Gas burners for heating a gas flowing in a duct
The technical field of the invention is that of making “in-stream” burners which are placed directly inside a duct carrying a flow of gas, with the burners serving to heat the gas and being placed as burner rails that are generally made up of individual blocks. Such burners comprising a pipe on an axis XX′ and suitable for extending transversely across the flow direction of said gas, the pipe being fed with a fuel gas and being pierced by at least two holes in alignment on a common generator line, the burner also having a flame stabilizer formed by two deflector-forming fins diverging on either side of said generator line. According to the invention, at least one of said holes is extended by a tube extending beyond the outer edges of the fins and pierced by at least one fuel gas ejection orifice at its distal end.
[0001] The present invention relates to an improvement to gas burners for heating a gas flowing in a duct.
[0002] The technical field is making “in-stream” burners which are placed directly inside a gas flow duct, which burners are disposed as a rail generally made up of individual blocks and extending transversely across the gas flow direction.
[0003] In the present description, the term “burner” is used both to cover a rail made up of a plurality of individual blocks, and an individual block on its own.
[0004] The main applications of the invention are in heating turbine gas in co-generator installations. A “post-combustion” burner serves to improve the overall efficiency of the installation, to modulate the production of steam as a function of requirements, and as a by-product it also serves to maintain such production in the event of the gas turbine stopping. Under such circumstances, a fan sucks in ambient air and delivers the oxygen required by the burners instead of and as a replacement for the exhaust gas from the turbine.
BACKGROUND OF THE INVENTION[0005] Such burners must be capable of operating with a flame that is stable under conditions that are very different, i.e. with turbine gas at a temperature of 300° C. to 600° C. having 11% to 15% oxygen, or else with ambient air. An example of a burner of this type is described in European patent 0 313 469 published on Apr. 23, 1989 in the name of Mécanique Générale Foyers Turbine.
[0006] French regulations concerning emissions from installations of this type have recently been extended by an Aug. 11, 1999 Order issued by the French Environment and Planning Ministry limiting emissions of nitrogen oxides and of carbon oxides, in particular for boilers used in post-combustion, to specified values which are: a maximum of 200 milligrams per standard cubic meter (mg/Nm3) for nitrogen oxides NOx and 250 mg/Nm3 for carbon oxides CO.
[0007] Burners of the kind described in the above-cited European patent enable that order to be complied with while operating with turbine gas; however, and even though certain devices are described in that patent for reducing nitrogen oxide emissions, they cannot in most cases achieve the values required by the regulations when operating post-combustion on its own in ambient air.
OBJECTS AND SUMMARY OF THE INVENTION[0008] The problem posed is thus to be able to make a “instream” burner operate while complying with the above values set by regulations and simultaneously preserving good flame stability.
[0009] A solution to the problem posed is a burner of conventional type for placing in a duct to heat a gas flowing on said duct, the burner comprising a pipe suitable for being placed transversely across the flow direction of said gas, the pipe being fed with fuel gas and being pierced by at least two holes that are in alignment on a common generator line thereof, the holes optionally being fitted with injectors and enabling jets of fuel gas to be ejected in the downstream direction; said pipe carries a flame stabilizer formed by two deflector-forming fins diverging on either side of said generator line and serving to deflect the flow of oxidizing gas so as to create a protected zone in which flame can develop downstream from the burner rail.
[0010] According to the invention, at least one of said holes is extended by a tube extending beyond the outside edges of the fins and pierced by at least one fuel gas ejection orifice at its distal end.
[0011] Such a tube thus injects a portion of the fuel gas, for example at a distance of at least 100 millimeters (mm) downstream from the other orifices not fitted with tubes, thereby enabling the injection of said gas to be staged and enabling the resulting combustion flames to be staged, thus reducing the percentage of nitrogen oxides NOx that is produced: the main flame obtained in this way by this staged injection, i.e. the flame which is further from the deflector stabilizer is thus more aerated; combustion thus takes place with a greater excess of air and therefore at a lower temperature, thereby producing a great reduction in the formation of those nitrogen oxides that are essentially of thermal origin, and the greater the staging, the greater the extent to which nitrogen oxides are reduced.
[0012] Such a method of reducing nitrogen oxides NOx by staging the gas is indeed already taught in the above-cited patent application EP 0 313 439, however the tubes are mentioned therein only as being optional and they are situated outside the blocks making up the burner, with the ends of the tubes being situated in approximately the same plane as the leading edges of the fins of the stabilizer, and outside it.
[0013] The major drawback of that disposition is that the quantity of carbon monoxide CO that is formed is well above the limit allowed by the above-specified Order. This formation is due to the excessive distance between the flame which develops in the shelter of the stabilizer fins and the injection of secondary gas having a portion that is highly diluted by air and which therefore does not burn or does not burn completely.
[0014] Amongst other things, the present invention enables that defect to be remedied: the principle whereby the NOx is reduced remains that of staging the gas, but in this case the staging takes place axially instead of radially. To avoid forming CO it suffices to maintain a sufficient flow rate (less than 30% of the total flow rate of the fuel gas) via the conventional orifices without tubes so as to create a pilot flame ensuring that the main flame coming from the staged injection ignites and is stable.
[0015] In a preferred implementation for improving aeration of the staged main flame, the distal end of the tube has at least four different ejection orifices, and the gas can then be ejected through these various orifices at different angles instead of being ejected through a single orifice on the axis of the tube. In the embodiment described and shown in the accompanying figures, the ejection axes of the orifices are inclined in pairs firstly by an angle &bgr; of 20° to 50° on either side of the plane defined by the generator line on which the holes are in alignment and the axis of the pipe, and secondly by an angle &agr; of 10° to 30° on either side of the plane orthogonal to the preceding plane and containing the hole extended by said tube. The angles &agr; and &bgr; are important in determining the quality of the results and they must be determined as a function of the dimensions of the burner and of the hearth on which it is mounted.
[0016] In addition, in order to be able to further improve this staging effect by reducing the primary flow rate, it is possible to conserve the stability of the main or “secondary” flame since it achieves fuel gas staging with only 10% of the gas in the primary orifices thus not having a tube; for this purpose, in accordance with the invention, it is possible:
[0017] to introduce a portion of the oxidizing gas at the root of the secondary flame; in addition to increasing the stability of the flame during turbine gas operation this technique also has the advantage of reducing nitrogen oxide NO contained in the gas by the so-called “reburning” effect (where NO is transformed into N2 by chemical reduction coming from the CH+ radicals present at the root of the flame); and
[0018] to add at least one obstacle placed facing at least one gas jet ejected by one of the holes that is not extended by a tube, thereby encouraging them to expand and enlarge the pilot flame which is also referred to as the “primary” flame so as to impart better efficiency thereto.
[0019] Various shapes can be given to the obstacle, such as the preferred cylindrical shape, however other shapes can also be used to similar effect.
[0020] The other characteristics of burners or burner rails as described in above-cited patent EP 0 313 469 can likewise be combined with those of the present invention described above and below in order to obtain a burner that also ensures a practically constant aeration rate for the air-and-fuel mixture in spite of variations in the fuel flow rate and/or in the speed of the gas to be heated. Such additional characteristics are described below and shown in some of the figures.
[0021] The result is novel gas burners for heating a gas flowing in a duct and which include improvements to presently known burners since they solve the same problem which is that of complying with the values set by regulations concerning nitrogen oxide NOx and carbon oxide CO emissions while ensuring good flame stability and an aeration rate that is practically constant in the air-and-fuel mixture regardless of variations in the fuel flow rate and/or in the speed of the gas to be heated.
BRIEF DESCRIPTION OF THE DRAWINGS[0022] Such results demonstrate the novelty and the advantage of the present invention without it being necessary to cite further advantages. The description and the accompanying drawings show embodiments of the invention having no limiting character: other embodiments are possible in the context of the ambit and the scope of this invention, in particular by changing the shape of the fuel feed pipe and also that of the stabilizing deflector, and also varying the number of fuel injection holes or orifices which can, for example, lie in the range 2 to 10.
[0023] In the figures:
[0024] FIG. 1 is a section view of an embodiment of a burner of the invention perpendicularly to the axis of its fuel gas feed pipe;
[0025] FIG. 2 is a section view on II-II′ of FIG. 3 showing another embodiment of a burner of the invention;
[0026] FIG. 3 is a front view facing the flow of gas to be heated, showing the burner of FIG. 2;
[0027] FIG. 4 is a section view on IV-IV′ of FIG. 3 showing an embodiment of a burner of the invention; and
[0028] FIG. 5 is a section view on II-II′ of FIG. 3 showing an embodiment of a burner of the invention and differing from that of FIGS. 1 and 2.
MORE DETAILED DESCRIPTION[0029] The invention relates to a type of burner for placing in a duct to heat a gas flowing along the duct, the burner comprising a pipe 1 of axis XX′ suitable for extending transversely across the flow direction A of said gas; said pipe can be circular in section of diameter D, as shown in FIG. 2, but it could equally well be arbitrary in section, for example having a section as shown in FIG. 1, and it can carry a plurality of burner blocks placed side by side to make up a burner rail.
[0030] The pipe 1 is fed with fuel gas 10 and is pierced by at least two holes 3 per burner block, the two holes being in alignment on a common generator line 18 which is thus parallel to the axis XX′ of the tube; said pipe 1 carries a flame stabilizer 2 formed by two deflector-forming fins 12 diverging on either side of said generator line 18.
[0031] In the embodiments shown in FIGS. 2 to 5, said deflector stabilizer 2 can have walls 131, 132 forming reinforcing ribs at the ends, along the direction of the axis XX′, of the fins 12 of each burner block, and also intermediate ribs 141, 142 when the burner block has a plurality of holes 3 and therefore requires intermediate reinforcement of the fins 12; the fins can also have a gap 22 towards their outer edges 17 downstream relative to the flow direction A of the oxidizing gas flow so as to stiffen the edges and improve the aerodynamics of the burner block.
[0032] In the invention, at least one of said holes 3 is extended by a tube 11 which extends beyond the outer edges 17 of the fins 12 and which is pierced by at least one orifice 9 for ejecting the fuel gas 10 from its distal end.
[0033] Thus, as shown in FIG. 1, at least one “conventional” orifice 3 that does not have a tube serves to obtain a “pilot” or “primary” flame 19 for ensuring ignition and stability of at least one main or “secondary” flame 20 coming from the staged injection.
[0034] Since the stability of this secondary flame 20 can be conserved with only 10% of the fuel gas passing through the primary orifices 3, because of devices of the kind described below, the Venturi pre-mixing system using a converging-diverging nozzle 8 as shown in FIG. 2 and as described in European application EP 0 313 469 is not essential for proper operation of the burner: the present invention thus applies to all types of “in-stream” burner having a deflector stabilizer, whether or not they include such a Venturi device.
[0035] The distal end of the tube 11 preferably has one or more diverging ejection orifices 9 having ejection axes which are inclined at an angle &bgr; relative to the plane AA′ defined by the generator line 18 on which the holes 8 are aligned and the axis XX′ of the pipe 1, and at an angle &agr; about the plane BB′ perpendicular to the preceding plane and containing the hole 3 as extended by said tube 11.
[0036] The number of orifices, their ejection angles &agr; and &bgr;, and their flow diameters are functions of the speed of the oxidizing gas and of the dimensions of the duct in which the burner is placed (and thus of the distance between the blocks making it up), for the purpose of adapting and optimizing the penetration of fuel jets into the oxidizing gas stream. For this purpose, said distal end 25 of the tube 11 can be interchangeable and held in place by a threaded or other system.
[0037] When there are four ejection orifices 9, for example, their axes can be inclined in pairs at an angle &bgr; lying in the range 20° to 50° on either side of the plane AA′, and at an angle &agr; lying in the range 10° to 30° on either side of the plane BB′.
[0038] To obtain stability in the main or “secondary” flame 20 while using only 10% of the fuel gas in the primary orifices 3, and to avoid CO being formed during operation with turbine gas, the burner of the invention includes:
[0039] optionally an obstacle 15 placed facing one of said holes 3 that is not extended by a tube 11 so as to encourage the fuel gas jet ejected thereby to expand, thereby broadening the primary flame so as to impart better efficiency thereto; and
[0040] openings 21 beyond the outer edges 17 of the fins as defined above and extended by complementary deflectors or ailerons 24, and made in said ailerons 24 at a level which is intermediate relative to the downstream ends 23 thereof in the oxidizing gas flow direction A; these openings 21 allow a fraction of the oxidizing gas to pass which is then introduced to the root of the secondary flame 20, thereby providing more progressive feed thereto and enabling the NO content in the oxidizing gas to be reduced.
[0041] In the embodiment of FIG. 5, a burner block of the kind shown in FIG. 2 can easily be modified by adding additional parts corresponding to said ailerons 24 and placed beyond the gaps 22 in the fins 12 corresponding to the edges 17: the positions and the dimensions of the ailerons 24 has a significant effect on the results obtained so it is advantageous to be able to change them should that be necessary by making them in the form of separate fittings.
[0042] As shown in FIGS. 2 to 4, the obstacle 15 that is optionally placed facing one of said holes 3 that is not extended by a tube 11 can be carried by a fixing ring or collar 16 on the tube 11 when the ejection holes or orifices 3 are placed on either side thereof. By way of example, said obstacle 15 can be cylindrical and its axis can be perpendicular to that of the hole 3 that it is placed to face.
[0043] In a given type of burner block, the block can have at least three holes 3, one of which, 3′, is associated with the tube 11, the obstacle 15 is associated with one of the other holes 3′ adjacent to the hole associated with the tube 11, while the last hole is left free.
[0044] A burner block can have an arbitrary number of holes, e.g. lying in the range two to ten, and the tubes 11 can be placed in regular manner, e.g. in every other hole, or one hole in three, or one hole in four, etc . . . .
[0045] In the embodiment shown by way of example in FIG. 4, the burner block of the invention has five holes 3 with the tube 11 being associated with the central hole, the two holes adjacent thereto being associated with an obstacle 15, and the outermost two holes being free.
[0046] Such burners of the invention can also have elements characteristic of burners of the kind described in patent EP 0 313 469, and in particular such as a converging-diverging nozzle 8 placed in front of at least one of the holes 32 that is not extended by a tube 11, and placed coaxially therewith, the nozzle being suitable for ensuring that the gas jet ejected by said hole 32 creates suction at the inlet to the nozzle 8, as shown in FIG. 4. Said inlet communicates with the outside face or back of at least one of the fins 12 of the stabilizer 2 via at least one opening 7.
[0047] The space between the nozzles 8 and the pipe 1 is closed firstly by two wall elements 4 fixed on the pipe and placed substantially parallel to the plane defined by the generator line 18 on which the holes 3 are aligned and by the axis XX′ of the pipe 1, and secondly by a front wall 5 connected to said wall elements 4 and carrying the nozzles; the openings 7 are pierced through said wall elements 4.
[0048] As examples of particular embodiments, indications can be given concerning the dimensions of a burner block of the invention in which the length L11 of the tube 11 beyond the hole 3 with which it is associated is about 100 mm to 200 mm, having a length L beyond the outlets form the nozzles 8 lying in the range about 40 mm to about 150 mm, and preferably in the range 50 mm to 80 mm for a diameter d11 of 12 mm to 20 mm. The obstacle 15 can be a cylindrical tube of diameter d15 of about 10 mm and placed at a distance a of about 25 mm from the outlets of the nozzles 8; the length L15 of such obstacles fitted on the tube 11 can be about 85 mm to 90 mm depending on the distance between two adjacent holes 3; the diameter D1 of the fuel feed pipe is about 85 mm to 90 mm.
Claims
1. A burner for placing in a duct to heat a gas flowing along said duct, the burner comprising a pipe on an axis XX′ and suitable for extending transversely across the flow direction A of said gas, the pipe being fed with fuel gas and being pierced by at least two holes in alignment on a common generator line, and a flame stabilizer formed by two deflector-forming fins diverging on either side of said generator line, wherein at least one of said holes is extended by a tube extending beyond the outside edges of the fins and pierced by at least one fuel gas ejection orifice at its distal end.
2. A burner according to
- claim 1, wherein the distal end of the tube can be interchangeable.
3. A burner according to
- claim 1, wherein the distal end of the tube has a plurality of diverging ejection orifices.
4. A burner according to
- claim 3, wherein the distal end has at least four ejection orifices on axes that are inclined at an angle &bgr; of 20° to 50° on either side of the plane defined by the generator line on which the holes are in alignment and by the axis XX′ of the pipe, and at an angle &agr; of 10° to 30° on either side of the plane perpendicular to the preceding plane and containing the hole that is extended by said tube.
5. A burner according to
- claim 1, having at least one obstacle placed facing one of the holes that is not extended by the tube.
6. A burner according to
- claim 5, wherein said obstacle is carried by the tube.
7. A burner according to
- claim 5, wherein said obstacle is cylindrical and its axis is perpendicular to the axis of the hole which it is placed to face.
8. A burner according to
- claim 5, and having at least three holes, wherein the tube is associated with one of the holes and the obstacle with a hole adjacent to the hole associated with the tube, the third hole being free.
9. A burner according to
- claim 5, and having five holes, wherein the tube is associated with the central hole, the two holes adjacent thereto being associated with an obstacle, and the outermost two holes being free.
10. A burner according to
- claim 1, including additional ailerons extending the outer edges of the fins, and openings made in the ailerons and suitable for allowing a fraction of the gas flowing in the duct to pass through and be introduced towards the root of the flame of said burner.
11. A burner according to
- claim 1, including a converging-diverging nozzle in front of at least one hole that is not extended by a tube, the nozzle being coaxial with the hole and suitable for ensuring that the jet of gas ejected by said hole creates suction at the inlet to the nozzle, said inlet communicating with the outside face of at least one of the fins of the stabilizer via at least one opening.
12. A burner according to
- claim 11, wherein the space between the nozzles and the pipe is closed by two wall elements which are fixed to the pipe and disposed substantially parallel to the plane defined by the generator line on which the holes are in alignment and the axis XX′ of the pipe, and by a front wall connected to said wall elements and carrying the nozzles, and wherein the openings are pierced through said wall elements.
Type: Application
Filed: Feb 2, 2001
Publication Date: Aug 9, 2001
Inventor: Frederic Bury (Allauch)
Application Number: 09775918
International Classification: F23D014/46; F23D001/00;