Appl. No. 16/389,402, dated Aug. 21, 2019, 7 Pages.
- “Notice of Allowance”, U.S. Appl. No. 16/380,245, dated Sep. 15, 2020, 7 Pages.
- “Notice of Allowance”, U.S. Appl. No. 15/976,518, dated Sep. 28, 2021, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 20, 2017, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/504,061, dated Sep. 12, 2016, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/494,863, dated May 30, 2017, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Jun. 7, 2017, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/286,837, dated Mar. 6, 2019, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/731,195, dated Apr. 24, 2019, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/862,409, dated Jun. 6, 2018, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/287,155, dated Jul. 25, 2019, 7 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/462,957, dated Jan. 23, 2020, 8 Pages.
- “Notice of Allowance”, U.S. Appl. No. 15/791,044, dated Feb. 12, 2020, 8 Pages.
- “Notice of Allowance”, U.S. Appl. No. 14/504,121, dated Jun. 1, 2021, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/503,234, dated Jun. 11, 2021, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/252,477, dated Jun. 24, 2020, 8 Pages.
- “Notice of Allowance”, U.S. Appl. No. 16/843,813, dated Jun. 30, 2021, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/362,359, dated Aug. 3, 2018, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 17/148,374, dated Oct. 14, 2021, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/560,085, dated Oct. 19, 2020, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/681,625, dated Oct. 23, 2017, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/874,955, dated Oct. 4, 2018, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/398,147, dated Nov. 15, 2017, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/669,842, dated Dec. 18, 2020, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/959,730, dated Feb. 22, 2018, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/142,829, dated Feb. 6, 2019, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/930,220, dated Feb. 2, 2017, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/352,194, dated Jun. 26, 2019, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/595,649, dated Sep. 14, 2018, 8 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/563,124, dated Jul. 8, 2021, 9 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/343,067, dated Jul. 27, 2017, 9 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/822,601, dated Aug. 5, 2021, 9 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/689,519, dated Sep. 30, 2021, 9 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/356,748, dated Oct. 17, 2019, 9 Pages.
- “Notice of Allowance”, U.S. Appl. No. 15/142,689, dated Oct. 30, 2018, 9 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/504,137, dated Feb. 6, 2019, 9 pages.
- “Notice of Allowance”, U.S. Appl. No. 14/599,954, dated Mar. 15, 2018, 9 pages.
- “Notice of Allowance”, U.S. Appl. No. 15/142,619, dated Aug. 13, 2018, 9 pages.
- “Patent Board Decision”, U.S. Appl. No. 14/504,121, dated May 20, 20201, 9 pages.
- “Philips Vital Signs Camera”, Retrieved From: <http://www.vitalsignscamera.com/> Apr. 15, 2015, Jul. 17, 2013, 2 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 15/287,359, dated Jul. 24, 2018, 2 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 16/380,245, dated Jun. 15, 2020, 3 Pages.
- “Pre-Interview Communication”, U.S. Appl. No. 16/080,293, dated Jun. 25, 2020, 3 Pages.
- “Pre-Interview Communication”, U.S. Appl. No. 14/513,875, dated Oct. 21, 2016, 3 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 15/142,471, dated Dec. 12, 2018, 3 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 14/715,793, dated Mar. 20, 2017, 3 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 14/715,454, dated Apr. 14, 2017, 3 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 15/343,067, dated Apr. 19, 2017, 3 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 16/401,611, dated Apr. 13, 2020, 4 Pages.
- “Pre-Interview Communication”, U.S. Appl. No. 15/286,495, dated Sep. 10, 2018, 4 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 14/959,901, dated Feb. 10, 2017, 4 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 14/959,730, dated Feb. 15, 2017, 4 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 15/362,359, dated May 17, 2018, 4 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 15/703,511, dated Feb. 11, 2019, 5 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 14/494,863, dated Jan. 27, 2017, 5 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 15/917,238, dated May 1, 2019, 6 pages.
- “Pre-Interview Communication”, U.S. Appl. No. 15/166,198, dated Mar. 8, 2018, 8 pages.
- “Pre-Interview First Office Action”, U.S. Appl. No. 15/286,152, dated Feb. 8, 2018, 4 pages.
- “Pre-Interview Office Action”, U.S. Appl. No. 14/862,409, dated Sep. 15, 2017, 16 pages.
- “Pre-Interview Office Action”, U.S. Appl. No. 14/731,195, dated Dec. 20, 2017, 4 pages.
- “Preliminary Report on Patentability”, PCT Application No. PCT/US2016/034366, dated Dec. 7, 2017, 10 pages.
- “Preliminary Report on Patentability”, PCT Application No. PCT/US2016/030177, dated Oct. 31, 2017, 11 pages.
- “Preliminary Report on Patentability”, PCT Application No. PCT/US2016/030115, dated Oct. 31, 2017, 15 pages.
- “Preliminary Report on Patentability”, PCT Application No. PCT/US2016/030185, dated Nov. 9, 2017, 16 pages.
- “Preliminary Report on Patentability”, Application No. PCT/US2016/065295, dated Jul. 24, 2018, 18 pages
- “Preliminary Report on Patentability”, PCT Application No. PCT/US2016/042013, dated Jan. 30, 2018, 7 pages.
- “Preliminary Report on Patentability”, PCT Application No. PCT/US2016/062082, dated Nov. 15, 2018, 8 pages.
- “Preliminary Report on Patentability”, PCT Application No. PCT/US2016/055671, dated Apr. 10, 2018, 9 pages.
- “Preliminary Report on Patentability”, PCT Application No. PCT/US2016/032307, dated Dec. 7, 2017, 9 pages.
- “Pressure-Volume Loop Analysis in Cardiology”, retrieved from https://en.wikipedia.org/w/index.php?t itle=Pressure-volume loop analysis in card iology&oldid=636928657 on Sep. 23, 2017; Obtained per link provided in search report from PCT/US2016/01398 dated Jul. 28, 2016, Dec. 6, 2014, 10 pages.
- “Restriction Requirement”, U.S. Appl. No. 15/976,518, dated Jul. 9, 2020, 5 Pages.
- “Restriction Requirement”, U.S. Appl. No. 15/362,359, dated Jan. 8, 2018, 5 pages.
- “Restriction Requirement”, U.S. Appl. No. 14/666,155, dated Jul. 22, 2016, 5 pages.
- “Restriction Requirement”, U.S. Appl. No. 15/462,957, dated Jan. 4, 2019, 6 pages.
- “Restriction Requirement”, U.S. Appl. No. 16/563,124, dated Apr. 5, 2021, 7 pages.
- “Restriction Requirement”, U.S. Appl. No. 15/352,194, dated Feb. 6, 2019, 8 pages.
- “Restriction Requirement”, U.S. Appl. No. 15/286,537, dated Aug. 27, 2018, 8 pages.
- “Samsung Galaxy S4 Air Gestures”, Video retrieved from https://www.youtube.com/watch?v=375Hb87yGcg, May 7, 2013, 4 pages.
- “Search Report”, GB Application No. 2007255.9, dated Jul. 6, 2020, 1 page.
- “Textile Wire Brochure”, Retrieved at: http://www.textile-wire.ch/en/home.html, Aug. 7, 2004, 17 pages.
- “The Dash smart earbuds play back music, and monitor your workout”, Retrieved from < http://newatlas.com/bragi-dash-tracking-earbuds/30808/>, Feb. 13, 2014, 3 pages.
- “The Instant Blood Pressure app estimates blood pressure with your smartphone and our algorithm”, Retrieved at: http://www.instantbloodpressure.com/—on Jun. 23, 2016, 6 pages.
- “Thermofocus No Touch Forehead Thermometer”, Technimed, Internet Archive. Dec. 24, 2014; https://web.archive.org/web/20141224070848/http://www.tecnimed.it:80/thermofocus-forehead-thermometer-H1N1-swine-flu.html, Dec. 24, 2018, 4 pages.
- “Written Opinion”, PCT Application No. PCT/US2016/030185, dated Nov. 3, 2016, 15 pages.
- “Written Opinion”, PCT Application No. PCT/US2017/032733, dated Jul 24, 2017, 5 pages.
- “Written Opinion”, Application No. PCT/US2017/032733, dated Jul. 26, 2017, 5 pages.
- “Written Opinion”, Application No. PCT/US2016/042013, dated Feb. 2, 2017, 6 pages.
- “Written Opinion”, PCT Application No. PCT/US2016/060399, dated May 11, 2017, 6 pages.
- “Written Opinion”, Application No. PCT/US2016/026756, dated Nov. 10, 2016, 7 pages.
- “Written Opinion”, PCT Application No. PCT/US2016/055671, dated Apr. 13, 2017, 8 pages.
- “Written Opinion”, Application No. PCT/US2016/065295, dated Apr. 13, 2018, 8 pages.
- “Written Opinion”, PCT Application No. PCT/US2017/051663, dated Oct. 12, 2018, 8 pages.
- “Written Opinion”, Application No. PCT/US2016/013968, dated Jul. 28, 2016, 9 pages.
- “Written Opinion”, PCT Application No. PCT/US2016/030177, dated Nov. 3, 2016, 9 pages.
- Amihood, Patrick M. et al., “Closed-Loop Manufacturing System Using Radar”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/464, Apr. 17, 2017, 8 pages.
- Antonimuthu, “Google's Project Soli brings Gesture Control to Wearables using Radar”, YouTube[online], Available from https://www.youtube.com/watch?v=czJfcgvQcNA as accessed on May 9, 2017; See whole video, especially 6:05-6:35,.
- Arbabian, Amin et al., “A 94GHz mm-Wave to Baseband Pulsed-Radar for Imaging and Gesture Recognition”, Apr. 4, 2013, pp. 1055-1071.
- Azevedo, Stephen et al., “Micropower Impulse Radar”, Science & Technology Review, Feb. 29, 1996, pp. 16-29, Feb. 29, 1996, 7 pages.
- Badawy, Wael “System on Chip”, Section 1.1 “Real-Time Applications” Springer Science & Business Media 2003, 14 pages.
- Balakrishnan, Guha et al., “Detecting Pulse from Head Motions in Video”, In Proceedings: CVPR '13 Proceedings of the Conference on Computer Vision and Pattern Recognition, Jun. 23, 2013, 8 pages.
- Bondade, Rajdeep et al., “A linear-assisted DC-DC hybrid power converter for envelope tracking RF power amplifiers”, 2014 IEEE Energy Conversion Congress and Exposition (ECCE), IEEE, Sep. 14, 2014, pp. 5769-5773, XP032680873, DOI: 10.1109/ECCE.2014.6954193, Sep. 14, 2014, 5 pages.
- Cheng, Jingyuan “Smart Textiles: From Niche to Mainstream”, IEEE Pervasive Computing, Jul. 2013, pp. 81-84.
- Couderc, Jean-Philippe et al., “Detection of Atrial Fibrillation using Contactless Facial Video Monitoring”, In Proceedings: Heart Rhythm Society, vol. 12, Issue 1 Available at: <http://www.heartrhythmjournal.com/article/S1547-5271(14)00924-2/pdf>, 7 pages.
- Dias, T et al., “Capacitive Fibre-Meshed Transducer for Touch & Proximity Sensing Applications”, IEEE Sensors Journal, IEEE Service Center, New York, NY, US, vol. 5, No. 5, Oct. 1, 2005 (Oct. 1, 2005), pp. 989-994, XP011138559, ISSN: 1530-437X, DOI: 10.1109/JSEN.2005.844327, Oct. 1, 2005, 5 pages.
- Duncan, David P. “Motion Compensation of Synthetic Aperture Radar”, Microwave Earth Remote Sensing Laboratory, Brigham Young University, Apr. 15, 2003, 5 pages.
- Espina, Javier et al., “Wireless Body Sensor Network for Continuous Cuff-less Blood Pressure Monitoring”, International Summer School on Medical Devices and Biosensors, 2006, 5 pages.
- Fan, Tenglong et al., “Wireless Hand Gesture Recognition Based on Continuous-Wave Doppler Radar Sensors”, IEEE Transactions on Microwave Theory and Techniques, Plenum, USA, vol. 64, No. 11, Nov. 1, 2016 (Nov. 1, 2016), pp. 4012-4012, XP011633246, ISSN: 0018-9480, DOI: 10.1109/TMTT.2016.2610427, Nov. 1, 2016, 9 pages.
- Farringdon, Jonny et al., “Wearable Sensor Badge & Sensor Jacket for Context Awareness”, Third International Symposium on Wearable Computers, Sep. 2000, 7 pages.
- Felch, Andrew et al., “Standard Radar API: Proposal Version 0.1”, Technical Disclosure Commons, Jan. 24, 2021, 18 pages.
- Garmatyuk, Dmitriy S. et al., “Ultra-Wideband Continuous-Wave Random Noise Arc-SAR”, IEEE Transaction on Geoscience and Remote Sensing, vol. 40, No. 12, Dec. 2002, Dec. 2002, 10 pages.
- Geisheimer, Jonathan L. et al., “A Continuous-Wave (CW) Radar for Gait Analysis”, IEEE 2001, 2001, 5 pages.
- Godana, Bruhtesfa E. “Human Movement Characterization in Indoor Environment using GNU Radio Based Radar”, Nov. 30, 2009, 100 pages.
- Guerra, Anna et al., “Millimeter-Wave Personal Radars for 3D Environment Mapping”, 48th Asilomar Conference on Signals, Systems and Computer, Nov. 2014, pp. 701-705.
- Gürbüz, Sevgi Z. et al., “Detection and Identification of Human Targets in Radar Data”, Proc. SPIE 6567, Signal Processing, Sensor Fusion, and Target Recognition XVI, 656701, May 7, 2007, 12 pages.
- He, David D. “A Continuous, Wearable, and Wireless Heart Monitor Using Head Ballistocardiogram (BCG) and Head Electrocardiogram (ECG) with a Nanowatt ECG Heartbeat Detection Circuit”, In Proceedings: Thesis, Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology Available at: <http://dspace.mit.edu/handle/1721.1/79221>, 137 pages.
- Holleis, Paul et al., “Evaluating Capacitive Touch Input on Clothes”, Proceedings of the 10th International Conference on Human Computer Interaction, Jan. 1, 2008, 10 pages.
- Holleis, Paul et al., “Evaluating Capacitive Touch Input on Clothes”, Proceedings of the 10th International Conference on Human Computer Interaction With Mobile Devices and Services, Jan. 1, 2008 (Jan. 1, 2008), p. 81, XP055223937, New York, NY, US DOI: 10.1145/1409240.1409250 ISBN: 978-1-59593-952-4, Jan. 1, 2008, 11 pages.
- Hollington, Jessie “Playing back all songs on iPod”, retrieved at: https://www.ilounge.com/index.php/articles/comments/playing-back-all-songs-on-ipod, Aug. 22, 2008, 2 pages.
- Ishijima, Masa “Unobtrusive Approaches to Monitoring Vital Signs at Home”, Medical & Biological Engineering and Computing, Springer, Berlin, DE, vol. 45, No. 11 as cited in search report for PCT/US2016/013968 dated Jul. 28, 2016, Sep. 26, 2007, 3 pages.
- Karagozler, Mustafa E. et al., “Embedding Radars in Robots to Accurately Measure Motion”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/454, Mar. 30, 2017, 8 pages.
- Klabunde, Richard E. “Ventricular Pressure—Volume Loop Changes in Valve Disease”, Retrieved From <https://web.archive.org/web/20101201185256/http://cvphysiology.com/Heart%20Disease/HD009.htm>, Dec. 1, 2010, 8 pages.
- Kubota, Yusuke et al., “A Gesture Recognition Approach by using Microwave Doppler Sensors”, IPSJ SIG Technical Report, 2009 (6), Information Processing Society of Japan, Apr. 15, 2010, pp. 1-8, Apr. 15, 2010, 12 pages.
- Lee, Cullen E. “Computing the Apparent Centroid of Radar Targets”, Sandia National Laboratories; Presented at the Proceedings of the 1996 IEEE National Radar Conference: Held at the University of Michigan, May 1996, 21 pages.
- Lien, Jaime et al., “Embedding Radars in Robots for Safety and Obstacle Detection”, Technical Disclosure Commons; Retrieved from http://www.tdcommons.org/dpubs_series/455, Apr. 2, 2017, 10 pages.
- Lien, Jaime et al., “Soli: Ubiquitous Gesture Sensing with Millimeter Wave Radar”, ACM Transactions on Graphics (TOG), ACM, US, vol. 35, No. 4, Jul. 11, 2016 (Jul. 11, 2016), pp. 1-19, XP058275791, ISSN: 0730-0301, DOI: 10.1145/2897824.2925953, Jul. 11, 2016, 19 pages.
- Martinez-Garcia, Hermino et al., “Four-quadrant linear-assisted DC/DC voltage regulator”, Analog Integrated Circuits and Signal Processing, Springer New York LLC, US, vol. 88, No. 1, Apr. 23, 2016 (Apr. 23, 2016)pp. 151-160, XP035898949, ISSN: 0925-1030, DOI: 10.1007/S10470-016-0747-8, Apr. 23, 2016, 10 pages.
- Matthews, Robert J. “Venous Pulse”, Retrieved at: http://www.rjmatthewsmd.com/Definitions/venous_pulse.htm—on Nov. 30, 2016, Apr. 13, 2013, 7 pages.
- Nakajima, Kazuki et al., “Development of Real-Time Image Sequence Analysis for Evaluating Posture Change and Respiratory Rate of a Subject in Bed”, In Proceedings: Physiological Measurement, vol. 22, No. 3 Retrieved From: <http://iopscience.iop.org/0967-3334/22/3/401/pdf/0967-3334_22_3_401.pdf> Feb. 27, 2015, 8 pages.
- Narasimhan, Shar “Combining Self- & Mutual-Capacitive Sensing for Distinct User Advantages”, Retrieved from the Internet: URL:http://www.designnews.com/author.asp?section_id=1365&doc_id=271356&print=yes [retrieved on Oct. 1, 2015], Jan. 31, 2014, 5 pages.
- Otto, Chris et al., “System Architecture of a Wireless Body Area Sensor Network for Ubiquitous Health Monitoring”, Journal of Mobile Multimedia; vol. 1, No. 4, Jan. 10, 2006, 20 pages.
- Palese, et al., “The Effects of Earphones and Music on the Temperature Measured by Infrared Tympanic Thermometer: Preliminary Results”, ORL—head and neck nursing: official journal of the Society of Otorhinolaryngology and Head-Neck Nurses 32.2, Jan. 1, 2013, pp. 8-12.
- Patel, P C. et al., “Applications of Electrically Conductive Yarns in Technical Textiles”, International Conference on Power System Technology (POWECON), Oct. 30, 2012, 6 pages.
- Poh, Ming-Zher et al., “A Medical Mirror for Non-contact Health Monitoring”, In Proceedings: ACM SIGGRAPH Emerging Technologies, Jan. 1, 2011, 1 page.
- Poh, Ming-Zher et al., “Non-contact, Automated Cardiac Pulse Measurements Using Video Imaging and Blind Source Separation.”, In Proceedings: Optics Express, vol. 18, No. 10, May 7, 2010, 13 pages.
- Pu, Qifan et al., “Gesture Recognition Using Wireless Signals”, Oct. 2014, pp. 15-18.
- Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom'13, Sep. 30-Oct. 4, Miami, FL, USA, Sep. 2013, 12 pages.
- Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom'13, Sep. 30-Oct. 4, Miami, FL, USA, 2013, 12 pages.
- Pu, Qifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, Proceedings of the 19th annual international conference on Mobile computing & networking (MobiCom'13), US, ACM, Sep. 30, 2013, pp. 27-38, Sep. 30, 2013, 12 pages.
- Pu, Quifan et al., “Whole-Home Gesture Recognition Using Wireless Signals”, MobiCom '13 Proceedings of the 19th annual international conference on Mobile computing & networking, Aug. 27, 2013, 12 pages.
- Schneegass, Stefan et al., “Towards a Garment OS: Supporting Application Development for Smart Garments”, Wearable Computers, ACM, Sep. 13, 2014, 6 pages.
- Skolnik, Merrill I. “CW and Frequency-Modulated Radar”, In: “Introduction to Radar Systems”, Jan. 1, 1981 (Jan. 1, 1981), McGraw Hill, XP055047545, ISBN: 978-0-07-057909-5 pp. 68-100, p. 95-p. 97, Jan. 1, 1981, 18 pages.
- Stoppa, Matteo “Wearable Electronics and Smart Textiles: A Critical Review”, In Proceedings of Sensors, vol. 14, Issue 7, Jul. 7, 2014, pp. 11957-11992.
- Wang, Wenjin et al., “Exploiting Spatial Redundancy of Image Sensor for Motion Robust rPPG”, In Proceedings: IEEE Transactions on Biomedical Engineering, vol. 62, Issue 2, Jan. 19, 2015, 11 pages.
- Wang, Yazhou et al., “Micro-Doppler Signatures for Intelligent Human Gait Recognition Using a UWB Impulse Radar”, 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), Jul. 3, 2011, pp. 2103-2106.
- Wijesiriwardana, R et al., “Capacitive Fibre-Meshed Transducer for Touch & Proximity Sensing Applications”, IEEE Sensors Journal, IEEE Service Center, Oct. 1, 2005, 5 pages.
- Zhadobov, Maxim et al., “Millimeter-Wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, p. 1 of 11. # Cambridge University Press and the European Microwave Association, 2011 doi:10.1017/51759078711000122, 2011.
- Zhadobov, Maxim et al., “Millimeter-wave Interactions with the Human Body: State of Knowledge and Recent Advances”, International Journal of Microwave and Wireless Technologies, Mar. 1, 2011, 11 pages.
- Zhang, Ruquan et al., “Study of the Structural Design and Capacitance Characteristics of Fabric Sensor”, Advanced Materials Research (vols. 194-196), Feb. 21, 2011, 8 pages.
- Zheng, Chuan et al., “Doppler Bio-Signal Detection Based Time-Domain Hand Gesture Recognition”, 2013 IEEE MTT-S International Microwave Workshop Series on RF and Wireless Technologies for Biomedical and Healthcare Applications (IMWS-BIO), IEEE, Dec. 9, 2013 (Dec. 9, 2013), p. 3, XP032574214, DOI: 10.1109/IMWS-BIO.2013.6756200, Dec. 9, 2013, 3 Pages.
- “Foreign Notice of Allowance”, KR Application No. 10-2021-7011901, dated Oct. 12, 2021, 3 pages.
- “Foreign Office Action”, JP Application No. 2021-85256, dated Apr. 20, 2022, 6 pages.
- “Notice of Allowance”, U.S. Appl. No. 17/361,824, dated Jun. 9, 2022, 9 pages.
- “Final Office Action”, U.S. Appl. No. 17/023,122, dated Apr. 7, 2022, 12 pages.
- “Non-Final Office Action”, U.S. Appl. No. 17/023,122, dated Jan. 24, 2022, 25 pages.
- “Notice of Allowance”, U.S. Appl. No. 16/875,427, dated Feb. 22, 2022, 13 pages.
- “Foreign Office Action”, JP Application No. 2021-85256, dated Nov. 15, 2022, 13 pages.
- “Non-Final Office Action”, U.S. Appl. No. 17/119,312, dated Sep. 2, 2022, 6 pages.
- “Non-Final Office Action”, U.S. Appl. No. 17/023,122, dated Sep. 16, 2022, 10 pages.
- “Non-Final Office Action”, U.S. Appl. No. 17/500,747, dated Nov. 10, 2022, 32 pages.
- “Non-Final Office Action”, U.S. Appl. No. 17/523,051, dated Nov. 10, 2022, 33 pages.
- “Non-Final Office Action”, U.S. Appl. No. 17/488,015, dated Nov. 10, 2022, 47 pages.
- “Foreign Office Action”, EP Application No. 16784352.3, dated Nov. 29, 2022, 5 pages.
- “Notice of Allowance”, U.S. Appl. No. 17/119,312, dated Jan. 13, 2023, 5 pages.
Type: Grant
Filed: Oct 20, 2021
Date of Patent: Feb 28, 2023
Patent Publication Number: 20220043519
Assignee: Google LLC (Mountain View, CA)
Inventors: Ivan Poupyrev (Los Altos, CA), Patrick M. Amihood (Palo Alto, CA)
Primary Examiner: Stephen G Sherman
Application Number: 17/506,605