Silicone seal for bipolar plates in a PEM fuel cell

Seal means for sealing a bipolar plate to a membrane in a PEM fuel cell stack. The seal includes a thin layer of a cross-linkable silicone composition disposed between the bipolar plate and the membrane. The layer is applied as a liquid to either the plate or the membrane and preferably is polymerized prior to assembly of the stack. A preferred means for applying the composition to the bipolar plate is screen printing. Preferably, the layer has a thickness between 0.001 and 0.005 inch. The resulting fuel cell stack exhibits superior leak resistance. In a currently preferred embodiment, a layer of the silicone composition is provided at interfaces between a membrane and both an anode side and a cathode side of a bipolar plate.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

[0001] The present invention relates to fuel cells incorporating a proton exchange membrane (PEM); more particularly, to means for preventing gas leakage between plate elements of a PEM fuel cell stack; and most particularly, to a silicone seal screen-printed on bipolar plate elements to prevent leakage between membrane electrode assembly elements and bipolar plates.

BACKGROUND OF THE INVENTION

[0002] Fuel cell assemblies employing proton exchange membranes are well known. Such assemblies typically comprise a stack of fuel cell modules, each module having an anode and a cathode separated by a catalytic proton exchange membrane (PEM), and the modules in the stack being connected in series electrically to provide a desired voltage output. Gaseous fuel, in the form of hydrogen or hydrogen-containing mixtures such as “reformed” hydrocarbons, flows adjacent to a first side of the membrane, and oxygen, typically in the form of air, flows adjacent to the opposite side of the membrane. Hydrogen is catalytically oxidized at the anode-membrane interface, and the resulting proton, H+, migrates through the membrane to the cathode-membrane interface where it combines with anionic oxygen, O−2, to form water. Protons migrate only in those areas of the fuel cell in which the anode and cathode are directly opposed across the membrane. Electrons flow from the anode through an external circuit to the cathode, doing electrical work in a load in the circuit.

[0003] A fuel cell assembly typically comprises a plurality of fuel cell modules connected in series to form a fuel cell stack. For convenience in manufacture, and to provide a more rugged assembly, the anode for one cell and the cathode for an adjacent cell typically are formed as rigid plates and then bonded back-to-back, forming a “bipolar plate”, as is well known in the art. A fuel cell assembly thus consists typically of a stack of alternating bipolar plates and proton exchange membranes. At the outer edges of the assembly, the plates and membranes are sealed together to contain the reactant gases and/or coolant within the assembly. Thus, an important aspect of forming a stacked fuel cell assembly is preventing leakage between the membranes and the plates.

[0004] One prior art approach has been to mold a liquid silicone rubber (LSR) gasket directly onto the bipolar plates using liquid injection molding techniques. This has proved to be difficult due to the complex shape of the seal and plate geometry, and also the very brittle nature of some composite materials typically used in forming the bipolar plates.

[0005] Another prior art approach has been to provide a die-cut or separately-molded gasket on one side of the plates, the membrane thus being sandwiched between the gasket and the adjacent bipolar plate. In some instances, an assembly may leak initially at the interface between the membrane and the non-gasketed plate surface, although the leak may self-seal when the membrane becomes hydrated in use. Initial leakage, however, is unacceptable.

[0006] Thus, sealing means on both sides of each bipolar plate is desirable because a membrane is thus sealed on both its sides against sealing material rather than against a bare bipolar plate.

[0007] It is a principal object of the present invention to economically and reliably seal a proton exchange membrane against a bipolar plate surface in a fuel cell stack, both initially and during extended operation of the stack.

SUMMARY OF THE INVENTION

[0008] Briefly described, a means for sealing a bipolar plate to a membrane in a PEM fuel cell stack includes a thin layer of a cross-linkable silicone composition between the bipolar plate and the membrane. The layer is applied as a low viscosity fluid to either the plate or the membrane and preferably is polymerized prior to assembly of the stack. A preferred means for applying the composition to the bipolar plate is screen printing. The resulting fuel cell assembly exhibits superior leak resistance. In a currently preferred embodiment, layers of the silicone composition are provided at both interfaces between a membrane and both an anode side and a cathode side of a bipolar plate.

BRIEF DESCRIPTION OF THE DRAWINGS

[0009] These and other features and advantages of the invention will be more fully understood and appreciated from the following description of certain exemplary embodiments of the invention taken together with the accompanying drawings, in which:

[0010] FIG. 1 is an elevational cross-sectional view of a portion of a prior art PEM fuel cell;

[0011] FIG. 2 is an elevational cross-sectional view of a portion of a PEM fuel cell in accordance with a first embodiment of the invention; and

[0012] FIG. 3 is an elevational cross-sectional view of a portion of a PEM fuel cell in accordance with a second embodiment of the invention.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0013] Referring to FIG. 1, in a typical prior art PEM fuel cell 10, a first edge portion 12 of a proton exchange membrane 14 extends between the cathode side 16 of a first bipolar plate assembly 18 and the anode side 20 of a typically identical second bipolar plate assembly 18′. An elastomeric gasket 22 is disposed on anode side 20, typically in a shallow groove 24, to seal against membrane 14 to prevent leakage of gas from first flow chamber 26 to the exterior 28 of the fuel cell. Membrane 14 itself forms an integral seal against first bipolar plate surface 30 of cathode side 16, which seal is known to permit leakage 32 of gas from second flow chamber 34 under some circumstances, especially at first usage of the fuel cell before the membrane becomes hydrated.

[0014] Referring to FIG. 2, a first embodiment 10′ of a fuel cell in accordance with the invention includes all components shown in prior art fuel cell 10 in FIG. 1. Additionally however, membrane seal 38 includes a thin first seal element 40 is disposed along the first edge portion 12 of membrane 14 between membrane 14 and cathode side 16. First seal element 40 is preferably formed of a cross-linkable silicone composition, for example, an organopolysiloxane such as RTV, which is applied as a liquid layer to either first bipolar plate surface 30 or first edge portion 12 of membrane 14, preferably to plate surface 30, and then cross-linked as by atmospheric moisture and/or incorporated activator to form a thin non-fluid elastomeric layer. The low viscosity fluid composition flows into microscopic pores and depressions in the surface to which it is applied, thereby sealing against later gas leakage therethrough. In compression during assembly of a fuel cell stack, the seal element readily deforms, without flowing, to accommodate similar non-uniformities in the opposing surface against which it is urged.

[0015] A typical RTV composition is Dow Corning 3140 thinned as required using Dow Corning OS-30 methylsiloxane fluid in proportions known in the art without undue experimentations.

[0016] A preferred method for applying a thin film of the composition is screen printing, by which means complex patterns of the seal are readily provided as may be needed to accommodate complex sealing surfaces of fuel cell elements. Screen printing is well known and need not be further elaborated here. Other methods of application, for example, roller application, are of course within the scope of the invention.

[0017] Seal element 40 is preferably relatively thin, on the order of 0.005 inch or less, and preferably between about 0.001 inch and about 0.003 inch, and is readily formed in a single printing pass.

[0018] Referring to FIG. 3, in a currently preferred second embodiment 10″, prior art gasket 22 and groove 24 (FIG. 1) are eliminated from membrane seal 38′ and are replaced by a second seal element 40′, which may be composed essentially identically with first seal element 40, and coated to either second edge portion 42 of membrane 14 or bipolar plate surface 44 of anode side 20, as described above.

[0019] Of course, fuel cells of either embodiments 10′, 10″ may be stacked together to form fuel cell stacks or assemblies, as known in the art.

[0020] While the invention has been described by reference to various specific embodiments, it should be understood that numerous changes may be made within the spirit and scope of the inventive concepts described. Accordingly, it is intended that the invention not be limited to the described embodiments, but will have full scope defined by the language of the following claims.

Claims

1. A membrane seal for bipolar plates in a proton exchange membrane fuel cell module, comprising a first seal element disposed against a first edge portion of a membrane between said membrane and a first bipolar plate surface, wherein said seal element is formed as an elastomeric layer.

2. A membrane seal in accordance with claim 1 wherein said first seal element is formed as a layer of low viscosity fluid composition coated on one of said first edge portion and said first bipolar plate surface.

3. A membrane seal in accordance with claim 2 wherein said composition includes an organopolysiloxane.

4. A membrane seal in accordance with claim 2 wherein said composition is applied to said one of said first edge portion and said first bipolar plate surface by screen printing.

5. A membrane seal in accordance with claim 1 wherein said first seal element is formed as a cross-linked polymer.

6. A membrane seal in accordance with claim 1 wherein a thickness of said first seal element is between about 0.001 inch and about 0.005 inch.

7. A fuel cell module including a proton exchange membrane and a first bipolar plate, the module comprising an elastomeric first seal element disposed against a first edge portion of said membrane between said membrane and said first bipolar plate.

8. A fuel cell module in accordance with claim 7 wherein said first seal element includes an organopolysiloxane.

9. A fuel cell module in accordance with claim 7 wherein a thickness of said first seal element is between about 0.001 inch and about 0.005 inch.

10. A fuel cell module in accordance with claim 7 including a second bipolar plate, the module comprising an elastomeric second seal element disposed against a second edge portion of said membrane between said membrane and said second bipolar plate.

11. A fuel cell assembly comprising a plurality of fuel cell modules, wherein at least one of said modules includes a proton exchange membrane and a bipolar plate and an elastomeric seal element disposed against an edge portion of said membrane between said membrane and said bipolar plate.

12. A fuel cell assembly in accordance with claim 11 wherein said elastomeric seal element is formed from a composition containing an organopolysiloxane.

13. A fuel cell assembly in accordance with claim 11 wherein a thickness of said seal element is between about 0.001 inch and about 0.005 inch.

Patent History
Publication number: 20040101735
Type: Application
Filed: Nov 27, 2002
Publication Date: May 27, 2004
Inventors: Allan R. Wells (Rochester, NY), Gary J. DeAngelis (Spencerport, NY), Arthur R. Williams (Spencerport, NY)
Application Number: 10305612
Classifications
Current U.S. Class: 429/35; 429/30
International Classification: H01M008/02; H01M008/10;