Easily configurable and swappable multicomponent library system

An easily expandable and interchangeable library system is achieved by integrating several storage library modules which are specifically designed to allow easy transfer of storage media there between. Each library module is equipped with an integral elevator track which is capable of directing and accommodating the movement of a storage media elevator between the various modules. The storage elevator is appropriately designed to easily travel between the storage library modules, without the need for additional components or additional equipment. The use of wireless communication between an elevator controller and a library controller allows for the controlled movement an interaction of the elevator between library modules, thus creating an expandable library system within which storage capacity can be easily and economically increased without the need for additional equipment.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

[0001] The present invention relates to a dynamic information storage and retrieval system, and particularly to an easily expandable library system. More particularly, the invention relates to a library system which is easily expandable by adding additional library modules.

[0002] Advances in manufacturing technologies and system architecture have led to increasingly powerful electronic devices and computers. These electronic devices and computers support features and applications, in which vast amounts of information are processed and stored. Generally, the amount of information is not only vast, but also ever-increasing.

[0003] To provide the information needed by today's high powered applications, storage technologies have been developed to meet the high capacity data storage needs created. Various storage options include hard disk drives, or drives using removable storage media such as magnetic, optical and magneto-optical media. Although these technologies provide relatively large storage capabilities, ongoing improvement is continually necessary so as to overcome factors limiting storage capacity and performance.

[0004] Data storage libraries, or jukeboxes, are robotically controlled storage devices that have been developed to improve the efficacy of storage by automating nearly all data management functions. Every phase of library operations minimizes human intervention, which is the most common cause of data loss. A traditional tape jukebox consists of a series of bays or slots storing a number of tapes. A robotic picker is computer controlled so that it can move any chosen tape from its storage bay and load the tape onto a tape drive unit. The entire jukebox is housed in a sealed environment to prevent contamination of the tapes. Similar jukebox libraries have also been built for virtually all types of storage media, including optical disks. Because jukeboxes store tens or hundreds of tapes, optical disks, or other media, and because the jukeboxes can automatically swap disks and tapes in and out of the read devices, a single jukebox can effectively store much more information than a single tape drive or optical drive. This makes jukeboxes very advantageous.

[0005] As can be easily appreciated, the capacity of a standard jukebox can be limited by its physical size. Simply stated, only so many tapes or optical media can fit within the prescribed housing size, resulting in a limitation. Obviously, the jukeboxes are available in various sizes, however it is often not economical to buy vastly oversized devices simply for the sake of possible future expansion. Consequently, it would be desirable to create a jukebox system which could easily be expanded to include additional modules which would cooperate with one another.

[0006] In one example of past library systems, a rack mounted library module is used initially to meet the user's storage needs. When it is desired to expand, a number of library modules are connected to one another via an external conversion mechanism. Some example expansion products include the Stacklink, manufactured by Quantum Corporation of Milpitas, Calif., and the XpressChannel, manufactured by Overland Data of San Diego, Calif. Using these expansion devices, each particular module is its own operating jukebox or library including a picker mechanism and appropriate storage slots. Expandability is achieved through the use of the aforementioned external integration system which is specifically designed and configured to allow tapes to be transferred from one library module to another library module. Essentially, these expansion systems physically tie the various modules together.

[0007] Unfortunately, these expansion systems are specifically designed for the particular expansion being undertaken. For example, if two library modules are to be connected, a specific “two library rail” is required, which is attached to the back of the libraries. Similarly, a specifically configured expansion device is required for three library modules. Further, another module is required for four modules, etc. While these expansion mechanisms do achieve the goal of integrating multiple library modules to one another, they are not easily expandable as a new expansion mechanism is required for each additional expansion. This becomes costly and cumbersome when trying to expand library modules. Furthermore, this does not accommodate the easily removal and replacement of library modules should that be necessary.

[0008] It would be particularly beneficial to devise a system which would allow for the easy integration of multiple library modules, without additional hardware. Further, such a system would be beneficial if it also accommodated the swapping (removal and replacement) of library modules.

SUMMARY OF THE INVENTION

[0009] In order to address the above referenced issues related to expandability and module swapping, the present invention provides an integral elevator support, or guide rail within each library module. This elevator support easily allows an elevator mechanism to move storage media between the various library modules without the use of additional components or pieces.

[0010] As mentioned above, the elevator system includes a guide rail or support which is rigidly attached to each library module. This guide rail will include the necessary guide structures (slots) to direct elevator movement within an appropriately constrained area. These guide rails are also designed to provide necessary power to the elevator mechanism during its travel. Additionally, the guide rail also includes gear teeth designed to interact with corresponding gears on the elevator mechanism itself.

[0011] The elevator mechanism or crawler itself is designed to interact with the guide rail to accommodate its movement. Further, a media holding mechanism is attached to the elevator in order to carry the desired media. In the preferred embodiment, this includes media tape, however accommodations could easily made to handle optical storage disks or other storage media.

[0012] The elevator itself includes a drive motor and appropriate gearing, which will interact with gear teeth on the guide rail so as to carry the elevator along the path defined by the guide rail. Appropriate contacts are provided to carry electrical power to the motor at all points along its travel.

[0013] Also included on the elevator is a control system coupled to the drive motor. As would be expected, this control system directs the actual movement of the elevator as it travels between the various library modules. The control system also includes a communication device which will communicate with a master library controller. In one embodiment, the communication is done through infrared or IR signals. This wireless communication between these components allows for unrestrained movement of the elevator throughout its entire range of travel in a multi-module library system. Naturally, many alternative communication methods could be utilized, including RF, etc.

[0014] It is an object of the present invention to provide a library module with the capability of being easily integrated into a library system including multiple modules. This capability is achieved by providing an integral structure to accommodate a transport mechanism which is specifically configured and designed to transport storage media between the various modules.

[0015] It is a further object of the present invention to provide a library module which can be expanded without the use of additional hardware. In the design of the present invention, only integral components of the library module are necessary to accommodate the expandability of the overall system.

[0016] It is a further object of the present invention to provide continual expansion capability at any time throughout the life of the storage library.

[0017] It is yet another object of the present invention to provide a elevator mechanism to a library module which is specifically configured and designed to carry storage media between various library modules within an overall storage system. The elevator mechanism cooperates with structures within the library module to easily accommodate and guide its movement.

[0018] It is yet another object of the present invention to provide an elevator mechanism which includes communication capabilities so that the operation elevator can easily be controlled as it travels throughout the library system. The communication capabilities are preferably achieved in a wireless fashion, thus accommodating free movement of the library through the entire library system.

BRIEF DESCRIPTION OF THE DRAWINGS

[0019] Further objects and advantages of the present invention can be seen by reading the following detailed description in conjunction with the drawings in which:

[0020] FIG. 1 is a perspective view of a rack mounted library system;

[0021] FIG. 2 is a perspective view of a library module;

[0022] FIG. 3 is a top view of an opened library module;

[0023] FIG. 4 is a cross-sectional drawing showing a portion of the library module;

[0024] FIG. 5 is a first perspective view of the elevator assembly;

[0025] FIG. 6 is a second perspective view of the elevator assembly;

[0026] FIG. 7 is a perspective view of the elevator mechanism alone;

[0027] FIG. 8 is a cross-sectional diagram illustrating elevator 110 “bridging the gap” between two library modules; and

[0028] FIG. 9 is a schematic diagram of the elevator system control devices.

DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS

[0029] As is known and understood by those skilled in the art, a data storage libraries can take on many different configurations and layouts depending on the particular needs and design involved. One configuration is a rack-mounted data storage library which is capable of being mounted in a traditional equipment cabinet. Referring to FIG. 1, there is shown one embodiment of a rack-mounted storage library 20 which includes a first library module 22, second library module 24 and a third library module 26. Each of these library modules is mounted within a rack or cabinet 28. As can be seen, cabinet 28 includes two front face rails 30 which have a number of mounting holes 32 therein.

[0030] As can be seen, first library module 22, second library module 24 and third library module 26 are mounted within cabinet 28 at positions which are immediately adjacent one another. This alignment allows for the exploitation of cartridge sharing functions, which are described further below.

[0031] Referring now to FIG. 2, there is shown a more detailed drawing of a first library module 22. It is understood that first library module 22, second library module 24 and third library module 26 are all similarly configured. Consequently, all comments and description regarding the structure of these components are equally applicable to any library module. As can be seen, first library module 22 includes an enclosed housing 40 which includes a front panel 42, a top panel 44, a bottom panel 46 (not shown) and a pair of side panels 48. Front panel 42 is designed to extend beyond side panels 48, which facilitates rack mounting as shown in FIG. 1.

[0032] Front panel 42 includes a cartridge loading opening 50 which allows data storage cartridges to be inserted into the interior of housing 40 and accommodates the population of this library module 22. In order to accommodate the disk cartridge sharing capabilities of the present invention, housing 40 also includes an opening 52 positioned in the top panel 44 thereof. Opening 52 has a pair of cover mount rails 54 positioned on either side of the opening to accommodate the attachment of a cover plate 56 (not shown). A pair of cover screw attachment holes 58 are also shown in cover mount rails 54. As can be appreciated, these holes accommodate the attachment of cover plate 56.

[0033] As mentioned above, the first library module 22 (and all library modules contained within a rack mounted library system) are configured to allow storage cartridges to be transferred between the various modules. The first portion of the structure which accommodates this features is the opening 52 in top panel 44. It should be understood, although not shown in FIG. 2, that a similar opening exists in bottom panel 46 which again is configured to allow a removable cover plate to be attached thereto.

[0034] As mentioned above, each library module includes the ability to house and manipulate a number of media storage elements. It will be understood that the present invention is not limited to any specific type of storage media, and could be implemented with any media type, such as magnetic tape, and storage disks, including optical, magneto optical, magnetic disks, etc. Traditionally, the library includes a number of storage locations or storage bins, at least one media drive for reading the storage media, and pickers/placer mechanisms to transport the storage media. Additionally, some mechanism is typically necessary to allow media to be inserted or imported into the library module for use.

[0035] Referring now to FIGS. 3 and 4, there are shown a top view of first library module 22 with the top panel 44 removed. Further, shown in FIG. 4 is a sectional view showing certain interior components of first library module 22 shown from section line 4-4 of FIG. 3.

[0036] As mentioned above, library module 22 includes a media storage drive 70 along with a storage bin 72 which is configured to have a plurality of storage slots 74 therein. Also contained within first library module 22 is a picker/placer mechanism 80 which is configured to transport media elements from storage slots 74 to media drive 70. Picker/placer 80 travels along a guide rail 82 located along a back portion of library module 22. An import mechanism 86 is provided at a front portion of library module 22. Import mechanism 86 allows library module 22 to be populated by receiving and appropriately placing media elements within first library module 22. This involves a coordinated effort between picker/placer 80 and the library module controller (not shown) to appropriately receive and place media elements in the desired storage slot 74.

[0037] The library modules of the present invention are easily incorporated into a storage library system which can include multiple library modules. In the embodiment shown in FIG. 1, three such library modules are utilized. In order to incorporate these multiple modules into one library system, accommodations are made to allow a media transport to carry media elements between the various modules. In order to accomplish this, an elevator system 100 is incorporated into the library system. As can be seen in FIGS. 3 and 4, library system 100 is positioned adjacent storage bin 72 so as to easily cooperate with picker/placer 80. As can be anticipated, this allows picker placer 80 to remove the particular storage media carried by elevator system 100 and place it in a desired storage slot 74, or directly to media drive 70.

[0038] Referring now to FIGS. 5-7, elevator system 100 is shown in more detail. At a general level, elevator system 100 includes a support track or support rail 102 which is rigidly attached to the housing 40 of library module 22. Elevator system 100 also includes a climber or elevator 110 which is adapted to interact with elevator support track 102. Climber 110 includes a drive motor 112 and related gearing 114 which is designed to interact or cooperate with related track gears 104. Both motor 112 and gearing 114 are attached to coupling support 116 which is designed to interact with guiding slots 106 in elevator support track 102. More specifically, a number of tabs or protrusions 118 are specifically designed to fit within guiding slots 106 as climber 110 travels along elevator support track 102.

[0039] Attached to coupling support 116 is a media transport bin 130 which is configured to receive and transport the particular storage media being used in library system 20. In this particular embodiment, media transport bin 130 is configured to receive and carry a magnetic tape cartridge. Media transport bin 130 has a substantially rectangular housing forming a rectangular opening 132 therein.

[0040] On a backside of coupling support 116 is located a controller housing 140 which contains an elevator controller 142 and communication devices 144. Controller 142 will direct the operation of elevator system 100 and achieve appropriate movement and direction. FIG. 8 is a schematic drawing illustrating the electrical connection and control operation for elevator system 100.

[0041] As mentioned above, controller housing 140 contains communication devices 144 which provide the necessary link to a library system controller 150 contained within library system 20. In one embodiment of the present invention, communication is achieved via radio frequency signals transmitted between elevator controller 142 and library system controller 150. Based on the signals received, and programming logic within controller. Library controller 150 obviously includes similar communication device 154. Alternative communication methods could include infrared or visible light signals. While wireless communication is obviously preferable, systems could be incorporated to have wired communication depending on the number of modules included.

[0042] In order to provide power to motor 112 and controller 142, power connections are provided on coupling support 116. Specifically, a first power connector 160 and a second power connector 162 are provided. These power connectors interact with power strips incorporated into elevator track 102. More specifically, elevator rail 102 includes a first power slot 122 and a second power slot 124. These power slots contain conducting material which provide the necessary power signals to the elevator 100. As expected, this would traditionally include a ground signal and a positive power supply signal.

[0043] Referring again to FIG. 1, it can be seen that the various library modules (i.e., first library module 22, second library module 24 and third library module 26) are all located relatively close to one another. With the appropriate housing openings 52 aligned with one another, and the common geometry of the various library modules, elevator system 100 is capable of transporting storage media between the various library modules. As mentioned above, the configuration of the various library modules causes each elevator track 102 to be aligned with one another. Consequently, multiple elevator tracks 102 aligned with one another would create a semi-continuous rail system along which elevator 110 could travel. Naturally, some gaps exist between the various elevator tracks 102. The ability to bridge these gaps is achieved by the configuration of gears 114 and coupling support 116. More specifically, gears 114 includes a drive gear 170, a first travel gear 172 and a second travel gear 174. As can be seen in FIG. 7, first travel gear 172 and second travel gear 174 are spaced a distance apart. In practice, this distance is sufficient to allow elevator system 110 to bridge any existing gap between the various library modules. Similarly, coupling support 116 is sufficient in size and configuration to bridge the existing gaps.

[0044] The step of bridging gaps between library modules is further illustrated in FIG. 8. More specifically, an elevator support track 110 for first library module 22 and a elevator library track 110 for second library module 24 are shown. As can be seen, the elevator support rails 110 are aligned with one another and closely spaced to allow consistent travel of elevator 110.

[0045] As can be seen, the top panel 44 of first library module 22 is adjacent the bottom panel 46 of second library module 24. The rack mounted systems are designed and configured so that a minimum distance exists between these two library modules when appropriately mounted. This minimizes the gap that elevator 110 must bridge during its travel between modules.

[0046] Coupling support 116 is sized to be substantially larger than the gap which must be bridged during this operation. Consequently, during any point in travel coupling support 116 will be sufficiently coupled with elevator support track 102 so that its movement is closely guided. Additionally, first travel gear 72 and second travel gear 74 are sufficiently spaced so that at least one travel gear will continuously be engaged with the gears 104 on elevator support track 102. As can be seen from this figure, the movement of elevator 110 across the gap is easily achieved through the appropriate placement and configuration of components—specifically first travel gear 172, second travel gear 174, and coupling support 116.

[0047] In operation, the elevator will be largely controlled by the library controller 150. A schematic drawing of the control system is shown in FIG. 9. When library controller 150 determines it is necessary for a cartridge to be moved from one module to another, appropriate communication signals will be transmitted via library communication device 154 to elevator controller 142. Upon receipt of such signals, elevator controller 142 will cause motor 112 to be appropriately actuated, thus causing the movement of elevator 110. Elevator controller 142 will then cause elevator 110 to proceed to the desired location. In the library system, at least one proximity switch 146 may be utilized to control the precise positioning of elevator 110. Once at position, library controller 150 will actuate the related systems, such as picker/placer 80, causing the appropriate movement of storage media. This may include the placement of a storage cartridge within media transport bin 130, or, the removal of a storage cartridge therefrom.

[0048] In order to provide necessary communication, elevator controller 142 will provide appropriate signals back to library controller 150, indicating that elevator 110 is in an appropriate position. Likewise, other information could be communicated back to the library controller, such as cartridge information, etc. For example, each cartridge could include an identifier which could be read by a sensor on the elevator. This could then be communicated back to library controller 150. Example identifiers may include bar codes, RFID chips, etc.

[0049] While a proximity switch 142 is mentioned above, it is understood that positioning of elevator 110 could be accomplished via several mechanism. For example, tracking of motor operation would also allow positioning of elevator 110. Further, micro-switches or optical sensors could also be utilized.

[0050] Those skilled in the art will further appreciate that the present invention may be embodied in other specific forms without departing from the spirit or central attributes thereof. In that the foregoing description of the present invention discloses only exemplary embodiments thereof, it is to be understood that other variations are contemplated as being within the scope of the present invention. Accordingly, the present invention is not limited in the particular embodiments which have been described in detail therein. Rather, reference should be made to the appended claims as indicative of the scope and content of the present invention.

Claims

1. A library module for incorporation into an expandable library system, comprising:

a housing having an upper surface and lower surface, at least one of the upper surface or the lower surface having a reclosable opening adapted for expansion of the library system;
a plurality of media storage compartments within the housing, each adapted to contain a single piece of storage media;
a media drive to at least read data from the storage media;
a picker mechanism adapted to selectively transport the storage media from a selected media compartment to the media drive; and
an elevator support structure within the housing and adjacent the reclosable opening, the elevator support structure adapted to cooperate with a media elevator, the elevator support structure having a guiding rail adapted to guide the movement of the media elevator, the guiding rail positioned to allow the media elevator to travel in and out of the housing though the reclosable opening, and to position the media elevator to cooperate with the picker mechanism.

2. The library module of claim 1 wherein the elevator support structure includes a gear track adapted to couple with a gear drive mechanism in the media elevator.

3. The library module of claim 1 wherein the elevator support structure is positioned adjacent the media storage compartments.

4. The library module of claim 1 wherein the guiding rail has a plurality of guiding grooves adapted to interact with cooperating tabs in the elevator mechanism.

5. The library module of claim 1 wherein the storage media is contained in a storage cartridge.

6. The library module of claim 1 wherein the guiding rail is positioned such that a media transport compartment carried by the elevator mechanism and adapted to contain at least one of the storage media is positioned adjacent the plurality of storage compartments.

7. An expandable data storage library system, comprising:

a plurality of mountable library modules, each module adapted to house and read data from a plurality of data storage media, each module including a housing with at least one expansion opening adapted to be selectively opened;
a media elevator system adapted to travel between the plurality of library modules using the at least one expansion opening in the library module, wherein the media elevator system comprises an elevator designed to interact with an elevator support track positioned within each module such that the elevator support track in each of the plurality of library modules will be cooperatively aligned when the plurality of modules are mounted.

8. The library system of claim 7 wherein the elevator travels along the elevator support track.

9. The library system of claim 8 wherein the elevator includes a media transport bin to carry storage media between the various library modules.

10. The library system of claim 9 wherein the elevator further comprises a support coupling designed to couple with the elevator support track so that movement of the elevator is guided by the elevator support track, and a motor to drive the movement of the elevator.

11. The library of claim 10 wherein the elevator further comprises drive gears coupled to the motor, the drive gears designed to interact with track gears which exist on the elevator support track.

12. The library system of claim 10 further comprising an elevator controller operatively coupled to the motor so as to control the movement of the elevator, and a communication transceiver operatively coupled to the elevator controller, thus allowing the elevator controller to communicate with a library controller.

13. The library system of claim 12 wherein the transceiver is an infrared transceiver.

14. The library system of claim 12 wherein the transceiver is a optical transceiver.

15. The library system of claim 12 wherein the transceiver is an acoustic transceiver.

16. The library system of claim 10 wherein the elevator support track includes an electrically energized power contact which is electrically isolated from the elevator support track, and the elevator includes a pickup contact connected to the motor so as to provide power to the motor whenever the coupling support is coupled to the support track, thus causing the pickup contact to be in contact with the power contact.

17. A storage library module for incorporation into a modular storage library system, comprising:

a housing having at least one elevator opening therein;
a media storage bin positioned within the housing and capable of storing a plurality of storage media;
a storage drive within the housing for reading the storage media;
a picker mechanism for the selective transportation of storage media between the media storage bin and the storage drive;
an elevator support track attached to and within the housing, the elevator support track positioned adjacent the elevator opening; and
an elevator coupled to the elevator support track so as to travel along the support track and capable of traveling out of the housing through the elevator opening, the elevator having a media transport bin positionable within the housing such that media can be place in or removed from the media storage bin by the picker.

18. The library module of claim 17 wherein the elevator includes an elevator controller and a motor coupled to the controller, wherein the controller communicates with motor so as to control the motion of the elevator.

19. The library module of claim 18 wherein the elevator further includes a communication device to receive signals from a library system controller, the communication device connected to the controller so as to provide communication between the library system controller and the elevator controller.

Patent History
Publication number: 20040056568
Type: Application
Filed: Sep 5, 2002
Publication Date: Mar 25, 2004
Inventors: Grant E. Carlson (Florissant, CO), Merion D. White (Colorado Springs, CO), Brian K. Roth (Elbert, CO), Scott R. Patterson (Manitou Springs, CO)
Application Number: 10235269
Classifications
Current U.S. Class: For Particular Electrical Device Or Component (312/223.1)
International Classification: A47B097/00;