Partially transparent wound dressing
A partially transparent dressing includes a fluid management core having a first side and a second, wound-facing side. The fluid management core includes an absorbent material and a plurality of optically transparent windows. The dressing includes a barrier layer coupled to the first side and a patient interface layer coupled to the second side. A fluid communication port is disposed in the second side. An opening is disposed in the patient interface layer. The opening is configured to receive fluid from a wound.
Latest Solventum Intellectual Properties Company Patents:
This application is a US national phase application under 35 USC § 371 of International Application No. PCT/US2020/015188 filed on Jan. 27, 2020, which claims the benefit of priority to U.S. Provisional Application No. 62/799,998, entitled “PARTIALLY TRANSPARENT WOUND DRESSING” filed on Feb. 1, 2019, which are both hereby incorporated herein by reference in its their entireties.
BACKGROUNDThe present disclosure relates generally to wound dressings. More specifically, the present disclosure relates to a partially transparent wound dressing.
In many instances, the condition of a wound can be determined through visual assessment by a caregiver or trained clinician. The condition of the wound may be determined, in part, by the color and surface texture of the wound along with the amount of discharge present at the wound site. These features assist caregivers in distinguishing between healthy wound beds and old or infected wound beds.
In order to visually assess the wound site, a caregiver must first remove the dressing from the wound site. Conventional wound dressings are opaque and include materials that become discolored during use, preventing the caregiver from visually inspecting the wound site. The periodic examination and redressing of the wound may cause patient discomfort and distress. Additionally, in many cases the dressing is removed before it is fully saturated, leading to waste and increasing the cost of care.
SUMMARYOne implementation of the present disclosure is a dressing. The dressing includes a fluid management core having a first side and a second, wound-facing side. The fluid management core includes an absorbent material and a plurality of windows. The second side includes a fluid communication port. The dressing also includes a barrier layer and a patient interface layer. The barrier layer is coupled to the first side of the fluid management core. The patient interface layer is coupled to the second side of the fluid management core. The patient interface layer includes an opening configured to receive fluid from a wound.
In any of the above embodiments, each window of the plurality of windows may be configured to provide partial visibility through the fluid management core.
In some embodiments, the fluid management core includes a first fluid management layer and a second fluid management layer. The absorbent material may be sandwiched between the first fluid management layer and the second fluid management layer.
In some embodiments, the first fluid management layer includes a first plurality of extensions extending toward the second fluid management layer. The second fluid management layer may be coupled to the first plurality of extensions. The plurality of extensions may include a plurality of geodesic structures. In some embodiments, the second fluid management layer may include a second plurality of extensions aligned with the first plurality of extensions. The first plurality of extensions may be coupled to the second plurality of extensions.
In any of the above embodiments, the first fluid management layer and the second fluid management layer may be substantially identical.
In any of the above embodiments, each window of the plurality of windows may have a diameter within a range between approximately 3 mm and 15 mm.
In any of the above embodiments, the fluid communication port may include a fenestration configured to receive fluid from the opening in the patient interface layer.
In any of the above embodiments, the barrier layer may include an aperture. The aperture may be substantially centered over the first fluid management layer.
In any of the above embodiments, the fluid management core may be centered over the patient interface layer. The barrier layer may be coupled to the patient interface layer.
In some embodiments, the dressing includes a wicking layer sandwiched between the fluid management core and the patient interface layer. The wicking layer may include a plurality of perforations that are substantially aligned with the windows.
In some embodiments, the dressing includes a fluid removal port disposed in the first side of the fluid management core. The fluid removal port may be configured to allow fluid to be removed from the fluid management core.
Another implementation is a dressing. The dressing includes a barrier layer, a first fluid management layer, and a second fluid management layer. The first fluid management layer is coupled to the barrier layer. The first fluid management layer includes a first plurality of extensions. The second fluid management layer is coupled to a first plurality of extensions. One of the fluid management layers includes a fluid communication port. The dressing also includes an absorbent layer disposed in a cavity between the first fluid management layer and the second fluid management layer. The dressing further includes a patient interface layer coupled to one of the fluid management layers. The patient interface layer includes an opening that is at least partially aligned with the fluid communication port.
In some embodiments, the first plurality of extensions includes a plurality of geodesic structures.
In some embodiments, the second fluid management layer includes a second plurality of extensions coupled to the first plurality of extensions. The first fluid management layer and the second fluid management layer may be substantially identical except for the fluid communication port.
In some embodiments, a contact area between each extension of the first plurality of extensions and the second fluid management layer forms a window having a diameter within a range between approximately 3 mm and 15 mm.
In some embodiments, the dressing further includes a wicking layer sandwiched between the patient interface layer and one of the fluid management layers. The wicking layer may include a plurality of perforations substantially aligned with the first plurality of extensions.
In some embodiments, the dressing further includes a fluid removal port disposed in one of the fluid management layers. The fluid removal port may be configured to allow fluid to be removed from the absorbent layer.
Another implementation of the present disclosure is a method of making a dressing. The method includes providing a barrier layer, providing a first fluid management layer having a first plurality of extensions, providing an absorbent layer, providing a second fluid management layer having a fluid communication port, and providing a patient interface layer having an opening. The method includes placing the absorbent layer onto one of the fluid management layers and joining the fluid management layers to form a fluid management core. The method also includes placing the fluid management core onto the patient interface layer. The method further includes placing the barrier layer onto the fluid management core opposite the patient interface layer.
In some embodiments, the method includes aligning a first plurality of extensions on the first fluid management core with a second plurality of extensions on the second fluid management core.
In some embodiments, the method includes aligning the opening with the fluid communication port.
In some embodiments, the method includes printing the absorbent layer onto one of the fluid management layers.
In some embodiments, the method includes bonding the fluid management core to the patient interface layer and the barrier layer.
Those skilled in the art will appreciate that the summary is illustrative only and is not intended to be in any way limiting. Other aspects, inventive features, and advantages of the devices and/or processes described herein, as defined solely by the claims, will become apparent in the detailed description set forth herein and taken in conjunction with the accompanying drawings.
Overview
Referring generally to the FIGURES, a partially transparent dressing is provided that allows a caregiver to view a wound site without having to remove and replace the dressing. The dressing includes a patient interface layer, a barrier layer, and a fluid management core. The fluid management core is “sandwiched” or otherwise disposed between the patient interface layer and the barrier layer. The fluid management core includes a plurality of windows through which the wound site may be visually examined. According to an exemplary embodiment, the fluid management core includes a first fluid management layer and a second fluid management layer. The first fluid management layer is coupled to the second fluid management layer. The fluid management layers are spaced apart from one another by a plurality of extensions. The extensions may be formed into one or both of the fluid management layers. The extensions may include cylindrical depressions or another geodesic structure formed into the fluid management layers. A contact area between each pair of extensions, or between each extension and the first or second fluid management layer, forms an optically transparent window through which the wound bed can be observed.
The fluid management core includes an absorbent material deposited in a cavity between the fluid management layers. The absorbent material is configured to absorb and remove wound exudate from the wound site. Fluids are received from the wound site through a fluid communication port disposed in the second side of the fluid management core. The fluid communication port is substantially aligned with an opening in the patient interface layer. The space in between the fluid management layers provides room for the absorbent material to expand as fluid enters the dressing. The extensions provide pressure relieving benefits to the dressing, preventing significant structural deformation or collapse of the fluid management core under compression, helping to retain fluid in the absorbent layer, and reducing the risk of maceration associated with fluid retention at the wound site.
By providing continuous visual access to the wound site, the dressing allows a caregiver to identify potential risks and signs of poor wound health at a much earlier stage of progression, while limiting the amount of patient trauma associated with wound redressing. These and other features and advantages of the dressing are described in detail below.
Dressing Construction
Fluid passing through the plurality of fluid communication ports 406 is received within a cavity defined by two opposing members of the fluid management core 400. The opposing members include a first fluid management layer 408 and second fluid management layer 410. As shown in
As shown in
As shown in
The fluid management core 400 is formed by a layered arrangement of the first fluid management layer 408, the absorbent layer 417, and the second fluid management layer 410. As shown in
Referring now to
Referring to
The combination of features shown in the exemplary embodiment of
First Fluid Management Layer
In some embodiments, the first fluid management layer 408 is configured to allow fluid to evaporate into the surroundings. The material thickness and type may be selected based on a target moisture vapor transmission rate (MVTR), which maximizes the healing benefits of the dressing 100. For example, the MVTR may be within a range between 250 g/m2/day to 400 g/m2/day or greater. In some embodiments, the MVTR may increase as part of the thermoforming process.
Second Fluid Management Layer
As shown in
Absorbent Layer
As shown in
In some embodiments, absorbent layer 417 may be formed from or otherwise include a superabsorbent polymer in the form of granules. The superabsorbent polymer may include Luquasorb 1160 or 1161, such as may be commercially available from BASF. The granules may be contained in a water-soluble carrier polymer. One example of the water-soluble carrier polymer is polyvinylpyrrolidone (PVP). The superabsorbent polymer and the water-soluble polymer may be formed into a slurry or a suspension using an organic solvent. The organic solvent may include propanone or propanol and may aid in delivery of the absorbent layer 417 to a side of the of the fluid management layers 408, 410. In some embodiments, to increase the softness of the superabsorbent granules, a plasticizer may be added to the slurry. In one embodiment, the plasticizer may be water. In some embodiments, the slurry to form the absorbent layer 417 may have a formulation of 20 parts by mass of PVP, 10 parts by mass of a superabsorbent polymer, 1 part by mass of glycerol, and 100 parts by mass of propanone. In some embodiments, to plasticize the granules, 1 part to 2 parts by mass of water may be added to the slurry mixture. In other embodiments, a water-soluble polymer superabsorbent precursor, such as acrylic acid or 2-acrylamido-2-methyl-propanesulfonic acid (AMPS), with suitable UV curing additives, may replace the superabsorbent polymer. Such a precursor may be a relatively low viscosity solution and can be printed onto the fluid management layers 408, 410 and exposed to UV light to form a soft gel, eliminating the need for a plasticizer. In some embodiments, the water-soluble polymer superabsorbent precursor may be similar to that used for preparing hydrogel coatings.
The slurry mixture is applied to one side of fluid management layers 408, 410 to form the absorbent layer 417. In some embodiments, the slurry may be applied to the fluid management layers 408, 410 through standard printing methods, such as silk screen printing, gravure printing, or by x-y plotter printing. The absorbent layer 417 may be in any non-contiguous shapes such as circles, squares, hexagons, hoops/halos, stars, crosses, a range of lines, or any combination of shapes disposed about the cylindrical protrusions. The absorbent layer 417 may be printed such it is substantially evenly distributed on the fluid management layers 408, 410 in between the extensions 412, 414. In other embodiments, the absorbent layer 417 may be printed in an uneven (e.g. non-uniform, random, etc.) pattern on the fluid management layers 408, 410. In some embodiments, the absorbent layer 417 may include a flexible plasticized hydrophilic polymer matrix having a substantially continuous internal structure. The absorbent layer 417 may be configured to swell upon absorption of fluid, such as wound fluid exudate, and expand within the space between the fluid management layers 408, 410.
As shown in
Patient Interface Layer
Referring to
As shown in
Barrier Layer
Referring to
Additional Layers and Configurations
As shown in
In some embodiments, the negative pressure wound therapy system includes a canister configured to receive and store fluids from the wound bed. Advantageously, the canister eliminates the need for the hydrophobic filter 510 and the absorbent layer in the fluid management core, thereby reducing the number of layers that might otherwise obscure the view of the wound bed.
In some embodiments, the dressing 500 may additionally include an osmotic layer configured to filter the wound exudate before the fluid reaches the absorbent layer (e.g., to remove particulate from the wound exudate, etc.). Fluid received by the absorbent layer would be substantially clear/transparent and would allow the caregiver greater window of clarity across the dressing 500. The osmostic layer may be disposed in between the absorbent layer and the wound site to prevent any discoloration of the absorbent layer.
Method of Making a Wound Dressing
Referring now to
The layers may be joined (e.g., connected, etc.) prior to applying the dressing to a wound site. The method 600 includes placing the absorbent layer onto one of the fluid management layers 612. Operation 612 may include depositing an SAP onto the second fluid management layer. The SAP may be deposited onto the same side of the second fluid management layer as the extensions. The SAP may be deposited in between the extensions. Operation 612 may also include depositing an SAP onto the first fluid management layer. As shown in
The method 600 includes placing the fluid management core onto the patient interface layer 614. Operation 614 may include centering the fluid management core above the patient interface layer. Operation 614 may include aligning the fluid communication point with the opening on the patient interface layer. Operation 614 may include coupling (e.g., bonding using a suitable adhesive, etc.) a second, wound-facing side of the fluid management core to the patient interface layer. The patient interface layer may at least partially seal the back side of second fluid management layer (e.g., the second side of the fluid management core) so as to prevent fluid from entering depressions formed into the second side by the second plurality of extensions.
The method 600 further includes placing the barrier layer onto the fluid management core 616. Operation 616 may include centering an aperture of the barrier layer over the fluid management core. Operation 616 may include coupling (e.g., bonding using a suitable adhesive, etc.) the barrier layer to both the fluid management core and the patient interface layer. Together, the barrier layer and the patient interface layer may form a joint proximate to an outer perimeter of the fluid management core, thereby preventing fluid from entering or leaving the fluid management core through a side of the fluid management core. In other exemplary embodiments, more or fewer operations may be performed to produce (e.g., make, manufacture, etc.) the dressing.
Configuration of Exemplary Embodiments
The construction and arrangement of the systems and methods as shown in the various exemplary embodiments are illustrative only. Although only a few embodiments have been described in detail in this disclosure, many modifications are possible (e.g., variations in sizes, dimensions, structures, shapes and proportions of the various elements, values of parameters, mounting arrangements, use of materials, colors, orientations, etc.). For example, the position of elements can be reversed or otherwise varied and the nature or number of discrete elements or positions can be altered or varied. Accordingly, all such modifications are intended to be included within the scope of the present disclosure. The order or sequence of any process or method steps can be varied or re-sequenced according to alternative embodiments. Other substitutions, modifications, changes, and omissions can be made in the design, operating conditions and arrangement of the exemplary embodiments without departing from the scope of the present disclosure.
Claims
1. A dressing comprising:
- a fluid management core having a first side and a second, wound-facing side, the fluid management core comprising an absorbent material and a plurality of windows, the second side comprising a fluid communication port in fluid communication with the absorbent material, wherein the fluid management core further comprises: a first fluid management layer comprising a first plurality of extensions, and a second fluid management layer comprising a second plurality of extensions, wherein the first plurality of extensions are aligned with and coupled to the second plurality of extensions;
- a barrier layer coupled to the first side of the fluid management core; and
- a patient interface layer coupled to the second side of the fluid management core, wherein the patient interface layer includes an opening, and wherein the opening is configured to receive fluid from a wound.
2. The dressing of claim 1, wherein each window of the plurality of windows is optically transparent or translucent, and configured to provide at least partial visibility through the fluid management core.
3. The dressing of claim 1,
- wherein the absorbent material is sandwiched between the first fluid management layer and the second fluid management layer.
4. The dressing of claim 1, wherein the first plurality of extensions extend toward the second fluid management layer.
5. The dressing of claim 1, wherein the first plurality of extensions comprises a plurality of geodesic structures.
6. The dressing of claim 1, wherein the fluid communication port comprises a fenestration configured to receive fluid from the opening in the patient interface layer.
7. The dressing of claim 1, wherein the barrier layer comprises an aperture, and wherein the aperture is centered over the first fluid management layer.
8. The dressing of claim 1, wherein the fluid management core is centered over the patient interface layer, and wherein the barrier layer is coupled to the patient interface layer.
9. The dressing of claim 1, further comprising a wicking layer sandwiched between the fluid management core and the patient interface layer, wherein the wicking layer comprises a plurality of perforations, and wherein at least one of the perforations is aligned with one of the windows.
10. A dressing, comprising:
- a barrier layer;
- a first fluid management layer coupled to the barrier layer, the first fluid management layer comprising a first plurality of extensions;
- a second fluid management layer coupled to the first plurality of extensions to define a plurality of optically transparent or translucent windows, and a cavity formed around the coupled extensions and between the first fluid management layer and the second fluid management layer, and wherein one of the fluid management layers comprises a fluid communication port in fluid communication with the cavity;
- an absorbent layer disposed in the cavity; and
- a patient interface layer coupled to one of the first fluid management layer and the second fluid management layer, the patient interface layer comprising an opening, wherein the opening is at least partially aligned with the fluid communication port.
11. The dressing of claim 10, wherein the second fluid management layer comprises a second plurality of extensions, and wherein the first plurality of extensions is coupled to the second plurality of extensions.
12. The dressing of claim 11, wherein the first fluid management layer and the second fluid management layer are identical except for the fluid communication port.
13. The dressing of claim 10, wherein the first plurality of extensions comprises a plurality of geodesic structures.
14. The dressing of claim 10, wherein a portion of each extension of the first plurality of extensions and the second fluid management layer forms a window having a diameter within a range between approximately 3 mm and 15 mm.
15. The dressing of claim 10, wherein the fluid communication port comprises a fenestration in the second fluid management layer.
16. The dressing of claim 10, wherein the barrier layer comprises an aperture, and wherein the aperture is centered over the first fluid management layer.
17. The dressing of claim 10, wherein the fluid management layers are centered over the patient interface layer, wherein the barrier layer is coupled to the patient interface layer.
18. The dressing of claim 10, further comprising a wicking layer sandwiched between the patient interface layer and one of the fluid management layers, wherein the wicking layer comprises a plurality of perforations, and wherein at least one of the perforations is aligned with an extension from the first plurality of extensions.
19. The dressing of claim 10, further comprising a fluid removal port disposed in one of the fluid management layers, wherein the fluid removal port is configured to allow fluid to be removed from the absorbent layer.
20. A method of making a dressing, comprising:
- providing a barrier layer;
- providing a first fluid management layer, the first fluid management layer comprising a first plurality of extensions;
- providing a second fluid management layer comprising a second plurality of extensions, wherein one of the fluid management layers comprises a fluid communication port;
- providing a patient interface layer comprising an opening;
- placing an absorbent layer onto one of the first fluid management layer and the second fluid management layer;
- joining the first fluid management layer and the second fluid management layer, wherein the absorbent layer is in fluid communication with the fluid communication port and disposed in between the first fluid management layer and the second fluid management layer to define a fluid management core;
- aligning and coupling the first plurality of extensions with the second plurality of extensions to form a plurality of optically transparent or translucent windows;
- placing the fluid management core onto the patient interface layer; and
- placing the barrier layer onto the fluid management core opposite the patient interface layer.
21. The method of claim 20, further comprising aligning the opening with the fluid communication port.
22. The method of claim 20, further comprising printing the absorbent layer onto one of the fluid management layers.
23. The method of claim 20, further comprising bonding the fluid management core to the patient interface layer and the barrier layer.
1355846 | October 1920 | Rannells |
2547758 | April 1951 | Keeling |
2632443 | March 1953 | Lesher |
2682873 | July 1954 | Evans et al. |
2910763 | November 1959 | Lauterbach |
2969057 | January 1961 | Simmons |
3066672 | December 1962 | Crosby, Jr. et al. |
3367332 | February 1968 | Groves |
3520300 | July 1970 | Flower, Jr. |
3568675 | March 1971 | Harvey |
3648692 | March 1972 | Wheeler |
3682180 | August 1972 | McFarlane |
3826254 | July 1974 | Mellor |
4080970 | March 28, 1978 | Miller |
4096853 | June 27, 1978 | Weigand |
4139004 | February 13, 1979 | Gonzalez, Jr. |
4165748 | August 28, 1979 | Johnson |
4184510 | January 22, 1980 | Murry et al. |
4233969 | November 18, 1980 | Lock et al. |
4245630 | January 20, 1981 | Lloyd et al. |
4256109 | March 17, 1981 | Nichols |
4261363 | April 14, 1981 | Russo |
4275721 | June 30, 1981 | Olson |
4284079 | August 18, 1981 | Adair |
4297995 | November 3, 1981 | Golub |
4333468 | June 8, 1982 | Geist |
4373519 | February 15, 1983 | Errede et al. |
4382441 | May 10, 1983 | Svedman |
4392853 | July 12, 1983 | Muto |
4392858 | July 12, 1983 | George et al. |
4419097 | December 6, 1983 | Rowland |
4465485 | August 14, 1984 | Kashmer et al. |
4475909 | October 9, 1984 | Eisenberg |
4480638 | November 6, 1984 | Schmid |
4525166 | June 25, 1985 | Leclerc |
4525374 | June 25, 1985 | Vaillancourt |
4540412 | September 10, 1985 | Van Overloop |
4543100 | September 24, 1985 | Brodsky |
4548202 | October 22, 1985 | Duncan |
4551139 | November 5, 1985 | Plaas et al. |
4569348 | February 11, 1986 | Hasslinger |
4605399 | August 12, 1986 | Weston et al. |
4608041 | August 26, 1986 | Nielsen |
4640688 | February 3, 1987 | Hauser |
4655754 | April 7, 1987 | Richmond et al. |
4664662 | May 12, 1987 | Webster |
4710165 | December 1, 1987 | McNeil et al. |
4733659 | March 29, 1988 | Edenbaum et al. |
4743232 | May 10, 1988 | Kruger |
4758220 | July 19, 1988 | Sundblom et al. |
4787888 | November 29, 1988 | Fox |
4826494 | May 2, 1989 | Richmond et al. |
4838883 | June 13, 1989 | Matsuura |
4840187 | June 20, 1989 | Brazier |
4863449 | September 5, 1989 | Therriault et al. |
4872450 | October 10, 1989 | Austad |
4878901 | November 7, 1989 | Sachse |
4897081 | January 30, 1990 | Poirier et al. |
4906233 | March 6, 1990 | Moriuchi et al. |
4906240 | March 6, 1990 | Reed et al. |
4919654 | April 24, 1990 | Kalt |
4941882 | July 17, 1990 | Ward et al. |
4953565 | September 4, 1990 | Tachibana et al. |
4969880 | November 13, 1990 | Zamierowski |
4985019 | January 15, 1991 | Michelson |
5037397 | August 6, 1991 | Kalt et al. |
5086170 | February 4, 1992 | Luheshi et al. |
5092858 | March 3, 1992 | Benson et al. |
5100396 | March 31, 1992 | Zamierowski |
5134994 | August 4, 1992 | Say |
5149331 | September 22, 1992 | Ferdman et al. |
5167613 | December 1, 1992 | Karami et al. |
5176663 | January 5, 1993 | Svedman et al. |
5215522 | June 1, 1993 | Page et al. |
5232453 | August 3, 1993 | Plass et al. |
5261893 | November 16, 1993 | Zamierowski |
5278100 | January 11, 1994 | Doan et al. |
5279550 | January 18, 1994 | Habib et al. |
5298015 | March 29, 1994 | Komatsuzaki et al. |
5342376 | August 30, 1994 | Ruff |
5344415 | September 6, 1994 | DeBusk et al. |
5358494 | October 25, 1994 | Svedman |
5437622 | August 1, 1995 | Carion |
5437651 | August 1, 1995 | Todd et al. |
5527293 | June 18, 1996 | Zamierowski |
5549584 | August 27, 1996 | Gross |
5556375 | September 17, 1996 | Ewall |
5607388 | March 4, 1997 | Ewall |
5636643 | June 10, 1997 | Argenta et al. |
5645081 | July 8, 1997 | Argenta et al. |
6071267 | June 6, 2000 | Zamierowski |
6135116 | October 24, 2000 | Vogel et al. |
6241747 | June 5, 2001 | Ruff |
6287316 | September 11, 2001 | Agarwal et al. |
6345623 | February 12, 2002 | Heaton et al. |
6488643 | December 3, 2002 | Tumey et al. |
6493568 | December 10, 2002 | Bell et al. |
6553998 | April 29, 2003 | Heaton et al. |
6814079 | November 9, 2004 | Heaton et al. |
20020077661 | June 20, 2002 | Saadat |
20020115951 | August 22, 2002 | Norstrem et al. |
20020120185 | August 29, 2002 | Johnson |
20020143286 | October 3, 2002 | Tumey |
20060173434 | August 3, 2006 | Zoromski |
20100030170 | February 4, 2010 | Keller |
20160144084 | May 26, 2016 | Collinson |
550575 | March 1986 | AU |
745271 | March 2002 | AU |
755496 | December 2002 | AU |
2005436 | June 1990 | CA |
106659590 | May 2017 | CN |
26 40 413 | March 1978 | DE |
43 06 478 | September 1994 | DE |
29 504 378 | September 1995 | DE |
0100148 | February 1984 | EP |
0117632 | September 1984 | EP |
0161865 | November 1985 | EP |
0358302 | March 1990 | EP |
1018967 | July 2000 | EP |
692578 | June 1953 | GB |
2 195 255 | April 1988 | GB |
2 197 789 | June 1988 | GB |
2 220 357 | January 1990 | GB |
2 235 877 | March 1991 | GB |
2 329 127 | March 1999 | GB |
2 333 965 | August 1999 | GB |
2412589 | October 2005 | GB |
2527617 | December 2015 | GB |
4129536 | August 2008 | JP |
71559 | April 2002 | SG |
80/02182 | October 1980 | WO |
87/04626 | August 1987 | WO |
90/010424 | September 1990 | WO |
93/009727 | May 1993 | WO |
94/020041 | September 1994 | WO |
96/05873 | February 1996 | WO |
97/18007 | May 1997 | WO |
99/13793 | March 1999 | WO |
WO-2005/079718 | September 2005 | WO |
WO-2012125530 | September 2012 | WO |
WO-2014/020443 | February 2014 | WO |
WO-2015193257 | December 2015 | WO |
- Chinese Office Action for Corresponding Application No. 2020800112852, mailed Jan. 12, 2022.
- International Search Report and Written Opinion on International Patent Application No. PCT/US2020/015188 dated Apr. 23, 2020 (9 pages).
- Louis C. Argenta, MD and Michael J. Morykwas, PHD; Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Clinical Experience; Annals of Plastic Surgery; vol. 38, No. 6, Jun. 1997; pp. 563-576.
- Susan Mendez-Eatmen, RN; “When wounds Won't Heal” RN Jan. 1998, vol. 61 (1); Medical Economics Company, Inc., Montvale, NJ, USA; pp. 20-24.
- James H. Blackburn II, MD et al.: Negative-Pressure Dressings as a Bolster for Skin Grafts; Annals of Plastic Surgery, vol. 40, No. 5, May 1998, pp. 453-457; Lippincott Williams & Wilkins, Inc., Philidelphia, PA, USA.
- John Masters; “Reliable, Inexpensive and Simple Suction Dressings”; Letter to the Editor, British Journal of Plastic Surgery, 1998, vol. 51 (3), p. 267; Elsevier Science/The British Association of Plastic Surgeons, UK.
- S.E. Greer, et al. “The Use of Subatmospheric Pressure Dressing Therapy to Close Lymphocutaneous Fistulas of the Groin” British Journal of Plastic Surgery (2000), 53, pp. 484-487.
- George V. Letsou, MD., et al; “Stimulation of Adenylate Cyclase Activity in Cultured Endothelial Cells Subjected to Cyclic Stretch”; Journal of Cardiovascular Surgery, 31, 1990, pp. 634-639.
- Orringer, Jay, et al; “Management of Wounds in Patients with Complex Enterocutaneous Fistulas”; Surgery, Gynecology & Obstetrics, Jul. 1987, vol. 165, pp. 79-80.
- International Search Report for PCT International Application PCT/GB95/01983; Nov. 23, 1995.
- PCT International Search Report for PCT International Application PCT/GB98/02713; Jan. 8, 1999.
- PCT Written Opinion; PCT International Application PCT/GB98/02713; Jun. 8, 1999.
- PCT International Examination and Search Report, PCT International Application PCT/GB96/02802; Jan. 15, 1998 & Apr. 29, 1997.
- PCT Written Opinion, PCT International Application PCT/GB96/02802; Sep. 3, 1997.
- Dattilo, Philip P., Jr., et al; “Medical Textiles: Application of an Absorbable Barbed Bi-directional Surgical Suture”; Journal of Textile and Apparel, Technology and Management, vol. 2, Issue 2, Spring 2002, pp. 1-5.
- Kostyuchenok, B.M., et al; “Vacuum Treatment in the Surgical Management of Purulent Wounds”; Vestnik Khirurgi, Sep. 1986, pp. 18-21 and 6 page English translation thereof.
- Davydov, Yu. A., et al; “Vacuum Therapy in the Treatment of Purulent Lactation Mastitis”; Vestnik Khirurgi, May 14, 1986, pp. 66-70, and 9 page English translation thereof.
- Yusupov. Yu.N., et al; “Active Wound Drainage”, Vestnki Khirurgi, vol. 138, Issue 4, 1987, and 7 page English translation thereof.
- Davydov, Yu.A., et al; “Bacteriological and Cytological Assessment of Vacuum Therapy for Purulent Wounds”; Vestnik Khirugi, Oct. 1988, pp. 48-52, and 8 page English translation thereof.
- Davydov, Yu.A., et al; “Concepts for the Clinical-Biological Management of the Wound Process in the Treatment of Purulent Wounds by Means of Vacuum Therapy”; Vestnik Khirurgi, Jul. 7, 1980, pp. 132-136, and 8 page English translation thereof.
- Chariker, Mark E., M.D., et al; “Effective Management of incisional and cutaneous fistulae with closed suction wound drainage”; Contemporary Surgery, vol. 34, Jun. 1989, pp. 59-63.
- Egnell Minor, Instruction Book, First Edition, 300 7502, Feb. 1975, pp. 24.
- Egnell Minor: Addition to the Users Manual Concerning Overflow Protection—Concerns all Egnell Pumps, Feb. 3, 1983, pp. 2.
- Svedman, P.: “Irrigation Treatment of Leg Ulcers”, The Lancet, Sep. 3, 1983, pp. 532-534.
- Chinn, Steven D. et al.: “Closed Wound Suction Drainage”, The Journal of Foot Surgery, vol. 24, No. 1, 1985, pp. 76-81.
- Arnljots, Bjöm et al.: “Irrigation Treatment in Split-Thickness Skin Grafting of Intractable Leg Ulcers”, Scand J. Plast Reconstr. Surg., No. 19, 1985, pp. 211-213.
- Svedman, P.: “A Dressing Allowing Continuous Treatment of a Biosurface”, IRCS Medical Science: Biomedical Technology, Clinical Medicine, Surgery and Transplantation, vol. 7, 1979, p. 221.
- Svedman, P. et al: “A Dressing System Providing Fluid Supply and Suction Drainage Used for Continuous of Intermittent Irrigation”, Annals of Plastic Surgery, vol. 17, No. 2, Aug. 1986, pp. 125-133.
- N.A. Bagautdinov, “Variant of External Vacuum Aspiration in the Treatment of Purulent Diseases of Soft Tissues,” Current Problems in Modern Clinical Surgery: Interdepartmental Collection, edited by V. Ye Volkov et al. (Chuvashia State University, Cheboksary, U.S.S.R. 1986); pp. 94-96 (copy and certified translation).
- K.F. Jeter, T.E. Tintle, and M. Chariker, “Managing Draining Wounds and Fistulae: New and Established Methods,” Chronic Wound Care, edited by D. Krasner (Health Management Publications, Inc., King of Prussia, PA 1990), pp. 240-246.
- G. Živadinovi?, V. ?uki?, Ž. Maksimovi?, ?. Radak, and P. Peška, “Vacuum Therapy in the Treatment of Peripheral Blood Vessels,” Timok Medical Journal 11 (1986), pp. 161-164 (copy and certified translation).
- F.E. Johnson, “An Improved Technique for Skin Graft Placement Using a Suction Drain,” Surgery, Gynecology, and Obstetrics 159 (1984), pp. 584-585.
- A.A. Safronov, Dissertation Abstract, Vacuum Therapy of Trophic Ulcers of the Lower Leg with Simultaneous Autoplasty of the Skin (Central Scientific Research Institute of Traumatology and Orthopedics, Moscow, U.S.S.R. 1967) (copy and certified translation).
- M. Schein, R. Saadia, J.R. Jamieson, and G.A.G. Decker, “The ‘Sandwich Technique’ in the Management of the Open Abdomen,” British Journal of Surgery 73 (1986), pp. 369-370.
- D.E. Tribble, An Improved Sump Drain-Irrigation Device of Simple Construction, Archives of Surgery 105 (1972) pp. 511-513.
- M.J. Morykwas, L.C. Argenta, E.I. Shelton-Brown, and W. McGuirt, “Vacuum-Assisted Closure: A New Method for Wound Control and Treatment: Animal Studies and Basic Foundation,” Annals of Plastic Surgery 38 (1997), pp. 553-562 (Morykwas I).
- C.E. Tennants, “The Use of Hypermia in the Postoperative Treatment of Lesions of the Extremities and Thorax,” Journal of the American Medical Association 64 (1915), pp. 1548-1549.
- Selections from W. Meyer and V. Schmieden, Bier's Hyperemic Treatment in Surgery, Medicine, and the Specialties: A Manual of Its Practical Application, (W.B. Saunders Co., Philadelphia, PA 1909), pp. 17-25, 44-64, 90-96, 167-170, and 210-211.
- V.A. Solovev et al., Guidelines, The Method of Treatment of Immature External Fistulas in the Upper Gastrointestinal Tract, editor-in-chief Prov. V.I. Parahonyak (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1987) (“Solovev Guidelines”).
- V.A. Kuznetsov & N.a. Bagautdinov, “Vacuum and Vacuum-Sorption Treatment of Open Septic Wounds,” in II All-Union Conference on Wounds and Wound Infections: Presentation Abstracts, edited by B.M. Kostyuchenok et al. (Moscow, U.S.S.R. Oct. 28-29, 1986) pp. 91-92 (“Bagautdinov II”).
- V.A. Solovev, Dissertation Abstract, Treatment and Prevention of Suture Failures after Gastric Resection (S.M. Kirov Gorky State Medical Institute, Gorky, U.S.S.R. 1988) (“Solovev Abstract”).
- V.A.C.® Therapy Clinical Guidelines: A Reference Source for Clinicians; Jul. 2007.
Type: Grant
Filed: Jan 27, 2020
Date of Patent: Feb 11, 2025
Patent Publication Number: 20220079815
Assignee: Solventum Intellectual Properties Company (Maplewood, MN)
Inventors: Thomas A. Edwards (Hampshire), Christopher B. Locke (Bournemouth), Timothy M. Robinson (Wimbourne), Justin A. Long (Bournemouth)
Primary Examiner: Alireza Nia
Assistant Examiner: Andrew Jun-Wai Mok
Application Number: 17/424,009
International Classification: A61F 13/0203 (20240101); A61F 13/00 (20240101); A61F 13/02 (20240101); A61F 13/0206 (20240101);