Devices for producing vacuum using the Venturi effect having a solid fletch

- Dayco IP Holdings, LLC

Device for producing a vacuum using the Venturi effect are disclosed that have a housing defining a suction chamber, defining a motive passageway includes a tapering portion most proximate the suction chamber that convergingly tapers from a motive entrance to a motive exit into the suction chamber, the motive exit being in fluid communication with the suction chamber, and defining a discharge passageway having a discharge entrance in fluid communication with the suction chamber and divergingly tapering as it extends away from the suction chamber, and having a solid fletch centered within the tapering portion. The device can include a fletch-partition disposed in the motive passageway and dividing the motive passageway into two flow paths along opposing sides of the partition. The solid fletch divergingly tapers toward the suction chamber as it extends from the partition, thereby providing a circumferentially continuous flow of fluid around the fletch.

Skip to: Description  ·  Claims  ·  References Cited  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 63/130,458, filed Dec. 24, 2020, the entirety of which is incorporated herein by reference.

TECHNICAL FIELD

This application relates to Venturi devices for producing vacuum using the Venturi effect, more particularly to such devices that employ a fletch insert in the motive section.

BACKGROUND

Engines, for example vehicle engines, are being downsized and boosted, which is reducing the available vacuum from the engine. This vacuum has many potential uses, including use by the vehicle brake booster.

One solution to this vacuum shortfall is to install a vacuum pump. Vacuum pumps, however, have a significant cost and weight penalty to the engine, their electric power consumption can require additional alternator capacity, and their inefficiency can hinder fuel economy improvement actions.

Another solution is an aspirator or ejector that generates vacuum by creating an engine air flow path that is parallel to the throttle, referred to as an intake leak. This leak flow passes through a Venturi having a fletch in the motive section that generates a suction vacuum. The problem with current fletches is that the abrupt change in shape near the motive exit causes flow losses.

An evacuator is a device which creates a low pressure for drawing a vacuum that acts on a device directly or acts indirectly on the other device via a vacuum reservoir. Such an evacuator may be used, for example, in vehicles to create a vacuum for brake systems, turbocharged engines and heating and ventilations systems. According to prior art known from, for example, applicant's co-owned prior applications US 2016/0061160 and U.S. Ser. No. 17/001,6414 and prior provisional patent application No. 62/042,569, the contents of which incorporated herein by reference in their entirety, it is known to use a fletch insert to reduce the amount of motive flow required by the evacuator to supply a specific amount of vacuum when compared to an evacuator that does not include the fletch insert.

Known fletch inserts are susceptible to vibrations caused by slight differentials in pressure on one side or the other of the fletch insert. This causes the tip of the fletch insert to oscillate, resulting in an undesirable audible noise.

It is an object of the invention to provide an improved fletch insert which eliminates the noise of known fletch inserts. It is a further object of the invention to provide a fletch insert that not only minimizes noise, but does so with minimal interference with motive flow, thereby increasing the suction of the evacuator.

A need exists for improved fletch designs within a Venturi device that generate increased suction flow while minimizing flow losses.

SUMMARY

The above and other objects are achieved by the invention, wherein in one embodiment there is provided a device for producing a vacuum, comprising: a housing defining a suction chamber, a motive passageway having an entrance adapted to be connected to a fluid source and an exit in fluid communication with the suction chamber, the motive passageway including a tapering portion with a cross section that tapers toward the exit of the motive passageway, the housing further defining a discharge passageway having an entrance in fluid communication with the suction chamber and a cross section that expands in a direction away from the suction chamber; and a fletch insert disposed in the motive passageway and extending in a longitudinal direction of the motive passageway, the fletch insert including a first section proximate the exit of the motive passageway, a second section proximate the entrance of the motive passageway and a third section between and integral with the first and second sections; wherein the first section includes a region that expands in cross section toward the exit of the motive passageway to form a circumferential opening at the exit of the motive passageway between the first section of the fletch insert and an inner surface of the housing defining the motive passageway; wherein the second section of the fletch insert comprises a partition wall having a length extending in the longitudinal direction of the motive passageway and having a height extending in a direction perpendicular to the longitudinal direction of the motive passageway that extends across a full diameter of the motive passageway, and including partition wall ends connected to an inner surface of the motive passageway; and wherein the third section extends in the longitudinal direction of the motive passageway and tapers in the longitudinal direction from the second section to the first section, the third section having a first cross section that is the same as a cross section of the second section where the second and third sections meet and which transitions to a cross section of the first section where the third section meets the first section.

In an embodiment, the second of the fletch insert has a first width and the third section has a second width extending in the same direction as, and equal to, the first width.

According to another embodiment, the opening at the exit of the motive passageway is a continuous opening in the circumferential direction.

In another embodiment, the first section of the fletch insert is positioned in the tapering portion of the motive passageway.

In a further embodiment, the tapering portion of the motive passageway is conic in shape.

In yet another embodiment, the of the evacuator is configured to employ the Venturi effect, and the motive passageway is aligned with and spaced apart from the entrance of the discharge passageway to define a Venturi gap within the suction chamber.

According to another embodiment, the first section of the fletch insert has a polygonal cross section, in particular has a rectangular cross section, and more particularly has a square cross section.

In another embodiment, the fletch insert extends along a central axis of symmetry of the housing.

According to another embodiment, the fletch insert is only connected to the inner surface of the housing forming the motive passageway via the partition wall of the second section of the fletch insert, whereby the fluid flows around at least the entire circumference of the first section when exiting the motive exit.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a side, perspective view of a prior art aspirator.

FIG. 2 is a side, longitudinal cross-sectional plan view of the prior art aspirator of FIG. 1.

FIG. 3 is a side, longitudinal, cross-sectional view of a first embodiment of an improved aspirator having a solid fletch in the motive passageway.

FIG. 4 is a side, longitudinal cross-sectional, perspective view of the lower body of FIG. 3 without cross-sectioning through the rectangularly-shaped solid fletch.

FIG. 5 is a side perspective view of a lower body of an aspirator having an elliptically-shaped solid fletch.

FIG. bis a side, longitudinal cross-sectional, perspective view of another embodiment of a Venturi device having a solid fletch.

FIG. 7 is a transverse cross-sectional, perspective view of the Venturi device of FIG. 6.

FIG. 8 is a side, perspective view of the fletch insert of the Venturi device of FIG. 6.

DETAILED DESCRIPTION

The following detailed description will illustrate the general principles of the invention, examples of which are additionally illustrated in the accompanying drawings. In the drawings, like reference numbers indicate identical or functionally similar elements.

As used herein, “fluid” means any liquid, suspension, colloid, gas, plasma, or combinations thereof.

FIG. 1 is an external view of a Venturi device incorporating a check valve assembly, generally identified by reference number 100, for use in an engine, for example, in a vehicle's engine. The engine may be an internal combustion engine, and the vehicle and or engine may include a device requiring vacuum. Check valves and/or aspirators are often connected to an internal combustion engine before the engine throttle and after the engine throttle. The engine and all its components and/or subsystems are not shown in the figures, except for a few boxes included to represent specific components of the engine as identified herein. It is understood that the engine components and/or subsystems may include any commonly found in vehicle engines. While the embodiments in the figures are referred to as “aspirators” because the motive port 108 is illustrated as being connected to atmospheric pressure, the embodiments are not limited thereto. In other embodiments the motive port 108 may be connected to boosted pressure, such as the pressures attributed to boosted air produced by a turbocharger or supercharger, and as such the Venturi device is preferably referred to as an “ejector.”

The device requiring vacuum 102 may be a vehicle brake boost device, fuel vapor purge system, positive crankcase ventilation system, a hydraulic and/or pneumatic valve, automatic transmission, air conditioner, or any other engine system or component in need of vacuum.

The Venturi device 100 includes a housing 101, which as illustrated is formed of an upper housing 104 and a lower housing 106 sealingly connected to one another. The designations of upper and lower portions are relative to the drawings as oriented on the page, for descriptive purposes, and are not limited to the illustrated orientation when utilized in an engine system. Preferably, upper housing portion 104 is joined to lower housing portion 106 by sonic welding, heating, or other conventional methods for forming an airtight seal therebetween. The Venturi device includes a first check valve 111 and a second check valve 120 and has a cap 174 closing an auxiliary port.

As shown representatively in FIG. 2, the Venturi device 100 is connectable to a device requiring vacuum 102 at a suction port 110 and creates vacuum for said device 102 by the flow of air through a passageway 144, extending generally the length of the lower housing 106 of the Venturi device, designed to create the Venturi effect. The lower housing portion 106 includes a plurality of ports, some of which are connectable to components or subsystems of the engine. The ports of the lower housing 106 include: (1) a motive port 108, which in one embodiment supplies clean air from the engine intake air cleaner 170, typically obtained upstream of the throttle of the engine; (2) a Venturi gap 160 (a lineal distance between a motive exit 184 and a discharge entrance 186); (3) a discharge port 112, which is the illustrated embodiment is connected to an engine intake manifold 172 downstream of the throttle of the engine; and, optionally, (4) a bypass port 114. Check valve 111 is preferably arranged to prevent fluid from flowing the lower housing 106 to the device requiring vacuum 102. The bypass port 114 may be connected to the device requiring vacuum 102 and, optionally, may include a check valve 120 in the fluid flow path therebetween. Check valve 120 is preferably arranged to prevent fluid from flowing from the bypass port 114 to the application device 102.

As shown in FIG. 2, lower housing 106 includes lower valve seats 124, 126, one each for the first check valve 11 and the second check valve 120. Each lower valve seat 124, 126 is defined by a continuous outer wall 128, 129, and, optionally, a bottom wall such as wall 130 in lower valve seat 124. A bore 132, 133 is defined in each lower valve seat 124, 126, respectively, to allow for air flow communication with air passageway 144. Each lower valve seat 124, 126 includes a plurality of radially spaced fingers 134, 135 extending upwardly from an upper surface thereof. The radially spaced fingers 134, 135 serve to support a seal member 136, 137 translatable between an open position and a closed position based solely on pressure differentials.

Referring again to FIGS. 1-2, the upper housing 104 is configured for mating to or with the lower housing portion 106 to form the check valves 111, 120, if both are present. Upper housing 104 defines a suction passageway 146 extending the length thereof and defines a plurality of ports, some of which are connectable to components or subsystems of the engine. The ports include: (1) a first port 148 that may be capped with cap 174 or may be connected to a component or subsystem of the engine; (2) a second port 150 (part of the inlet port for chamber/cavity 166) in fluid communication with the bore 132 in the lower housing portion 106 which is in fluid communication with the Venturi gap 160, and between which the seal member 136 is disposed; (3) a third port 152 (part of the inlet port for chamber/cavity 167) in fluid communication with the bypass port 114 in the lower housing portion 106, and between which the seal member 137 is disposed; and (4) a suction port 110 which functions as an inlet connecting the Venturi device to the device requiring vacuum 102.

The upper housing 104 includes upper valve seats 125, 127. Each upper valve seat 125, 127 is defined by continuous outer wall 160, 161 and bottom wall 162, 163. Both upper valve seats 125, 127 may include a pin 164, 165 extending downwardly from the bottom walls 162, 163, respectively, toward the lower housing 106. The pins 164, 165 are guides for translation of the sealing members 136, 137 within the cavities 166, 167 defined by the mated upper valve seat 125 with the lower valve seat 124 and defined by the mated upper valve seat 127 with the lower valve seat 126. Accordingly, each sealing member 136, 137 includes a bore therethrough sized and positioned therein for receipt of the pin 164, 165 within its respective cavity 166, 167.

The passageway 144 in the lower housing portion 106 has an inner dimension along a central longitudinal axis that includes a first tapering portion 182 (also referred to herein as the motive cone) in the motive section 180 of the lower housing 106 coupled to a second tapering portion 183 (also referred to herein as the discharge cone) in the discharge section 181 of the lower housing 106. Here, the first tapering portion 182 and the second tapering portion 183 are aligned end to end (outlet end 184 of the motive section 180 to inlet end 186 of the discharge section 181). The inlet ends 188, 186 and the outlet end 184, 189 may be any circular shape, elliptical shape, or some other polygonal form and the gradually, continuously tapering inner dimension extending therefrom may define, but is not limited to, a hyperboloid or a cone. Some example configurations for the outlet end 184 of the motive section 180 and inlet end 186 of the discharge section 181 are presented in co-pending U.S. Pat. No. 9,827,963, incorporated by reference herein in its entirety.

As seen in FIG. 2, the first tapering portion 182 terminates at a fluid junction with bore 132, which is in fluid communication therewith and with the Venturi gap 160, and at this junction the second tapering portion 183 begins and extends away from the first tapering portion 182. The second tapering portion 183 is also in fluid communication with the Venturi gap 160 and the bore 132. The second tapering portion 183 then forms a junction with the bypass port 114 proximate the outlet end 189 of the second tapering portion and is in fluid communication therewith. The first and second tapering portions 182, 183 typically share the central longitudinal axis of the lower housing portion 106. The second tapering portion 183 tapers gradually, continuously from a smaller dimensioned inlet end 186 to a larger dimensioned outlet end 189. The optional bypass port 114 intersects the discharge section 190 as described above to be in fluid communication with the second tapering section 183. The bypass port 114 may intersect the second tapering section 183 adjacent to, but downstream of the outlet end 189. The lower housing 106 may thereafter, i.e., downstream of this intersection of the bypass port, continue with a cylindrically uniform inner passage until it terminates at the discharge port 112. Each of the ports 108 and 112 may include a connector feature on the outer surface thereof for connecting the passageway 144 to hoses or other features in the engine.

When the Venturi device 100 is connected into an engine system, the check valves 111 and 120 functions as follows: as the engine operates, the intake manifold 172 draws air into the motive port 180, through passageway 144 and out the discharge port 112. This creates a partial vacuum in the check valve 111 and passageway 146 to draw seal 136 downward against the plurality of fingers 134, 135. Due to the spacing of fingers 134, 135, fluid flow from passageway 144 to passageway 146 is allowed. The partial vacuum created by the operation of the engine serves in the vacuum assistance of at least the operation of the device requiring vacuum 102. Then as pressure differential change, the first check valve 111 closes and the second check valve 120 opens to allow fluid flow to bypass the Venturi gap 160.

Referring now to FIG. 3, a Venturi device 200 for producing vacuum using a Venturi effect with the inclusion of a solid fletch 220 in the motive passageway 209 is illustrated in a longitudinal cross-section with varying shades of spheres representing air flow of different velocities. Darker spheres represent faster velocities. The device 200 may be used in an engine, for example, in a vehicle's engine (an internal combustion engine) to provide vacuum to a device requiring vacuum as described above. Venturi device 200 includes a housing 201 having an upper housing 204 and a lower housing 206 sealingly connected to one another to define a suction chamber 207 in fluid communication with passageway 244, which extends from the motive entrance 232 of the motive port 208 to the discharge exit 256 of the discharge port 212. The device 200 has at least three ports that are connectable to an engine or components connected to the engine. The ports include: (1) the motive port 208; (2) the suction port 210, which can to a device requiring vacuum as shown in FIG. 2; and (3) a discharge port 212. Each of these ports 208, 210, and 212 may include a connector feature 217 on an outer surface, as shown on the suction port 210, for connecting the respective port to a hose or other component in an engine.

The housing 201 defines a suction chamber 207. The suction chamber may have different configurations, but the one illustrated has cylindrical wall 222 with an enclosed bottom, closed by a cap 218. In another embodiment, the suction chamber when viewed in a transverse cross-section may be generally pear-shaped, as disclosed in co-owned U.S. Pat. No. 10,443,627 having opposing ends walls oriented transverse to a central longitudinal axis of passageway 244.

Still referring to FIG. 3, the motive port 208 defines a motive passageway 209 converging toward the suction chamber 207 and in fluid communication therewith, the discharge port 212 defines a discharge passageway 213 diverging away from the suction chamber 207 and in fluid communication therewith, and the suction port 210 defines a suction passageway 246 in fluid communication with the suction chamber 207 through a first port 250. The suction passageway 246 is typically a cylindrical passageway of constant dimension(s). These converging and diverging sections gradually, continuously taper along the length of at least a portion of the interior passageway 209 and 213. The motive port 208 defines a motive entrance 232 and has a motive exit 236 at the opposing end, which is the terminus of the converging motive passageway 209 proximate or within the suction chamber 207. Similarly, the discharge port 212 defines a discharge entrance 252, proximate or within the suction chamber 207, and a discharge exit 256 at the opposing end. The motive exit 236, is aligned with and spaced apart from the discharge entrance 252 to define Venturi gap 160. The Venturi gap 160, as used herein, means the lineal distance VD between the motive exit 236 and the discharge entrance 252. The motive exit 236 and/or the discharge entrance 252 may have a first corner radius inside the motive passageway 209 as disclosed in co-owned U.S. Pat. No. 10,443,627.

Turning to FIGS. 3-5, the motive passageway 209 terminates in a spout 270 protruding into the suction chamber 207. The spout 270 is disposed spaced apart from all one or more sidewalls 222 of the suction chamber 207, thereby providing suction flow around the entirety of an exterior surface 272 of the spout 270. The exterior surface 272 is converges, gradually and continuously tapers toward the discharge entrance 252. Similarly, the discharge passageway 213 terminates in a spout 274 protruding into the suction chamber opposite the spout 270. The spout 274 is disposed spaced apart from all one or more sidewalls 222 of the suction chamber 207, thereby providing suction flow around the entirety of an exterior surface of spout 274.

As shown in FIG. 3, the motive passageway 209 and the discharge passageway 213 both converge in cross-sectional area toward the suction chamber 207 as a hyperbolic or parabolic function that defines flow lines at the motive exit 236 that are parallel to one another, i.e., the slope of both functions is zero at the Venturi gap. The motive entrance 232 and the discharge exit 256 may be the same shape or different and may be generally rectangular, elliptical or circular. In FIG. 3, motive entrance 232 and the discharge exit 256 are depicted as circular, but the motive exit 236 and the discharge entrance 252, i.e., the interior shape of each opening, are elliptically-shaped. The interior of the motive passageway 209 and/or the discharge passageway 213 may be constructed to have the same general shape.

As best seen in FIG. 3, the cross-sectional area of the motive exit 236 is smaller than the cross-sectional area of the discharge entrance 252; this difference is referred to as the offset. The offset of the cross-sectional areas may vary depending upon the parameters of the system into which the device 100 is to be incorporated. In one embodiment, the offset may be in the range of about 0.1 mm to about 2.5 mm, or more preferably in a range of about 0.3 mm to about 1.5 mm. In another embodiment, the offset may be in the range of about 0.5 mm to about 1.2 mm, or more preferably in a range of about 0.7 mm to about 1.0 mm.

The fletch 220 serves to block motive flow within the motive passageway 209 at the center of the motive passageway because flow at this position does not provide any suction. It is more effective to concentrate all the flow along the interior walls defining the motive passageway because this flow produces suction as it passes through the Venturi gap into the discharge passageway. The fletch 220 has a first solid body section 280 positioned centrally within the motive passageway 209 and defining a first end 282 at the motive exit 236 (flush therewith) as shown in FIGS. 3 and 5 or within 1-5 mm inward within the motive passageway 209 away from the motive exit 236 as shown in FIG. 4, which is referred to herein as a recess depth DR. The fletch 220 has a second solid body section 284 extending from the first solid body section 280 through a wall 290 of the motive port 208 or motive passageway 209 and terminating with a second end 286 mateable with a protrusion 291 extending from the upper housing 204 or seatable within a receptacle 292 in a wall of the upper housing 204. The second solid body section 284 may be perpendicular to the first solid body section 280 as shown in the figures but is not limited thereto. An elbow 288 may be present to connect the first and second solid body sections 280, 284 to one another. The two solid body section may form one continuous generally L-shaped solid body.

As shown in FIGS. 4 and 5, the motive exit 236 and the discharge entrance 252 are non-circular as explained in co-owned U.S. Pat. No. 9,827,963 because a non-circular shape having the same area as a passageway with a circular cross-section provides an increase in the ratio of perimeter to area. There are an infinite number of possible shapes that are not circular, each with a perimeter and a cross-sectional area. These include polygons, or straight-line segments connected to each other, non-circular curves, and even fractal curves. To minimize cost, a curve is simpler and easy to manufacture and inspect and has a desirable perimeter length. In particular, elliptical- or polygonal-shaped embodiments for the internal cross-sections of the motive and discharge passageways are cost effective.

In the embodiment of FIG. 4, the motive exit 236 and motive passageway 209 have a rectangular shape (a square being included as one type of rectangle), in particular an internal rectangular profile. Likewise, the fletch 220 has an external rectangular shape matching that of the motive passageway 209, but of a smaller dimension to fill the central flow area of the motive passageway. Depending on the size of the orifice defining the motive passageway surrounding the fletch 220, the flow area is in a range of 0.5 times to 4 times the perimeter of the fletch. Thus, the first solid body section 280 of the fletch 220 has a rectangular shape matching the shape of the interior profile of the motive passageway within the diverging portion thereof. The first end 282 is recessed within the motive passageway away from the motive exit 236. The depth of the recess DR is in a range of 1 mm to 5 mm. Here too, the spout 274 defining the discharge entrance 252 has a rectangular shape for its interior and exterior profile.

In the embodiment of FIG. 5, the motive exit 236 and motive passageway 209 have an elliptical shape (a circle being included as one type of an ellipse), in particular an internal elliptical profile. Likewise, the fletch 220 has an external elliptical shape matching that of the motive passageway 209, but of a smaller dimension to fill the central flow area of the motive passageway. Thus, the first solid body section 280 of the fletch 220 has an elliptical shape matching the shape of the interior profile of the motive passageway within the diverging portion thereof. Here, the first end 282 is flush with the motive exit 236. Here too, the spout 274 defining the discharge entrance 252 has an elliptical shape for its interior and exterior profile.

Referring again to FIG. 3, the suction chamber 207 defines a check valve housing a sealing disc 611 translatable between an open position and a closed position based solely on pressure differentials within a system in which the Venturi device is in fluid communication. The open position may be defined by fingers protruding from positions proximate the motive passageway and the discharge passageway toward the suction passageway as disclosed above with respect to FIG. 2 or by a check valve insert 505 shown in FIG. 3 that define a first seat for the sealing disc 611. The check valve insert 505 has an outer support 570 seatable in the suction chamber 207, an upper surface 571 and a lower surface 572, an inner annular ring 574 spaced radially inward from the outer support 570 by a rib 576 that angles axially toward a central longitudinal axis C to position an upper surface 575 of the inner annular ring 574 a distance axially D1 beyond the upper surface 571 of the outer support. The check valve insert 505 may two ribs, three ribs, four ribs, or ten ribs connecting the inner annular ring 574 to the outer support 570 as shown in co-owned, co-pending U.S. 2019/0323618, filed Apr. 23, 2019. These are just example embodiments, and any number of ribs are possible, including a single rib.

The outer support 570 may be an annular ring that is circular, but the outer support may be oval or may be a polygonal-shaped ring or any other shaped needed to be seatable within the suction chamber at a desired position. The inner annular ring 574 is typically circular or oval in shape. In one embodiment, the upper surface 575 is a continuous surface in one plane perpendicular to the central longitudinal axis C. In another embodiments, the upper surface 575 undulates with two opposing troughs 579. In yet another embodiment, the upper surface 575 is angled downward and radially outward toward the outer support 570 over a minor arc extending 20 degrees up to 170 degrees along the inner annular ring 574, thereby defining an inclined surface portion of the upper surface.

In operation, the device 200, in particular the suction port 210, is connected to a device requiring vacuum (see FIG. 2), and the device 200 creates vacuum for said device by the flow of fluid, typically air, through passageway 244, extending generally the length of the device, and through the Venturi gap 160 defined thereby within the suction chamber 207. The flow of fluid from the motive port 208 to the discharge port 212 draws the fluid down the motive passageway, which can be a straight cone, a hyperbolic profile, or a parabolic profile, as described above and the reduction in area causes the velocity of the air to increase. Because this is an enclosed space, the laws of fluid mechanics state that the static pressure must decrease when the fluid velocity increases. As air continues to travel to the discharge port, it travels through the discharge entrance 252 and discharge passageway 213, which is either a straight cone, a hyperbolic profile, or a parabolic profile. This fluid flow creates suction drawing fluid in through the suction port 210, along the suction passageway 246 and into the suction chamber 207 through the first port 250.

Referring now to FIGS. 6-8, a second embodiment of a solid fletch 320 within the motive passageway 209 of the lower housing 206′ is disclosed. The lower housing 206′ has the same or similar features to those of FIGS. 3-7, which includes a suction chamber 207 in fluid communication with passageway 244, which extends from the motive entrance 232 of the motive port 208 to the discharge exit 256 of the discharge port 212. The motive port 208 defines internally a first portion 211 of passageway 244 and, downstream of the first portion 211, the motive passageway 209. The first portion 211 may be circular and of constant diameter. The motive passageway 209, as described above, convergingly tapers toward the motive exit 236.

The fletch 320 is a solid fletch, in contrast with a hollow fletch of co-pending U.S. application Ser. No. 17/645,827, filed on the same day as this pending application, that serves to block motive flow within the motive passageway 209 at the center of the motive passageway because flow at this position does not provide any suction. The fletch 320 has a first end 322 terminating proximate or at the motive exit 236 as discussed above. The first end 322 has an exterior shape matching the interior shape of the motive passageway 209 but of smaller dimensions, also as explained above. In FIGS. 6-8, the exterior shape of the first end 322 of the fletch is rectangular (which includes square) in cross-section. The fletch 320 has a second end 324, opposite the first end 322, positioned proximate the beginning of the motive passageway 209. As labeled in FIG. 8, the fletch 320 has a width W1 and a height H1 where the width W1 is oriented relative to the smallest dimension of the partition 340, described below, and according to an x, y, z axis shown therein. Length is in the x direction, H1 is in the Y direction, and W1 is in the z direction. The height H1 is constant along the length between the first end 322 and the second end 324, but the width W1 gradually, continuously increases from the second end 324 to the first end 324 according to a linear function, thereby defining a quadrilateral frustum. The width W1 is in a range of about 1.5 times to 10 times the width thereof at the first end 322 as compared to the width at the second end 324.

Extending from the second end 324 of the fletch 320 in the upstream direction is a partition 340. The partition 340 is seated within the first portion 211 of the motive port 208 with opposing first sides 342, 344, which define the width W2 of the partition 340, against or integrally molded as part of the interior surface of the first portion 211, thereby dividing the first portion 211 into two flow paths along opposing second sides 346, 348, which extend between the opposing first sides 342, 344. The opposing second sides 346, 348 define a height H2 of the partition 340. The height H2 of the partition 340 tapers proximate the fletch 320 to reduce H2 to H1 while maintaining the width, i.e., W2=W1 at the transition of the partition 340 to the fletch 320.

The lower housing 306 and the fletch-partition unit 310 may both be made of plastic. These parts may be made by an injection molding process or an infusion molding process, so that the partition 340 of the fletch-partition unit 310 is integral with the housing by virtue of the connection of opposing first sides 342, 344 to the inner surface of the first portion 211 of the passageway 244. Alternatively, the opposing first sides 342, 344 may be fixed to the inner surface of the first portion 211 by an adhesive. The lower housing 306 and fletch-partition unit 310 may be made of other materials, such as metal and the attachment may be accomplished by other methods, as will be appreciated by those skilled in the art. Importantly, the fletch-partition unit 310 is made of a stiff material and its shape and attachment via the partition 340 eliminate vibration and/or oscillations of the fletch-partition unit 310 which could be caused by slight differentials in pressure on opposite sides of the fletch 320 as fluid flows through the motive passage 209, thereby defining a quiet fletch 320. In other words, no audible noise is emitted during the flow of fluid through passageway 244 as a result of the presence of the letch-partition unit 310.

The transition of the partition 340 to the tapering quadrilateral frustum shaped fletch 320, preferably square or rectangular in cross-section, gives the fletch-partition unit 310 a rigid construction when installed in the passageway 244 as discussed above. Because of the firm connection of the partition 340 within the lower body 306, as well as the light and stiff construction of the fletch-partition unit 310, the fletch 320 has a relatively high natural frequency which is measured by the formula (K/M)0.2, where K is the stiffness of the part, and M is the mass. As a result, the relatively low, noise generating, frequencies are eliminated during operation of the evacuator employing the fletch insert as herein described. Furthermore, the presence of the fletch-partition unit 310 provides minimal interference with the motive flow through the passageway 244 while still providing an increase in the suction flow.

In operation, fluid enters the motive entrance 332 is divided into partial paths on opposite sides of the partition 340. The fluid flows in the longitudinal direction of the passageway 244 and the two partial flows merge together at the beginning of the motive passageway 209 where the fletch 320 begins to divergingly taper toward the Venturi gap 260. Because there is a clearance around the entire exterior surface of the fletch 320 within the motive passageway 209, there will be a circumferentially continuous flow of fluid around the fletch 320 therein. The result is minimal interference with the fluid flow entering and exiting the motive passageway, in particular entering the Venturi gap 260.

Discharge passageway 312 has a discharge entrance 352 in the suction chamber 307 and divergingly tapers away from the Venturi gap 260 toward a motive exit 336. Each of the motive exit 336 and discharge entrance 352 may be rectangularly shaped, interior profile and exterior profile, and may each transition to a circular cross section in a direction extending away from the suction chamber 307.

Although the invention is shown and described with respect to certain embodiments, it is obvious that modifications will occur to those skilled in the art upon reading and understanding the specification, and the present invention includes all such modifications.

Claims

1. A device for producing a vacuum using the Venturi effect, comprising:

a first housing defining a suction chamber, defining a motive passageway which includes a tapering portion most proximate the suction chamber that convergingly tapers from a motive entrance to a motive exit into the suction chamber, the motive exit being in fluid communication with the suction chamber, and defining a discharge passageway having a discharge entrance in fluid communication with the suction chamber and divergingly tapering as it extends away from the suction chamber; and
a fletch having a first solid body section positioned centrally within the motive passageway without connection to a wall of the tapering portion and defining a first end at or proximate the motive exit, thereby providing a circumferentially continuous flow of fluid around the fletch, and a second solid body section extending from the first solid body section perpendicular thereto and through a motive passageway wall upstream of the tapering portion;
a second housing having an airtight seal with the first housing to define a portion of the suction chamber and a suction passageway;
wherein an end of the second solid body section extends through the motive passageway wall is mated to the second housing.

2. The device of claim 1, wherein the motive passageway and the discharge passageway each protrude into the suction chamber as a spout and the exterior surface of the spout of the motive passageway converges toward the motive exit.

3. The device of claim 1, wherein the suction chamber defines a check valve housing a sealing disc translatable between an open position and a closed position based solely on pressure differentials.

4. The device of claim 3, wherein the open position is defined by fingers protruding from positions proximate the motive passageway and the discharge passageway toward a suction passageway or by an insert comprising an outer support seatable in the suction chamber and an inner annular ring spaced radially inward from the outer support by a rib that angles axially toward a central longitudinal axis of the suction chamber to position an upper surface of the inner annular ring a distance axially beyond an upper surface of the outer support.

5. The device of claim 4, further comprising a cap sealingly fitted to the suction chamber to define a bottom thereof opposite the suction passageway.

6. The device of claim 1, wherein the exterior shape of the first solid body section matches the shape of the interior profile of the tapering portion of the motive passageway.

7. The device of claim 6, wherein the first solid body section has a rectangular cross-section or an elliptical cross-section.

8. The device of claim 1, wherein the fletch is integrally molded as part of the housing.

Referenced Cited
U.S. Patent Documents
3845904 November 1974 Mocarski
4308241 December 29, 1981 deVries
4708829 November 24, 1987 Bylehm et al.
5779523 July 14, 1998 Mesher
6017195 January 25, 2000 Skaggs
6293294 September 25, 2001 Loeb et al.
6427661 August 6, 2002 Spannbauer
6732524 May 11, 2004 Sponton
8474270 July 2, 2013 Schott et al.
9581060 February 28, 2017 Fletcher et al.
9605625 March 28, 2017 Balsdon
9827963 November 28, 2017 Fletcher et al.
10151283 December 11, 2018 Graichen
10273978 April 30, 2019 Fletcher et al.
10443627 October 15, 2019 Fletcher et al.
20150300377 October 22, 2015 Tell
20150354600 December 10, 2015 Fletcher
20150354601 December 10, 2015 Tell
20160061160 March 3, 2016 Fletcher
20160245236 August 25, 2016 Graichen et al.
20160265557 September 15, 2016 Fletcher
20170016414 January 19, 2017 Fletcher
20190323618 October 24, 2019 Fletcher et al.
Foreign Patent Documents
0243783 April 1987 EP
1279166 June 1972 GB
2274110 December 1996 GB
Other references
  • International Search Report and Written Opinion in International Patent Application No. PCT/US2021/073109 dated Feb. 24, 2022, pp. 9.
Patent History
Patent number: 11614098
Type: Grant
Filed: Dec 23, 2021
Date of Patent: Mar 28, 2023
Patent Publication Number: 20220205460
Assignee: Dayco IP Holdings, LLC (Roseville, MI)
Inventors: Keith Hampton (Ann Arbor, MI), Corey Henderson (Bloomfield Hills, MI)
Primary Examiner: Nathan C Zollinger
Assistant Examiner: Timothy P Solak
Application Number: 17/645,835
Classifications
Current U.S. Class: Fluid Pressure Operated Valve (mixed Or Unmixed) (239/410)
International Classification: F04F 5/20 (20060101); F04F 5/46 (20060101); F04F 5/14 (20060101);