Offset counterflow matrix fin for a counterflow plate-fin heat exchanger with crossflow headers

A heat exchanger includes a plurality of heat exchange cells positioned in a stacked configuration with respect to each other. Each cell includes first and second parting sheets, an internal finned member, and at least one external finned member. The first and second parting sheets include opposing first and second surfaces, an inlet manifold portion, an outlet manifold portion, an internal finned member portion and peripheral edges. The second parting sheet is substantially superimposed by, is spaced apart from and is coupled to the first parting sheet. The second surface of the second parting sheet confronts the second surface of the first parting sheet. The peripheral edges of the first and second parting sheets are attached to each other. The internal finned member is disposed between the second surfaces of the first and second parting sheets and has a leading edge positioned adjacent to the inlet manifold portion of the first and second parting sheets, and a trailing edge is positioned adjacent to the outlet manifold portion of the first and second parting sheets. The external finned member is attached to one of the first and second parting sheet. The external finned member has a leading edge and a trailing edge and is positioned offset from the internal finned member such that the leading edge of the external finned member outwardly extends beyond the leading edge of the internal finned member and the external finned member covers a portion of the inlet manifold member.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

[0001] The present application is a continuation-in-part of U.S. patent application Ser. No. 09/409,641 filed Oct. 1, 1999, which is a continuation of U.S. patent application Ser. No. 09/239,647 filed Jan. 29, 1999 (U.S. patent No. 5,983,992), which is a continuation of U.S. patent application Ser. No. 08/792,261 filed Jan. 31, 1997 which, in turn, claims benefit under 35 U.S.C. Section 119(e) of U.S. Provisional Application 60/010,998 filed Feb. 1, 1996. The disclosures set forth in U.S. patent application Ser. Nos. 09/409,641, 09/239,647, and 08/792,261 and U.S. Provisional Application 60/010,998 are hereby incorporated by reference herein.

BACKGROUND OF THE INVENTION

[0002] This invention relates generally to plate-fin heat exchangers and more particularly to a counter-flow plate-fin heat exchanger with cross-flow headers used as a recuperator. Plate fin heat exchangers are typically monolithic structures created by brazing their many constituent pieces in a single furnace cycle. This general design presents several problems including the following:

[0003] 1. A plate fin heat exchanger typically includes hundreds, if not thousands, of brazed joints. Thus, the overall quality of the finished product depends on the reliability of each and every brazed joint so that even one defective brazed joint can result in the entire heat exchanger being scrapped. As a result, assembly methods for plate fin heat exchangers are generally labor intensive as assemblers must avoid the creation of even a single poor braze among thousands in a typical heat exchanger.

[0004] 2. The dimensions of the constituent parts used to assemble the heat exchanger must be maintained within close tolerances in order that differences in thickness do not compound into gross differences in load during the brazing cycle.

[0005] 3. Edge bars or closure bars used to carry load through the edges of the heat exchanger make assembly both labor and material intensive and create stiffness and mass discontinuities antithetical to minimizing strain during transient thermal operation.

[0006] With regard to the above design, counterflow plate-fin heat exchangers with cross-flow headers typically include a stack of headers sandwiched together to form an alternating gas/air/gas/air header pattern. Each pair of adjacent gas and air headers is separated by a relatively thin parting sheet. Additionally, conventional plate-fin heat exchangers incorporate edge bars or closure bars to seal about the perimeters of the parting sheets and prevent overboard leakage from the high pressure side of the heat exchanger. Inlet and outlet manifold ducts are welded transverse to the edge bars after the headers are assembled and brazed. The edge bars create a stiff and massive structural attachment between the parting sheets. Thermal loading produces faster thermal response in the lighter parting plates than the more massive edge bars. This difference in response time rate combined with the relative weakness of the parting plates can produce damage in the parting plates. Due to differences in the position and structural composition of the parting sheets and edge bars, the temperature changes do not affect the bars and sheets at the same rate. Since the parting sheets are structurally weaker than the edge bars, the parting sheets are strained.

[0007] A second problem associated with the use of edge bars in counterflow plate-fin heat exchangers is related to the sheet metal manifold ducts that are welded to the edge bars. The manifolds are welded to the stack of edge bars along the sides and comers of the core adjacent the header openings. Like the parting sheets, the manifold ducts respond quickly to changes in temperature. Since the edge bars do not respond to changes in temperature as quickly as the manifold ducts, the sheet metal experiences a shear load at or near the weld. As a result, the weld and the base metal in the heat affected zone is likely to become damaged.

[0008] U.S. Pat. No. 2,858,112 to Gerstung discloses a cross-flow heat exchanger for transferring heat from a liquid (FIG. 1) in which multiple pairs 10 of corrugated plates 12 and 14 are spaced apart by air centering means 16 and heat exchanger or edge bar elements 18 and 20. The edge bar elements 18 and 20 are sandwiched between the aligned header openings 30 and 32 of the respective plates 12 and 14. The utilization of the edge bar elements 18 and 20 adds undesirable rigidity and thermal mass discontinuity to the structure. As a result, the various layers of the structure are unable to move independently of one another during operation. Thus, the heat exchanger disclosed in the Gerstung patent is not appropriate for use with a gas turbine because the exchanger cannot withstand the tremendous temperature extremes produced by a gas turbine.

[0009] Great Britain Patent 1,304,692 to Lowery (FIGS. 1 and 5) discloses a cross-flow heat exchanger for transferring heat from a liquid including a plurality of metal plates 24 shaped and bonded together. The plates 24 have fin members 16 and 17 bonded to their respective outer surfaces. Each plate 24 has two centrally apertured raised end portions 25 and 26 and also has two parallel inverted channels 27 and 28. The respective units are assembled together by placing the next unit in the sequence with its raised end portions 25 and 26 in contact with equivalent raised end portions of the previous unit in the sequence, and by applying pressure to the juxtaposed pair of raised end portions 25 and 26. The relatively large intermeshing surface areas of adjacent raised end portions 25 and 26 results in the formation of rigid flow ducts so that the various layers of the final structure are incapable of moving and flexing relative to one another.

[0010] Based on the foregoing limitations known to exist in present plate-fin heat exchangers, it would be beneficial to provide a heat exchanger having a compliant bellows structure capable of elastically absorbing deflections produced by temperature gradients attendant with the heat exchange process and thermal gradients associated with installation or operation, so that the individual layers of the heat exchanger can move and flex freely relative to one another, and can accommodate thermal deflections throughout of plane deformation. It would be advantageous to provide a heat exchange cell configured with graduated stiffness at a transition section of the cell connecting the matrix to the cross-flow header to reduce damaging strain accumulation and to increase the fatigue life of the heat exchanger.

SUMMARY OF THE INVENTION

[0011] In accordance with certain preferred embodiments of the present invention, a heat exchanger for transferring heat between an external fluid and an internal fluid includes two or more heat exchange cells. Each heat exchange cell preferably includes a top plate having an inlet aperture at one end thereof and an outlet aperture at the other end thereof, the top plate including a first surface, a second surface and peripheral edges. The heat exchange cell may also include a bottom plate juxtaposed with the top plate having an inlet aperture at one end thereof and an outlet aperture at the other end thereof. The bottom plate also preferably includes a first surface, a second surface and peripheral edges, the peripheral edges of the bottom and top plates being attached to one another, whereby the second surfaces of the top and bottom plates confront one another and the inlet and outlet apertures of the top and bottom plates are in substantial alignment with one another. The aligned inlet apertures and outlet apertures of the respective attached top and bottom plates preferably provide an inlet manifold on one side of the cell and an outlet manifold at the other side of the cell. The inlet and outlet apertures of the top and bottom plates may include substantially S-shaped raised flange portions extending away from the first surfaces of the plates, the substantially S-shaped raised flange portions terminating at interior edges bounding the apertures. The attached top and bottom plates preferably define a high pressure chamber between the second surfaces thereof so that the internal fluid may pass through the heat exchange cell at a higher pressure than the external fluid. The heat exchanger also preferably includes an internal finned member disposed within the high pressure chamber and attached to the second surfaces of said top and bottom plates. The individual heat exchange cells are preferably assembled one atop the other with the adjacent interior edges of adjacent heat exchange cells attached together for forming a compliant bellows structure capable of elastically absorbing deflections produced during thermal loading so that the heat exchange cells may move and flex relative to one another.

[0012] In certain preferred embodiments, each heat exchange cell includes an internal finned member and two external finned members, a first one of the two external finned members being attached to the first surface of the top plate and a second one of the two external finned members being attached to the first surface of the bottom plate. Each heat exchange cell is designed for passing the external fluid through the two external finned members in a first flow direction and for passing the internal fluid through the internal finned member in a second flow direction substantially counter to the first flow direction. The internal fluid may be high pressure air passing through the internal finned member and the external fluid may be a low-pressure product resulting from combustion. In other embodiments, the internal fluid may be compressor discharge gases and the external fluid may be turbine discharge gases. During operation of the heat exchange cell, the two external finned members capture heat from the external fluid passing therethrough and transfer the heat to the internal finned member. The internal finned member then transfers the heat to the internal fluid passing therethrough.

[0013] Each top plate may include a substantially flat central region between the inlet and outlet apertures thereof and the bottom plate preferably includes a substantially flat central region between the inlet and outlet apertures thereof, the substantially flat central regions of the two plates being in substantial alignment with one another. In certain embodiments, the first one of the two external finned members overlies the substantially flat central region of the top plate, the second one of the two external finned members overlies the substantially flat central region of the bottom plate, and the internal finned member is disposed between the substantially flat central regions of the top and bottom plates. The internal finned member may be in substantial alignment with the two external finned members. The internal finned member is preferably brazed to the second surfaces of the top and bottom plates. In certain preferred embodiments, the first and second external finned members of each heat exchange cell may include substantially aligned leading edges for receiving the external fluid passing between the cell layers and trailing edges for discharging the external fluid after the external fluid has passed therethrough. The substantially aligned leading edges of the first and second external finned members are desirably substantially remote from at least one leading peripheral edge of the heat exchange cell for enabling the peripheral edge to deflect toward and away from a heat exchange cell adjacent thereto. In other preferred embodiments, the substantially aligned leading edges of the first and second external finned members are substantially offset from the aligned outlet apertures for enabling each cell layer to deflect toward and away from a heat exchange cell adjacent thereto. Offsetting the leading edges away from the bellows structure enables the bellows to flex and bend without being constrained by the external finned members. Placing the leading edges of the external finned members away from the at least one leading peripheral edge also reduces thermal forces acting upon the top and bottom plates of each cell.

[0014] The trailing edges of the first and second external finned members may also be in substantial alignment with one another, as well as being substantially remote from at least one rear peripheral edge of the heat exchange cell for enabling the cell to move toward and away from a heat exchange cell adjacent thereto. The substantially aligned trailing edges of the first and second external finned members may also be substantially offset from the aligned inlet apertures of the heat exchange cell for enabling each cell to deflect toward and away from a heat exchange cell adjacent thereto. Each heat exchange cell may also include at least one gas turning finned member attached adjacent a peripheral edge of one of the plates for directing the external fluid into a preferred path for impinging upon the two external finned members.

[0015] As mentioned above, the internal finned member is desirably disposed in the high pressure chamber of the cell and may have an inlet edge for receiving the first gas from the inlet manifold and an outlet edge for discharging the first gas to the outlet manifold. Each heat exchange cell may also include an inlet manifold finned member disposed in the high pressure chamber between the inlet manifold and the inlet edge of the internal finned member and an outlet manifold finned member disposed in the high pressure chamber between the outlet manifold and the outlet edge of the internal finned member. The inlet and outlet manifold finned members direct the internal fluid in a first direction and the internal finned member directs the internal fluid in a direction substantially perpendicular to the first direction. As mentioned above, heat is generally transferred between the external and internal fluids when the internal fluid passes through the internal finned member. The internal finned member of each cell is adhered to the top and bottom plates for providing resistance against differential pressure load so that no external pre-loading of the heat exchange cell is required.

[0016] The top and bottom plates and the substantially S-shaped raised flange portions thereof preferably have a substantially uniform thickness, thereby minimizing the effects of thermal expansion and contraction on the plates. At the outer perimeter of the cell, the substantially S-shaped raised flange portions join together to partially form and define a high pressure chamber, while the inner edges of the substantially S-shaped raised flange portions, i.e., the edges surrounding the inlet and outlet apertures of the attached plates, diverge from one another in each cell so that adjacent inner edges of adjacent cells may be attached together. The adjacent interior edges of the adjacent cells are preferably welded together to form a compliant bellows structure. In highly preferred embodiments, the heat exchange cells are attached to one another solely through the interior edges of the raised flanges. In these embodiments, the sections of the substantially S-shaped raised flanges away from or remote from the interior edges are not attached together. This enables the substantially S-shaped flange portions to independently move and flex in response to compressive, tension and lateral forces.

[0017] The present invention also provides a heat exchanger for transferring heat between an external fluid and an internal fluid. The heat exchanger includes a plurality of heat exchange cells positioned in a stacked configuration with respect to each other. Each cell is connected to at least one adjacent cell. Each cell includes first and second parting sheets, an internal finned member, and at least one external finned member. The first parting sheet includes opposing first and second surfaces, a first inlet header portion, a first outlet header portion, a first internal finned member portion and peripheral edges. The second parting sheet is substantially superimposed by, is spaced apart from and is coupled to the first parting sheet. The second parting sheet includes opposing first and second surfaces, a second inlet header portion, a second outlet header portion, a second internal finned member portion and peripheral edges. The second surface of the second parting sheet confronts the second surface of the first parting sheet. At least a portion of the peripheral edges of the first and second parting sheets are attached to each other. The internal finned member is disposed between the second surfaces of the first and second parting sheets. The internal finned member is positioned at the first and second internal finned member portions of the first and second parting sheets, respectively, and has a leading edge positioned adjacent to the first and second inlet header portion of the first and second parting sheets, respectively, and a trailing edge positioned adjacent to the first and second outlet header portion of the first and second parting sheets, respectively. The at least one external finned member is attached to at least one of the first surface of the first parting sheet and the first surface of the second parting sheet. The external finned member has a leading edge and a trailing edge. The external finned member is positioned offset from the internal finned member such that the leading edge of the external finned member outwardly extends beyond the trailing edge of the internal finned member.

[0018] The present invention also provides a heat exchange cell of a heat exchanger for transferring heat between an external fluid and an internal fluid. The heat exchange cell includes first and second parting sheets, an internal finned member, at least one external finned member, and inlet and outlet headers. The first parting sheet includes opposing first and second surfaces, a first inlet header portion, a first outlet header portion and a first internal finned member portion. The second parting sheet is substantially superimposed by, is spaced apart from and is coupled to the first parting sheet. The second parting sheet includes opposing first and second surfaces, a second inlet header portion, a second outlet header portion, and a second internal finned member portion. The second surface of the second parting sheet confronts the second surface of the first parting sheet. The internal finned member is disposed between the second surfaces of the first and second parting sheets. The internal finned member has a leading edge and a trailing edge. The at least one external finned member is attached to at least one of the first surface of the first parting sheet and the first surface of the second parting sheet. The external finned member has a leading edge and a trailing edge. The trailing edge of the internal finned member extends along the juncture of the first and second outlet header portions to the first and second internal finned portions of the first and second parting sheets, respectively. The leading edge of the internal finned member extends along the juncture of the first and second inlet header portions to the first and second internal finned portions of the first and second parting sheets, respectively. The external finned member is positioned offset from the internal finned member such that the leading edge of the external finned member outwardly extends beyond the leading edge of the internal finned member.

[0019] The foregoing and other aspects will become apparent from the following detailed description of the invention when considered in conjunction with the accompanying FIGS.

BRIEF DESCRIPTION OF THE DRAWINGS

[0020] FIG. 1 shows an exploded view of an individual heat exchange cell for a counterflow heat exchanger in accordance with preferred embodiments of the present invention.

[0021] FIG. 2 shows a first plan view of the individual heat exchange cell shown in FIG. 1.

[0022] FIG. 3 shows an exploded view of the individual heat exchange cell of FIG. 1 after partial assembly thereof.

[0023] FIG. 4 shows an enlarged fragmentary view of an inlet header of the individual heat exchange cell shown in FIG. 2.

[0024] FIG. 5 shows a side view of a counterflow heat exchanger including a plurality of the individual heat exchange cells shown in FIGS. 1-3.

[0025] FIG. 6 shows a perspective view of a counterflow heat exchanger including a plurality of the heat exchange cells shown in FIGS. 1-3, in accordance with one preferred embodiment of the present invention.

[0026] FIG. 7 shows a partial cross-sectional view of the inlet aperture taken along line 7-7 of FIG. 2, showing the raised flanges.

[0027] FIG. 8 shows a partial cross-sectional view of an edge of the individual heat exchanger element shown in FIG. 2, taken along line 8-8, showing the details of a braze-reservoir.

[0028] FIG. 9 shows the flow of first and external fluids through the heat exchanger of FIG. 6 in accordance with certain preferred embodiments of the present invention.

[0029] FIG. 10 shows a perspective view of the heat exchange of FIG. 6 after thermal loading whereby the structure flexes in response to thermal forces.

[0030] FIG. 11 shows a cross-sectional view of the heat exchanger shown in FIG. 9 taken along line XI-XI, before thermal loading.

[0031] FIG. 12 shows the heat exchanger of FIG. 11 after thermal loading whereby the structure flexes in response to thermal forces.

[0032] FIG. 13 shows a fragmentary top view of the heat exchanger shown in FIG. 9.

[0033] FIG. 14A shows a front view of the heat exchanger shown in FIG. 13 along line XIV-XIV when the heat exchanger is in an undeflected “cold” state.

[0034] FIG. 14B shows a front view of the heat exchanger shown in FIG. 13 along line XIV-XIV when the heat exchanger is in a deflected “hot” state.

[0035] FIG. 15 shows an exploded view of an individual heat exchange cell for a counterflow heat exchanger in accordance with an embodiment of the present invention.

[0036] FIG. 16 is a sectional view an inlet manifold member, an internal finned member and two external finned members of the heat exchange cell of FIG. 15.

[0037] FIG. 17 is a sectional view an outlet header, the internal finned member and the two external finned members of the heat exchange cell of FIG. 15.

[0038] FIG. 18 is a graph illustrating the stiffness of the heat exchange cell along the portion of the heat exchange cell illustrated in FIG. 16

[0039] FIG. 19 shows an exploded view of an individual heat exchange cell for a counterflow heat exchanger in accordance with another preferred embodiment of the present invention.

[0040] FIG. 20 is a sectional view an outlet header, the internal finned member and the two external finned members of the heat exchange cell of FIG. 19.

[0041] FIG. 21 is a graph illustrating the stiffness of the heat exchange cell along the portion of the heat exchange cell illustrated in FIG. 20.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0042] FIG. 1 shows an exploded view of an individual heat exchange cell 10 in accordance with certain preferred embodiments of the present invention. Each heat exchange cell 10 includes a self-contained pressure-tight structure which may be stacked atop other substantially identical heat exchange cells to produce a counterflow heat exchanger, such as the exchanger shown in FIG. 9 and described below. Each heat exchange cell 10 has all of the features required for providing a complete counterflow heat exchanger including inlet and exit manifolds and heat transfer fins assembled into a single unit cell, as shown in FIG. 2.

[0043] The utilization of individual heat exchange cells overcomes the following problems present in the prior art:

[0044] 1) Allows for the inspection, correction and/or rejection of a small, manageable heat exchange cell rather than on a completed heat exchanger comprising a matrix of permanently assembled layers, thereby resulting in greater quality control and reduced scrap.

[0045] 2) Allows for quality-control testing of individual heat exchange cells before the various layers are assembled together, thereby avoiding the risk and technical difficulty of brazing massive heat exchanger matrices.

[0046] 3) Allows for slip and movement between layers to accommodate for thermal expansion and contraction, without the risk of leakage.

[0047] 4) Allows for the rapid removal and replacement of defective heat exchange is cells, as opposed to scrapping an entire heat exchanger when a defective layer is discovered.

[0048] Referring to FIGS. 1 and 2, in certain preferred embodiments, each individual heat exchange cell 10 preferably includes a top plate 12 having a first surface 14, a second-surface 16 (FIG. 5) and one or more peripheral edges 18 defining outer edge(s) of the top plate 12. The top plate 12 preferably includes an inlet aperture 20A at one end thereof, an outlet aperture 22A at the other end thereof and a substantially flat central region 24A between the inlet and outlet apertures 20A and 22A. Each heat exchange cell 10 also preferably includes a bottom plate 26 that substantially mirrors the dimensions, size and shape of the top plate 12. The bottom plate 26 preferably has a first surface 28 (FIG. 6), a second surface 30 and one or more peripheral edges 32 defining outer edge(s) of the bottom plate 12. The bottom plate 26 also preferably includes an inlet aperture 20B at one end thereof, an outlet aperture 22B at the other end thereof and a substantially flat central region 24B (FIG. 5) between the inlet and outlet apertures 20B and 22B.

[0049] The heat exchange cell 10 preferably includes at least one finned member attached thereto for transferring heat between two or more fluids passing closely by one another. In one particular embodiment, the heat exchange cell 10 preferably includes two external finned members, a first one of the external finned members 34A attached to the first surface 14 of the top plate 12, preferably within the substantially flat central region 24A thereof; and a second one of the two external finned members 34B attached to the first surface 28 of the bottom plate 26, preferably within the substantially flat central region 24B thereof.

[0050] The heat exchange cell 10 is preferably assembled by juxtaposing the second surfaces 16,30 of the top and bottom plates 12, 26 with one another so that the inlet apertures 20A, 20B and the outlet apertures 22A, 22B of the top and bottom plates 12 and 26 are in substantial alignment. The inlet apertures 20A, 20B include respective substantially S-shaped raised flange portions 36A and 36B terminating at interior edges bounding the inlet apertures 20A, 20B. Similarly, the outlet apertures 22A, 22B include respective substantially S-shaped raised flange portions 38A, 38B terminating at interior edges bounding the outlet apertures 22A, 22B. In other words, the substantially S-shaped raised flange portions of the attached top and bottom plates 12 and 26 diverge from one another at the interior edges thereof and are joined at the outer peripheral edges of the plates. Thus, each substantially S-shaped raised flange portion generally extends away from the first surface of the plate associated therewith so that the interior edge thereof lies above the first surface of the plate. In preferred embodiments, the top and bottom plates 12, 26 including the respective substantially S-shaped raised flange portions thereof are of substantially uniform thickness so that temperature changes occurring at the flanges are substantially the same as temperature changes occurring along the remainder of the top and bottom plates 12, 26, whereby thermal strain produced during operation of the heat exchanger is minimized.

[0051] The peripheral edges 18, 32 of the respective top and bottom plates 12 and 26 are then attached to one another, whereby the aligned inlet apertures 20A, 20B of the attached top and bottom plates 12 and 26 provide an inlet manifold of the heat exchange cell 10 and the aligned outlet apertures 22A, 228 of the attached top and bottom plates provide an outlet manifold of the heat exchange cell 10. The attached top and bottom plates 12, 26 define a high pressure chamber 52 (FIG. 5) between the second surfaces thereof so that a fluid may pass therethrough at a relatively higher pressure than do fluids passing over the first surfaces of the plates.

[0052] The heat exchange cell 10 also preferably includes an internal finned member 40 disposed between and attached to the second surfaces of the top and bottom plates 12, 26. The internal finned member 40 is preferably brazed to the second surfaces 16, 30 of the top and bottom plates 12, 26. When the cell is assembled, the internal finned member 33 is typically in substantial vertical alignment with the two external finned members 34A, 34B, the two external finned members also being in substantial vertical alignment with one another.

[0053] Referring to FIG. 3, each heat exchange cell 10 is preferably adapted for passing an internal fluid, such as a combustible gas, through the internal finned member 40 in a first flow direction designated 56 and for passing an external fluid, such as an exhaust gas, through the two external finned members 34 in a second flow direction designated 54 that is substantially counter to the first flow direction 54.

[0054] Referring to FIGS. 1-3, the internal finned member 33 attached to the second surfaces of the top and bottom plates 12 and 26 desirably includes an inlet end 42 for receiving the internal fluid from the inlet manifold 20 and an outlet end 44 for discharging the internal fluid to the outlet manifold 22. The heat exchange cell 10 may also include an inlet manifold finned member 46 disposed in the high pressure chamber between the inlet manifold 20 and the inlet edge 42 of the internal finned member 33 and an outlet manifold finned member 48 disposed in the high pressure chamber between the outlet edge 44 of the internal finned member 33 and the outlet manifold 22. As shown in FIG. 3, the inlet and outlet manifold finned members 46, 48 direct the internal fluid in first lateral or cross-flow directions 58A, 58B and the internal finned member 33 directs the external fluid in the direction designated 56 that is substantially perpendicular to the first lateral directions 58A, 58B.

[0055] FIG. 4 shows a fragmentary, close-up view of the inlet manifold 20, inlet manifold finned member 46 and internal finned member 33 of a preferred heat exchange cell 10. In this embodiment, the inlet manifold finned member 46 includes a series of channels 50 which serve as conduits for passing the internal fluid from the inlet manifold 20 to the first edge 42 of the internal finned member 33. In preferred embodiments, each channel 50 is in fluid communication with a plurality of channels 52A, 52B, 52C of the internal finned members 33. Referring to FIG. 8, in certain embodiments the inlet manifold fins 46 (or the outlet manifold fins) may terminate at the portion of the top and bottom plates 12 and 26 where the plates diverge to form substantially S-shaped raised flanges 36A, 36B. This termination configuration is shown in solid font in FIG. 7. Alternatively, the inlet manifold fins may extend beyond the portion of divergence of the plates 12, 26 in the manner shown in FIG. 7 by dashed font designated 46.

[0056] Referring to FIGS. 5 and 6, in preferred embodiments, a heat exchanger 60 is provided by assembling two or more heat exchange cells 10 one atop the other with the adjacent interior edges of adjacent heat exchange cells attached together for forming a compliant bellows structure 62 capable of elastically absorbing deflections produced during thermal loading so that the individual heat exchange cells may move relative to one another. For example, FIG. 5 shows a heat exchanger including stacked heat exchange cells 10A, 10B, 10C and 10D. Heat exchange cell 10A includes top plate 12A having substantially S-shaped raised flange portion 36A with interior edge 64A and bottom plate 26A having substantially S-shaped raised flange portion 36B with interior edge 64B. Heat exchange 10B is substantially similar to heat exchange cell 10A and also includes interior edges 64A and 64B. The heat exchange cells 10A and 10B are attached together solely through the adjacent interior edges (e.g., such as by welding the interior edge 64A of heat exchange cell 10B with the interior edge 64A of heat exchange cell 10B). The portions of the substantially S-shaped raised flanges 36 remote from the interior edges 64 are not attached to an adjacent heat exchange cell. This allows the substantially S-shaped raised flanges to flex in response to compression and tension forces. The process is continued until the heat exchange cells 10A-10D are attached together through the adjacent interior edges.

[0057] The external finned members 34 of adjacent heat exchange cells 10 are not attached or bonded together so that the individual heat exchange cells are free to move relative to one another during heating up and cooling down of the heat exchanger. As mentioned above, the welded interior edges of the substantially S-shaped raised flanges form a compliant bellows structure capable of elastically absorbing deflections produced during thermal loading so that the individual heat exchange cells may move relative to one another. The compliant nature of the bellows structure minimize stresses and strains placed upon the heat exchanger structure.

[0058] In addition, prior art heat exchangers typically include gas header fins adjacent the external finned members 34 attached to the top and bottom plates. The gas header fins are typically provided for 1) directing flow into the heat exchanger matrix; 2) providing compressive strength to react pressure; and 3) providing a continuous load path between the layers during assembly and manufacturing. The present invention does not require such gas header fins due, inter alia, to the fact that each individual cell is pressure balanced (i.e., includes its own internal high pressure chamber so that each individual heat exchange cell may function, if necessary, as a complete heat exchanger). Thus, the absence of gas header fins from the individual heat exchange cells of the present invention provides numerous benefits including providing flexibility to the cell that enables the cell to deflect out-of-plane and thus respond to thermal gradients.

[0059] Referring to FIG. 9, during operation of one preferred embodiment of the heat exchanger 60, the external fluid, such as a heated exhaust gas, travels in the direction designated 54 and through the external finned members 34 of the stacked heat exchange cells 10. At the same time, the internal fluid, such as a relatively cool compressor discharge air travels through the compliant inlet manifold structure 62 in a downward direction designated 66. Referring to FIG. 3, the internal fluid then passes in succession though the inlet manifold finned member 58A, the internal finned member 33 and the outlet manifold finned member 58B. At least some of the heat present in the external fluid is transferred to the internal fluid as the heat is transferred from the external finned members to the internal finned member. Referring to FIG. 9, the internal fluid then passes from the outlet manifold finned members of the respective cells 10 to the outlet manifold structure 68 in the direction designated 70. The temperature of the internal fluid discharged from the heat exchanger 60 is typically higher than the temperature of the internal fluid entering the heat exchanger. Referring to FIG. 10, the compliant nature of the inlet and outlet manifolds and the individual plates enables the cells of the heat exchanger to move relative to one another during operation so as to minimize the adverse affects that may result from thermal expansion and contraction. During operation, there is no need to apply external forces to the outside of each heat exchange cell 10 in order to hold the cell together because, inter alia, the internal finned member 33 is fully adhered to the top and bottom plates 12, 26 (which provides resistance against differential pressure load).

[0060] Referring to FIGS. 1, 2 and 13, in certain preferred embodiments the first and second external finned members 34A and 51B of each heat exchange cell may include substantially aligned leading edges 72A and 89B that are desirably adapted for receiving the external fluid passing between the cell layers. The first and second external finned members may also include trailing edges 74A and 91B adapted for discharging the external fluid therefrom after the external fluid has passed completely through the external finned members. The substantially aligned leading edges 72A and 89B of the first and second external finned members 34A and 51B are desirably substantially remote from a leading peripheral edge 76 of the heat exchange cell 10. In other words, Referring to FIG. 11, there exists a space or gap 78 between the aligned leading edges 72A and 89B of the external finned members and the leading peripheral edge 76 of the heat exchange cell 10. The space 78 enables the individual cells to move toward and away from one another. Referring to FIG. 2, the substantially aligned leading edges 72A and 89B of the first and second external finned members 34A and 51B may also be substantially offset from the aligned outlet apertures 22 forming the flexible outlet manifold structure 68 for also enabling each cell to deflect toward and away from a heat exchange cell adjacent thereto.

[0061] Referring to FIGS. 1, 2 and 13, in other preferred embodiments, the trailing edges 74A and 91B of the first and second external finned members 34A and 51B may also be in substantial alignment with one another and substantially remote from a rear peripheral edge 80 of the heat exchange cell 10. There preferably exists a space or gap 82 between the trailing edge 74A of the external finned member 34 and the rear peripheral edge 80 of the cell for enabling each individual cell to deflect toward and away from a heat exchange cell adjacent thereto. The substantially aligned trailing edges 74A and 91B of the first and second external finned members 34A and 51B are substantially offset from the aligned inlet apertures 20 forming the flexible inlet manifold structure 62 of the heat exchanger 60 for enabling each cell to deflect toward and away from a heat exchange cell adjacent thereto.

[0062] FIG. 11 shows a fragmentary cross-sectional view of the heat exchanger shown in FIG. 9 before the bellows structures have flexed and/or bowed in response to thermal forces. The various cell layers are substantially parallel to one another because, inter alia, the heat exchanger is not under thermal stress. The leading edges 72A and 89B of the external finned members 34A and 51B are remote from the leading peripheral edge 76 of the cell, thereby providing a gap 78 that extends between the adjacent cell layers. FIG. 12 shows a fragmentary cross-sectional view of the heat exchanger of FIG. 9 after thermal loading whereby the heat exchanger flexes, bends and/or deflects in response to thermal forces. The leading peripheral edges 76 of the respective cell layers are able to move toward one another because the gaps 78 provide room into which the respective cell layers are able to move toward one another because the gaps 78 provide room into which the respective cell layers may move, thereby providing the heat exchanger with enhanced flexibility.

[0063] FIG. 13 shows a top fragmentary view of the heat exchanger 60 shown in FIGS. 9 and 14. FIGS. 14A and 14B show a front view of the heat exchanger 60 taken along line XIV-XIV of FIG. 13. FIG. 14A shows the heat exchanger in an undeflected “cold” state, i.e., before the cell layers 10 have flexed and/or bowed in response to thermal forces. As shown in FIG. 14A, the leading edges 76 of the various cell layers 10 are substantially flat and parallel to one another. FIG. 14B shows the heat exchanger in a deflected “hot” state, i.e., after the leading edges 76 of the respective cell layers 10 have flexed and/or bowed in response to thermal forces. As shown in FIG. 14B, at least some of the leading edges 76 have flexed and/or deflected away from cell layers 10 adjacent thereto. As mentioned above, the leading peripheral edges 76 of the respective cell layers 10 are able to deflect toward and away from adjacent cell layers because the leading edges 76 are remote from the leading edges 72 of the external finned members 74 for forming form gaps 78 in which the respective cell layers 10 may move and/or deflect, thereby providing the heat exchanger 60 with enhanced flexibility.

[0064] In one preferred method of assembling individual heat exchange cells 10, the top and bottom plates 12, 26 (also known as parting plates) are formed from .010-.050 inch stainless or super alloy steel sheet in roll form. The sheet is unrolled and then the plates are formed by stamping and laser trimming. The external finned members 34 and gas is turning fins 52 are formed from .003-.010 inch rolled stainless or super alloy steel. The metal is unrolled, the fins are folded and braze coating is sprayed onto one side of the external finned member 34 and the gas turning fin 52. The braze coated external finned member 34 and gas turning fin 52 are then laser trimmed and cleaned. Instead of applying a braze coat to the external finned member 34 and gas turning fin 52, the first surfaces 14, 28 of the respective top and bottom plates 12, 26 may be coated with the braze coating. The internal finned member 33 and the inlet and outlet manifold finned members 46, 48 are formed from .003-.010 inch rolled stainless or super alloy steel. The metal is unrolled, the fins are folded and braze coating is sprayed onto both sides of the internal finned member 33 and the inlet and outlet manifold finned members 46, 48. The braze coated internal finned member 33 and inlet and outlet manifold finned members 46, 48 are then laser trimmed and cleaned. Instead of applying a braze coat to the internal finned member 33 and the inlet and outlet manifold finned members 46, 48, both inside surfaces of the top and bottom plates 12, 26 may be braze coated.

[0065] The top and bottom plates 12, 26; the two external finned members 34A, 34B; the internal finned member 33; and the inlet and outlet manifold finned members 46, 48 are assembled to form an individual heat exchange cell 10. The individual pieces are tack welded to temporarily hold the pieces together. In addition, the peripheral edge of the assembled individual heat exchange cell 10 may be laser welded.

[0066] One or more assembled individual heat exchange cells 10 are then preferably placed into a braze cell where the individual cells 10 are heated to braze the coated surfaces to one another. Various brazing jig components can be used to load the individual heat exchange cells 10 to minimize any distortion of the cells 10 during the brazing process. FIGS. 7 and 8 illustrate a preferred embodiment of the top and bottom plates 12, 26, including a reservoir 54 provided in top plate 12. This reservoir 54 holds additional braze coating which will spread in the adjacent surfaces of the interior of an individual heat exchange cell 10 during the brazing process.

[0067] After brazing, each heat exchange cell 10 is pressurized to check for any leaks caused by inadequate brazing. A plurality of individual heat exchange cells 10 are then assembled into a partial stack and the interior edges of the substantially S-shaped raised flanges 36, 38 are welded together. These partial stacks are then pressure tested again. A plurality of partial stacks are then welded together to provide a heat exchanger. Transition pieces (not shown) may be attached to outer individual heat exchange cells 10 to provide a place to connect the heat exchanger to the inlet and outlet manifolds of the equipment the heat exchanger is a part of.

[0068] FIG. 15 shows an exploded view of an individual heat exchange cell 100 in accordance with a preferred embodiment of the present invention. Each individual heat exchange cell 100 preferably includes a first parting sheet 102 having one or more peripheral edges 117 defining outer edge(s) of the first parting sheet 102. The first parting sheet 102 preferably includes an inlet aperture 160A at one end thereof, an outlet aperture 162A at the other end thereof and a substantially flat central region 164A between the inlet and outlet apertures 160A and 162A. Each heat exchange cell 100 also preferably includes a second parting sheet 104 that substantially mirrors the dimensions, size and shape of the first parting sheet 102. The second parting sheet 104 preferably has one or more peripheral edges 166 defining outer edge(s) of the second parting sheet 104. The second parting sheet 104 also preferably includes an inlet aperture 160B at one end thereof, an outlet aperture 162B at the other end thereof and a substantially flat central region 164B between the inlet and outlet apertures 160B and 62B.

[0069] The heat exchange cell 100 preferably includes two external finned members, a first external finned member 108 attached to the first parting sheet 102 preferably within the substantially flat central region 164 thereof; and a second external finned member 110 attached to the second parting sheet 104, preferably within the substantially flat central region 164B thereof. The peripheral edges 117, 166 of the respective first and second parting sheets 102, 104 are attached to one another, whereby the aligned inlet apertures 160A, 160B of the attached first and second parting sheets 102, 104 provide an inlet manifold 160 of the heat exchange cell 100 and the aligned outlet apertures 162A, 162B of the attached first and second parting sheets 102, 104 provide an outlet manifold 162 of the heat exchange cell 100.

[0070] The heat exchange cell 100 also preferably includes an internal finned member 106 disposed between and attached to the first and second parting sheets 102, 104. When the cell is assembled, the internal finned member 106 is typically in substantial vertical alignment with the two external finned members 108, 110, the two external finned members 108, 110 also being in substantial vertical alignment with one another.

[0071] The internal finned member 106 preferably includes a leading edge 126 for receiving the internal fluid from the inlet manifold 160 and a trailing edge 128 for discharging the internal fluid to an outlet manifold 162. The heat exchange cell 10 may also include an inlet header 127 disposed in the high pressure chamber between the inlet manifold 160 and the leading edge 126 of the internal finned member 106 and an outlet header 129 disposed in the high pressure chamber between the trailing edge 128 of the internal finned member 106 and the outlet manifold 162. The inlet and outlet headers 127, 129 direct the internal fluid in first lateral or cross-flow directions and the internal finned member 106 directs the external fluid in the direction that is substantially perpendicular to the first lateral directions.

[0072] Heat exchange cell 100 is configured for transferring heat between an external fluid and an internal fluid. In an exemplary embodiment, heat exchange cell 100 is a counter-flow heat exchange cell configured for enabling an internal fluid to pass through an interior finned heat exchange section of heat exchange cell 100 in a first direction and enable an external fluid to pass through exterior finned heat exchange section of heat exchange cell 100 in a direction generally opposite that of the internal fluid. In an exemplary embodiment, heat exchange cell 100 is a cross-flow cell wherein the internal fluid is directed along an inlet region of heat exchange cell 100 in a second direction and then is redirected in the first direction substantially perpendicular, or oblique, to the second direction and along the flow path defined by the interior finned section of heat exchange cell 100. Upon exiting the interior finned sections of heat exchange cell 100 the flow of the internal fluid is redirected again in a third direction which is substantially perpendicular, or oblique, to the first direction.

[0073] FIGS. 16 and 18 illustrate sectional views of an individual cross-flow heat exchange cell 100 in accordance with an exemplary embodiment of the present invention. FIG. 16 illustrates the inlet region of heat exchange cell 100 for directing the flow of an internal fluid. FIG. 18 illustrates the outlet region of heat exchange cell 100 for directing the flow of the internal fluid. Heat exchange cell 100 includes the first and second parting sheets 102, 104, the internal finned member 106, and the first and second external finned members 108, 110. First and second parting sheets 102, 104 are generally flat plates each having opposing first and second surfaces 116, 118, 120, 122 and peripheral edges. Second surface 120 of second parting sheet 104 confronts or faces second surface 118 of first parting sheet 102. A portion of the peripheral edges of first and second members 102, 104 are connected to each other to form a chamber 124. First and second parting sheets 102; 104 are connected to and retain internal finned member 106 between second surfaces 118, 120 and within chamber 124. First and second parting sheets 102, 104, between second surfaces 118, 120, also connect to the inlet header 127 and to the outlet header 129. First surface 116 of first parting sheet 102 connects to first external finned member 108 and first surface 122 of second parting sheet 104 connects to second external finned member 110. First and second parting sheets 102, 104 include inlet and outlet apertures 160, 162 (see FIG. 15) and are configured to define a flow path for an internal fluid.

[0074] Internal finned member 106 is a segment of fin stock. Internal finned member 106 includes a leading edge 126 and a trailing edge 128. Internal finned member 106 is connected to and between second surfaces 118, 120 of first and second parting sheets 102, 104. In an exemplary embodiment, internal finned member 106 is brazed to second surfaces 118, 120 of first and second parting sheets 102, 104. The connection of internal finned member 106 to first and second parting sheets 102, 104 at internal finned portion 138, 140 of first and second parting sheets. Internal finned member 106 is configured to create passages of a requisite hydraulic diameter for directing the flow of an internal fluid, to increase heat transfer area of heat exchange cell 100, and to provide structural support to heat exchange cell 100.

[0075] First and second external finned members 108, 110 are segments of fin stock. First and second external finned members 108, 110 include first and second trailing edges 130, 132 and first and second leading edges 134, 136. First external finned member 108 is attached to first surface 116 of first parting sheet 102 and second external finned member 110 is attached to first surface 122 of second parting sheet 104. First and second external finned members 108, 110 generally have the same plan dimensions as internal finned member 106. Internal and external finned members 106, 108, 110 are separated by first and second parting sheets 102, 104 and are stacked with respect to one another with leading edge 126 and trailing edges 130, 132 in general alignment with one another, and trailing edges 128 and leading edges 134, 136 in general alignment with one another. First and second external finned members 108, 110 are configured to create passages of a requisite hydraulic diameter for directing the flow of an external fluid, to increase heat transfer area of heat exchange cell 100, and to provide structural support to heat exchange cell 100. In an exemplary embodiment, internal finned member 106 is configured to direct the flow of an internal fluid generally along a first plane in a first direction and each external finned member 108, 110 is configured to direct the flow of an external fluid in a direction opposite the first direction. In alternative exemplary embodiments, heat exchange cell 100 can include a single external finned member connected to one of first surface 114 of first parting sheet 102 and first surface 120 of second parting sheet 104.

[0076] Referring to FIG. 16, the inlet header 127 is a finned cross-flow header. The inlet header 127 is positioned between and connected to first and second parting sheets 102, 104. Inlet header 127 is comprised of more coarsely configured fins than internal and external finned members 106, 108, 110. The inlet header 127 is positioned adjacent to the internal finned member 106 at leading edge 126. The inlet header 127 is configured to deliver an internal fluid from inlet aperture 160 (see FIG. 15) to internal finned member 106. The inlet header 127 directs the flow of an internal fluid generally along the first plane in a second direction that is substantially perpendicular, or oblique, to the direction of internal fluid flow through internal finned member 106, referred to as the first direction.

[0077] Referring to FIG. 18, the outlet header 129 is a finned cross-flow header. The outlet header 129 is positioned between and connected to first and second parting sheets 102, 104. Outlet manifold finned member 129 is comprised of more coarsely configured fins than internal and external finned members 106, 108, 110. Outlet header 129 is positioned adjacent to the internal finned member 106 at trailing edge 128. The outlet header 129 is configured to collect an internal fluid from internal finned member 106 and deliver the flow to outlet aperture 162 (see FIG. 15). The outlet header 129 directs the flow of an internal fluid generally along the first plane in a third direction that is substantially perpendicular, or oblique, to the first direction.

[0078] FIGS. 16 and 18 further illustrate the transition of inlet and outlet headers 127, 128 to the internal finned portions 106, otherwise referred to as a transition region 144. FIG. 17 illustrates the relative stiffness of heat exchange cell 100 along the section of heat exchange cell 100 illustrated in FIG. 16. As illustrated in FIG. 17, the exemplary embodiment of heat exchange cell 100 of FIG. 16 includes a sharp drop in stiffness at the connection of internal and external finned portions 106, 108, 110 of heat exchange cell 100 to transition region 144, and an sharp increase in stiffness from transition region 144 to the outlet header 129.

[0079] FIG. 19 shows an exploded view of an individual heat exchange cell 200 in accordance with a preferred embodiment of the present invention. Each individual heat exchange cell 200 preferably includes a first parting sheet 202 having one or more peripheral edges 217 defining outer edge(s) of the first parting sheet 202. The first parting sheet 202 preferably includes an inlet aperture 260A at one end thereof, an outlet aperture 262A at the other end thereof and a substantially flat central region 264A between the inlet and outlet apertures 260A and 262A. Each heat exchange cell 200 also preferably includes a second parting sheet 204 that substantially mirrors the dimensions, size and shape of the first parting sheet 202. The second parting sheet 204 preferably has one or more peripheral edges 266 defining outer edge(s) of the second parting sheet 204. The second parting sheet 204 also preferably includes an inlet aperture 260B at one end thereof, an outlet aperture 262B at the other end thereof and a substantially flat central region 264B between the inlet and outlet apertures 260B and 262B.

[0080] The heat exchange cell 200 preferably includes two external finned members, a first external finned member 208 attached to the first parting sheet 202, preferably within the substantially flat central region 264 thereof; and a second external finned member 210 attached to the second parting sheet 204, preferably within the substantially flat central region 264B thereof. The peripheral edges 217, 266 of the respective first and second parting sheets 202, 204 are attached to one another, whereby the aligned inlet apertures 260A, 260B of the attached first and second parting sheets 202, 204 provide an inlet manifold 260 of the heat exchange cell 200 and the aligned outlet apertures 262A, 262B of the attached first and second parting sheets 202, 104 provide an outlet manifold 262 of the heat exchange cell 200.

[0081] The heat exchange cell 200 also preferably includes an internal finned member 206 disposed between and attached to the first and second parting sheets 202, 204. The two external finned members 208, 210 also being in substantial vertical alignment with one another.

[0082] The internal finned member 206 attached preferably includes a leading edge 226 for receiving the internal fluid from the inlet manifold 260 and a trailing edge 228 for discharging the internal fluid to an outlet manifold 262. The heat exchange cell 10 may also include an inlet header 227 disposed in the high pressure chamber between the inlet manifold 260 and the leading edge 226 of the internal finned member 206 and an outlet header 229 disposed in the high pressure chamber between the trailing edge 228 of the internal finned member 206 and the outlet manifold 262.

[0083] Heat exchange cell 200 is configured for transferring heat between an external fluid and an internal fluid. In an exemplary embodiment, heat exchange cell 200 is a counter-flow heat exchange cell configured for enabling an internal fluid to pass through an interior finned heat exchange section of heat exchange cell 200 in a first direction and enable an external fluid to pass through exterior finned heat exchange section of heat exchange cell 200 in a direction generally opposite that of the internal fluid. In an exemplary embodiment, heat exchange cell 200 is a cross-flow cell wherein the internal fluid is directed along an inlet region of heat exchange cell 200 in a second direction and then is redirected in the first direction substantially perpendicular, or oblique, to the second direction and along the flow path defined by the interior finned section of heat exchange cell 200. Upon exiting the interior finned sections of heat exchange cell 200 the flow of the internal fluid is redirected again in a third direction which is substantially perpendicular, or oblique, to the first direction.

[0084] FIG. 20 illustrates a sectional view of the cross-flow heat exchange cell 200 in accordance with an alternative exemplary embodiment of the present invention. FIG. 20 illustrates the outlet region of heat exchange cell 200 for directing the flow of the internal fluid. Heat exchange cell 200 includes first and second parting sheets 202, 204, the internal finned member 206, and first and second external finned members 208, 210. First and second parting sheets 202, 204 are generally flat plates each having opposing first and second surfaces 216, 218, 220, 222 and peripheral edges. Second surface 220 of second parting sheet 204 confronts or faces second surface 218 of first parting sheet 202. A portion of the peripheral edges of first and second members 202, 204 are connected to each other to form a chamber 224. First and second parting sheets 202, 204 are connected to and retain internal finned member 206 between second surfaces 218, 220 and within chamber 224. First and second parting sheets 202, 204, between second surfaces 218, 220, also connect to the inlet and outlet header 227, 229.

[0085] First surface 216 of first parting sheet 202 connects to first external finned member 208 and first surface 222 of second parting sheet 204 connects to second external finned member 210. First and second parting sheets include inlet and outlet apertures 260, 262 (see FIG. 19) and are configured to define a flow path for an internal fluid. First and second parting sheets 202, 204 therefore each include an internal finned member portion connected to internal finned member 206. First surface 216 of first parting sheet 202 further connects to first external finned member 208 and first surface 222 of second parting sheet 204 connects to second external finned member 210. In an alternative exemplary embodiment, the first and second parting sheets each include an internal finned member portion which connects to an inlet header sheet portion and an outlet header sheet portion, respectively. The trailing edges of the internal finned member extend along the juncture of the first and second outlet header sheet portions to the internal finned member portion of the first and second parting sheets.

[0086] Internal finned member 206 is a segment of fin stock. Internal finned member 206 includes a leading edge 226 (see FIG. 19) and a trailing edge 228. Internal finned member 206 is connected to and is disposed between second surfaces 218, 220 of first and second parting sheets 202, 204. In an exemplary embodiment, internal finned member 206 is brazed to second surfaces 218, 220 of first and second parting sheets 202, 204. The connection of internal finned member 206 to first and second parting sheets 202, 204 at an internal finned portion 238, 240 of first and second parting sheets 202, 204. Internal finned member 206 is configured to create passages of a requisite hydraulic diameter for directing the flow of an internal fluid, to increase heat transfer area of heat exchange cell 200, and to provide structural support to heat exchange cell 200. In an exemplary embodiment, internal finned member 206 includes convolutions.

[0087] First and second external finned members 208, 210 are segments of fin stock. First and second external finned members 208, 220 include first and second leading edges 230, 232 and first and second trailing edges 234, 236. First external finned member 208 is attached to first surface 216 of first parting sheet 202 and second external finned member 210 is attached to first surface 222 of second parting sheet 204. First and second external finned members 208, 210 are configured to create passages of a requisite hydraulic diameter for directing the flow of an external fluid, to increase heat transfer area of heat exchange cell 200, and to provide structural support to heat exchange cell 200. In an exemplary embodiment, internal finned member 206 is configured to direct the flow of an internal fluid generally along a first plane in a first direction and each external finned member 208, 210 is configured to direct the flow of an external fluid in a direction opposite the first direction. In alternative exemplary embodiments, heat exchange cell 200 can include a single external finned member connected to one of first surface 216 of first parting sheet 202 and first surface 222 of second parting sheet 204. In an exemplary embodiment, first and second external finned members 208, 210 further include convolutions.

[0088] The interface between a counter-flow matrix (internal and external finned members separated by parting sheets of a heat exchange cell of a heat exchanger) and cross-flow headers of a plate-fin heat exchanger can be susceptible to damage due to discontinuities of stiffness and thermal response. During transient thermal operation of the heat exchanger, strain accumulates in the parting sheets separating two heat transfer streams, adjacent to the open ends of the counter-flow fin segments. A global thermal deflection is created in the heat exchange matrix, while the cross-flow headers, experiencing little heat transfer, are strained through connection with the parting sheets which extend from the matrix and connect the cross-flow headers to the heat exchange matrix. Along the interface between the matrix and the cross-flow headers there is also a local thermal gradient created by the difference in heat transfer rate between the matrix and the cross-flow headers. The resulting difference in transient temperature, and the attendant thermal strain, can be exacerbated by the difference in stiffness between the matrix, the cross-flow headers and the interface thereof. Strain accumulates in the softer cross-flow region where it may cause damage.

[0089] As best illustrated in FIG. 20, internal finned member 206 is positioned offset from first and second external finned members 208, 210, such that leading edges 234, 236 of first and second external finned members 208, 210 outwardly extend with respect to internal finned member 206 and partially cover a portion of the outlet header 229. Leading edges 234, 236 remain in general alignment with one another and in an offset alignment with trailing edge 228 of internal finned member 206.

[0090] The outlet header 229 is a cross-flow, finned header. In an exemplary embodiment, the outlet header 229 is positioned between and is connected to first and second parting sheets 202, 204. The outlet header 229 is comprised of more coarsely configured fins than internal and external finned members 206, 208, 210. The outlet header 229 is positioned adjacent to internal finned member 206 at trailing edge 228. The outlet header 229 is configured to collect an internal fluid from internal finned member 206 and deliver the flow to outlet aperture 262. The outlet header 229 directs the flow of an internal fluid generally along the first plane in a third direction that is substantially perpendicular to the first direction.

[0091] FIG. 20 further illustrates the transition of the outlet header 229 to the internal finned member 206, otherwise referred to as transition region 244. FIG. 21 illustrates the relative stiffness heat exchange cell 200 along the section of heat exchange cell 200 illustrated in FIG. 20. FIG. 21 illustrates that the exemplary embodiment of heat exchange cell 200, including the offset configuration of internal finned member 206 with respect to external finned members 208, 210, significantly increases the stiffness of transition region 244. The exemplary embodiment of FIG. 20, reduces damaging strain accumulation by creating transition zone 244 including the offset positioning of first and second external finned members 208, 210 with internal finned member 206 separated by first and second parting sheets 202, 204. Transition zone 244 includes at least two significant characteristics over a non-offset configuration. First transition zone 244 reduces the rate of heat transfer into first and second parting sheets 202, 204, and second, the structural stiffness of transition zone 244 is significantly increased. These characteristics enable heat exchange cell 200 to exhibit lower thermal strain in operation and therefore, increase the fatigue life of heat exchange cell 200.

[0092] The above disclosure describes only certain preferred embodiments of a heat exchanger and is not intended to limit the scope of the present invention to the exact construction and operation shown and described herein. The foregoing is considered to merely illustrate certain principles of the invention. Thus, it should be evident to those skilled in the art that numerous modifications and changes may be made to the embodiments shown herein while remaining within the scope of the present invention as described and claimed.

Claims

1. A heat exchanger for transferring heat between an external fluid and an internal fluid, the heat exchanger comprising:

a plurality of heat exchange cells positioned in a stacked configuration with respect to each other, each cell being connected to at least one adjacent cell, each cell including:
a first parting sheet including opposing first and second surfaces, a first inlet header portion, a first outlet header portion, a first internal finned member portion and peripheral edges;
a second parting sheet substantially superimposed by, spaced apart from and coupled to the first parting sheet, the second parting sheet including opposing third and fourth surfaces a second inlet header portion, a second outlet header portion, a second internal finned member portion and peripheral edges, the fourth surface of the second parting sheet confronting the second surface of the first parting sheet, at least a portion of the peripheral edges of the first and second parting sheets attached to each other;
an internal finned member disposed between the second and fourth surfaces of the first and second parting sheets, respectively, the internal finned member positioned at the first and second internal finned member portions of the first and second parting sheets, respectively, and having a leading edge positioned adjacent to the first and second inlet header portions of the first and second parting sheets, respectively, and a trailing edge positioned adjacent to the first and second outlet header portions of the first and second parting sheets, respectively;
at least one external finned member being attached to at least one of the first surface of the first parting sheet and the third surface of the second parting sheet, the external finned member having a leading edge and a trailing edge, the external finned member positioned such that the leading edge of the external finned member outwardly extends beyond the trailing edge of the internal finned member.

2. The heat exchanger of

claim 1, further comprising inlet and outlet finned members disposed between and attached to the inlet and outlet header portions, respectively, of the first and second parting sheets.

3. The heat exchanger of

claim 1, wherein the internal finned member is configured to direct the flow of a fluid generally along a first path in a first direction and the inlet header portions of the first and second parting sheets are configured to direct the flow of the fluid generally along a second path in a second direction substantially perpendicular to the first direction.

4. The heat exchanger of

claim 3, wherein the outlet header portions of the first and second parting sheets are configured to direct the flow of the fluid generally along a third path substantially perpendicular to the first path.

5. The heat exchanger of

claim 1, wherein the at least one external finned member is two external finned members, a first external finned member attached to the first surface of the first parting sheet and a second external finned member attached to the third surface of the second parting sheet.

6. The heat exchanger of

claim 3, wherein each external finned member is configured to direct the flow of a second fluid in a direction generally opposite the first direction.

7. The heat exchanger of

claim 1 wherein the external finned members of adjacent heat exchange cells are connected together.

8. The heat exchanger of

claim 1 wherein the peripheral edges of the first and second parting sheets of each heat exchange cell further extend and connect to adjacent heat exchange cells.

9. A heat exchange cell of a heat exchanger for transferring heat between an external fluid and an internal fluid, the heat exchange cell comprising:

a first parting sheet including opposing first and second surfaces, a first inlet header portion, a first outlet header portion and a first internal finned member portion;
a second parting sheet substantially superimposed by, spaced apart from and coupled to the first parting sheet, the second parting sheet including opposing third and fourth surfaces, a second inlet header portion, a second outlet header portion and a second internal finned portion, the fourth surface of the second parting sheet confronting the second surface of the first parting sheet;
an internal finned member disposed between the first and second parting sheets, at the first and second internal finned member portions, the internal finned member having a leading edge and a trailing edge;
at least one external finned member being attached to at least one of the first surface of the first parting sheet and the third surface of the second parting sheet, the external finned member having a leading edge and a trailing edge;
an outlet header connected to the first and second outlet header portions of the first and second parting sheets, respectively, the trailing edge of the internal finned member extending along the juncture of the first and second outlet header portions to the first and second internal finned member portions of the first and second parting sheets, respectively; and
an inlet header connected to the first and second inlet header portions of the first and second parting sheets, respectively, the leading edge of the internal finned member extending along the juncture of the first and second inlet header portions to the first and second internal finned member portions of the first and second parting sheets, respectively, the external finned member positioned offset from the internal finned member such that the leading edge of the external finned member outwardly extends beyond the trailing edge of the internal finned member.

10. The heat exchange cell of

claim 9, wherein the inlet and outlet headers are cross-flow headers.

11. The heat exchange cell of

claim 9, wherein the inlet and outlet headers each further include a finned member.

12. The heat exchange cell of

claim 9, wherein the internal finned member is configured to direct the flow of a fluid generally along a first plane in a first direction and the inlet header is configured to direct the flow of the fluid generally along the first plane in a second direction substantially perpendicular to the first direction.

13. The heat exchange cell of

claim 9, wherein the internal finned member is configured to direct the flow of a fluid generally along a first axis and the outlet header is configured to direct the flow of the fluid generally along a third axis substantially perpendicular to the first axis.

14. The heat exchange cell of

claim 9, wherein the leading edge of the at least one external finned member is positioned over the outlet header.

15. The heat exchange cell of

claim 9, wherein the at least one external finned member is two external finned members, a first external finned member attached to the first surface of the first parting sheet and a second external finned member attached to the third surface of the second parting sheet.

16. The heat exchange cell of

claim 9, wherein the first and second parting sheets further include peripheral edges and at least a portion of the peripheral edges of the first and second parting sheets are attached to each other.

17. The heat exchange cell of

claim 16, wherein the first and second parting sheets define a high pressure chamber and the internal finned member is disposed within the chamber.

18. The heat exchange cell of

claim 12, wherein each external finned member is configured to direct the flow of a second fluid in a direction generally opposite the first direction.

19. The heat exchanger of

claim 11 the finned member of the inlet and outlet headers each include convolutions.

20. The heat exchanger of

claim 9 wherein the internal finned member is connected to the second surfaces of the first and second parting sheets.
Patent History
Publication number: 20010025705
Type: Application
Filed: Apr 24, 2001
Publication Date: Oct 4, 2001
Inventors: James S. Nash (West Newbury, MA), Alexander Haplau-Colan (Hampton, NH)
Application Number: 09841463