Compositions and methods for treatment of neoplastic disease

Compositions and methods for treating a tumor, neoplastic disease or infectious disease in a subject are based on superantigens in the form of polypeptides including fusion polypeptides or conjugates, homologues, and fragments, all of which induce a tumoricidal response when administered directly into tumor or an organ sheath or body cavity affected by the tumor. Nucleic acid constructs encoding the foregoing polypeptides are also used in antitumor therapy. The above agents may be administered in sustained release or controlled release vehicles at or near sites of tumors in a tumor-bearing subject.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

[0001] 1. Field of the Invention

[0002] The invention relates generally to immunotherapeutic compositions and methods for treating tumors and cancer. The methods are based on the expression of superantigen (“SAg”) alone or in combination with other molecules in transfected host cells (tumor cells, accessory cells or lymphocytes). Other therapeutic methods are based on administering T cells which are activated by cells engineered to express SAg and other immunostimulatory molecules and structures.

[0003] 2. Description of the Background Art

[0004] Therapy of the neoplastic diseases has largely involved the use of chemotherapeutic agents, radiation, and surgery. However, results with these measures, while beneficial in some tumors, has had only marginal effects in many patients and little or no effect in many others, while demonstrating unacceptable toxicity. Hence, there has been a quest for newer modalities to treat neoplastic diseases.

[0005] In 1980, tumoricidal effects were demonstrated in four of five patients with advanced breast cancer treated with autologous plasma that had been perfused over columns in which Staphylococcal Protein A was chemically attached to a solid surface (Terman et al., New Eng. J. Med., 305:1195 (1981)). While the initial observations of tumor killing effects with the immobilized Protein A perfusion system have been confirmed, some have obtained inconsistent results.

[0006] The explanation of these inconsistencies appears to be as follows. First, commercial Protein A is an impure preparation, as evident from polyacrylamide gel electrophoresis and radioimmunoassays that detected Staphylococcal enterotoxins in the preparations. Second, various methods of immobilizing Protein A to solid supports have been used, sometimes resulting in loss of biological activity of the perfusion system. Third, the plasma used for perfusion over immobilized Protein A has often been stored and treated in different ways, also resulting in occasional inactivation of the system. Moreover, the substance(s) or factors responsible for the anti-tumor effect of this extremely complex perfusion system have not been previously defined.

[0007] The system contained an enormous number of biologically active materials, including the Protein A itself, Staphylococcal proteases, nucleases, exotoxins, enterotoxins and leukocidin, as well as the solid support and coating materials. In addition, several anaphylatoxins were generated in plasma after contact with immobilized Protein A. Finally, it was speculated that the biological activity of the system was due to the removal from the plasma by the Protein A of immunosuppressive immune complexes that otherwise inhibit the patient's antitumor immune response.

[0008] The Staphylococcal enterotoxins that contaminate the Protein A columns are a family of extracellular products of Staphylococcal aureus that belong to a well recognized group of proteins that have common physical and chemical properties. The enterotoxins produce a number of characteristic effects in humans and animals, such as emesis, hypotension, fever, chills, and shock in primates and enhancement of gram negative endotoxic lethality in rabbits. At least some of these effects are due to the ability of these proteins to act as extremely potent T cell mitogens.

[0009] Staphylococcal enterotoxins are representative of a family of molecules known as SAgs which are the most powerful T cell mitogens known. They are capable of activating 5 to 30% or the total T cell population compared to 0.01% for conventional antigens. Moreover, the enterotoxins elicit strong polyclonal proliferation at concentrations 103-fold lower than conventional T cell mitogens. The most potent enterotoxin, Staphylococcal enterotoxin A (SEA), has been shown to stimulate DNA synthesis in human T cells at concentrations of as low as 10−13 to 10−16M. Enterotoxin-activated T cells produce a variety of cytokines, including IFN, various interleukins and TNF. Enterotoxins stimulate several other cell populations involved in innate and adaptive immunity which also play a major role in anti-tumor immunity. For example, enterotoxins engage the variable region of the TCR chain on exposed face of the pleated sheet and the sides of the MHC class II molecule.

[0010] The SAg is capable of augmenting the TH-1 cytokine response by CD4+ cells while also activating NKT and NK cells and &ggr;/&dgr; T cells. NK cell cytotoxicity is augmented by IFN-&ggr; produced by SAg activated T cells. NKT cells are known to be activated by SAgs, peptides, &agr;-galactosylceramides and lipoarabinomannans presented on CD1 receptors. Evidence points to an invariant lectin like recognition unit on the NKT cell chain as a specific ligand for galactosylceramide determinants on tumor cells. SAgs induce tumor killing in vivo when given alone or conjugated to tumor associated antibodies. They are also effective when employed ex vivo to produce tumor sensitized T cells or &ggr;/&dgr; T cells for the adoptive therapy of MCA 205/207 tumors. SAg transfected tumor cells have shown a capacity to reduce metastatic disease in a murine mammary carcinoma model.

[0011] In addition to these common biological activities, the Staphylococcal enterotoxins share common physicochemical properties. They are heat stable, trypsin resistant, and soluble in water and salt solutions. Furthermore, the Staphylococcal enterotoxins have similar sedimentation coefficients, diffusion constants, partial specific volumes, isoelectric points, and extinction coefficients. The Staphylococcal enterotoxins have been divided into five serological types designated SEA, Staphylococcal enterotoxin B (SEB), Staphylococcal enterotoxin C (SEC), Staphylococcal enterotoxin D (SED), and Staphylococcal enterotoxin E (SEE), which exhibit striking structural similarities. The enterotoxins are composed of a single polypeptide chain of about 30 kilodaltons (kD). All staphylococcal enterotoxins have a characteristic disulfide loop near the middle of the molecule. SEA is a flat monomer consisting or 233 amino acid residues divided into two domains. Domain I comprises residues 31-116 and domain II of residues 117-233 together with the amino tail 1-30. In addition, the biologically active regions of the proteins are conserved and show a high degree of homology. One region of striking amino acid sequence homology between SEA, SEB, SEC, SED, and SEE is located immediately downstream (toward the carboxy terminus) from the cysteine located at residue 106 in SEA. This region is thought to be responsible for T cell activation. A second homologous region that begins at residue 147 and extends downstream is highly conserved. This region is believed to mediate emetic activity. The region related to emetic activity can be omitted from enterotoxins used as therapeutics.

[0012] A sequence analysis of the Staphylococcal enterotoxins with other toxins has revealed SEA, SEB, SEC, SED, Staphylococcal toxic shock-associated toxin (TSST-1 also known as SEF), and the Streptococcal exotoxins share considerable nucleic acid and amino acid sequence homology. The enterotoxins belong to a common generic group of proteins thought to be evolutionarily related.

[0013] Enterotoxins bind to MHC Class II molecules and the T cell receptor (“TCR”) in a manner quite distinct from conventional antigens. Enterotoxins engage the variable region of the TCR &bgr; chain on an exposed face of the &bgr; pleated sheet and the sides of the MHC Class II molecule, rather than engaging the groove of the Class II molecule like conventional antigens. In contrast to SEB and the SEC, which have only the capacity to bind to the MHC class II &agr; chain, SEA, as well as SEE and SED, also interacts with the MHC class II &bgr; chain in a zinc dependent manner T cell recognition is based on the presence of the &bgr; chain and is therefore independent of other TCR components and diversity elements. Single amino acid positions and regions important for SAg-TCR interactions have been defined. These residues are located in the vicinity of the shallow cavity formed between the two domains. The alanine substitution of amino acid residue Asn23 in SEB has demonstrated the importance of this residue in SEB/TCR interaction. This particular residue is conserved among all of the Staphylococcal enterotoxins and may constitute a common anchor position for enterotoxin interaction with TCR V&bgr; chains. Amino acid residues in positions 60-64 have also been shown to contribute to the TCR interaction as do the cysteine residues forming the intermolecular disulfide bridge of SEA. For SEC2 and SEC3, the key points of interaction in the V&bgr; chain are located in the CDR1, CDR2 and HRV4 TCR V&bgr;-3 chain. Hence, multiple and highly variable parts of the V&bgr; chain contribute to the formation of the enterotoxin binding site on the TCR. Thus far, a single and linear consensus motif in the TCR V&bgr; displaying a high affinity interaction with particular enterotoxins has not been identified. A significant contribution of the TCR&agr; chain in enterotoxin-TCR recognition is acknowledged as well as MHC class II isotypes. This distinctive binding mechanism of enterotoxins which bypasses the highly variable parts of the MHC class II and TCR molecules allows them to activate a high frequency or T cells with massive lymphoproliferation, cytokine induction and cytotoxic T cell generation. These properties are shared by other proteins made by infectious agents. Together, these proteins form a well recognized group known as SAgs.

[0014] There are two general classes of SAgs. The first includes minor lymphocyte stimulating (MLS) antigens. The second class of SAgs includes mycoplasmal, viral, and bacterial proteins such as the Staphylococcal enterotoxins and streptococcal exotoxins. All SAgs have the following properties. T cell activation does not require antigen processing. There is no MHC restriction of responding T cells. SAgs bind to and evoke responses from all T cells expressing V receptors, without requiring other TCR or diversity elements. CD4-CD8-&agr;/&bgr;+T cells and &ggr;/&dgr;T cells are also capable of responding to SAgs by proliferating, producing TH1 cytokines and exhibiting cytotoxic activity. The SAgs induce a biochemically distinct T cell activation pathway. Thus, SAgs interact with and activate a much larger proportion of T cells than conventional antigens, causing massive lymphoproliferation, cytotoxic T cell generation, and cytokine secretion. A given SAg can activate up to 30% of resting T cells compared to 0.01% for conventional antigens. As highly representative members of this family of SAgs, the enterotoxins share these characteristics.

[0015] The present invention features the use of SAgs in association with molecules to produce tumor killing effects. The SAgs are useful in peptide form and may combine with another peptide or nucleic acid to form a conjugate. The effect of the combined molecules is synergistic. These conjugates are useful when administered as a preventative or therapeutic antitumor vaccine in tumor bearing patients. Alternatively, they may be used ex vivo to load an antigen presenting cell as a means of immunizing a T. &ggr;/&dgr;, NK or NKT cell population for use in adoptive therapy of cancer. Examples of such conjugates are complexes between: SAg and glycosylceramide; SAg and apolipoproteins (Lp(a)), SAg and oxyLDL, SAg and verotoxins, SAg and GPI-ceramide (with phytosphingosine backbone), SAg and lipopolysaccharide (LPS), SAg and peptidoglycan, SAg and mannan protcoglycan, SAg and muramic acid, SAg and phytosphingolipid, SAg and tumor peptides. Also intended are SAg and Gal conjugates and glycosylated SAgs.

[0016] The present invention features the use of SAg in association or conjugated to oxidized low density lipoproteins (oxyLDL) and apolipoproteins (e.g., lipoprotein (a) (Lp(a)). OxyLDL and its byproducts bind to receptors on sinusoidal endothelial cells in the tumor microcirculation where they induce apoptosis, increase levels of tissue factor and activated thrombin, upregulate adhesion molecules and produce a prothrombotic state. Lp(a) is densely deposited in tumor microcirculation and as a competitive inhibitor of plasminogen is prothrombotic. Hence, both apolipoproteins and oxyLDL not only home to receptors on the tumor microcirculation but they also induce endothelial cell or macrophage apoptosis as well as a prothrombotic state. These local effects are amplified by the presence of the conjugated superantigen which induce a localized T cell immune and inflammatory response collectively resulting in a potent anti-tumor response.

[0017] The present invention also features the use of the SAg in association or conjugated to verotoxins. The latter molecules have the capacity to bind to galactosylceramide receptors on tumor cells and induce apoptosis. Hence, the tumor targeting and apoptosis inducing functions of the verotoxin are coupled with the T cell immune and inflammatory response induced by the SAgs to produce a potent and well localized anti-tumor response.

[0018] The present invention features the use of SAgs in association or conjugated to mono or digalactosylceramides. The latter have been isolated from human kidney, Fabry's disease kidney, marine sponge Aegelus mauritanius and is expressed in certain bacteria such as Sphingomonas paucimobilis. They have been shown to activate NKT cells and to induce anti-tumor effects in vivo against several types of tumors. The activation of NKT cells in the presence of the mono and digalactosylceramides appears to be IL-12 dependent. The biological activity of the -galactosylceramides is observed in both mono and digalactosylceramide forms and is dependent upon the presence of an anomeric configuration on the terminal galactose. The lengths of the sphingosine base and fatty acyl chains of 23 and 15 respectively also appear to be optimal for production of the anti-tumor effects. SAg is also used in association with phytosphingosine which is expressed in Saccharomyces cerevisiae membranes and vesicles.

[0019] SAgs are known to be the most powerful T cell mitogens known and have been shown to produce anti-tumor effects in several animal models. The -galactosylceramides are known to be potent inducers of NKT cell activation which have been shown to produce an anti-tumor effect in an IL-12 dependent manner. In the present invention SAgs are combined with -galactosylceramides biochemically as conjugates and genetically within a cell which expresses the newly synthesized protein-bound galactosylceramide on the cell surface. The newly synthesized conjugates in native form or expressed in or on the cell produce a synergistic anti-tumor effect due to the activation of T cells and NKT cell populations.

[0020] Furthermore, in the present invention the SAg-galactosylceramides are expressed in tumor cells, dendritic cells (“DC”) or a hybrid cell made by fusing a tumor cell and a DC. The use of DCs or DC/tumor cell hybrids (DC/tc) to present the SAg-galactosylceramides fusion constructs or conjugates provides the optimal costimulation for activation of a tumor specific T cell population. The use of a tumor cell or a DC/tc provides in addition to costimulation, expression of the tumor antigen, itself to activate anti-tumor T and NKT cell clones which are tumor specific. Hence, an optimal cell is a DC/tc which expresses SAg and SAg-anomeric galactosylceramides.

[0021] The SAg-galactosylceramide conjugates are useful in the present invention. However, there are distinct differences and advantages to producing and expressing the SAg-&agr;galactosylceramide conjugates within a cell. First, final products are quite different. One involves the enterotoxin-&agr;-galactosylceramide in free form whereas the other involves cell associated enterotoxin-&agr;galactosylceramide which includes enterotoxin nucleic acids and peptides. In the cell both enterotoxins and &agr;-galactosylceramides are associated with numerous intracellular and membrane structures such as MHC, costimulatory and adhesion molecules, heat shock proteins, membrane glycolipids and glycosphingolipids which may improve immunogenicity and antigen presentation. They may also be transported in various vesicles and exosomes which may provide additional immunogenicity. With the addition of appropriate signals sequences and association with molecules involved in the antigen presenting pathways such as the invariant chain, TAP and LAMP molecules, the conjugates may be routed in the cell to the MHC class I, class II or CD1 receptor. Therefore, enterotoxin and &agr;-galactosylceramides produced within a cell are presented to the host's immune system in an entirely different form compared to the purified enterotoxin polypeptide.

[0022] Unlike free enterotoxin polypeptide or -galactosylceramide, SAg transfected tumor cells, DCs or DC/tc present enterotoxins to the T cell system in association and or conjugated to tumor associated antigens including mutated normal structures or fusion structures, costimulatory and adhesion molecules. Indeed, the coadministration of SAg with tumor antigen would be expected to produce a heightened response to the tumor antigens while preventing the clonal deletion which occurs with SAg alone. Liu et al., Proc. Natl. Acad. Sci., 88: 8705-8709, (1991); McCormack et al., Proc. Natl Acad. Sci., 91: 2086-2090, (1994); Coppola et al., Int. Immunol., 9: 1393-403, (1997). Hence, the coadministration of SAg-galactosylceramide and tumor associated antigens would induce a predictably heightened tumor specific response by the host. This prediction was borne out by the Applicant's work showing that SAg transfection of tumor cells abolished the tumorigenicity of 4T 1 mammary carcinoma cells, significantly reduced the number of established metastases and prolonged survival compared to untreated controls. (Pulaski, Terman, et al., American Association of Cancer Research, April 1999; Cancer Research in press 2000).

[0023] SAg transfected tumor cells in vivo are effective in an additional manner which does not apply to SAg polypeptide. Ingestion of apoptotic cells by DCs augments the immunogenicity of tumor cells. Fields et al., Proc. Natl. Acad. Sci., 95: 9882-9887, (1998); Albert et al., Nature, 392: 86-89, (1998). DCs are acknowledged as the premier accessory cell for antigen presentation. They have been shown to ingest apoptotic cells and nucleic acids and process them for presentation to host T cells in the context of costimulation, adhesion and MHC molecules. Akbari et al., J. Exp. Med., 189: 169-177, (1999). Therefore, following apoptosis of SAg transfected tumor cells and ingestion by DCs, SAg-encoding nucleic acid as well as tumor associated nucleic acids in the transfected cells would produce additional anti-tumor responses. Purified polypeptide enterotoxins do not share with the SAg transfectants this property of enhanced immunogenicity following ingestion and processing by DCs.

[0024] There are enormous structural and functional differences between the polypeptide enterotoxin and SAg-transfected tumor cells. The starting materials are different, i.e., peptides vs nucleic acids and the product is different, i.e., polypeptide vs enterotoxin transfected cell in which the SAg is may exist in nucleic acid and peptide form associated with a vast number of intracellular and membrane structures. Some of these structures may actually improve the T cell activating function of SAgs such as deoxyribonucleic acids, ribonucleic acids, tumor associated antigens, heat shock proteins, costimulatory molecules and adhesion molecules and endosomes. Cellular SAg peptides or nucleotides exist in association with tumor associated antigens, costimulants, adhesion molecules, heat shock proteins and MHC molecules, GPI-ceramides or SAg receptors (digalactosylceramides) which improve the immunogenicity of the tumor antigens. Therefore, these structural and functional differences between the polypeptide SAg and the enterotoxin transfected tumor cells clearly show that SAg transfected tumor cells have a far greater potential than the polypeptide to induce a tumor specific response.

[0025] Moreover, SAg transfected tumor cells possess an additional unique property not shared by the polypeptide SAg. SAg-transfected tumor cells display the metastatic phenotype of the tumor cells which enables them to colonize and traffic to metastatic sites in vivo. Once localized to micrometastatic sites the transfectants expressing SAg induce a potent tumor specific T cell response. In contrast, the purified polypeptide SAg unassociated with a tumor cell would have no capacity whatsoever to colonize metastatic sites.

[0026] The present invention also provides SAg-encoding nucleic acid, preferably DNA, fused with (or cotransfected with) a nucleic acid encoding another molecule. The transfected cells include tumor cells, accessory cells e.g., DCs, tumor cell/accessory cell (e.g., DC) hybrids. The expression of molecules in addition to enterotoxins by these cells serves the following function:;

[0027] 1) enhance the immunogenicity of the SAg transfected cell by providing nucleic acids encoding an additional potent immunogen. Examples would include tumor associated antigens or mutated normal antigen or fusion peptides in tumor cells, an immunogenic bacterial product such as Staphylococcal adhesin protein A, LPS, &bgr;-glucans, and peptidoglycans, costimulatory and adhesion molecules, heat shock protein, growth factor receptors such as Her/neu and tumor markers such as PSA.

[0028] 2) assist in tumor killing activity by the SAg transfected cell when localized to tumor sites by providing nucleic lacids encoding the following: angiogenesis antagonists, chemoattractants such as C5a, chemokines such as RANTES, hyaluronidase and coagulase and CD44 isoforms.

[0029] 3) Increase the binding of immunogenic substances to the surface of the SAg transfected cell by providing nucleic acids encoding the following: CD1 receptors, CD14 receptors, SAg receptors

[0030] 4) increase the production of SAg in the SAg transfected cell by providing nucleic acids encoding the following: cell cycle proteins, amplified oncogenes, and signal transduction molecules.

[0031] 5) assist in trafficking of SAg to class I or class II pathway in the SAg transfected cell by providing nucleic acid encoding the following: the invariant chain, the LAMP1 proteins and TAP proteins.

[0032] 6) induction of a local tumoricidal response by intratumoral injection of nucleic acids encoding the following: oxyLDL receptor and SAg receptor, chemoattractants, chemokines.

[0033] The present invention also provides for augmented tumoricidal responses by immunocytes particularly T, &ggr;/&dgr; T, NK, and NKT cells. Inhibitory receptors or their tyrosine-based inhibitory motifs on T, &ggr;/&dgr; T, NK, and NKT cells with specificity for lipid-based tumor associated antigens (LBTAAs) are deleted or functionally deactivated (antisense or gene knockout) which permits unopposed intracellular signaling by the activation receptors and enhanced responsiveness to LBTAAs and their respective tumors of origin. Inhibition of inhibitory receptor phosphorylases (SHP or SHIP) and/or ITIM binding sites on activation receptors (ITAM) is also contemplated as a means of augmenting the host response to LBTAAs.

SUMMARY OF THE INVENTION

[0034] The present invention comprises a method for treating cancer in a host comprising providing conjugates, fusion proteins or naked nucleic acids of superantigen and additional molecule(s) which produce an tumoricidal response. The additional molecule serves the following functions: 1) to target a receptor (digalactosylceramide) expressed on tumor cells in vivo and induce tumor cell apoptosis e.g., SAg-verotoxin conjugates. 2) to target receptors expressed on tumor sinusoidal endothelium, induce apoptosis and a prothrombotic state e.g. SAg-oxyLDL conjugates and SAg-Lp(a) conjugates 3) to activate a dormant population of tumoricidal NKT cells e.g. SAg-digalactosylceramides, SAg-GPI-digalactosylceramide (phytosphingosine) complexes. 4) target receptors for integrins expressed on tumor microvasculature e.g., SAg-RED conjugates. 5) naked DNA administered intratumorally induces tumor cell expression in vivo of receptors for ligands which produce apoptosis and inflammation e.g., naked DNA SAg-oxyLDL receptor, SAg-LOX-1 receptor, SAg-SREC receptor.

[0035] Sickled erythrocytes are useful in the present invention since they have natural ligands for integrins expressed on tumor neovasculature which facilitates their targeting to the tumor endothelium. Sickled erythrocyte membranes acquire oxyLDL using fusigenic techniques with oxyLDL containing liposomes and apoproteins via gene transfection in the nucleated pre-reticulocyte phase. The oxyLDL and apoproteins expressed by the sickled cells facilitates targeting to oxyLDL, LOX-1 and SREC receptors present on the tumor microvasculature. These erythrocytes are also useful for carrying nucleic acids for transfection of the tumor endothelial cells in vivo. Vesicles derived from sickled erythrocytes are more rigid, prothrombotic and target the tumor microvasculature more effectively than the parent cell. They also carry oxyLDL to receptors on tumor endothelium. Likewise, vesicles, exosomes or SAg-GPI-digalactosylceramides shed from SAg transfected tumor cells are capable of inducing potent tumoricidal responses and are useful in the present invention.

[0036] In addition, bacterial and yeast expression and phage display systems are useful for the presentation of SAg in association with other anti-tumor molecules. The yeast sec mutant or yeast display is used to produce a SAg-ceramide conjugate exhibiting a phytosphingosine in the sphingosine portion of the ceramide. This structure activates both T cell, &ggr;/&dgr; T, NK cell and NKT cells. Sphingomonas paucimobilis which naturally expresses a &agr;-galactosylceramide is transfected with SAg nucleic acids which results in the shedding of SAg-&agr;-galactosylceramide complexes which are use to produce a population of tumoricidal T cells, &ggr;/&dgr;T, NK cells and NKT cells. SAg phage displays with tumor localizing molecules e.g. RED sequences are used to target SAgs to tumor microvasculature. SAg phage displays with similar tumor localizing molecules comprising tumor or tumor endothelial cell apoptosis inducing agents e.g., thrombospondin or oxyLDL are use to increase the tumoricidal response.

[0037] The present invention comprises a method for treating cancer in a host comprising providing cells transfected with a gene that express and/or secretes a SAg or T cells activated by the transfected cells to the host. The cells are transfected in vivo or in vitro. SAgs may activate T cells, &ggr;/&dgr; T or NKT or NK cells in the host. These same transfectants may be used to stimulate a population of T cells, &ggr;/&dgr; T cells or NKT cells ex vivo which are provided to the host as tumor specific effector cells in adoptive immunotherapy. The transfected cells may be, for example, tumor cells accessory cells, DCs muscle cells, immunocytes, fibroblasts. When transfected in vitro the cells can be xenogeneic to the host, from the same species as the host or host cells.

[0038] For in vivo immunization, tumor cells are transfected with nucleic acids encoding SAgs together with a carbohydrate modifying enzyme such as &agr;-galactosyl transferase to produce the &agr;-Gal epitope, Staphylococcal hyaluronidase, Streptococcal capsular polysaccharide, Staphylococcal erythrogenic toxin, Staphylococcal Protein A, Staphylococcal &bgr;hemolysin, Staphylococcal coagulase, costimulants such as B7-1 and B7.2, chemoattractants and chemokines. SAgs are also cotransfected into tumor cells with gene clusters encoding the biosynthesis of highly immunogenic microbial Lipid A, membrane or capsular polysaccharides, lipoproteins and peptidoglycans. Nucleic acids are useful when transfected alone. However combinations are preferred. The cotransfection into tumor cells of the SAg-encoding nucleic acid together with the nucleic acids encoding &agr;Gal or GalCer biosynthesis is particularly useful. The cotransfection into tumor cells of the nucleic acid encoding SAg with nucleic acids encoding Staphylococcal erythrogenic toxins and hyaluronidase allows the transfected tumor cells to simulate the in vivo inflammatory activity of a Staphylococcus or leukocyte or macrophage by secreting enzymes and toxins which induce a sterile cellulitis in tumor sites.

[0039] Further provided are tumor cells transfected with nucleic acid encoding structures such as the erb/Neu gene which upon administration to the host promotes tumor cell trafficking and colonization of micrometastatic sites. Amplified oncogenes linked to SAg nucleic acids provide the locus and energy for expression or overexpression of both gene products. Thus, provided herein are tumor cells transfected with SAg-encoding nucleic acid together with nucleic acid encoding other oncogenes, amplified oncogenes and transcription factors, angiogenic factors such as angiostatin, angiogenesis receptors such as VEGF, tumor growth factors, tumor suppressors, cell cycle proteins and key proteins engaged in the antigen routing and processing pathway. In one example, the microbial SAg and erb/Neu nucleic acids are cotransfected into tumor cells. These nucleic acids may also linked to an inducible gene such as that encoding metallothionein or corticosteroid receptors. In this way, the cells are activated by exogenous delivery of corticosteroids or a heavy metal only after a suitable period of time has lapsed to allow them to localize in metastatic sites in vivo

[0040] Tumor cell transfectants are also useful ex vivo to immunize a T cell, &ggr;/&dgr; T cell or NKT cell population producing tumor specific effector cell population for adoptive immunotherapy of cancer. These immunizing tumor cells are transfected with nucleic acids encoding SAgs and the SAg receptor. The latter transfectants are capable of binding exogenous SAg for presentation to a T cell population. In addition, tumor cells are transfected with nucleic acids encoding CD1 receptors which are capable of binding exogenous glycosylceramides and lipoarabinans free or bound to SAgs for presentations to T, &ggr;/&dgr; or NKT cells. Similarly, tumor cells are transfected with nucleic acids encoding the CD14 receptor which bind exogenous peptidoglycans and LPS's, free or bound to SAgs for presentation to T cells.

[0041] Likewise, the nucleic acids encoding the mannose receptor are transfected into tumor cells which are capable of binding a broad range of glycosylated SAgs for presentation to T cells. The present invention provides detailed methods for preparation of the SAg-glycosylceramide, SAg-LPS, SAg-peptidoglycan complexes as well as glycosylated SAgs which are loaded onto their respective receptors expressed on tumor cells, accessory cells and, in some instances, immunocytes. For ex vivo use, any prokaryotic or eukaryotic cell may be used which is transfectable with nucleic acid encoding SAgs to provide surface expression of the SAg or constructs expressed on tumor, accessory cell or immunocyte transfectants. When the transfected cells are not host tumor cells, the cells additionally express a tumor associated antigen expected to be present on the host's cancer cells.

[0042] Also provided is a tumor specific T cell, &ggr;/&dgr;, NK or NKT cell (collectively immunocyte) population which is activated by SAgs, SAgs conjugates given above or the tumor cell transfectants given above to produce a population of tumor specific effector cells useful in adoptive immunotherapy. A particularly effective method of producing a hyperresponsive immunocyte population is to delete (e.g. gene knockout) or inactivate (e.g. antisense) receptors on immunocytes or their respective immune receptor tyrosine-based inhibitory motifs (ITIMs) which inhibit cellular activation by receptors specific for lipid-based tumor associated (Lip-TAAs) and/or superantigens. After exposure to Lip-TAAs and/or superantigens, the immunocyte activation receptor response is unopposed by an inhibitory signal in which case immunocytes readily differentiate into tumor specific effector cells which are highly reactive even to weak Lip-TAAs.

[0043] After ex vivo stimulation, the T cells, &ggr;/&dgr; T cells or NKT cells used for adoptive immunotherapy should preferentially express CD44 which indicates that they are capable of trafficking and homing to tumor sites. Additionally, the T cell population used for ex vivo immunization is engineered to overexpress the TCR variable V&bgr; and invariant V&agr; sites specific for SAg and glycosylceramide binding respectively and to produce IFN by exogenous delivery of corticosteroids or a heavy metal. A particularly useful population of therapeutic tumor specific effector T cells or NKT cells which demonstrates overexpressed CD44 together with V&bgr; variable and V&agr; invariant regions and high IFN production. Also provided are methods for reactivating anergic T cells in cancer patients by transfecting nucleic acids encoding the SAg receptors to produce a T cell population which may now be stimulated with exogenous SAgs.

[0044] Compositions which mimic SAgs are used in place of native SAgs for in vivo administration in order to circumvent the problem of naturally occurring SAg-specific antibodies. The SAg mimics are largely comprised of nucleotides or oligonucleotide-peptide chimeric constructs which are specific for tumor cells expressing SAg receptors (via the nucleotide) while retaining their SAg specificity for the TCR (via the peptide). The class II binding site of the SAg may optionally be eliminated or mutated to minimize SAg peptide binding to MHC class II receptors in vivo. The molecule may be composed entirely of nucleotides for which there are no naturally-occurring antibodies. In addition, carriers are provided for in vivo transfection of tumors by nucleic acids encoding SAgs or other nucleic acid constructs given in Table I. Phage displayed tumor neovasculature ligands may also carry nucleic acids encoding SAgs or other constructs.

[0045] The constructs and method are used to treat any solid tumor such as carcinoma, melanoma and sarcoma or cancer of hemopoietic origin, such as lymphomas and leukemias which may or may not form solid tumors.

[0046] Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art of this invention. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of the present invention, suitable methods and materials are described below. All publications, patent applications, patents, and other references mentioned herein are incorporated by reference in their entirety. In case of conflict, the present specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and not intended to be limiting. Other features and advantages of the invention will be apparent from the following detailed description and from the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

[0047] FIG. 1. Schematic diagram of the cloning of the SEB gene into the pH&bgr; Apr1-neo vector. The coding region of the SEB gene was amplified with PCR primers. The upstream primer (SEB1) has a SalI site at its 5′ end and the downstream primer (SEB2), a BamHI site. Both the pH&bgr; Apr1-neo vector and the amplified SEB insert were digested with SalI and BamHI, ligated and transformed into XL1-Blue competent cells. The final construct was verified by restriction enzyme and sequence analyses.

[0048] FIG. 2. Cloning of the SEB gene into the pH&bgr;-Apr1 neo vector. Clones 1-5 contained the SEB insert (coding region 801 bp) and the pH &bgr;-Apr1 neo vector (10 kb). All DNA was digested with SalI and BamHI and electrophoresed on a 1% agarose gel in 1× TAE buffer.

[0049] FIG. 3. Protection of mice from tumor growth by DNA immunization with nuclcic acid encoding a fusion of human papilloma virus HPV16 oncoprotein (E7) with SEB. C57BL/6 mice were immunized i.d. by particle bombardment (gene gun) with control vector, E7 alone, SEB-E7 and E7-SEB fusion genes. Mice were challenged with syngeneic TC-1 tumor cells transfected with E7 or another HPV oncoprotein, E6. Mice receiving the SEB-E7 fusion gene showed complete protection against challenge. Mice receiving E7-SEB (fusion protein in reverse order), E7 only, SEB and vector all developed tumors.

[0050] FIG. 4. Protection of rabbits from growth of papilloma tumor caused by cottontail rabbit papillomavirus (CRPV). Inbred EIII/JC rabbits were immunized with DNA by the route of FIG. 3. Groups were given CRPV E1 or E6, DNA, SEB DNA, and fusions of SEB with E1 or E6. Rabbits were challenged with CRPV and tumor development was monitored. The SEB-E1 fusion DNA was the most effective in inhibiting the growth of the outgrowth of CRPV-induced papillomas.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

[0051] The present invention provides methods and materials for treating cancer related to the polypeptide or nucleic acid conjugates or fusions comprising SAg with other molecules that synergize or cooperate with SAg in the induction of an anti-tumor response. The present invention also provides materials and methods for treating cancer related to transfection of cells with nucleic acid that encode a SAg and/or another polypeptide. The cells can be transfected in vivo or in vitro. The expression of the SAg polypeptide activates host immunocytes, such as various T cell subsets, including &ggr;/&dgr; T cells, as well as NK and NKT cells.

[0052] As used herein, T cells are defined as any class of lymphocytes that undergo maturation and differentiation in the thymus. They may express various chains of the T cell receptor (TCR). They include, but are not limited to NK cells, NKT cells and TCR &agr;/&bgr;+ T cells, TCR &ggr;/&dgr;+ T cells and may be known as cytotoxic T cells, T helper cells, suppressor or regulatory T cells, or they may be defined by the expression or type of T cells markers (e.g., CD3, CD4, CD8) or TCR chains that they express.

[0053] Various useful therapeutic constructs involving superantigen compositions, and some of the preferred conditions of use are listed in Table I, below. 1 TABLE I Therapeutic Constructs and Preferred Conditions of Use I. CELLS: Tumor Cells, DCs or DC/Tumor Cell Hybrids (DC/tc) USE: In Vivo and Ex Vivo PURPOSE: A. In vivo Preventative or Therapeutic Vaccine (Established Tumor) Accomplish by transfecting or co-transfecting with nucleic acid encoding superantigen plus one or more of the following: 1. Superantigens (SAgs) 2. Enzyme that modifies carbohydrate to induce Gal or GalCer epitope expression 3. Functional hyaluronidase from microbial or human sources 4. Staphylococcal or streptococcal erythrogenic toxin 5. Staphylococcal protein a or a domain thereof 6. Staphylococcal hemolysin and functional microbial toxins 7. Functional microbial or human coagulase 8. Costimulatory protein 9. Chemoattractants 10. Chemokines 11. Nucleic acids encoding biosynthesis of lipopolysaccharides 12. Nucleic acids encoding biosynthesis of glycosylceramides 13. Nucleic acids encoding biosynthesis of microbial membrane or capsular lipoproteins and polysaccharides 14. Oncogenes, amplified oncogenes and transcription factors 15. Angiogenic factors and receptors 16. Tumor growth factor receptors 17. Tumor suppressor receptors 18. Cell cycle proteins 19. Heat-shock proteins, ATPases and G proteins 20. Proteins engaged in antigen processing, sorting and intracellular trafficking 21. Inducible nitric oxide synthase (iNOS) 22. apolipoproteins (e.g., Lp(a)) transfected into tumor cells & sickled erythrocytes used for targeting tumor microvasculature 23. LDL and oxyLDL receptors (e.g., SCEP receptor) transfected into tumor cells and sickled erythrocytes & used for targeting to tumor microvasculature B. Ex Vivo Immunization of T, y/&dgr;T or NKT cells to Produce Tumor Specific Effector Cells (for Adoptive Immunotherapy)* Accomplish by (i) transfecting or co-transfecting tumor or accessory cells with nucleic acid encoding the following, or (ii) providing immobilized molecules or receptors that present the following: 1. Superantigen 2. SAg receptor and transcription factor with bound SAg 3. CD1 receptor binding and/or expressing SAg-glycosyl ceramide complex 4. CD14 receptor binding or expressing SAg-lipopolysaccharide or SAg-peptidoglycan complex 5. Mannose receptor binding glycosylated SAg 6. Glycophorin receptor 7. SAg-tumor peptide(s) complex on MHC or CD1-bearing APC in soluble or immobilized form C. Therapeutic Molecules or Complex Applied to Transfected or Untransfected Tumor cells or Accessory Cells; or MHC class I, class II, CD1, SAg receptor or CD14 receptor: 1. SAg (wherein cell may express Gal) 2. Glycosylated SAg 3. SAg complex with a. glycosyl ceramide b. lipopolysaccharide c. peptidoglycan d. mannan proteoglycan e. muramic acid f. tumor peptide g. glycosylceramides with terminal Gal(□1-4)Gal e.g. globotriosylceramide and galabiosylceramide h. Conjugates of SAg-(Gb2 or Gb3 or Gb4) i. Conjugates of SAg-(Gb2 or Gb3 or Gb4)-CD1 j. GPI anchored conjugates: SAg-GPI-(Gb2 or Gb3 or Gb4) l. GPI anchored conjugates: SAg-GPI-(Gb2 or Gb3 or Gb4)-CD1 m. Conjugates of SAg polypeptide or nucleic acid with Verotoxin n. Conjugates of SAg polypeptide or nucleic acid with Verotoxin A or B subunit o. Conjugates of SAg polypeptide or nucleic acid with IFN&agr; receptor peptides homologous to verotoxin p. Conjugates of SAg polypeptide or nucleic acid with CD19 peptides homologous to verotoxin q. Conjugates of SAg polypeptide or nucleic acid with Arg-Gly-Asp or Asn-Gly-Arg r. Conjugates of SAg polypeptide or nucleic acid with LDL, VLDL, HDL s. Conjugates of SAg polypeptide or nucleic acid with Apolipoproteins (e.g., Lp(a), apoB-100, apoB-48, apoE) t. Conjugates of SAg polypeptide or nucleic acid with oxyLDL, oxyLDL mimics, (e.g., 7&bgr;-hydroperoxycholesterol, 7&ggr;-hydroxycholesterol, 7-ketocholesterol, 5&agr;-6&agr;- epoxycholesterol, 7&bgr;-hydroperoxy-choles-5-en-3&bgr;-ol, 4-hydroxynonenal (4-HNE), 9- HODE, 13-HODE and cholesterol-9-HODE) u. Conjugates of SAg polypeptide or nucleic acid with oxyLDL byproducts (e.g. lysolecithin, lysophosphatidylcholine, malondialdehyde, 4-hydroxynonenal) v. LDL and oxyLDL receptors (e.g., LDL oxyLDL, acetyl-LDL, LDL, LRP, CD36, SREC, LOX-1, macrophage scavenger receptors) as polypeptide or nucleic acid alone or with SAg polypeptide or nucleic acid intratumorally w. phytosphingosine, -GPI-phytosphingosine x tumor associated lipid antigens, glycolipid, proteolipid, glycosphingolipid, sphingolipid with inositol phosphate -containing head groups, phytoglycolipids, mycoglycolipids. GPI-sphingosines or lipids y. sphingolipids with inositol phosphate-containing head groups having the general structure: ceramide-P-myoinositol-X where X is a polar substituent such as ceramide-p-inositol-mannose, inositol-1-P-(6)mannose(a1,2-inositol-1P-(1) ceramide, (inositol-P)2-ceramide, inositol-P-inositol-P-ceramide, inositol-P-inositol-P- ceramide. z. tumor associated glycan antigens - peptidoglycans or glycan phosphotidylinositol (GPI) structures. aa chemokine receptors polypeptide or nucleic acid II. CELLS: Specialized Tumor Specific Effector Cells (T, y/&dgr;T, NK or NKT cells) USE: Adoptive Immunotherapy In vivo PURPOSE: A. CD44 Expression on T cells or NKT -- accomplished by: (i) SAg stimulation; and/or (ii) transfection with nucleic acid encoding CD44 and/or (iii) transfection with nucleic acid encoding glycosyltransferase B. Chimeric TCR with Invariant a chain site for binding GalCer and V&bgr; chain site for binding SAg C. Dual TCR V&bgr; chains with sites for SAg binding D. T cells or NKT cells with overexpressed V&bgr; region specific for a given SAg E. T cells or NKT cells with lowered signal transduction threshold III. MOLECULES: SAg mimics USE: In Vivo Administration A. SAg receptor-binding oligonucleotides B. SAg oligonucleotide-peptide conjugate; oligonucleotide is ‘specific” for SAg receptor on tumor cells Peptide has deleted class II binding site and intact TCR binding site C. Phage displayed integrin ligand on tumor neovasculature - carrier for SAg-encoding nucleic acid. IV. CARRIERS for nucleic acid encoding SAg USE Transfection of Tumors In vivo A. Sickled erythrocytes that target tumor neovasculature B. Phage displayed tumor neovascular integrin and SAg receptor carrying SAg nucleic acids V. CARRIERS constructed to co-express SAg conjugates or complexes with glycosylceramide, &agr;Gal, lipopolysaccharides, peptidoglycans USE Transfection of Tumor Cells and/or DCs and/or DC/tc's - in vivo or ex vivo. A. Liposomes B. Proteosomes

[0054] A single transfecting nucleic acid molecule, or a separate nucleic acid molecule, can also encode another polypeptide such as an adhesion molecule, glycosyltransferase, glycosidase, CD44, cytokine, tumor associated antigen, costimulatory molecule, and the like. In addition, cells transfected in vitro or ex vivo with any of these nucleic acids as well as T cells activated by these transfected cells are administered directly to a cancer-bearing host. Cells transfected in vitro or ex vivo as well as cells activated ex vivo may additionally express a tumor associated antigen expected to be present on host cancer cells.

[0055] Further, cells transfected with nucleic acid that encodes a SAg polypeptide is also be used as a vaccine to immunize a host against a cancer previously present in the host or a cancer that is likely to develop in the host. For example, a host can be vaccinated against a particular cancer by administering tumor cells transfected with nucleic acid encoding a SAg. Alternatively, a SAg transfected cell is used to activate a host T cell population in vitro. This activated T cell population is then administered to a host as a cancer treatment (immunotherapeutic agent). Once activated ex vivo or in vivo, these T cells are expanded with cytokine treatment such as IL-2 treatment.

[0056] Cells to be “transfected” include accessory cells, immunocytes, fibroblasts, or tumor cells. Accessory cells may include, without limitation, endothelial cells, DCs, monocytes, macrophages as well as B and T lymphocytes which can play an “accessory” as well as direct-effector role in an immune response. When transfected in vitro, the cells can be xenogeneic, allogeneic to the host to provide, among other things, additional immunogenicity. Preferably, the transfected cells that are administered to a host, preferably a human, are syngeneic or autologous (or autochthonous).

[0057] Cells transfected with nucleic acid encoding a SAg may also express a tumor associated antigen that is potentially present on host cancer cells. For example, nucleic acid encoding a known tumor antigen are transfected into the SAg-containing cell, or a tumor cell that endogenously contains many different tumor antigens are transfected with SAg-encoding nucleic acid. In the latter case, additional nucleic acids encoding other polypeptides are transfected into the tumor cell. For example, nucleic acid encoding a carbohydrate modifying enzyme such as &agr;1,3-galactosyltransferase, adhesion molecule, costimulatory molecule such as B7-1 and B7-2, MHC class I molecule and/or MHC class II molecule are cotransfected into tumor cells together with nucleic acid encoding a SAg.

[0058] SAg-encoding nucleic acid can encode a mutant, variant, and/or modified form of a SAg. These forms can be used to transfect T cells, alone or in combination with wild-type SAg-encoding acid. In addition, tumor cells are provided with the capacity to colonize sites of metastases and the ability to locally hydrolyze surrounding tumor ground substance and neovasculature by transfection of key bacterial Staphylococcal and Streptococcal enzymes, toxins and capsular polysaccharides which confer upon the tumor cell additional tumor killing properties and immunogenicity. The transfected genes include staphylococcal hyaluronidase (tissue spreading factor), Staphylococcal erythrogenic toxin and Streptococcal capsular polysaccharide. The tumor cell may thus be capable of mimicking the tissue invasive and destructive properties of the Streptococcus and Staphylococcus as they produce a sterile cellulitis localized to tumor sites.

[0059] These methods are used to treat any solid tumor such as carcinoma, melanoma, and sarcoma, or cancers of hematopoietic origin such as leukemia and lymphomas. This invention also provides for T cells or NKT cells including &ggr;/&dgr;T cells which after activation by SAgs in native or mutant form or transfected into tumor cells express surface phenotypes which enhance their ability to traffic efficiently to tumor sites in vivo. Such phenotypes include CD44 and/or selective V&bgr; expression. In response to these SAg stimulants, the T cells produce TH1 cytokines and, in particular, IFN-&ggr; and IL-2.

[0060] Further, provided are methods of overcoming the T cell unresponsiveness of cancer patients by transfection of T cells from tumor bearing host with the nucleic acids encoding the SAg receptor thus enabling these cells to be reactivated by exogenous SAg and used for adoptive immunotherapy in the same cancer patient.

[0061] Provided herein are SAg oligonucleotide and oligonucleotide-peptide compositions capable of targeting and delivering SAgs to tumor sites in vivo without elimination by circulating naturally occurring SAg specific antibodies prevalent in the human cancer patients. Provided also are compositions and methods for delivery of therapeutic nucleic acid constructs to tumor sites in vivo using therapeutic genes carried by erythrocytes from patients with sickle cell anemia which have the unique capability of adhering to sites on tumor neovasculature.

1. Cancer

[0062] This invention is used to treat any type of cancer in a host at any stage of the disease. More particularly, the cancer is a solid tumor such as a carcinoma, melanoma, or sarcoma. This invention is used to treat cancers of hemopoietic origin such as leukemia or lymphoma, that involve solid tumors. A host is any animal that develops cancer and has an immune system such as mammals. Thus, humans are considered hosts within the scope of the invention. Since the invention provides SAg-transfected cells as a vaccine, a cancer is one that a host is likely to develop based on family history or other criteria. In this case, the host is one that is susceptible to cancer.

2. Nucleic Acid

[0063] The term nucleic acid as used herein encompasses both RNA and DNA, including cDNA, genomic DNA, and synthetic (e.g., chemically synthesized) DNA. The nucleic acid can be double-stranded or single-stranded. Where single-stranded, the nucleic acid can be the sense strand or the antisense strand. The term isolated nucleic acid means that the nucleic acid is not immediately contiguous with both of the sequences with which it is immediately contiguous (one on the 5′ end and one on the 3′ end) in the naturally occurring genome of the organism from which it is derived. For example, an isolated nucleic acid molecule can be, without limitation, a recombinant DNA molecule of any length, provided nucleic acid sequences normally found immediately flanking that recombinant DNA molecule in a naturally occurring genome are removed or absent. Thus, an isolated nucleic acid molecule includes, without limitation, a recombinant DNA that exists as a separate molecule (e.g., a cDNA or a genomic DNA fragment produced by PCR or restriction endonuclease treatment) independent of other sequences as well as recombinant DNA that is incorporated into a vector, an autonomously replicating plasmid, a virus (e.g., a retrovirus, adenovirus, or herpes virus), or into the genomic DNA of a prokaryote or eukaryote. In addition, an isolated nucleic acid can include a recombinant DNA molecule that is part of a hybrid or fusion nucleic acid sequence.

[0064] Typically, regulatory elements are nucleic acid sequences that regulate the expression of other nucleic acid sequences at the level of transcription and/or translation. Thus, regulatory elements include, without limitation, promoters, operators, enhancers, ribosome binding sites, transcription termination sequences (i.e., a polyadenylation signal), and the like. In addition, regulatory elements can be, without limitation, synthetic DNA, genomic DNA, intron DNA, exon DNA, and naturally-occurring DNA as well as non-naturally-occurring DNA. It is noted that isolated nucleic acid molecules containing a regulatory element are not required to be DNA even though regulatory elements are typically DNA sequences. For example, nucleic acid molecules other than DNA, such as RNA or RNA/DNA hybrids, that produce or contain a DNA regulatory element are considered regulatory elements. Thus, recombinant retroviruses having an RNA sequence that produces a regulatory element upon synthesis into DNA by reverse transcriptase are isolated nucleic acid molecules containing a regulatory element even though the recombinant retrovirus does not contain any DNA.

3. Transfection

[0065] The term “transfection,” of a nucleic acid into a cell, as used herein is intended to include “transformation,” “transduction,” “gene transfer” and the like, as they are commonly used in the art. “Transfection ”is not intended to be limited to transfer of nucleic acid into a cell by means of an infectious particle such as a retrovirus, as the term may have been used originally. Rather any form of delivery and introduction of a nucleic acid molecule, preferably DNA, into a cell, whether in the form of a plasmid, a virus, a liposome-based vector, or any other vector, so that the nucleic acid is expressed in the cell and its protein product(s) made, is included within the definition of “transfection.”

[0066] When a nucleic acid is said to “encode” a product other than a protein, this language is intended to mean that it encodes the necessary proteins/enzymes that are involved in, or required for, the synthesis of that product. For example, if a DNA molecule is said to encode LPS, it clearly encodes one or more proteins (enzymes) that are involved in the biosynthesis of LPS. If a nucleic acid is said to “encode the biosynthesis” of a structure, it means that the nucleic acid encodes the enzymes that participate in the creation of that structure. In particular for the carbohydrate structures referred to herein, the nucleic acids used in the invention are introduced into a cell that normally does not make, or makes little of, the carbohydrate structure so as to provide to that cell the genetic material for an enzyme or enzymes that generate the carbohydrate structure or modify a different carbohydrate structure to that one indicated. As a further example, DNA encoding a tumor antigen may directly encode a protein/peptide tumor antigen, or alternatively, may encode proteins or peptides that either contribute structurally to, or catalyze the synthesis of, a tumor antigen which is partly protein (e.g., lipoprotein or proteoglycan) or totally non-protein (e.g., a glycolipid).

[0067] The invention provides methods of treating cancer in a host by transfecting cells with SAg-encoding nucleic acid. Suitable host or non-host cells for transfection include, without limitation, endothelial cells, DCs, monocytes, macrophages, B cells, T cells, immunocytes, muscle cells, fibroblasts, NK cells, NKT cells (TCR &agr;&bgr;+ CD4neg and CD8neg), &ggr;/&dgr; T cells and tumor cells. The terms accessory cell and antigen presenting cell (APC) can be used interchangeably and include cells having the ability to process and present antigens to T cells as well as to provide both defined and less well defined growth and differentiation factors (costimulatory signals) during an ongoing immune response.

[0068] Cells are transfected in vivo or in vitro. When transfected in vivo, the cells are of host origin. When transfected in vitro, the cells are autologous, allogeneic, or xenogeneic to the host to provide additional immunogenicity. In addition to being transfected with nucleic acid encoding a SAg, the cells are transfected with nucleic acid encoding any other polypeptide including, without limitation, a galactosyltransferase, staphylococcal hyaluronidase and/or erythrogenic toxin, streptococcal capsular polysaccharide, CD44, tumor antigen, costimulatory molecule such as B7-1 and B7-2, adhesion molecules, MHC class I molecule and/or MIIC class II molecule. Nucleic acids encoding the molecules are cotransfected with the SAgs. But for others, including but not limited to Staphylococcal hyaluronidase, erythrogenic toxin, Streptococcal capsular polysaccharide and CD44 genes, the nucleic acids encoding the SAgs are fused to other nucleic acids resulting in expression of a fusion protein.

[0069] Methods for in vivo and in vitro transfection of cells are well known. For example, two books in the series Methods in Molecular Medicine published by Humana Press, Totowa, N.J., describe in vivo and in vitro transfection protocols that are adaptable to the present invention (Vaccine Protocols edited by Robinson et al., (1996) in Gene Therapy Protocols edited by Robbins et al., Humana Press, Totowa, N.J. (1997)). Transfection protocols are also discussed elsewhere ((Sambrook, J. et al., Molecular Cloning, Second Edition, Cold Springs Harbor Laboratory Press, Plainview, N.Y., (1989)). In addition, use of various vectors to target epithelial cells, use of liposomal constructs, methods of transferring nucleic acid directly into T cells, hematopoietic stem cells, and fibroblasts, methods of particle-mediated nucleic acid transfer to skin cells, and methods of liposome-mediated nucleic acid transfer to tumor cells have been described elsewhere. (Feigner, PL et al., Cationic Lipids for Intracellular Delivery of Biologically Active Molecules, U.S. Pat. No. 5,459,127, issued Oct. 17, 1995; Feigner, PL, Cationic Lipids for Intracellular Delivery of Biologically Active Molecules, U.S. Pat. No. 5,264,618, issued Nov. 23, 1993; Felgner, PL, Exogenous DNA Sequences in a Mammal, U.S. Pat. No. 5,580,859 issued Dec. 3, 1996; Felgner, PL, A Protective Immune Response in a Mammal by Injecting a DNA Sequence, U.S. Pat. No. 5,589466 issued Dec. 31, 1996).

[0070] Further, use of ligand-based nucleic acid carriers to effect transfection of mammalian cells in vivo has been described elsewhere (Wu et al., J. Biol. Chem., 262:4429-4432 (1987); Wu et al., J. Biol. Chem., 263:14621-14624 (1988); Wu et al., J. Biol. Chem., 264:16 985-16987 (1989); Wu et al., J. Biol. Chem., 266:14338-14342 (1991); and Garrigues J et al., Am. J. Path. 142:607-622 (1993)). Briefly, plasmid DNA is conjugated to a desialylated branched carbohydrates such as orosomucoid by carbodiimide crosslinking to polylysine and targeted to asialoprotein receptors expressed on cells in the liver. In addition, enhanced nucleic acid delivery and expression can be achieved using a ligand-polylysine conjugate coupled to carbohydrate moieties on viruses that is then combined with DNA. These preparations are suitable for parenteral injection and are readily taken up by cells expressing asialoprotein receptors in the liver after which the DNA is internalized and integrated into the host genome. In addition, nucleic acid can be administered intravenously, intramuscularly, or subcutaneously to induce a response in a host.

[0071] Thus, targeting nucleic acid to the surface of particular cells is accomplished by conjugating nucleic acid to molecules that bind to a cell surface structure such as a receptor. Examples of cell surface structures that can be targeted include, without limitation, the transferrin receptor, and asialoglycoprotein receptor. The molecules that bind cell surface structures and are conjugated to nucleic acid for targeting can be, without limitation, natural ligands for the surface structure, synthetic compositions that exhibit specific binding, and antibodies directed against the surface structure. For example, a monoclonal antibody specific for a cell surface epitope such as the BR96 antibody that recognizes Lex carbohydrate epitope abundantly expressed by colon, breast, ovary, and lung carcinomas can be used. Other monoclonal antibodies can include, without limitation, those that recognize growth factor receptors, transferrin receptors, IL-2 receptors, epidermal growth factor receptors, the hev oncogene, and TAPA-1 as well as any other antibody having specificity for a surface structure that can be internalized.

[0072] Liposomes containing nucleic acid are also targeted to specific cell types such that the nucleic acid is expressed. For example, nucleic acid is loaded into or attached to cationic DOTMA: doleoylphosphatidylethanolamine (DOPE) liposomes that contain exposed molecules that bind to a cell surface structure such as tumor cells or tumor microvasculature (Example 5). The molecules that bind cell surface structures and are attached to liposomes can be, without limitation, natural ligands for the surface structure, synthetic compositions that exhibit specific binding, and antibodies directed against the surface structure. Maximal transfer of nucleic acids encoding SAgs is attained by synthesizing the liposomes with an appropriate ratio of nucleic acid to lipid. In addition, these nucleic acid-containing liposomes are administered intravenously, intramuscularly, or subcutaneously to induce a response in a host.

[0073] Naked nucleic acid is also administered to a host. For example, naked pharmaceutical-grade plasmid DNA are injected into a host intramuscularly such that it is expressed by host cells (U.S. Pat. Nos.5,589,466; 5,580,599; 5,264,618; 5,459,127; and 5,561,064). In addition, cationic lipids are used to deliver biologically active molecules, such as oligonucleotides to host cells in vivo (U.S. Pat. Nos. 5,264,618, 5,459,127, and 5,561,064). Thus, nucleic acid encoding a SAg is administered to a host in naked or cationic lipid form such that the SAg is expressed. It is noted that any nucleic acid described herein can be administered in vivo as naked DNA. Further, other methods of administering naked DNA to a host can be used such as those related to the direct injection of naked DNA for use in vaccines (Cohen et al., Science 259:1691-1692 (1993); Corr et al., J. Exp. Med. 184:1555-1560 (1996); Varmus et al., Proc. Natl. Acad. Sci. USA 81:5849-5852 (1984); and Benveniste et al., Proc. Natl. Acad. Sci. USA 83:9551-9555 (1986)).

[0074] Our previous patent applications which are hereby incorporated by reference include U.S. patent application Ser. No. 07/416,530, filed Oct. 3, 1989, U.S. patent application Ser. No. 07/466,577, filed Jan. 17, 1990, U.S. patent application Ser. 07,891,718, filed Jun. 1, 1992, U.S. patent application Ser. 08/025,144, filed Mar. 2, 1993, U.S. patent application Ser. 08/189,424, filed Jan. 31, 1994, U.S. patent application Ser. 08/491,746, filed Jun. 19, 1995, PCT applications PCT/US91/00342, and PCT/US94/02339. These applications have given comprehensive description of the SAg genes, the creation of high enterotoxin producing mutant strains as well as recombinant methods of production of SAgs. In addition, methods of treating cancer by transfecting tumor cells in vivo and in vitro with SAg nucleotides using well defined recombinant technology have been described in these applications. Subsequently, Dow et al., (J. Clin. Invest. 99: 2616-2624 (1997)) described in vitro and in vivo transfection of eukaryotic cells with SAg DNA which was capable of inducing inflammatory responses in vivo. It is noted that the SAg genes have been cloned and their sequences delineated before 1988 and methods used to transfect cells in vivo or in vitro with nucleic acids encoding polypeptides are also well known in the art.

4. Constructs

[0075] Tumor cells are transfected with various nucleic acids which are designed to increase their immunogenicity and to provide them with capacity to traffic to metastatic sites where they may initiate a potent inflammatory and immune response. Such constructs of this invention can be linear or circular nucleic acids obtained from mammals or bacteria that encode a polypeptide such as a SAg, mutant SAg, erythrogenic toxin, enzymes involved in the biosynthesis of glycosyltransferases, bacterial glycosylceramides, LPS's, lipoproteins, capsular or membrane polysaccharides, microbial toxins and enzymes such as hyaluronidase, collagenase, elastase, coagulase, protease, kinase, lipase. Constructs may also contain tumor associated antigens, costimulatory molecules such as B7-1 and B7-2, adhesion molecules, receptor molecules such as SAg receptors, CD1, CD14, MHC class I molecules and/or MHC class II receptors. Such constructs may also contain amplified nucleic acids associated with tumors such as oncogenes, transcription factors, angiogenesis factors and receptors, tumor growth factor receptors, chimeric receptors. The latter nucleic acids may be linked to SAg-encoding nucleic acid to produce heightened expression of the SAg. The amplified nucleic acids may include tumor tissue specific promoters and nucleic acids that direct the colonization or metastasis of tumors to selected sites in vivo.

[0076] Constructs can also contain elements that regulate and/or promote the expression of an encoded polypeptide. For example, a construct containing nucleic acid that encodes enterotoxin B (SEB) can have a strong promoter element upstream of the SEB encoding sequence. In addition, constructs can contain nucleic acid that anchors an encoded polypeptide to the cell surface after expression. For example, a construct containing nucleic acid that encodes SEB can contain a membrane-anchoring sequence such as nucleic acid that encodes a hydrophobic stretch of amino acids or a glycosylphosphatidylinositol (GPI)-anchoring motif. Thus, the SAg, or other polypeptides as well, can be anchored in the plasma membrane by coupling to membrane lipids or glycolipids. These anchors can be attached to the C terminus of the polypeptide in the endoplasmic reticulum. Alternatively, a SAg known to be associated with the cell surface after expression can be used such as the mammary tumor viral (MMTV) SAg that is GPI-linked.

[0077] In one embodiment, SAgs as well as SAg receptors are engineered to remain anchored to the surface of transfected cells when the cell is to be used for immunization. Likewise, when a SAg receptor gene is transfected into anergized T cells from cancer patients, it is desirable to express the receptor on the cell surface so that they are readily recognized and activated by exogenous receptor bound SAg. In contrast, when it is desirable to use SAg transfected cells to activate T cells in vivo or ex vivo or to promote trafficking of transfected tumor cells to metastatic sites in vivo, it is suitable for the SAg to be secreted from the transfected cells.

[0078] In additional embodiments, potent tumor specific effector T or NKT cell clones are produced with overexpressed V&bgr; regions of their TCRs making them highly receptive to activation by exogenous SAg. Likewise CD44 genes are transfected into T cells or NKT cells making them more susceptible to expression of this epitope after SAg stimulation.

[0079] Constructs also contain a selectable marker or reporter such that transfected cells can be isolated. For example, a construct containing nucleic acid that encodes a SAg can also contain nucleic acid that encodes a polypeptide that confers resistance to a selection agent such as neomycin (also called G418), puromycin, or kanamycin.

[0080] Nucleic acid and nucleic acid constructs of the present invention are incorporated into a vector, an autonomously replicating plasmid, or a virus (e.g., a retrovirus, adenovirus, or herpes virus). Typically, these vectors, plasmids, and viruses can replicate and function independently of the cell genome or integrate into the genome. Vector, plasmid, and virus design depends on, for example, the intended use as well as the type of cell transfected. Appropriate design of a vector, plasmid, or virus for a particular use and cell type is within the level of skill in the art. In addition, a single vector, plasmid, or virus can be used to express either a single polypeptide or multiple polypeptides. It follows that a vector, plasmid, or virus that is intended to express multiple polypeptides will contain one or more operably linked regulatory elements capable of effecting and/or enhancing the expression of each encoded polypeptide.

[0081] The term “operably linked” means that two nucleic acid sequences are in a functional relationship with one another. For example, a promoter (or enhancer) is operably linked to a coding sequence if it effects (or enhances) the transcription of the coding sequence. A ribosome binding site is operably linked to a coding sequence if it is positioned to facilitate translation. Operably linked nucleic acid sequences are often contiguous, but this is not a requirement. For example, enhancers need not be contiguous with a coding sequence to enhance transcription of the coding sequence.

[0082] A vector, plasmid, or virus that directs the expression of a polypeptide such as a SAg can include other nucleic acid sequences such as, for example, nucleic acid sequences that encode a signal sequence or an amplifiable gene. Signal sequences are well known in the art and can be selected and operatively linked to a polypeptide encoding sequence such that the signal sequence directs the secretion of the polypeptide from a cell. An amplifiable gene (e.g., the dihydrofolate reductase [DHFR] gene) in an expression vector can allow for selection of host cells containing multiple copies of the transfected nucleic acid.

[0083] Standard molecular biology techniques are used to construct, propagate, and express the nucleic acid, nucleic acid constructs, vectors, plasmids, and viruses of the invention ((Sambrook, J. et al., supra; Maniatis et al., Molecular Cloning (1988); and U.S. Pat. No. 5,364,934. For example, prokaryotic cells (e.g., E. coli, Bacillus, Pseudomonas, and other bacteria), yeast, fungal cells, insect cells, plant cells, phage, and higher eukaryotic cells such as Chinese hamster ovary cells, COS cells, and other mammalian cells can be used.

[0084] Constructs are used in vivo or ex vivo or in combination as in Example 5-7, 16-23. They are used to immunize a host by direct in vivo administration or they are used ex vivo to activate T cells or NKT cells to become tumor specific effector cells which are employed for adoptive immunotherapy of cancer by methods and models (Examples 7, 16, 19-23).

[0085] To test the anti-tumor-inducing ability of a particular construct as well as the transfected cell itself, the following general assay is performed. B16 melanoma, A20 lymphoma, host tumor cells, or any other tumor cell lines appropriate to the host (i.e., having tumor antigens expected to be present on the host tumor cells) are transfected with a given construct. Appropriate numbers of transfected cells (e.g., 105-107 cells) are then implanted subcutaneously into animals such as mice, rats, rabbits, or the like and 1-6 months later untransfected tumor cells are implanted. Tumor outgrowth from the untransfected tumor cells is measured and compared to control animals not given the transfected tumor cells. If tumor outgrowth is reduced or prevented, then the transfected cells are effective anti-tumor agents useful as tumor vaccines. Alternatively, 105-107 transfected tumor cells can be given 3-10 days after the appearance of established tumors from untransfected tumor cells. If tumor outgrowth is reduced or arrested, then the transfected cells are effective anti-tumor agents useful in treating established tumors.

[0086] To test the anti-tumor effect of SAg activated T cells, &ggr;/&dgr; T cells NKT cells or T cells clones overexpressing V&bgr; or CD44, the following general protocol is used. Lymph node cells from C57/B1 mice bearing MCA 205 or 207 sarcomas which were implanted in the adjacent inguinal region three to ten days before are extracted and placed in tissue culture. The cells are incubated with various enterotoxins for two days and then with IL-2 for an additional two to three days. The cells are then harvested and injected into syngeneic mice with established pulmonary metastases (six to twelve days after tumor injection). Three weeks later the animals are evaluated for pulmonary metastases compared to controls which receive no cells or cells that were stimulated without enterotoxins. The adoptively transferred cells may be enriched for NKT cells or &ggr;/&dgr; T cells or &agr;/&bgr;+ T cells alone which are selectively injected into tumor bearing hosts. Likewise, they are selected for predominant expression of the CD44 phenotype during the SAg activation phase at which time the CD44 enriched population is harvested and used for adoptive immunotherapy. The dose of injected T cells, NKT cells or &ggr;/&dgr; T cells and/or CD44 enriched cells (which are produced by any of these T cell, NKT cell or &ggr;/&dgr; T cell populations) range from 106 to 7 and are be given on a schedule of once weekly for one to four weeks.

5. Superantigens (SAgs)

[0087] SAgs are polypeptides that have the ability to stimulate large subsets of T cells. SAgs include Staphylococcal enterotoxins, Streptococcal pyrogenic exotoxins, Mycoplasma antigens, rabies antigens, mycobacteria antigens, EB viral antigens, minor lymphocyte stimulating antigen, mammary tumor virus antigen, heat shock proteins, stress peptides, clostridial and toxoplasmosis antigens and the like. Any SAg can be used as described herein, although, Staphylococcal enterotoxins such as SEA, SEB, SEC, and SED and streptococcal pyrogenic exotoxins such as toxic shock-associated toxin (TSST-1 also called SEF) are preferred.

[0088] When using enterotoxins, the region related to emetic activity can be omitted to minimize toxicity. In addition, SAgs can be derivatized to minimize toxicity. The level of toxicity may not be a concern when using SAg transfected cells to activate lymphocytes ex vivo since the lymphocytes can be rinsed of SAg polypeptide prior to administration to a host.

[0089] The nucleic acid sequences that encode SAgs are known and readily available. For example, Staphylococcal enterotoxin A (SEA), SEB, SEC, SED, SEE, TSST-1, and Streptococcal pyrogenic exotoxin (SPEA) have been cloned and can be expressed in E. coli (Betley M J and J J Mekalonos, J. Bacteriol. 170:34 (1987); Huang I Y et al., J. Biol. Chem., 262:7006 (1987); Betley M et al., Proc. Natl. Acad. Sci. USA, 81:5179 (1984); Gaskill M E and S A Khan, J. Biol. Chem., 263:6276 (1988); Jones C L and S A Khan, J. Bacteriol., 166:29 (1986); Huang I Y and M S Bergdoll, J. Biol. Chem., 245:3518 (1970); Ranelli D M et al., Proc. Nat. Acad. Sci. USA 82:5850 (1985); Bohach G A, Infect Immun., 55:428 (1987); Bohach G A, Mol. Gen. Genet. 209:15 (1987); Couch J L et al., J. Bacteriol. 170:2954 (1988); Kreiswierth B N et al., Nature, 305:709 (1983); Cooney J et al., J. Gen. Microbiol., 134:2179 (1988); Iandolo J J, Annu. Rev. Microbiol., 43:375 (1989); and U.S. Pat. No. 5,705,151)). Additional nucleic acid sequences encoding SAgs are described elsewhere (Bohach et al., Crit. Rev. in Microbiology 17:251-272 (1990); (Kotzin, B L et al., Adv Immunol 54: 99-165 (1993))

[0090] PCR can be used to isolate SAg-encoding acid. For example, the nucleic acid encoding SEA, SEB, and TSST-1 can be isolated as described elsewhere (Dow et al., J. Clin. Invest. 99:2616-2624 (1997)). Briefly, the following primers can be used to amplify the SAg-encoding nucleic acid:

[0091] SEA forward: GGGAATTCCATGGAGAGTCAACCAG,

[0092] SEA backward: GCAAGCTTAACTTGTTAATAG;

[0093] SEB forward: GGGAATTCCATGG-AGAAAAGCG,

[0094] SEB backward: GCGGATCCTCACTTTTTCTTTG; and

[0095] TSST-1 forward: GGGGTACCCCGAAGGAGGAAAAAAAAATGTCTACAAACGATAATATAAAG,

[0096] TSST-1 backward: TGCTCTAGAGCATTAATTAATTTCTGCTTCTATAGTTTTTAT.

[0097] The full-length TSST-1 nucleic acid sequence is cloned into a eukaryotic expression vector (pCR3; In Vitrogen Corp., San Diego, Calif.), whereas only the sequence corresponding to the mature SEB and SEA (sequences minus the putative bacterial signal sequences) is cloned into pCR3. Removal of the SEB and SEA signal sequences increases the level of expression in transfected cells. The plasmids are grown in Escherichia coli and plasmid DNA extracted by the modified alkaline lysis method and purified on a CsC1 gradient.

[0098] Nucleic acids encoding mutant or variant SAgs are also considered nucleic acid sequences encoding SAgs within the scope of the invention. For example, a mutant SAg-encoding acid sequence is engineered such that the resulting SAg is devoid of amino acid residues, e.g., histidine, known to produce toxicity. Likewise, SAg-encoding nucleic acid is engineered to contain or lack sequences that facilitate the selective binding of SAgs to certain V&bgr; regions of the TCR present on T cells or to ganglioside, mannose (or other carbohydrate) receptor, certain regions of MHC class II, and/or enterotoxin receptors present on tumor cells, antigen presenting cells (APCs), and/or lymphocytes.

[0099] Nucleic acid sequences that encode a SAg are also fused, in frame, with nucleic acid that encodes another polypeptide. This larger nucleic acid is termed herein a SAg fusion gene and the resulting polypeptide product is a SAg fusion product. Nucleic acid sequences that are fused to SAg-encoding nucleic acid include, without limitation, nucleic acid sequences that encode tumor antigens, costimulatory molecules, adhesion molecules and MHC class II molecules. The superantigen fusion product is secreted by a transfected cell, expressed on the cell surface or it may remain intracellular in nucleic acid or partly processed form.

[0100] SAgs are also isolated and purified from their natural source as well as from a heterologous expression system such as E. coli. Likewise, SAg-containing polypeptides (e.g., SAg fusion products) are isolated and purified from a heterologous expression system. In addition, Staphylococcus strains producing high levels of enterotoxin have been identified and are available. For example, exposing enterotoxin-producing Staphylococcus aureus to mutagenic agents such as N-methyl-N-nitro-N-nitrosoguanidine results in a 20 fold increase in enterotoxin production over the amounts produced by the parent wild-type Staphylococcus aureus strain (Freedman M A and Howard M B J. Bacteriol., 106:289(1971)).

6. Glycosylated SAgs and SAgs Conjugated to Glycosylceramides, Lipopolysaccharides, Glycans and Lipoarabinomannans: Presentation on CD1 Receptors for Activation of T or NKT Cells and Differentiation to Tumor Specific Effector Cells

[0101] In a tumor cell or accessory cell, nucleic acid signal sequences are integrated into nucleic acids encoding the SAg molecules in order to route them to the Golgi apparatus and endoplasmic reticulum of tumor cells where they are glycosylated via appropriate glycosyltransferases (precedents from the selective transferases used to produce monogalactosylceramide in the Sphingomonas paucimobilis) to produce a proteoglycan with structural similarity to LPS, lipoteichoic acid, GalCer, &agr;-gal, Streptococcus capsular polysaccharide. This construct is then secreted as an immunogenic “ground substance.” Alternatively, the resulting SAg glycolipid is anchored to the membrane, expressed on the cell surface and routed specifically to CD1 receptors.

[0102] SAgs which are glycosylated by the above intracellular processes have improved capacity to bind surface structures such as mannose receptors, ganglioside receptors and CD1 receptors. Generally, the nucleic acids encoding a SAg are modified to include a signal sequence for routing to the Golgi apparatus and a core sequence which initiates glycosylation. It is important that the V V&bgr; TCR binding region is not blocked by the added carbohydrate modifications. For example, an N-linked glycosylation site (in the sequence Asn X Ser/Thr where X is any residue except Pro) is engineered into SAg-encoding acid sequences which do not functionally interfere with TCR binding and activation. The nucleic acid encoding these signal sequences and core binding glycosylation sites of SAgs are fused to nucleic acids encoding SAg and the fusion gene used to transfect tumor cells of a host. In addition, glycosylated forms of SAgs are expressed in a heterologous eukaryotic expression system such as yeast cells or baculovirus-infected insect cells. In gram negative bacteria (such as E. coli), nucleic acids encoding SAgs are fused to nucleic acids encoding LPS's, in gram positive bacteria (such as Staphylococcus or Streptococcus), to nucleic acids encoding capsular polysaccharides and teichoic acids and in mycobacterial species to nucleic acids encoding lipoarabinan.

[0103] The gram negative bacterium Sphingomonas paucimobilis produces the monogalactosylceramide. In this bacterium, nucleic acids encoding SAgs (containing serine) are fused to nucleic acids encoding and directing the synthesis of glycosylceramides and monogalactosylceramide in particular. The resulting galactosylceramide-SAgs are powerful T cell stimulants. The same procedure is followed in bacteria which naturally produce LPS's such as E. coli, Salmonella or Klebsiella or for bacteria which naturally produce lipoarabinomannans glycans or polysaccharides containing cell walls such as Mycobacterium and Streptococcus respectively. The SAg-polysaccharide constructs bind to CD1 receptors of antigen presenting cells. They are then capable of activating NKT cells either in vivo or ex vivo to become tumor specific effector cells in response to IL-12.

[0104] SAgs are also conjugated genetically or biochemically as in Example 5 to LPS's via a natural high affinity binding site for LPS binding protein (LPB). Once bound, the SAg catalyzes the binding of LPS monomers to CD14 and CD1 receptors in a fashion similar to that of LPB. In this way, the conjugates are capable of activating T cells for use in vivo or ex vivo for adoptive immunotherapy while preserving the anti-apoptotic effect of LPS on SAg activated T cells. Examples of their preparation and use in vivo and in vitro are given in Examples 4, 7, 15, 16, 18-23.

[0105] In addition, SAgs similarly conjugated to lipoarabinomannans and glycans are integrated into lymphomonocytic cell membranes via glycosylphosphatidylinositol anchors. These SAg-lipoarabinomannan complexes are expressed or secreted by antigen presenting cells or tumor cells. They are also bound to CD1, mannose or class II receptors in which form they are used to activate T or NKT cells. These constructs are administered in vivo or they are used ex vivo to produce tumor specific effector cell populations (T cell or NKT cells) which are employed for adoptive immunotherapy of cancer (Examples 5, 15-16, 18-23).

[0106] Mannose receptor expression is upregulated by cytokines. For example, accessory cells including DCs, and tumor cells express mannose receptors on their surfaces after GM-CSF treatment. SAgs are bound to mannose receptors by transfecting cells with nucleic acids encoding SAg which also consist of nucleic acids encoding signal sequences and glycosylation sites which, in the presence of appropriate glycosyltransferases, produce mannosylated SAgs. These preferentially bind to mannose receptors. In addition, glycosylated SAgs bind to amphipathic cell surface gangliosides and glycolipids via hydrophobic interactions. These glycosylated SAgs presented in a form bound to mannose receptors are capable of activating &agr;/&bgr; cells, &ggr;/&dgr; T cells, NK cells, and NKT cell populations. They are used either in vivo by direct administration or ex vivo to produce a tumor specific effector cell population (T cell, NK or NKT cells) for use in adoptive immunotherapy of cancer (Examples 4, 5, 15, 16, 18-23).

7. SAgs Conjugated to Glycosylceramides Gangliosides and Verotoxins (VT)

[0107] Amphipathic gangliosides bound to tumor cell surfaces such as GD1, GD2, GD3, GM1, GM2, GM3, GQ1 and GT1 are capable of binding exogenous SAgs. The binding of a SAg to the surface of a tumor cell creates an immunogen on the tumor cell surface. Tumor cells transfected with nucleic acids encoding glycosyltransferases overexpress gangliosides, producing a greater surface density of ganglioside moieties available to bind exogenous SAgs. Enterotoxins bind to cell surface amphipathic gangliosides and/or glycophorins via their hydrophobic residues while preserving their T cell binding properties. SAgs are also glycosylated intracellularly by addition of a glycosylation site or by chemical conjugation of a carbohydrate moiety using methods well described in the art. In glycosylated or native form, the SAgs bind to surface ganglioside while retaining their T cell activating properties. Overexpression of the hydrophobic regions of the molecule promotes binding to the surface gangliosides (Example 5).

[0108] Examples from nature of exogenous proteins that bind to cell surface gangliosides include falciparum malarial merozoite which combines with gangliosides associated with the Duffy blood group and induce long standing and durable protection and tetanus toxin which binds to surface gangliosides with highest affinity for the disialyl groups linked to inner galactosyl residues.

[0109] Enterotoxin B contains a T cell activating sequence which is chemically cross-linked or polymerized using bifunctional agents such as carbodiimide, glutaraldehyde or formaldehyde by established methods well known in the art. These polymers are then bound to gangliosides expressed on tumor cells such as GD1, GD2, GQ1,GD3 or GM1, GM2, GM3, GT1. In monomeric or polymerized form, SAgs also bind to monogalactosylceramides which are free or bound to CD1 receptors on tumor cells or antigen presenting cells via hydrophobic interactions. The monogalactosylceramide binds to hydrophobic sequences on the SAg which are expressed at multiple sites on the molecule. In one embodiment, the lauroyl group [CH3(CH)10CO] or the group [CH3(CH)13CO] is covalently added to each of the peptide's amino terminus to serve as a of the CD1 receptor. The key SAg peptide sequence such as of SEB (amino acids 225-234) which confers T cell activating properties is tandemly repeated to various lengths prior to lipid conjugation.

[0110] Hydrophobic SAg peptides(such as Trp, Tyr, Phe, Leu, and Ile) are screened for binding to glycosylceramides immobilized on CD1 receptors or via adsorption chromatography with immobilized glycosylceramide. The SAg sequences with the greatest affinity for the CD1 receptor are selected for conjugation to the glycosylceramides and LPS's. Alternatively, the SAg sequence is screened for affinity for the CD1 or MHC class II receptor using a peptide phage display library as described in Examples 4. Likewise, pre-formed SAg-glycosylceramide or LPS complexes are also screened for affinity for the CD1 or MHC class II receptor (Example 4). These lipopeptide complexes are then screened for T cell proliferative activity and IL-12 production. The monomeric or polymerized SAg in native or glycosylated form binds to the monoglycosylceramides or gangliosides expressed on CD1 receptors on the tumor cell surface.

[0111] Therapeutic Construct: SAg-Glycosylceramide Conjugates

[0112] SAgs have an affinity for glycosphingolipids especially those with terminal or subterminal Gal(&agr;1-4)Gal residues. Such residues are expressed on tumor cells as Gal(&agr;1-4)Gal(&bgr;1-4)GlcCeramide (globotriaosylceramide or Gb3) and Gal(&agr;1-4)GalCeramide (galabiosylceramide or Gb2). Gb3 and Gb2 also known as CD77, Burkitt's lymphoma antigen, and the human blood group pk antigen are the natural receptors for Shiga toxins and VT's. Shiga toxin, a 69-kDa complex of proteins comprised of five B-subunits (7 kDa each) and one A-subunit (30 kDa) has high affinity for the terminal digalactose of Gb3 or Gb2. Methods for their preparation and isolation are described in Example 41. Once bound to the tumor cell, these toxins are internalized and induce apoptosis.

[0113] The synthetic pathway for neutral glycosphingolipids in eukaryotic cells is known. Glucosylceramide (GlcCer) is the precursor of lactosylceramide (LacCer), which leads, in order, to Gb3 and globotetraosylceramide (Gb4). Different Golgi enzymes are responsible for addition of monosaccharides from nucleotide-sugar donors in each step of the pathway. Globotriaosylceramide synthase (UDP-galactose:lactosylceramide &agr; 1-4-galactosyltransferase) has been purified. In the cytoplasm, the A-subunit of the Shiga toxin or VT is processed by a trypsin-like cleavage. The “activated” 27-kDa A-subunit inactivates 60S ribosomes by depurination of a single nucleotide in 28S rRNA, rendering ribosomes incapable of carrying out peptide elongation.

[0114] The present invention provides therapeutically active soluble complexes comprising SAg and glycosphingolipids which have terminal or subterminal Gal(&agr;1-4)Gal residues and Shiga toxin receptors Gb3 and Gb2, (collectively referred to as “GTSG1-4”). These complexes include but are not limited to SAg-GP1-GTSG1-4 complexes, and synthetic and functional derivatives thereof. Such structures appear naturally on surfaces of certain tumor cells such as astrocytoma, Burkitt's lymphoma and ovarian carcinoma. Methods of preparing and isolating glycosylceramides and VTs are given in Examples 41 and 55.

[0115] SAgs also have a demonstrable affinity for galactosylceramides containing Gal(&agr;1-4)Gal residues. Methods of assessing SAg binding to GTSG1-4 are provided given in Example 43. These conjugates are also shed from SAg-transfected tumor cells as binary complexes of SAg-GTSG1-4 or ternary complexes of SAg-GPI-GTSG1-4, in free form, as vesicles or as exosomes(see Sections 38 and Example 38). Methods of isolating and characterizing these shed complexes appear in Section 38 and Example 42. The complexes may also be prepared by chemical or genetic methods (Example 5). SAg-GTSG1-4 or SAg-GPI-GTSG1-4 complexes or exosomes are useful as a preventative vaccine or against established tumor. They are also useful in vivo by direct administration or ex vivo where they are loaded onto antigen presenting cells comprising CD1 or MHC receptors to activate NKT and T cells to produce tumor specific effector T or NKT cells for adoptive therapy of cancer (Examples 5, 7, 14, 15, 16, 18-23, 38).

[0116] Therapeutic Construct: Tumor Cells Expressing SAgs and Galactosylsylceramides

[0117] Additional immunogenic complexes comprising SAgs bound to tumor cells, DCs DC/tc constructs expressing surface Gb2 and Gb3 or other glycosphingolipids containing terminal Gal(&agr;1-4)Gal are prepared by transfecting these cells with nucleic acids encoding a SAg. The transfected cell expresses the SAg in the context of the glycosphingolipid comprising the terminal or subterminal Gal(&agr;1-4)Gal moiety. Alternatively, free or GPI linked glycolipids containing SAg peptides or polypeptides bind to tumor cells or accessory cells in tissue culture (Section 38). The expression of Gb3 and Gb2 on tumor cells is optionally upregulated by various cytokines, including IFN&agr; and TNF&agr;, before contacting the SAg

[0118] Tumor cells, accessory cells or fused tumor/accessory cells transfected with SAg which are not naturally endowed with the GalCer (optionally coupled to SAg) acquire these molecules in free or GPI-linked form from surrounding media or by transfer from liposomes or vesicles (exosomes) which express them (Section 38 and Example 5). The resulting cells, coexpress SAgs and glycosylceramides or other glycosylceramides capable of stimulating an effective T or NKT cell immune response. Multidrug resistant (MDR) tumor cells or cell lines which naturally accumulate and express intracellular glycosylceramides are useful in this invention. MDR agonists such as SDA PSC 833, a cyclosporin analogue, and fumonisin B1, a ceramide synthase inhibitor, are employed to induce ceramide accumulation in MDR cells (Example 45). Tumor cells or accessory cells which overexpress key glycosylceramides due to transfection with a1-2, &agr;1-4, &agr;1-6 glycosyltransferases (Example 38) or a natural or induced deficiency of (&agr;-galactosidase are also useful. In addition, tumor cells with high concentrations of GalCer expressed on their surface or that of accessory cells are generated by incubation with ceramides containing a 2-hydroxy fatty acid C6OH. Tumor cells selectively convert them to GalCer, galabiosylceramide and sulfatide in the trans-Golgi network where they are sorted and transported selectively to the cell surface. Methods for this selective biosynthesis of GalCer with hydroxy fatty acids are in Example 46.

[0119] These fused SAg-tumor cell/accessory cell constructs are used to activate a T or NKT cell population. They are used in vivo by direct administration or ex vivo to produce a population of tumor specific effector cells (T cells or NKT cells) for adoptive therapy of cancer (Examples 5, 7, 14, 15, 16, 18-23, 38).

[0120] SAg-VT Conjugates to Induce Tumor Cell Apoptosis

[0121] The present invention contemplates the induction of apoptosis in tumor cells expressing Gb2 and Gb3 (or other glycosphingolipids containing terminal Gal(&agr;1-4)Gal) by using free SAgs, conjugates and fused DNA that comprises SAg, SAg peptide or SAg-encoding DNA fused to intact VT or to VT A or B chains. Preparation of these conjugates and fusion proteins from their corresponding DNA, polypeptides or functional derivatives is provided in Examples 1 and 5. These conjugates induce apoptosis by binding to tumor cell glycosphingolipid receptors having terminal Gal(&agr;1-4)Gal. Methods of assessing tumor cell apoptosis are in Example 44. CD19 or IFN-&agr;peptide sequences and generic carbohydrate recognition domains which bind Gal(&agr;1-4)Gal structures are also useful. CD19, a B-cell restricted differentiation antigen, naturally binds to Gb3 and Gb2 on the cell surface which includes apoptosis. CD19 has VT-like sequences in the N-terminal extracellular domain (NBRF protein data bank) that have 41%, 34% and 37% sequence identity to VT1, VT2, and VT2e B subunits, respectively. When compared to a consensus VT B sequence, the CD19 sequences show 49% identity. Binding of these peptide sequences to membrane Gal(&agr;1-4)Gal-containing glycolipids facilitates receptor mediated induction of apoptosis.

[0122] The IFN-&agr; receptor has a 63-kDa extracellular peptide with regions of amino acid identity to domains in the VT B subunit implicated as Gb2/Gb3 binding sites.

[0123] The preferred targets of the above conjugates on tumor cells are the naturally expressed Shiga toxin receptors Gb3 and Gb2 with a terminal Gal(&agr;1-4)Gal. Astrocytomas and Burkitt's lymphomas are the preferred tumors as they naturally express glycosphingolipid receptors. However, any tumor expressing the appropriate receptor is appropriate. Tumor cells which express either engineered or natural functional derivatives, or mutants of these glycosphingolipid receptors, are also useful. Receptor expression on the target cells is optionally upregulated by cytokines such as IFN-&ggr; and TNF&agr; Tumor cell sensitivity to the cytotoxic effects of a VT is enhanced by administration of interleukin-1b before the addition of the conjugates. Tumor cells which do not naturally display Gb3 or Gb2 acquire these structures by transfer from free, soluble structures or liposomes which express the missing glycosphingolipid receptor (Section 38, Example 5). The reconstituted tumor cells bearing the appropriate glycolipid receptors are thus targeted for apoptosis by the above constructs and conjugates.

[0124] SAg Nucleic Acid-Verotoxin Conjugate

[0125] A preferred construct is the SAg-VT conjugate wherein the SAg is preferably in nucleic acid form (prepared according to Example 3). The VT portion of the complex binds to the tumor cell and initiates apoptosis. The VT also acts as a “vector” for transfer of the SAg nucleic acid into the cell. SAg-VT conjugates bind to the terminal Gal(&agr;1-4)Gal receptors on tumor cell surfaces and are internalized via endocytosis. The SAg nucleic acid is internalized together with the VT. The VT A chain is an RNA N-glycosidase acting on the 60S ribosomal subunit. It induces apoptosis in the tumor cell by removing an adenine base on amino acyl-transfer RNA so that peptide chain elongation is blocked. The resulting apoptotic tumor cells contain the internalized SAg nucleic acid and are then ingested by dendritic cells. The DCs are cross primed to induce an effective anti-tumor response by presenting the tumor associated antigens in the class I pathway to T cells while the SAg nucleic acid expresses SAg polypeptide. These activated DCs or DC/tc hybrids can be prepared by the methods of Examples 28-29. They are used to activate a T or NKT cell population in vivo as a preventative vaccine or by direct administration against established tumor. They are also used ex vivo to produce a population of tumor specific effector cells (T cells or NKT cells) for adoptive therapy of cancer (Examples 5, 7, 14, 15, 16, 18-23, 28-29).

[0126] Glycosylation or lipid binding of the enterotoxin does not interfere with T cell binding and activating properties. The SAg is glycosylated by chemical or recombinant techniques described in the Examples 4. The SAg glycoprotein is the further conjugated to gangliosides in the ganglioside synthetic pathway via the presence of key signal peptides on the glyco-SAg (Example 4).

[0127] The SAg is also rerouted to the LAMP pathway, glycosylated in the Golgi apparatus and the endoplasmic reticulum and then translocated to the membrane class II receptor as a glycosylated ganglioside. Gangliosides are glycosylated to form glycosylceramides by recombinant techniques as described in the Example 4. They are also glycosylated by glycosyltransferases to form homologues which bind to hydrophobic regions of the SAg peptide. The final products namely SAg-glycosylceramides or SAg-LPS's then bind to CD1 receptors and are used to activate T cells or NKT cells. These construct are administered directly vivo or they are useful ex vivo to produce a population of tumor specific effector T cells or NKT cells for adoptive immunotherapy of cancer by protocols given in Examples 7, 15, 16, 18-23).

[0128] The present invention contemplates the fusion or coexpression within the same cell of SAg polypeptides with anomeric mono and digalactosylceramides which are expressed within a tumor cell or on the tumor cell surface. These construct could also be effectively expressed on the surface of accessory cells defined in Oxford Dictionary of Biochemistry and Molecular Biology 1997 edition as any one of various types of cell which assist in the immune response cell and includes but is not limited to DCs, fibroblasts, synoviocytes, astrocytes antigen presenting cells, neutrophils, macrophages, basophils, eosinophils, mast cells, keratinocytes and platelets, as well as fusion cells comprising accessory cells and tumor cells.

[0129] The anomeric mono and digalactosylceramides have been shown to activate NKT cells and to produce an anti-tumor response in the context of IL-12. The galactosyl ceramides have several structural requirements in order to produce anti-tumor effects. 12. Mono and digalactosylceramides require an anomeric galactose or glucose as the terminal sugar or inner sugar as for example anomeric 1,6-digalactosylceramide, -anomeric 1,2-digalactosylceramide, anomeric 1,4-digalactosylceramide, a diglycosylceramide wherein the inner sugar is an anomeric galactose or an anomeric glucose and anomeric galactosyl or anomeric glucosyl ceramide. In addition, the 3- and 4-hydoxyl groups on the phytosphingosine portion of the ceramides are preferably unsubstituted, the sphingosine base length is preferably from about 10 to about 13 carbon units and the fatty acyl chain length is preferably in the range of about 12 to about 24 for optimal anti-tumor effectiveness of the molecule.

[0130] The expression of anomeric mono- and digalactosylceramides in a cell is achieved by several methods. The first involves the transfection and amplification of nucleic acid encoding the enzymes which synthesize the anomeric 1,4-, the anomeric 1,6- or the anomeric 1,2.-mono- and digalactosylceramides such that these glycolipids are overproduced. The genes for these transferase enzymes have been cloned. Transfection of nucleic acid encoding these terminal transferases into the above cells is carried out in vivo by the methods described in Example 1.

[0131] A second method for creating cells that overexpress the foregoing glycolipids uses monensin or brefeldin which block additional glycosylation and sialylation of the -galactosylceramides, so that the mono- and digalactosylceramides accumulate in the cell.

[0132] A third approach employs cells from patients with Fabry's disease. These cells are genetically deficient in the -galactosidase so they naturally accumulate -galactosylceramides.

[0133] In a forth technique, an -galactosidase deficiency is induced in the target cell so that—galactosylceramides accumulate.

[0134] In a fifth approach, the -galactosyltransferase is transfected Fabry's disease cells, thereby adding to the usual accumulation due to the catabolic enzyme deficiency. Such cells should have massive accumulations of -galactosylceramides.

[0135] In a sixth approach, the desired mono- or diglycosylceramide expressed on liposome surfaces are transferred to tumor cells lacking these structures by co-culture and employment of fusion techniques given in example 5.

[0136] Nucleic acids encoding SAgs are transfected into the above cells which are overexpressing, overproducing or otherwise accumulating mono and digalactosylceramides. The Golgi apparatus (or Golgi complex) is a major site of synthesis of the foregoing glycolipids. In the present context, the SAg combines with it the mono and digalactosylceramides. From the Golgi, the SAg-galactosylceramide conjugates or complexes, with the appropriate sorting signals, are dispatched in transport vesicles to other destinations. For a SAg peptide to combine effectively with an -galactosylceramide, the peptide must first have the appropriate sorting signal which directs it to the Golgi, and from there, after complexing with the glycolipid, to the cell surface. The trafficking pathway of SAg polypeptide from the ER to the Golgi does not require special signals. SAg polypeptides that enter the ER (and fold and assembles properly) will automatically be transported through the Golgi apparatus to the cell surface unless they carry signals that either detain them in an earlier compartment en route or divert them (via the Golgi apparatus) to lysosomes or secretory vesicles. The SAg-glucosylceramide conjugates are routed from the Golgi to the cell surface after acquiring a structure like a cytoplasmic tail such as phosphoinositol which assures that these molecules will be bound in the cell membrane. The conjugates may also be routed to CD1 or MHC class I receptors, or via, the class II pathway, to MHC class II receptors by associating with invariant chain or LAMP-1 signals as described in Section 8.

[0137] The mono- and digalactosylceramides are capable of stimulating NKT cells (via an invariant chain) in the presence of IL-12 to produce an anti-tumor response. SAgs are capable of stimulating a T cell-dependent anti-tumor response.

[0138] The present invention utilizes tumor cells, accessory cells or hybrid cells such as DC/tc, engineered to express SAg-galactosylceramide for anti-tumor therapy. These cells may be administered as a preventative or therapeutic vaccine (Example 29). Alternatively, they may be useful ex vivo to activate an NKT or T cell population for use in adoptive immunotherapy of cancer (Example 29).

8. SAg Targeting to Lysosomes

[0139] LAMP-1 is a transmembrane protein localized predominantly to lysosomes and late endosomes. The cytoplasmic domain of LAMP-1 contains the amino acid sequence Tyr-Gln-Thr-Ile whose structure conforms to the Tyr-Xaa-Xaa hydrophobic amino acid motif that mediates cell membrane internalization and possibly lysosomal targeting of several surface receptors. The intracellular targeting of LAMP-1 is controlled by the Tyr-Gln-Thr-Ile motif located at the C terminus of its cytoplasmic tail.

[0140] In the present invention, nucleic acid encoding a SAg is fused with nucleic acids encoding the transmembrane and cytoplasmic tail of LAMP-1. Nucleic acids: encoding the signal peptide (N terminal) of LAMP-1 are integrated into this chimeric construct. These, chimeric SAg/LAMP-1 polypeptides are targeted to endosomal and lysosomal compartments, thereby rerouting transfected SAg polypeptides into the MHC class II processing pathway. Thus, cells such as tumor cells transfected with nucleic acid encoding this modified SAg preferentially target the SAg to lysosomal compartments and are presented to T cells in the context of MHC class II. MHC class II negative tumor cells are also transfected with nucleic acid encoding MHC class II molecules. The association of SAgs with MHC class II molecules, their natural ligands on APCs, produce optimal T cell activation to the tumor. Antigen presenting cells transfected with these constructs are capable of inducing potent activation of T cells. Tumor cells, in particular, transfected with this construct are administered directly in vivo or used ex vivo to sensitize a T cell population which is useful in adoptive immunotherapy of cancer by protocols described in Example 16, 18-23).

10. SAg Receptors

[0141] It is clear that certain tissues express receptors for enterotoxins that are not MHC class II and that binding is reserved for selected enterotoxins and not others. Non MHC cell II binding has been reported for colon carcinoma, mast cells epithelial cells and B cells. In a tumor bearing patient, it is desirable for administered SAgs to target tumor cells in vivo. which naturally express enterotoxin binding sites or receptors. Natural ligands for these receptors are native enterotoxins. However, because of the existence of naturally occurring enterotoxin specific antibodies in the circulation, native enterotoxins are incapable of binding target tumor cell or T cells. The isolated receptor is used to screen and identify SAg proteins and/or nucleic acids which bind to the native or chimeric receptor. SAg constructs are produced which target the tumor via its SAg receptor while also retaining T cell activating properties. In addition, T cells or NKT cells from tumor bearing patients are anergized in the course of tumor growth and are incapable of being used as a source of T cells for ex vivo stimulation and adoptive immunotherapy. After transfecting these cells with nucleic acids encoding enterotoxin receptors, they are capable of responding to exogenous enterotoxins and are once again a source of T cells useful in adoptive immunotherapy of cancer by protocols given in Examples 8, 9, 12, 16, 18-23.

[0142] Methods for receptor isolation purification and retrieval of cDNA are given in Example 12. The nucleic acids encoding SAg receptors are transfected into cells by methods given in Example 1 Tumor cells have a natural binding site for exogenously administered SAg polypeptides. In addition, nucleic acid encoding the SAg receptors are transfected into T cells, NKT cells, or &ggr;&dgr; T cells of cancer patients which have been anergized in the course of tumor growth. The expression of the SAg receptor permits these cells to proliferate and produce TH1 cytokines in response to exogenous native SAg, Hence, these autologous T cell populations are useful in adoptive immunotherapy. Likewise, accessory cells are transfected with SAg receptor genes and used ex vivo to present SAg to T cells Further, the nucleic acid encoding the SAg receptor is transfected into T cells and fused, in frame, to the nucleic acid encoding the TCR-associated zeta chain or the IL-2 g to produce a chimeric receptor capable of generating a signal for cell proliferation and the release of TH1 cytokines after binding its natural ligand exogenous SAg.

[0143] In one embodiment, the enterotoxin receptor is immobilized as in Example 12 and used to screen oligonucleotide libraries for binding (Gold L, J. Biol. Chem. 270:13581-13584 (1995)). Avidly binding oligonucleotides are used to mimic the native enterotoxin by targeting the receptor in vivo. They are coupled to the TCR binding site of an enterotoxin peptide. In this way, the hybrid molecule is administered to the patient in a form protected from circulating enterotoxin-specific antibodies. Additionally, a nucleic acid molecule is prepared which mimics the enterotoxin in its ability to bind to the enterotoxin receptor on tumor cells and to the TCR on T cells. This nucleic acid mimicking the native enterotoxin is administered to the tumor bearing patients and is capable of targeting the enterotoxin receptor sites on tumor cell and the TCR without being eliminated by circulating enterotoxin specific antibodies as in Example 13, 18, 20-23.

11. Tumor Cells that Express SAgs and the &agr;Gal Epitope

[0144] Tumor cells are for the large part weakly antigenic and poorly recognized by the immune system. various attempts to increase the immunogenicity of tumor cells by transfection of various cytokines or histocompatibility antigens have for the most part been unsuccessful. Hyperacute rejection of xenografted organs is a very rapid and dramatic immune event often occurring within minutes of vascularization of the xenografted organs. Very recently, a major antigenic system on xenografts which is the target of this reaction has been identified as &agr;Gal&bgr;1-3Galb &bgr;1-4GlcNAc or &agr;-gal. This epitope is expressed in the tissues of pigs, guinea pigs, rodents, dogs, and cows but has not been detected in human tissue. The present invention improves the antigenicity of tumor cells and their recognition by the immune system by providing the &agr;-gal epitope on the cell surface either alone or together with SAg expression.

[0145] The &agr;Gal epitope is expressed by endothelial cells in xenografts such as pig organs is a major antigenic target causing hyperacute organ rejection in human transplant patients. This hyperacute rejection appears to involve a complement dependent mechanism that occurs within a few minutes. An &agr;1-3-galactosyltransferase, is an enzyme capable of producing &agr;1-3-galactose-b1-4-N-acetylglucosamine moiety by adding a terminal galactose residue to a subterminal galactose residue via an &agr;1-3 linkage. In addition, the a1-3-galactosyltransferase is not expressed by human and certain primate cells. Humans contain xenoreactive natural antibodies that recognize &agr;Gal. For example, anti-Gal antibodies bind to pig endothelial cells that express the Gal epitope. These anti-Gal antibodies are naturally occurring IgM antibodies recently found to be present in large amounts in human serum. Surface expression of the &agr;Gal epitope on tumor cells is achieved by transfecting a cell with a cDNA clone encoding the &agr;1-3-galactosyltransferase. While tumor cells are the preferred cells for transfection, other cells such as accessory cells or immunocytes are also contemplated as being within the scope of this invention.

[0146] Nucleic acids encoding (&agr;1-3-galactosyltransferase polypeptides are known (Sandrin, MS et al., Proc. Natl. Acad. Sci. USA 90: 11391-11395 (1993)). A cDNA clone encoding murine &agr;1-3-galactosyltransferase is prepared using the known sequence of this protein and the polymerase chain reaction (PCR) technique (Dabrowski, P L et al., Transplant. Proc. 26: 1335-1337 (1994). Briefly, two oligonucleotide primers are synthesized: 5′-GAATTCAAGCTTATGATCACTATGCTTCAAG-3′, which is a sense primer that encodes the first 6 amino acids of the mature &agr;1-3-galactosyltransferase and contains an HindIII restriction site; and 5′-GAATTCCTGCAGTCAGACATTATTCTAAC-3′, which is an anti-sense primer that encodes the last 5 amino acids of the premature &agr;1-3-galactosyltransferase and contains an in-frame termination codon and PstI restriction site. These primers amplify a 1185 bp fragment from a C57BL/6 spleen cell cDNA library that is subsequently purified, digested with HindIII and PstI (Pharmacia LKB) restriction endonucleases, and directionally cloned into HindIII/Pst I-digested expression vector such as CDM8 vector. After verifying the correct sequence, the &agr;1-3-galactosyltransferase-containing expression vector is transfected into heterologous cells such as COS cells to confirm activity. Activity can be confirmed by testing transfected cells for &agr;Gal expression using the IB4 lectin (Sigma) of Griffonia simplicifolia that binds to Gal residues.

[0147] In the preferred mode, cells transfected with nucleic acids encoding a SAg are co-transfected with nucleic acids that encode an &agr;-galactosyltransferase. Alternatively, nucleic acids encoding the transferase are transfected into a separate cell population which is coadministered with the SAg transfected cell population.

[0148] The SAg-encoding nucleic acid can be transfected into cells which already express &agr;-gal epitope. In addition, any cell can be transfected with the -galactosyltransferase-encoding nucleic acid. For example, &agr;-gal-negative human tumor cells or tumor cell lines such as melanoma or adenocarcinoma are transfected with nucleic acid encoding the &agr;-galactosyltransferase. Tumor cells transfected with -galactosyltransferase-encoding nucleic acid express the &agr;-gal on their surface and are rapidly rejected when administered to a host with preexisting &agr;-gal specific antibodies. Methods of transfection are given in Example 1.

[0149] Human tumor cells expressing the &agr;-gal epitope after transfection, become strongly reactive with human serum containing preexisting antibodies to the &agr;Gal epitope. Thus, an &agr;Gal-expressing tumor cell is rejected after implantation.

[0150] The ability of &agr;-gal-transfected tumor cells to induce rejection is demonstrated by implantation into severely compromised immune deficient (SCID) mice that have been reconstituted with human T and B cells and transfused with normal human plasma containing the naturally occurring human antibodies specific for the &agr;-gal epitope. In this case, tumor cells transfected with -galactosyltransferase-encoding nucleic acid is rejected while untransfected cells are not. Similarly, tumor cells transfected with &agr;-galactosyltransferase-encoding nucleic acid is rejected when implanted into species such as humans which synthesize antibodies to the &agr;-gal epitope compared to untransfected control tumor cells that are unaffected by the treatment.

[0151] For example, pretreatment with 105-107 &agr;-galactosyltransferase transfected tumor cells subcutaneously followed by implantation of untransfected tumor cells prevents the outgrowth of untransfected malignant tumor cells. Hence, the -galactosyltransferase transfected tumor cells function as a vaccine. Further, -galactosyltransferase transfected cells implanted into animals after untransfected tumors are established induce rejection of an established untransfected tumor.

[0152] To test for the presence of &agr;-gal on a cell surface, &agr;1-3 galactosyltransferase knockout mice that do not express the &agr;-gal antigen are used. The &agr;1-3 galactosyltransferase knockout mice are described elsewhere (Tearle et al., Transplantation 61:13-19 (1996) and Shinkel et al., Transplantation 64:197-204 (1997)). A syngeneic tumor cell that is &agr;-gal negative such as B16 melanoma variants is transfected with nucleic acids that encode a given carbohydrate modifying enzyme. These transfected cells are then implanted into the knockout mouse that received plasma containing &agr;-gal specific antibodies. Tumors do not grow in animals containing &agr;-gal specific antibodies if the &agr;-gal epitope is expressed.

[0153] Thus, hosts implanted with &agr;Gal positive tumor cells exhibit less growth than those exhibited in hosts implanted with tumor cells that are &agr;-gal negative.

[0154] &agr;gal negative transgenic animals are prepared which are useful for testing Gal expressing tumors. To produce these animals, nucleic acids encoding &agr;-gal fucosyltransferase are transfected into &agr;-gal positive mice. The fucosyltransferase dominates the usage of substrate N-acetyllactosamine and precludes -galactosyltransferase from utilizing this substrate. The transgenic mice do not express &agr;-gal on the cell surface. In this way, transgenic mice with the H antigen rather than the Gal antigen develop. Transgenic guinea pigs producing minimal -gal are also created in this way. These animals are used as models for testing their capacity to reject syngeneic &agr;Gal positive tumors. These systems also permit the testing of &agr;-gal specific antibodies for anti-tumor effects after they are passively infused into animals bearing Gal positive tumors.

[0155] Neuroblastoma and some melanoma cells overexpress several disialogangliosides, for example, GD2 and GD3. In the present invention, nucleic acid-encoding specific sialidases or glucosidases or neuraminidases that cleave terminal sialic acid or carbohydrate residues are transfected into cells that then express or overexpress a ganglioside with an exposed &agr;Gal epitope.

[0156] Fucosylated glycolipids such as B group antigens, Lewis blood group antigens, and L-selectin ligands are converted to the &agr;Gal epitope using the appropriate sialidases and glycosyltransferase enzymes. For example, a desialylating enzyme is introduced into B group antigen expressing cells such that the &agr;-1,3-linked galactose is exposed and now recognized by &agr;Gal antibodies. Mild acid treatment to remove the branching fucose residues on the fucosylated B antigen is used to expose the &agr;1,3 galactose residues. Alternatively, cells expressing the B antigen or selectin antigen are transfected with -galactosyltransferase-encoding nucleic acid that competes successfully with fucosyltransferases for N-acetyl-lactosamine substrate and preferentially expresses the &agr;Gal epitope

[0157] Nucleic acid encoding other polypeptides are also used to produce the surface expression of the &agr;Gal epitope such as nucleic acid encoding glycosidases that specifically cleave carbohydrate residues to expose the &agr;Gal epitope. Tumor cells transfected with nucleic acids encoding N-acetyl-glucosaminyl transferase show an increased tendency to metastasize and colonize new organs. These same tumor cells are cotransfected with nucleic acids encoding SAgs, Staphylococcal hyaluronidase and erythrogenic toxins as well as Streptococcal capsular polysaccharide which enables them to secrete enzymes and toxins locally inducing a potent inflammatory and immune response at metastatic sites.

[0158] Co-transfection of tumor cells with nucleic acid encoding SAg and nucleic acid encoding a galactosyltransferase, sialidase, and/or glycosyltransferase results in expression of SAg, GalCer, &agr;Gal, or other glycolipids on the cell surface. These tumor cells are used to stimulate T or NKT cells ex vivo to produce a population of tumor specific effector cells which are deployed for adoptive immunotherapy of cancer.

[0159] Mutation of the glycosyltransferase nucleic acid in tumor cells produces a specific LPS containing the Gal/Cer or the Gal which coordinated with genes for protein glycosylation produce the desired integrated SAg LPS.

13. Tumor Cells Expressing SAgs, Glycosylceramides and LPS's and their Receptors

[0160] It appears that anti-tumor responses are produced by a subpopulation of T cells known as NKT cells. These cells recognize glycosylceramides with certain specifications which are presented in the context of CD1 receptors on antigen presenting cells. They produce IL-12 mediated anti-tumor responses. Peptides of certain length with hydrophobic sequences have been shown to react with various hydrophobic regions of the CD1 receptor and produce an immune response. However, these peptides have not been implicated in an anti-tumor response. In the present invention, lipoproteins are contemplated which consist of SAg or their major bioreactive domains fused to glycosylceramides in the context of the CD1 receptor.

[0161] To make this construct, CD1 positive cells are transfected with nucleic acids encoding glycosyltransferases that result in GalCer or GlcCer expression on the cell surface and preferably in the context of the CD1 receptor. The appropriate glycosyltransferase nucleic acid is obtained from Sphingomonas paucimobilis or Agelas mauritianus which are known to express the GalCer on their cell surface. The GalCer and GlcCer moieties are recognized by NKT cell V&agr; invariant chains in the context of CD1 receptors on antigen presenting cells. CD1 positive cells are cotransfected with nucleic acids encoding SAgs The resulting CD1 positive cells coexpress both GalCer and SAg on the cell surface or in the context of CD1. The GalCer and SAg presented simultaneously as a complex and/or separate from each other on the cell surface, in the context of CD1 produces potent activation of NKT cells due to recognition of SAg by NKT cell V&bgr; chain and GalCer by the V&agr; invariant chain. Such GalCer-SAg complexes are loaded onto the CD1 receptor and presented to NKT cells in this fashion. A SAg peptide capable of binding to the TCR and activating the T cell is useful for coupling to the GalCer before or after it is positioned on the CD1 receptor. (See Examples 1-4, 5).

[0162] CD1 positive antigen presenting cells or tumor cells bearing the SAg glycosylceramide are used to stimulate a population of &ggr;/&dgr; T cells and/or NKT cells ex vivo which is then useful in adoptive immunotherapy of cancer by protocols given in Examples 7, 15, 16, 18-23, 68. They are also useful when, administered directly in vivo to tumor bearing patients to produce an anti-tumor response. (See Examples 18-23).

[0163] In the present invention, nucleic acids encoding the CD1 receptor are transfected into tumor cells in vivo or ex vivo. Martin L H. et al. Proc. Natl. Acad. Sci. USA 83: 9154-9158 (1986). Nucleic acids encoding the CD1 receptor are also cotransfected into tumor cells with nucleic acids encoding the SAg receptor. A tumor cell expressing a chimeric receptor comprising sequences of CD1 and SAg receptors is also produced by transfection of fusion nucleic acids encoding both receptors. The transfected tumor cell expresses either dual or chimeric receptors which bind SAg and GalCer independently or as fusion protein or conjugate. Likewise, tumor cells are transfected with nucleic acids encoding CD14, the LPS receptor, (Ferrero, E. et al., J. Immunol. 145: 331-336 (1990)) a leucine rich receptor glycoprotein found on myeloid cells with a LPS binding site between amino acids 57-64. Nucleic acids encoding CD14 are transfected into tumor cells together with nucleic acids encoding SAgs and resulting tumor cell expresses several receptors or a single chimeric receptor with preserved consensus binding sequences common to each. These tumor cell transfectants are capable of binding exogenous SAg and/or LPS and or GalCer. The resulting tumor cells with bound SAg, and/or Gal/Cer and/or LPS activate a population of T cells, &ggr;/&dgr; T cells and/or NKT cell to produce tumor specific effector cell which are useful in the adoptive immunotherapy of cancer by methods in Example 1-7, 12, 15, 16, 18-23, 68). The tumor cell transfectants are also administered as a vaccine or to hosts with established tumors as in Example 19-23.

[0164] Alternative splicing and utilization of cryptic splice sites generates alternative reading frames and secretory isoforms of CD1, CD14 and SAg receptors. Woolfson A. et al., Proc. Natl. Acad. Sci. USA 91: 6683-6687 (1994). These soluble receptors are immobilized on solid surfaces such as polystyrene plates or beads and bind their respective ligands e.g. GalCer and SAg. In this form, the GalCer and SAgs activate T cell or NKT cell to produce a population of tumor specific effector T cell, &ggr;/&dgr; T cell, NK cell or NKT cells useful in adoptive immunotherapy of cancer by methods given in Examples 7, 15, 16, 18-23, 65).

14. SAg-Activated Tumor Specific T Cells, NKT Cells or &ggr;/&dgr; T Cells Expressing CD44 for Adoptive Immunotherapy

[0165] It is imperative that T cells, NKT which are stimulated in vivo or ex vivo by the SAg constructs after SAg stimulation, is an indicator of upregulated adhesive capacity which is requisite for the homing of SAgs to tumor sites. T cells or NKT cells or cells transfected with nucleic acids encoding SAg receptors i.e., tumor cells or accessory cells are stimulated by SAgs in vivo or ex vivo to express CD44. These CD44 expressing T cells are enriched and expanded and then harvested for use in adoptive therapy of cancer by protocols given in Examples 7, 15, 16, 18-23.

[0166] Transfection of cDNAs encoding soluble isoforms of CD44 into tumor cells results in the local release of soluble CD44 which inhibits the ability of endogenous cell surface CD44 to bind and internalize hyaluronate and to mediate tumor cell invasion. Mice injected with tumor cell transfected with the CD44 isoform showed not tumor metastases. Such tumor cells were shown to undergo apoptosis. These transfectants displayed a marked reduction in their ability to internalize and degrade hyaluronate. Therefore, CD44 function promotes tumor cell survival in invaded tissues possible as a result of impairing their ability to penetrate the host tissue hyaluronan barrier. In the present invention, SAg-encoding nucleic acid is co-transfected or fused to nucleic acids encoding CD44 isoforms. These transfected cells are capable of migrating to sites of metastatic tumor in tumor bearing hosts and eliciting a potent anti-tumor response. The combined apoptotic effect to the CD44 isoform with the enhanced immunogenicity of the SAg produces a powerful synergistic anti-tumor response. The nucleic acids encoding the CD44 isoform and SAg are transfected into accessory (DC)/tumor cell hybrids. In addition, to presenting tumor antigen and SAg to the immune system and inhibiting metastases, the CD44 isoform produces apoptosis of the fusion cell which in turn is ingested by DCs resulting in enhanced immunogenicity and a more potent tumoricidal response. These combined transfectants are used preferably against established tumor according to protocols in Example 19-23.

[0167] NKT cells or T cells that do not produce CD44 after SAg stimulation do so after transfection with nucleic acids encoding CD44 or transferases such as N-acetylglucosaminyl transferase III or CD44 (Sheng, Y. et al., Int. J. Cancer 73, 850-858 (1997); Nottenberg, C. et al., Proc. Natl. Acad. Sci. USA 86: 8521-8525 (1992)). The latter enzyme synthesizes bisecting N-acetylglucosamine structures on asparagine linked oligosaccharides. Glycosylation of CD44 by these transferases produces enhanced CD44 mediated adhesion to immobilized hyaluronate. SAgs are used to activate T cells which have been transfected with nucleic acids encoding N-acetylglucosaminyltransferase III. The SAg stimulated transfectants display increased CD44-mediated adhesion. as well as lymphocyte homing and trafficking. Certain T cell, NKT cell or/T cell populations which are unable to express CD44 after SAg stimulation are transfected with nucleic acids encoding CD44 before sensitization with SAgs. These cells express CD44 after immunization with SAgs in vivo or in vitro. These additional populations of effector T cells are useful in adoptive immunotherapy of cancer by methods given in Examples 5, 7, 15, 16, 18-23.

15. Tumor Associated Antigens

[0168] Tumor associated antigens include:

[0169] (1) Normal structures, e.g., differentiation or tissue specific antigens,

[0170] (2) Mutated normal structures

[0171] (3) Products of alternate reading frame or fusion of several genes

[0172] (4) Chimeric products resulting from cell or gene fusion

[0173] (5) Xenogeneic antigens (“xenoantigens”)

[0174] A tumor antigen (also called “tumor associated antigen) is any antigenic structure expressed by a tumor cell. For example, tumor antigens include mutated products of various oncogenes and p53 genes that are expressed in tumor cells generally. Many tumor antigens associated with particular types of cancers are known. For example, tumor antigens associated with breast, colon, and lung cancer are known and have been cloned. Common melanoma antigens recognized by T lymphocytes have been identified and are used as immunotherapeutic antigens for treatment of melanoma. Five genes encoding different melanoma antigens have been identified. For example, MAGE1 and 3, expressed on melanoma and other tumor cells, are recognized by cytotoxic T lymphocytes (CTL) in the context of HLA-A1 (Van der Bruggen P et al., Science 254:1643 (1991) and Gauler B et al., J. Exp. Med. 179:921 (1994)). MART-1 identical to Melan-A (Kawakami et al., Proc. Natl. Acad. Sci. USA 91:3515 (1994) and Coulie et al., J. Exp. Med. 180:35 (1994)); gp100 (Kawakami et al., Proc. Natl. Acad. Sci. USA 91:6458 (1994)); and tyrosinase (Brichard et al., J. Exp. Med. 178:48 (1993)) are melanocyte lineage-related antigens expressed on both melanoma and melanocytes. MART-1 and gp100 have been shown to be recognized by MHC-class I-restricted CTL in the context of HLA-A2, and tyrosinase in the context of HLA-A2 and HLA-A24 [Robbins et al., Cancer Res. 54:3126 (1995)]. An additional list of tumor antigens useful in this invention is given in Rosenberg, SA. “Principles and Applications of Biologic Therapy in Cancer,”: In: Principles and Practice of Oncology, DeVita, VT et al., eds, J. B. Lippincott Co., Philadelphia, Pa. 1993.

[0175] In addition tumor associated antigens are defined as including normal structures expressed in tumor cells, mutated normal structures, normal differentiation- or tissue-specific structures, products of alternate reading frames of the same genetic regions, chimeric products of several genes that originated in a parental or in a fused, hybrid cell. This also includes gene products expressed in association with MHC molecules or other surface receptors, organelles or vesicles.

[0176] Tumor cells expressing tumor-associated antigens are transfected in vivo or ex vivo with nucleic acids encoding a SAg alone or together with nucleic acids encoding other products, such as those listed in Tables I and II. These include surface antigens and receptors such as the Gal epitope, GalCer, CD1, CD14 and SAg receptor.

[0177] The transfected cells may be of host origin, or syngeneic, allogeneic or xenogeneic; the cells may be non-malignant. SAg-encoding nucleic acid may also be inserted into a mutated normal gene in a tumor cell, e.g., LDL receptor gene in a melanoma cell. The LDL receptor is expressed as a fusion product of the LDL receptor gene (chromosome 19) and a fructose transferase gene on the same chromosome. This combination results from chromosome inversion which gives rise to the fusion product probably due to recombination between the two ends of this chromosome. The expressed peptide epitope is therefore a nonsense sequence being read in the wrong direction. The three base pair mutations in the third open reading frame results in the expression of a mutant peptide. Site directed mutagenesis can be achieved by insertion of SAg-encoding nucleic acid into the mutant gene at any feasible site or by targeting insertion in place of the mutated base pairs. The resultant LDL receptor displays the SAg alone or as a chimera with the mutant sequence. Site directed mutagenesis by SAg-encoding nucleic acid may also target the &bgr;-catenin gene which in melanoma shows a single C-T mutation which results in a ser to phe substitution and the generation of the 9 amino acid mutant peptide. The SAg-encoding acid may be inserted or may substitute for any sequence in a normal non-mutated gene, a tissue-specific or differentiation-associated gene in tumor cells, or other genes expressing their products in a tumor cell. Preferably, the mutated gene product is immunogenic and recognized as a dominant epitope by the host immune system, preferably by T cells (including tumor infiltrating lymphocytes). The mutated sequence may, in contrast, be a weak immunogen which is rendered more immunogenic when presented in the context of a SAg.

[0178] In the preferred embodiment, the transfected cells are tumor cells of host origin expressing a defined tumor associated antigen such as MART-1. If the tumor antigen is not expressed or weakly expressed on the transfected cells, then the tumor cell is transfected with nucleic acids encoding an immunogenic tumor antigen such as MART-1, tyrosinase or MAGE-1 in addition to SAg and other constructs described herein.

[0179] The tumor cells may be transfected in vivo by administering nucleic acids encoding SAgs and/or the other nucleic acid constructs described above using a site directed mutagenesis approach in vivo and methods such as described in Example 1, 3, 18-23. Tumor cells may also be transfected ex vivo by methods given in Example 1-3. Ex vivo transfected tumor cells are used as vaccine or to treat established tumor by methods and protocols in Example 18-23 They are also useful ex vivo to immunize T cells, &ggr;/&dgr; T cells, NK cells or NKT cells to produce a population of tumor specific effector cells adoptive immunotherapy of cancer by methods and protocols given in Examples 7, 15, 16, 18-23, 68.

16. Immunostimulatory Sequences

[0180] Several of constructs consist of nucleic acids encoding SAg peptides which produce anti-tumor responses by activating host TH-1 CD4+ T cells to proliferate and produce tumoricidal cytokines such as IL-1&agr;, IL-1&bgr;, IL-2, IL-6, TNF-&agr;, TNF-&bgr; and IFN-&ggr;. The incorporation of the immunostimulatory sequence into the genetic construct of SAg DNA, ensures that the T cell response is skewed to produces a predominant proliferation of TH1 cells and production of a TH1 cytokine profile. Immunostimulatory sequences (ISS) consist of DNA sequences that exhibit immunogenicity. Briefly, plasmid DNA (pDNA) having short immunostimulatory DNA sequences containing a CpG dinucleotide in a particular base context were shown to be immunogenic (Tokunaga J et al., J. Natl. Cancer Inst. 72:955-962 (1984)). By synthesizing single stranded nucleotides corresponding to different regions in the Mycobacterium bovis genome, specific single stranded oligonucleotides that activate adherent splenocytes and enhanced natural killer cell activity have been identified. In addition, single stranded oligonucleotides with CpG motifs induce B cell proliferation and secretion of IL-6 and IFN (Krieg et al., Nature, 374:546 (1995)). The activation capability generally has the formula 5′-Pur-Pur-C-G-Pyr-Pyr-3′. Further, human monocytes transfected with pDNA or double stranded oligonucleotides containing ISS transcribed large amounts of IFN-&ggr; and IL-12 (Sato et al., Science 273:352-354 (1996); Zhu et al., Science 261, 209-211, (1993)) Direct gene transfer with plasmid-cationic liposome complexes resulted in lasting, generalized or tissue specific expression of the injected genetic phenotype. Similarly, any RNA or DNA vectors carrying nucleic acids encoding SAg alone or associated with additional therapeutic nucleic acids which are enhanced by optimizing promoters, introns, and polyadenylation signals (Donnelly, J J et al. Annu. Rev. Immunol. 15: 617-648 (1997)) are also useful in augmenting expression of SAg and enhancing an anti-tumor effect.

[0181] In the present invention, the ISS is inserted into nucleic acid sequences of SAgs and tumor associated antigens which are used to transfect tumor cells, antigen presenting cells, accessory cells including muscle cells in vitro or in vivo by methods given in Example 1-3, 15, 16, 18-23. In all instances, the SAg stimulation of the T cell response is critical to an effective anti-tumor response of the host. The presence of the ISS ensures that the SAg nucleic acids preferentially activate the TH1 after in vivo administration of the nucleic acids encoding SAg. SAg DNA is useful ex vivo in activating T cells, &ggr;/&dgr;T cells and NK cells and NKT cells by direct transfection or by presentation via incubation with pretransfected antigen-presenting cells or tumor cells. The tumor specific T effector cell are then useful for adoptive therapy of cancer using protocols given in Examples 7, 15, 16, 18-23, 68). A particularly useful method involves the intratumoral injection of nucleic acids encoding SAgs. The latter is administered in naked, plasmid or liposomal form. Once tumor inflammation is initiated (generally within 15 days after injection), the host is given T cells or NKT cells which have been immunized in vitro to the tumor by tumor cells transfected with nucleic acids encoding SAg plus additional constructs given in Tables 1 and II by methods given in Examples 7, 15 16 18-23.

17. Liposomes

[0182] Liposomes containing repeating units of the &agr;-gal epitope, GalCer, and/or SAgs are constructed and administered directly into a tumor. These elements are combined before incorporation into liposomes or they are added individually in the preparative procedure. Methods for preparation of these liposomes are given in Examples 5. These liposomes are preferentially delivered parenterally or directly into the tumor. The administration of SAgs in this manner provides a high local concentration of SAg to stimulate an anti-tumor response. These liposomes are also useful ex vivo by activating a T cell, &ggr;/&bgr;T cell, NK or NK T cell population which is then harvested and used for adoptive immunotherapy as described in protocols in Examples 5, 7, 15-17, 18-23, 68).

18. Tumor Cells that Induce Cellulitis

[0183] Transfection with microbial nucleic acids that encode tissue spreading factor (hyaluronidase), erythrogenic toxins, enterotoxins; capsular polysaccharides from S. aureus and Streptococcus pyogenes, S. aureus and S. pyogenes have potent tissue invasive properties. Specifically, Staphylococcus and Streptococcus are capable of invading tissues by secreting several enzymes which lyse ground substance such as mucopolysaccharide, hyaluronic acid, or chondroitin sulfate, create local thrombosis, and initiate inflammation and edema. These enzymes consist of hyaluronidase, streptokinase, streptodornase, erythrogenic toxins as well as various enterotoxins (Example 3). In the present invention, the nucleic acid sequences encoding these potent enzymes are transfected into tumor cells, either in vitro or in vivo (Examples 1-3, 6, 15, 16, 18-23). In vivo, the transfected tumor cells migrate to sites of existing metastases. The transfected tumor cells secrete the enzymes which hydrolyze the tumor ground substance and neovasculature and toxins to induce inflammation and an immune response in tumor tissue. Tumors which are encased in nests of connective tissue are eliminated by this process. The resulting increase in local vascular permeability induced by the combined effect of enzymes and toxins produces intense inflammation at tumor sites. If their administration is timed to the peak of tumor inflammation, liposomes as described herein and chemotherapy are sequestered and concentrated in the inflamed tumor bed producing an, augmentation of the tumoricidal response.

[0184] A relatively low number of transfected tumor cells with the complete microbial enzymatic and toxin genetic construct would be required to induce a tumoricidal effect. The population of transfectants would then proceed to secrete these microbial enzymes locally. In addition, nucleic acid encoding these enzymes are derived from a strain of Staphylococcus or Streptococcus such as Staphylococcus epidermidis or Streptococcus bovis of low or intermediate virulence.

[0185] Tumor cells are cotransfected with glycosyltransferases or treated with glycosyltransferase-inducing agents resulting in the expression of the &agr;-gal epitope and reduction in the survival time of tumor cells For example, the nucleic acids encoding the glycosyltransferase from Sphingomonas paucimobilis or Agelas mauritianus produce GalCer are transfected into tumor cells to induce the surface expression of GalCer or &agr;-gal. The tumor cells then express and/or secrete microbial agents such as SAgs, hyaluronidase and erythrogenic toxins that hydrolyze the ground substance of the tumor. By also displaying SAgs and -Gal or Gal/Cer epitopes which activate NKT cells, T cells, and Gal specific antibodies the transfected tumor cells induce profound tumoricidal activity. These transfected tumor cells are used to activate a population of T cells including &agr;&bgr; T cells &ggr;/&dgr; T cells, NK and NKT cells to become tumor specific effector cells which are employed for the adoptive immunotherapy of cancer. See Examples 1, 2, 4-5, 7, 15, 16, 18-23.

[0186] For in vivo transfection of tumor cells, the microbial genetic nucleic acids are targeted to tumor cells as described herein (See p. 12 “Transfection”, Examples 1-3, 6, 19). Once localized in tumor sites in vivo, the tumor cell is capable of hydrolyzing surrounding stroma and, initiating thrombosis, inflammation, and increased tissue permeability. Additional microbial nucleic acid encoding proteinases, lysoproteinases, tissue spreading factors, a and b hemolysins and toxins are also transfected into tumor cells and used in accordance with this invention.

[0187] Micrometastatic disease in cancer patients is of great concern as it often goes undetected and is refractory to chemotherapeutic agents. Documented metastases in breast cancer patients is associated with a poor prognosis. The present invention contemplates that the metastatic properties of tumor cells coupled with the potent inflammatory properties of the microbial products are useful in tracking and eliminating micrometastatic disease in tumor bearing patients. Tumor cells are transfected with nucleic acid encoding polypeptides involved in metastasis. These include but are not limited to, peptides that upregulate the adhesive properties of CD44 (e.g., glycosyltransferases), the c-erbB-1 encoded EGF receptor which is associated with enhanced metastases in breast carcinomas or c-erbB-2/neu encoding the p185 receptor associated with poor prognosis in breast and ovarian carcinomas. These cells with metastatic activity are programmed to traffic, home and colonize specific sites of existing metastases the tumor bearing host. Hence they have the unique property of charting the micrometastatic sites of the tumor. These tumor cells are cotransfected with microbial nucleic acids encoding the hyaluronidase, erythrogenic toxin and enterotoxins as well as the &agr;-gal. Hence, as they colonize metastatic sites, these transfectants induce a potent inflammatory and immune response. This ensures their own destruction together with the surrounding untransfected micrometastatic tumor cell population and neovasculature and stroma. Methods of preparation, administration and assessment of these transfectants in tumor bearing hosts are in Example 1-3, 18-23.

[0188] The tumor cells are also transfected with the above microbial genes on a DNA template with a tissue specific promoter in order to target the activity of these transfected tumor cells to the vital organs (and sites therein) affected by the existing metastatic tumor. For breast cancer, this would be lung, liver or brain. These organ-specific promoters ensure that the expression of the microbial products would occur in the organ(s) targeted by the tissue specific promoter

[0189] The same tumor cells are also provided with inducible promoter sequences which control the level of receptor transcription and expression. Inducible promoters suitable for use in mammalian cells include the MMTV-LTR under the control of steroid hormones and the metallothionein promoter under the control of heavy metal ions. In this case, the microbial nucleic acids are linked to steroid inducible gene sequences. Transcription is triggered when these cells are exposed to a threshold level of steroids. Hence, two to three days after administration to the host, when the above transfectants have colonized tumor metastatic sites, a bolus of corticosteroid is administered which initiates transcription of the microbial enzymes and toxins by the tumor cell transfectants and their secretion. In this fashion, the transfected tumor cells express and secrete their inflammatory products in metastatic tumor sites resulting in the elimination of metastatic disease.

19. Tumor Cells as Mimics of Virulent Bacteria: Transfection with Nucleic Acid Encoding Bacterial Invasins, Virulence Factors, and Enzymes that Degrade Extracellular Matrix

[0190] Tumor cells with a metastatic phenotype are transfected with nucleic acids encoding proteins with the capacity to invade and adhere to inflammatory cells such as macrophages (adhesins and virulence factors). These genes are inducible and controlled by operons.

[0191] SAg-encoding nucleic acid is fused in frame to nucleic acid encoding oncogenes involved in tumorigenesis and metastasis. Examples of such genes, in addition to erb/neu, crb, crbB2 and EGF (epidermal growth factor receptor) discussed above, include ras and mutated ras, erk, and mtal, 182 mts1, nm23 (See p 181 of Franks L. M. et al., Cellular and Molecular Biology of Cancer, Oxford University Press, Oxford UK, (1997) which is incorporated by reference), as well as the laminin-integrin and the cadherin family. These genes are particularly useful because they are overexpressed in tumor cells displaying a metastatic phenotype.

[0192] Invasins SAg-encoding nucleic acid is fused in frame or cotransfected into tumor cells with nucleic acids encoding bacterial invasins and hyaluronidases. The invasin imparts leukocyte like activity to bacteria is transfected into tumor cells which allows the tumor cells to penetrate tissues. These are exemplified by Yersinia pseudotuberculosis invasin and hyaluronidase (including its various isotypes) and also known as tissue spreading factors. The invasin gene exemplified in Y. pseudotuberculosis encodes a protein located in the outer membrane of the bacterium called invasin (Inv) and the gene is known as inv. The DNA region of the inv gene contains a open reading frame 2964 bases. This protein binds to the host cell surface by means of the C-terminal 192 residue region. Mutation by insertion of a transposon or elimination of the inv gene greatly impairs the ability of the bacterium to penetrate tissues (Schaecter M et al., Genetics of Bacteria edited by Baer G M et al., in Mechanisms of Microbial Disease Williams and Wilkins Baltimore (1993)).

[0193] The host membrane receptors for invasin belong to the integrin superfamily with a particular affinity for VLA-3, 4, 5, 6. Invasin also bind to T cell &agr;4&bgr; which is involved in lymphocyte homing or traffic. Once bound to a phagocyte, phagocytosis is triggered and the bacterium is taken up. Nucleic acids encoding Inv are transfected into tumor cells which confers upon the tumor cell a phagocytosis triggering signal for host macrophages.

[0194] E. coli genes of the P pili or pap operon encoding adhesin proteins have been isolated from chromosomes and plasmids. The gene cluster is linked to genes for other virulence determinants such as the KI capsular polysaccharide and hemolysin. The receptor for the pili is the &agr;Gal(1-4)Gal moiety of the P blood group antigen. Examples of host cell receptors for bacterial adhesins is given in Table 7.2 of Patrick and Larkin. Pilin genes in N. meningitidis encode proteins is which the fimbriae are the N-methylphenylalanine pili. An extensive region of amino acid homology at the N-terminal end is common to a wide range of bacterial genera including Pseudomonas aeruginosa, N. gonorrhoeae, N. meningitides, Moraxella bovis and Bacteroides nodosus. This N-terminal region is highly hydrophobic which is in contrast to the fimbriae of the Enterobacteriaceae which either have a hydrophobic region at the C-terminal end or lack a hydrophobic region altogether. Of interest is the presence of a site on SAgs which resembles the third Ig-like disulfide-bridged loop of VCAM-1 and a conserved sequence is present within the same subregion of the fifth Ig-like VCAM-1 loop. The only known receptor for the VCAM-1 is VLA-4, an adhesion molecule expressed primarily by activated T and B cells. A survey of target cell susceptibility to SEC dependent lysis shows a correlation between VLA-4 expression and susceptibility to lysis.

[0195] Superantigens Fused to Invasins

[0196] Superantigens are fused to nucleic acids encoding invasin molecule or the integrin binding sequences of the invasin molecule. Invasin is a 986 amino acid outer membrane protein that tightly binds at least five different &bgr;,-chain integrins prior to uptake in-cultured cells (Isberg et al., 1987; Isberg et al., 1988, E. Krukonis et al., unpublished observation). The C-terminal 192 amino acids of the protein contains the integrin binding activity of invasin (Leong et al., 1990) and this region is also sufficient to promote entry when used to coat non-invasive bacteria, such as S. aureus (Rankin et al., 1992). The N-terminal portion of invasin is required for secretion to and proper localization within the bacterial outer membrane (Leong et &agr;, 1990). Integrins are a large family of heterodimeric receptor'that mediate a variety of cell-cell and cell-extracellular matrix interactions (Hynes, 1992). In addition, residues within an 11-amino acid region encompassing residues 903-913 are also critical for cell binding. One of these residues, aspartate 911 (Asp-911), appears to be absolutely essential for binding, as changes at this position result in complete loss of integrin binding.

[0197] The Yersinia pseudotuberculosis invasin protein mediates bacterial entry into mammalian cells by binding multiple &bgr;,-chain integrins. Integrins are a large family of heterodimeric receptors that mediate a variety of cell-cell and cell-extracellular matrix interactions (Hynes, 1992). Invasin binding to purified &agr;5&bgr;L, integrin is inhibited by Arg-Gly-Asp (RGD)-containing peptides, although invasin contains no RGD sequence.

[0198] The inv gene has been cloned (Young V B et al., Mol. Microbiol. 4: 1119-1128 (1990). Fifteen mutations that diminished binding and bacterial entry were isolated after mutagenesis of the entire inv gene. All of the mutations altered residues within the C-terminal 192 amino acids of invasin, previously delineated as the integrin binding domain, and 10 of the mutations fell within an 11 residue region. When this small region is subjected to site-directed mutagenesis, almost half of the 35 mutations generated decreased invasin-mediated entry. D911 within this region is the most critical residue, as even a conservative glutamate substitution abolished bacterial penetration.

[0199] The fusion protein consisting of a superantigen (SEs, SPEs or Yersinia and other non SE or SPEA, superantigens) fused to an invasin are prepared as in Example 5. They are used for treatment of established and metastatic tumor or as a preventative vaccine as described in Examples 14-16, 18-23.

[0200] Hyaluronidases and Proteases

[0201] Bacteroides species produce hyaluronidase, heparanase, and chondroitin sulfatase enzymes. C. perfringens m toxin is a hyaluronidase enzyme and Bacteroides and C. perfringens produce elastase and collagenase enzyme while Porphyromonas gingivalis has a cell associated collagenase. Streptococcus pyogenes produces hyaluronidase enzymes which depolymerize their own capsules. Neuraminidases and endoglycosidases, lipases, nucleases and proteases produced by a wide variety of bacteria are also useful in this invention as capable of promoting tissue necrosis in tumor masses and/or tumor nests.

[0202] The staphylococcal invasive genome is predominantly chromosomal and the nucleic acid segments encoding the major invasive enzyme systems, permeability factors, and toxins have been isolated, cloned, and sequenced. For example, the nucleic acid sequence encoding a hyaluronidase from group A Streptococcus strain 10403 is described elsewhere (Hynes et al., Infect. Immun. 63:3015-3020 (1995)). Tumor cells transfected with nucleic acids encoding microbial invasive and inflammatory substances are preferentially used in vivo where they are programmed to traffic to metastatic sites and/or organs primarily infiltrated by the tumor. Once situated in tumor, they commence secretion of their inflammatory enzymes and toxins. Protocols for their preparation, use, and assessment are given in Examples 1-3, 18-23.

[0203] Consolidation of Bacterial Genes

[0204] The microbial nucleic acids encoding hyaluronidase, erythrogenic toxins proteases, coagulases and enterotoxins are consolidated into a chimeric construct or plasmid and transfected into tumor cells which then commence secretion of the spreading factors, pro-inflammatory and permeability inducing agents. For example, a single construct or multiple constructs contains the nucleic acid encoding polypeptides including, without limitation, enterotoxin B, hyaluronidase, streptokinase, coagulase, Staphylococcal protease and erythrogenic toxins.

[0205] Tumor cells transfected with the above microbial genes are prepared as in Example 1-3 and are used in the treatment of established and metastatic tumor or as a preventative vaccine as described in Examples 15-23.

20. Combined Expression of Different Stimulatory Molecules by Co-transfection of Tumor Cells or Fusion of Singly Transfected Cells

[0206] Tumor cells that express two different types of exogenous molecules are produced by either cotransfection of the same cells with (a) SAg-encoding nucleic acid and (b) nucleic acid encoding a toxins or autolysin, or by fusion of tumor cells that have been singly transfected with (a) with tumor cells transfected by (b) Tumor cells are provided which have the dual capacity to colonize metastatic tumor sites in vivo and induce inflammation. Once situated in sites of tumor metastasis, the tumor cells behave like a necrotizing bacterium or leukocyte. For example, tumor cell are transfected with nucleic acids encoding bacterial invasins to promote adhesion, “tissue spreading factor” or hyaluronidase to hydrolyze the ground substance, coagulase to induce local thrombosis and streptokinase and streptodornase. In addition, tumor cell are provided with nucleic acids encoding bacterial toxins which bind and produce autolysis and cytotoxicity for surrounding tissue and tumor cells. The tumor cells are also cotransfected with additional nucleic acids encoding SAgs. The toxin genes useful herein are amplified by providing two copies tandemly duplicated on a chromosome and linked to an amplified oncogene. Situated in tumor tissue, these transfected tumor cells release enterotoxins as well as inflammatory enzymes, immunogenic capsular lipoproteins, cell wall LPS's and cytolysins. This evokes a potent T cell and inflammatory response in tumor tissue. These inflammatory genes are inducible at the level of the operon or in some instances bacteriophage which controls their activation. Transfected tumor cells are transfected with microbial nucleic acids given above either in vitro or in vivo at tumor sites as in Example 1-3, 5, 16-23 and p.11 under “transfection”.

[0207] The S. aureus &agr; toxin forms pores or transmembrane channels in a wide range of host cells. It is released from the bacteria during exponential growth and has a molecular mass of 33 kDa. Expression of the gene encoding the a toxin, hly, is under the control of the agr gene which coordinately controls the expression of a number of extracellular proteins, including exfoliatin toxin, toxic shock syndrome toxin, a, b, and d toxins, enterotoxin B, lipases and nucleases. The &bgr; toxin is a phospholipase which attacks a sphingomyelin in the cell membranes. The phage encoding the toxin is hlb. Exfoliatin toxin A is encoded by a chromosomally located gene eta and the gene for toxin B is etb. The eta gene is by the agr gene regulator which is a member of the histidine-protein kinase response regulator superfamily. (Patrick S et al., Immunological and Molecular Aspects of Bacterial Virulence, John Wiley and Sons New York, N.Y. 1995)

[0208] SEB binds to glycosphingolipids on cell membranes. The ganglioside binding site on SEB is overexpressed, or a myristoylation site or GPI binding site is integrated into its structure so that it is bound to the surface of the tumor cell membrane and not secreted. The SEB will preferentially bind to tumor cell expressing ganglioside tumor associated antigens and will augment the immunogenicity of these antigens.

[0209] S. aureus produces a bifunctional protein autolysin of 110-kDa,(HlyA) via the atl gene that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-&bgr;-N-acetylglucosaminidase domain. It undergoes proteolytic processing to generate two extracellular enzymes that are secreted. The specific secretion proteins HlyB and HlyD are 80 kDa and 54 kDa respectively. The process is directed by the hlyB and hlyD genes which are contiguous and co-expressed with the hylC and hylA genes that are required for the synthesis of protoxin and the acyl carrier protein-dependent fatty acylation that matures it to cytolytically active toxin. Hemolysin is secreted as the mature acylated form of the hlyA gene product proHlyA following the covalent attachment of a fatty acid moiety in a cytoplasmic mechanism directed by the dimeric HlyC activator, a putative acyl transferase and dependent upon the acyl carrier protein. This specific and novel HlyC-directed fatty acylation is required to target the hemolysin toxin to mammalian cell membranes prior to forming cation-selective pores and disrupting the host cell.

[0210] Bacteria such as E. coli, Bordetella pertussis, Pasteurella haemolytica, Proteus vulgaris and P. mirabilis produce genetically related toxins. Their activity is dependent on the presence of calcium ions. Characteristically, they have regions of 10 to 47 repeats within the amino acid sequence and termed repeats in toxin or RTX gene family. The repeat sequence contains the following nine amino acids; leucine-X-glycine-glycine-X-glycine-asparagine-aspartic acid-X where X is a variable amino acid. These repeats are required for hemolytic activity. A large hydrophobic region of the hemolysin separate from the repeats, is also essential for activity and may be involved in the interaction with the host cell membrane. The hemolysin A of E. coli apparently form pores on the target cell membrane. This requires a 20 kDa product of another gene HlyC before it becomes actively hemolytic. In E. coli, the operon for the production of the hemolysin contains four genes hlyA which codes for the structural hemolysin and hlyC which is required for activation of the HlyA. The other two genes hlyB and hlyD are involved in the transport of HlyA to the extracellular environment. Pasteurella haemolytica leukotoxin and Bordetella pertussis adenylate cyclase hemolysin have similar C-terminal sequence and associated genes analogous to those in the hly operon. (Koronakis V et al., Secretion of Hemolysin and other Proteins out of the Gram-Negative Bacterial Cell, in Ghuysen J M et al., ed, Bacterial Cell Wall, Elsevier, Amsterdam (1994)).

[0211] The Shiga toxin of Shigella dysenteriae and Shiga-like toxins of E. coli (Verotoxins) are a family of related toxins which have similar amino acid sequences and biological activities. The A subunit of Shiga toxin has a molecular mass of 31 kDa which associates with five to the 7 kDa B subunits. The A subunits is proteolytically cleaved into A1 and A2. It is the A1 fragment which is biologically active. The host cell receptor for Shiga toxin is the glycolipid Gal(&agr;-4)Gal(&bgr;1-4) GlcCeramide (globotriosylceramide; Gb3) and for Shiga-like toxin I (SLTI) and SLTII of E. coli is Gal(&agr;-3)GalCeramide (Galabiosylceramide). The binding specificity is dependent on both sugars residues and the lipid moiety. The Shiga toxin is known to inhibit protein synthesis. It is a RNA N-glycosidase enzyme whose site of action is the 60S ribosomal subunit. The toxins remove an adenine base from position 4324 on the aminoacyl -transfer RNA binding site of 28S ribosomal RNA hence preventing peptide length elongation. The effect on protein synthesis is similar to that of diphtheria toxin and Pseudomonas aeruginosa exotoxin A. The SLTI and II toxins of E. coli and encoded by lysogenic phage. Its expression is controlled by iron concentration in the growth medium by way of the fur gene and iron box repressor protein binding site. Clostridia difficile toxins A and B also bind to anomeric galactose epitopes on cell membranes and induce membrane associated enzymes and inhibit G protein activation which results in cell death. Tumor cells transfected with a galactosyltransferase genes to produce the a &agr;-galepitope are susceptible to lysis by both the Shiga-like toxins and C. difficile toxin. The expression of the &agr;-gal epitope is enabled by the transfection of nucleic acids encoding -Gal transferase into tumor cells.

[0212] Listeria monocytogenes produces a hemolysin. listerolysin O (LLO), a member of the thiol-activated family of cytolysins. LLO is encoded by the gene hyl (also designated hylA and lisA). Listerolysin O toxin is a pore forming toxin which degrades the membrane of its phagocytic vacuole allowing the bacterium to escape into the host cytoplasm. This gene cloned into Bacillus subtilis enables the bacterium to grow rapidly intracellularly in the cytoplasm of a macrophage-like cell line after disrupting the phagosomal cell membrane.

[0213] Tumor cells are transfected with the above microbial nucleic acids as in Example 1-3. These transfectants are useful in vivo against established tumor and micrometastatic disease (Examples 5, 15, 16, 18-23).

21. Augmentation of Tumor Cell Immunogenicity by Bacterial Products: Transfection with Genes Encoding Bacterial Antigens or Receptors for Bacterial Products

[0214] Tumor cell are provided with augmented antigenicity by expressing fundamental patterns that are recognized by fundamental recognition units of the innate immune response. Examples are LPS's of gram negative organisms, SAgs and peptidoglycans of gram positive organisms, fungal &bgr;-glucans, bacterial glycosylceramides, and mycobacterial lipoarabinans. Numerous infectious agents with these structures cause potent immune reactions e.g. streptococcal cellulitis induced by S. pyogenes, E. coli induced sepsis and meningococcal meningitis induced by Neisseria meningitidis.

[0215] The T cell system is far more adept at responding to innate pattern recognition units than to tumor associated antigens. In the present invention, tumor cells are transfected with nucleic acids encoding molecules or biosynthetic enzymes that result in structures which mimic the major immunogenic structures of bacterial antigens. This enables the tumor cells to be recognized more effectively by the T cell system. In addition, tumor cells are provided with receptors for bacterial antigens such as SAgs, LPS's (CD14), and glycosylceramides (CD1). Genes encoding bacterial antigens which produce potent immune responses are transfected into tumor cells to include bacterial membrane and cell wall constituents such as LPS's, peptidoglycans, glycosylceramides, lipoproteins, lipoarabinans and capsular polysaccharides. In addition, nucleic acids encoding the staphylococcal SAgs induce potent T cell lymphoproliferation and TH-1 cytokine production while LPS's are known to have a bystander effect on T cell proliferation The two agents synergize in their capacity to induce lethal endotoxic shock in animals.

[0216] The present invention contemplates that the optimal approach is to present the bacterial immunogen structure (for example streptococcal capsular polysaccharide) sequentially or concomitantly with a bacterial mitogenic signal (SAg). Under certain conditions, these genes are co-transfected with various bacterial invasins, toxins, autolysins and inflammatory enzymes which together with the colonizing properties of tumor metastasis genes produce a tumor cell capable of migrating to metastatic sites where it induces necrotizing cellulitis. Such genes are preferably placed under the control of inducible promoters as described herein. These transfectants are prepared by methods in Example 1-3. They are useful against established tumors or metastatic tumor in vivo as in Example 15, 16, 18-23.

21b. Combining Expression of SAg Nucleic Acids with Nucleic Acids Encoding Enzymes that Drive the Synthesis of Bacterial LPS, Galactosylceramide or Capsular Polysaccharide

[0217] In general, this is accomplished by co-transfection of nucleic acids each encoding one of the above products or by transfection with a fusion nucleic acid that encodes the combination SAg-encoding nucleic acid is fused in frame or cotransfected into tumor cells or accessory cells with nucleic acids encoding bacterial LPS's, peptidoglycans, and galactosylceramides. The preferred end products are synthesized in E. coli and N. meningitides (LPS's), Staphylococcus and Streptococcus (peptidoglycans); Sphingomonas paucimobilis (glycosylceramides).

[0218] The synthetic genome or cluster of genes for biosynthesis of these products is incorporated as a whole to include multiple and specific enzymatic transferases and trafficking proteins required for the stepwise synthesis of each of these products. Gene clusters are necessary to provide the requisite transferases for synthesis of these large molecules. For example the genes required for the biosynthesis of type 1 capsular polysaccharide of S. aureus are localized to a 14.6-kb region. Sequencing analysis of the 14.6-kb fragment revealed 13 open reading frames (ORFs). Ten genes are involved in capsule biosynthesis. CapG aligned well with consensus sequence of a family of acetyltransferases from various prokaryotic organisms suggesting that CapG may be an acetyltransferase.

[0219] The structural requirements for endotoxic activity of LPS's are as follows. (1) a b(1-6)-linked D-glucosamine disaccharide backbone; (2) biphosphorylation at positions 1 and 4′ of the disaccharide backbone; (3) a suitable number of 3-acyloxyacyl groups per disaccharide unit; and (4) acyl groups of a suitable length as indicated by Kumazawa et al., and Nakatsuka et al. Transfection with nucleic acid encoding LPS's would require the preservation of the biphosphorylation and the acyl groups between 14 and 23 to maintain optimal activity. Derivatives may contain a monosaccharide group in place of the disaccharide group.

[0220] LPS Structure

[0221] LPS consists of an outer region which is composed of polymerized di- and pentasaccharide repeating units whose compositions vary within a species or strain. The inner region is generally conserved within a single genus, and consists of a core oligosaccharide linked by the sugar 2-kcto-3-deoxy-D-amino-octonate (KDO to a disaccharide backbone with attached long chain fatty acids, the lipid A. This component is responsible for much of the biological activity of the molecule. Components conferring the greatest biological and immunomodulatory activity are now known to be a glucosamine disaccharide, a bis phosphorylated lipid A and acyloxyacyl groups on the fatty acid chain. The loss of only one of these components, for example, a phosphate group reduces the activity of the molecule. LPS's from different genera of bacteria vary in their immunomodulating activity and studies of the structure have shown very subtle differences. For example, Bacteroides is apparently less active in endotoxin activity than LPS from enteric bacteria. This was initially thought to be related to a modification of the of KDO in the core region with an added phosphate group. Other differences in the LPS were found when the fatty acids from E. coli and Bacteroides were compared. E. coli has six fatty acid chains or acyl groups per diglucosamine backbone each with a chain length of 12-14 carbon atoms. Included in the acyl groups is 3-hydroxytetradecanoic acid (3-OH—C14:0)which is absent in the Bacteroides strains. In contrast, Bacteroides has 4-5 fatty acids of chain length 15-17 carbons per diglucosamine and has branched 3-hydroxy fatty acids. Studies of synthetic lipids have confirmed that reduced biological activity relates to fewer fatty acids chains.

[0222] A common feature of LPS's from various species is that they are amphiphiles, with both a hydrophobic part capable of dissolving in lipid membranes and a hydrophilic part which remains in the water phase. Therefore, the first step of molecular interaction is one between the amphiphilic molecule and the mammalian cell surface either by ionic binding, hydrogen bonding or hydrophobic interaction. The bacterial molecule may be inserted into the mammalian membrane by its hydrophobic moiety or attached to membrane receptors with the hydrophilic moiety, or through charge effects or via binding to host glycoproteins and glycolipids resulting in signal transduction. Most of the immunomodulating activity of these bacterial molecules is indirect and stems from the release of host mediators. Cytokines such as IL-1, tumor necrosis factor, and IL-6 are involved. The LPS binding protein attaches to gram-negative bacteria or free LPS and mediates the attachment to macrophage membrane receptor known as CD14. The recognition of the CD14 only recognizes LPB when it is bound to LPS. The LPS-LPB complex may directly trigger TNF release or hold the complex at the cell surface so that other hosts cell surface molecules trigger TNF release. LPBs also act as opsonins. Another area where sugar residues play an important role is in cell surface glycoprotein interactions which involve protein-carbohydrate recognition. In the recirculation of and recruitment of leukocytes in the body, the carbohydrate-recognizing protein domains of glycoproteins of one cells bind specifically to the oligosaccharides of glycoconjugates on another type of cell. These recognition events control the movement of bloodborne lymphocytes into lymphoid organs. Specific recognition occurs between lymphocytes and specialized cells in the wall of blood vessels known as high endothelial venules.

[0223] Genes Encoding Lipid A Biosynthesis

[0224] LPS is generally synthesized as two separate components, the lipid A/core and the O polysaccharide, which are then ligated to give the complete LPS molecule. Three genes encode enzymes that catalyze the steps of lipid A synthesis (lpxA, lpxD and lpx B for steps 1,3 and 5) and fabZ and envA. More specifically, the enzymes that catalyze the synthesis of lipid A are thought to act in the following sequence (indicating the genes): lpx A, lpx C, lpx D, lpxB. The reactions catalyzed by the products of these genes are given in Table 1 of Schnaitman C A et al., Microbiol. Rev. 57: 655-682 (1993).

[0225] Blocks of Genes Involved in LPS Biosynthesis

[0226] Blocks of genes involving LPS synthesis have been sequenced and analyzed. The lipid A biosynthetic pathway has been elucidated. Four of the genes in this pathway have now been identified. Three of them are located in a complete operon which also contains genes involved in DNA and phospholipid synthesis. Genes involved in synthesis of the LPS lipid A core and their activity at various points in the biosynthetic pathway are described in Schnaitman C A et al., Microbiological, Reviews 57: 655-682 (1993) which is incorporated by reference. Therefore, it is likely that LPS biosynthetic enzymes are organized into clusters on the inner surface of the cytoplasmic membrane around a few key membrane proteins.

[0227] A cluster of assembly genes produced by various bacteria encode LPS with homologous structures. These genes have been transfected into E. coli and they induce identifiable LPS's. There are also smooth and rough LPS's which have a hierarchy of potency in terms of procoagulant activity and activation of TNF. Mutants produced which synthesized progressively less polysaccharide attached to the lipid A moiety. The presence of long chain polysaccharides attached to the lipid moiety decreased the ability to activate TNF. Rough bacteria were more effective than smooth bacteria, in inducing TNF production. Fatty acids of various chain lengths can be produced including those that resemble monogalactosylceramides. Transferases for biosynthesis of galactan the LPS structure of the O antigen from Klebsiella pneumoniae have been identified as well as genes controlling the O antigen chain length.

[0228] The genes for LPS and glycosylceramide assembly also involve multiple transferases. The transfection of tumor cells involves 10 genes encoding a particular stretch of the bacterial genome. In E. coli, the 14-kilobase pair chromosomal region located between waaC (formerly rfaC) and waaA (kdtA) contains genes encoding enzymes required for the synthesis and of the type R2 core oligosaccharide in the lumen of the endoplasmic reticulum. This occurs in a stepwise fashion.

[0229] The gene encoding the Haemophilus influenzae type B outer membrane protein functions as a porin and is useful in protective immunity has been cloned as a 10-kilobase Hib DNA insert and expressed in E. coli. The biosynthesis of LPS's involves genes encoding the key transferases including rfal. The N. meningitides highly conserved surface protein conferring protection is encoded by a ORF of 525 nucleotides.

[0230] Genes Encoding Enzymes the Catalyze Core Biosynthesis

[0231] The rfa cluster includes the genes for all transferases for assembly of core. It includes three operons consists of at least 17 genes. The majority of known genes whose functions are involved exclusively in LPS core biosynthesis are located in the rfa cluster [Pradel E et al., J. Bacteriology 174: 4736-4745 (1992)]. It includes three operons. However, there are also genes such as kdsA and rfaE located outside the rfa cluster which are involved in biosynthesis of sugars unique to the core or exert direct effect on core structure. These clusters appear to have originated by the exchange of blocks of genes among ancestral organisms. There are few which code for the integral membrane proteins. The promoter for the rfa genes has been identified. Mutations have been identified known a rough mutants traced to three loci namely rfa, rfb and rfc.

[0232] The region of the E. coli chromosome encoding enzymes responsible for the synthesis of the LPS core has been cloned. This region formerly known as the rfa locus comprises 18 kb of DNA between the markers tdh and rpmBG. The genes are arranged in three different operons and the genetic organization of this locus seems to be identical in E. coli K-12 and S typhimurium.

[0233] Linkage of LPS Transcription and Toxin Secretion

[0234] In E. coli and Salmonella, a link has been found between toxin secretion and the gene regulating

[0235] LPS transcription. Toxin secretion is regulated by gene expression within the hlyCABD operon. A recently identified activator of hlyCABD gene expression is the 128-kDa product of the rfaH (sfrB) gene which positively regulates transcript initiation and possibly termination in the operons encoding synthesis of LPS of E. coli and Salmonella. The discovery of a role in hlyCABD expression for the LPS (rfa) operon transcriptional activator rfaH is consistent with the role of LPS in influencing both the secretion and toxic activity of the toxin.

[0236] Genes Encoding Enzymes that Synthesize Polysaccharide Capsule and Membrane Proteins

[0237] Genes for the biosynthesis of a polysaccharide capsule are induced in Sphingomonas by overlapping DNA segments which span about 50 kbp restored the synthesis of sphingan. The polysaccharide components of LPS from B. Pertussis, H. influenzae and Bacteroides spp. will activate B-cells. The polysaccharide of Bacteroides activates B cells indirectly by first triggering the macrophage whereas the lipid A moiety triggers the B cells directly. Therefore different parts of the same molecule interact with different types of host cells. There is also evidence that immunopotentiating activity of a glycopeptide produced by mycobacteria is dependent on the saccharide residues of the molecule.

[0238] The capsular polysaccharide of the Streptococcus is extremely immunogenic, consisting of glycan strands composed of regularly alternating

[0239] N-acetylglucosamine and N-acetylmuramic acid residues joined through &bgr;-1,4 glycosidic linkages and attached to crosslinked peptides by amide bonds. The capsule of strain M is composed of taurine-2-acetamido-2-deoxyfucose and 2acetamido-2-deoxy-D-galacturonic acid. The gene for this structure called cap-1 has been cloned and is used to transfect tumor cells. The nucleic acid sequences appear in Lin et al., J. Bacteriol. 176, 7005-7016 (1994).

[0240] A new 24-kDa group A streptococcal membrane protein known as streptococcal protective antigen (Spa) has been identified and is distinct from the surface M protein which evokes protective opsonizing antibodies. The Spa-encoding gene has been cloned and consists of a 636-bp 5′ fragment. (Dale, J B et al., J. Clin. Invest. 103: 1261-67 (1999)).

[0241] The present invention contemplates the use for cancer treatment of these and other bacterial antigens from staphylococci, streptococci, E. coli, N. meningitides, and other genera which antigens evoke an immune response in mammals. In the preferred approach, a nucleic acid encoding such an antigenic structure is transfected and expressed in tumor cells. Methods of preparation, use and assessment of these therapeutic constructs in tumor bearing hosts are in Example 1, 2, 18-23.

[0242] SAg nucleic acids are fused in frame or cotransfected into tumor cells or accessory cells with nucleic acids encoding key transferases (gene clusters) and glycosylation sites encoding capsular membrane from Streptococcus or Neisseria meningitides lipoprotein-LPS-phospholipid and cell wall peptidoglycans, i.e., N-acetylglucosamine (NAG) and N-acetylmuramic acid (NAM).

[0243] SAg DNA is fused in frame to DNA encoding a highly conserved outer membrane surface protein of N. meningitides known as Nspa. The Nspa gene has been cloned (Martin, D. et al., J. Exp. Med. 185: 1173-1183 (1997)). The LPS produced would be of weak to intermediate strength such as that produced by Listeria or Legionella.

[0244] Borrelia burgdorfi is the causative agent of Lyme disease. The osp genes are located at a single genetic locus on a 49 kb double-stranded DNA linear plasmid where they are organized as an operon ospAB. The amino acid sequences of OspA and OspB show a high degree of similarity and resemble prokaryotic lipoproteins. Nucleic acids encoding the ospA and ospB lipoproteins are cotransfected into tumor cells together with SAgs.

[0245] Genes Encoding Membrane Glycosylceramide Biosynthesis

[0246] Nucleic acids encoding the synthesis of the GalCer from Sphingomonas paucimobilis are transfected into tumor cells, resulting in the synthesis of GalCer by the tumor cell. (Kawahara K et al., FEBS Letters 292: 107-110, (1991) Yamazaki M et al., J. Bacteriology 178: 2676-2687 (1996) Natori T et al., Tetrahed Lett 34:5591-5592 (1993) Costantino V et al., Liebigs Ann. Chem. 96: 1471-1475 (1995)). Nucleic acids encoding enzymes responsible for synthesis of Neiseria meningitides LPS are transfected into tumor cells, resulting in the synthesis of LPS by the tumor cell (Steeghs L et al., Gene 190: 263-270 (1997)). These nucleic acids encoding key transferases are fused to nucleic acids encoding amplified oncogenes or transcription factors such as Bc1-2, c-myc, K ras, bcr, c-abl or NF-&kgr;B.

[0247] Genes Involved in Mycobacterial Cell Wall Biosynthesis

[0248] SAg-encoding nucleic acid is fused in frame or cotransfected into tumor cell with nucleic acids encoding the key enzymes involved in the biosynthesis of mycobacterial cell wall mycolic acid, phosphatidylinositol mannosides and lipoarabinans. A high affinity interaction of CD1b molecules with the acyl side chains of known T cell antigens such as lipoarabinomannan, phosphatidylinositol mannoside and monomycolate has been demonstrated. Hence the nucleic acid encoding the CD1 receptor are cotransfected into tumor cells together with SAg-encoding nucleic acid and nucleic acids encoding the multifunctional fatty acid and mycocerosic acid synthases involved in the biosynthesis of mycolic acid and methyl-branched fatty acids.

[0249] The multifunctional genes for mycocerosic acid synthase involved in the biosynthesis of these molecules have been isolated. In addition to the usual fatty acids found in membrane lipids, mycobacteria have a wide variety of very long-chain saturated (C18-C32) and monounsaturated (up to C26) n-fatty acids. The occurrence of &agr;-alkyl &bgr;-hydroxy very long chain fatty acids i.e., mycolic acid is a hallmark of mycobacteria and related species. Mycobacterial mycolic acids are the largest (C70-C90) with the largest-branch (C20-C25). The main chain contains one or two double bonds, cyclopropane rings, epoxy groups, methoxy groups, keto groups or methyl branches. Such acid are the major components of the cell wall, occurring mostly esterified in clusters of four on the terminal hexa-arabinofuranosyl units of the major cell wall polysaccharides called arabinogalactans. They are also found esterified to the 6 and 6′ positions of trehalose to form “cord factor”. Small amounts of mycolate are also found esterified to glycerol or sugars such as trehalose, glucose and fructose depending on the sugars present in the culture medium. Mycobacterium also contains several methyl-branched fatty acids. These include 10-methyl C18 fatty acid (tuberculostearic acid found esterified in phosphatidyl inositide mannosides), 2,4-dimethyl C14 acid and mono-, di- and trimethyl-branched C14 to C25 fatty acids found in trehalose-containing lipo-oligosaccharides, trimethyl unsaturated C27 acid (phthienoic acid), tetra-methyl-branched C28-C32 fatty acids (mycocerosic acids) and shorter homologues found in phenolic glycolipids and phthiocerol esters and multiple-methyl-branched phthilceranic acids such as heptamethyl-branched C37 acid and oxygenated multiple methyl-branched acids such as 17-hydroxy-2,4,6,8,10,12,14,16,-octamethyl C40 acid found in sulfolipids.

[0250] Genes Involved in Mycolic Acid Biosynthesis

[0251] The biosynthesis of mycolic acids involves fatty acid chain elongation, desaturation, cyclopropanation of the olefin and a Claissen-type condensation. The genes involved in cyclopropanation are cma1, cma2. The methoxymycolate series found in M. tuberculosis contains a methoxy group adjacent to the methyl branch, in addition to the cyclopropane in the proximal position. A series of four methyl transferase genes was cloned. The mm4 methylates the distal olefin.

[0252] The multifunctional fatty acid synthase (FAS) (type 1) catalyses not only the synthesis of C16 and C18 fatty acids but also elongation to produces C24 and C25 fatty acids. Cloning and sequencing of the synthase gene revealed a 8389 bp ORF. The domain organization is much like a head to tail fusion of the two yeast FAS subunits; acyl transferase (AT)-enoyl reductase (ER)-dehydratase (DH)-malonyl/palmitoyl transferase-acyl carrier protein (ACP) fused with &bgr;-ketoreductase (KR)-&bgr;-ketoacyl synthase (KS).

[0253] The MAS gene encoding mycobacterial mycocerosic acid synthase is a dimer of the FAS gene. The cloning and sequencing of the MAS gene revealed the domain organization in the following order: KS-AT-DH-ER- KR-ACP. The purified MAS shows a preference for elongation by four methylmalonyl CoA units reflecting the natural composition of mycocerosic acids. FAS and MAS are also involved in the biosynthesis of phthiocerol and phenolphthiocerol which involve elongation of preformed n-C20 fatty acyl chains or an acyl chain containing a phenol residue at the w-end. The cluster of five genes, ppsi1-5 encode the multifunctional enzymes (Fernandes N D et al., Gene 170: 95-99 (1996) Mathur M et al., J. Biol. Chem. 267:19388-19395 (1992) Yuan Y. et al., Proc. Natl Acad. Sci. USA 92: 6630-6634 (1995)).

[0254] Tumor cells are cotransfected with SAg-encoding DNA and nucleic acids encoding the biosynthesis the above microbial products. The transfected tumor cells acquire significant additional immunogenicity. These cells are prepared as in Example 1-3. They are useful in vivo as a preventative or therapeutic antitumor vaccine (Examples 5, 15, 16 18-23. They are also useful ex vivo to immunize T, &ggr;/&dgr;T cells, NK or NKT cells to produce a population of effector T or NKT cells for adoptive immunotherapy of cancer (Examples 2-5. 15, 16, 18-23, 68).

22. SAg-Ganglioside or SAg-Galactosylceramide Complexes Formed after Transfection of Tumor Cells with DNA Encoding SAgs: Complete Bacterial Antigen System Recognized by CD1 Receptors Capable of Inducing Anti-Tumor Effects

[0255] SAg-encoding nucleic acid transfected into tumor cells express SAg on the tumor cell surface which is bound to cell surface gangliosides which are tumor associated antigens, oncogene product such as EGF or IGF. In this way the tumor associated antigen is capable of recognition and interaction with host T cells and macrophages and of evoking a potent immune response. The SAg is also bound or associated with the CD1 receptor alone or associated with the glycosphingolipid tumor associated antigen.

[0256] SAgs have a natural affinity for glycosphingolipids on cell membranes. Enterotoxin-producing-bacteria secrete enterotoxins which in their precursor state are bound to cell membranes in dimeric form. Enterotoxin transfected tumor cells induce an anti-tumor response by expressing the tumor cell surface antigen in association with the SAg. Bound to the tumor cell membrane, the SAg may be in dimeric form associated with the ceramide lipophilic anchor domain of a glycosphingolipid tumor associated antigen. Likewise, the SAg may be associated with the carbohydrate moiety or the ganglioside which protrudes from the cell surface. It may also be secreted in monomeric or dimeric form fused to membrane associated tumor antigen, oncogene product or receptor. If the tumor associated glycosylceramide, glycoprotein antigens, or glycolipid antigen with or without SAg are presented on CD1 receptors, then NKT cells may generate the predominant T cell response. However the classical T cell system is also responsive.

[0257] These constructs are produced and used as a vaccine against established tumor by protocols given in Examples 2-5, 15, 16, 18-23.

23. Nucleic Acids Encoding CD1 Receptors

[0258] Nucleic acid encoding the CD1 receptor is transfected into tumor cells, resulting in expression of the CD1 receptor on the tumor cell surface. Promoters of CD1 synthesis are also useful in this invention. The human genome includes five CD1 genes (A-D)which also function in antigen presentation to T cells (Calabi, F et al., CD1: From Structure to Function in Immunogenetics of the Major Histocompatibility Complex, Srivastava, R et al., eds, VCH publishers, New York, N.Y., 1991). In mice, two homologous proteins (mCD1.1 and 1.2) have been characterized and map to chromosome 3. The human CD1 genes are located on chromosome 1q221-q23 in the order D-A-C-E from the centromere on a 190 kb segment of DNA. With the exception of CD1B, they are all in the same transcriptional orientation. They are evenly spaced in the complex with one exception: CD1D and CD1A are spaced two to three times farther apart than the average. The products of CD1A, -B and -C genes have been defined serologically. The products of CD1D and CD1E are unknown. They share a highly conserved exon domain which is homologous to the &bgr;2m-binding domain (&agr;3) of MHC class I antigens. The CD1 molecules are not polymorphic and apart from CD1D, are noncovalently associated with &bgr;2m in a TAP-independent manner. Complex alternative splicing of CD1 genes results in tissue specific forms of the protein, which can be intracellular, membrane bound, or secreted. In cells infected with mycobacteria, the CD1 molecule binds and presents a mycobacterial membrane component, mycolic acid. Surface CD1 molecules present longer peptides than those normally found on class I molecules. Whether CD1 molecules can also present peptide antigens is still unclear although this has been shown for at least one member of the CD1 family.

[0259] Tumor cells are transfected with nucleic acid encoding the CD1 receptor. Nucleic acid encoding cell wall or cell membrane associated glycosylceramides or a branched, b hydroxy long-chain fatty acids found in mycobacteria and other bacteria are cotransfected into the CD1 transfected tumor cells. The tumor cell therefore displays glycosylceramides bound to the CD1 receptor.

[0260] Using site directed mutagenesis, DNA encoding the CD1 receptor is provided along with DNA encoding a SAg binding site. This SAg binding site consists of key amino acids from the SAg receptor or from the SAg binding sites on (i) MHC class II chains or (ii) the TCR V&bgr; region. This may consist of a glycosphingolipid sequence (sensitive to endoglycoceramidase) present on some mammalian cells.

[0261] The glycosylceramide used to bind to the CD1 receptor will have an exposed SAg binding site which is sensitive to endoglycoceramidase, an enzyme from Rhodococcus which specifically cleaves the glycosyl moiety from glycosphingolipids. Other ceramidases break up sphingolipid into fatty acids and sphingosine.

[0262] These tumor cells transfectants are prepared as in Examples 1 and 2. They are used in vivo as a preventative or therapeutic antitumor vaccine as in Example 14-16, 18-23. They are also useful ex vivo to produce a population of tumor specific T, &ggr;/&bgr;T, NK or NKT cells for adoptive immunotherapy of cancer (Example 2-5, 7, 15, 16, 18-23, 68).

24. DNA Encoding Streptococcal M Proteins and DNA Encoding Protein A or its Fc and VH3 IgG binding Domains Transfected into Tumor Cells Alone or SAg DNA

[0263] The streptococcal M proteins are type-specific and act as protective or virulence factors. M protein genes are members of a larger emm-like gene family, such that many S. pyogenes strains express more than one M-like protein. DNA encoding the streptococcal M protein and DNA of the larger emm-like family are transfected into tumor cells (Kehoe M. A., “Cell-Wall Associated Proteins in Gram-Positive Bacteria,” In: Bacterial Cell Wall, Ghuysen J M et al., eds, Elsevier, Amsterdam, 1994).

[0264] In addition, DNA encoding protein A and its domains as well as DNA of the streptococcal fcr&Lgr;76 gene located upstream of the emm-like gene are transfected into tumor cells individually or together to cause the expression of IgG FcR- and VH3 IgG-binding domains (Kehoe Mass., supra). DNA encoding SAg is cotransfected into the same tumor cells to produce a tumor cell expressing any combination of M protein, protein A and a SAg.

[0265] Such cells are used in vivo as preventive vaccines or as therapeutic vaccines against established tumors. See Examples 1-5, 11, 15, 16, 18-23. They may also be used ex vivo to induce populations of active tumor specific effector T cells (including &agr;&bgr;+ T cells, &ggr;/&dgr; T cells, NK cells and NKT cells) that are then used in adoptive immunotherapy See Examples 2-5, 7, 15-16, 18-23, 25, 68.

[0266] Nucleic Acids, Bacterial Cells and Phage Displays Mimicking SAgs

[0267] Because of circulating naturally occurring antibodies in humans, native or mutated SAgs that are administered parenterally are not likely to reach the appropriate receptors on T cells or tumor cells. To solve this problem, mimic oligonucleotides are prepared which mimic SAgs in their capacity to bind SAg receptors. Since no natural antibodies are directed to these compositions, they will not be prevented from reaching specific SAg receptors in vivo.

[0268] SAg receptors are used to screen oligonucleotides for their ability to mimic SAg binding. Useful receptors for such screening include those described herein (as expressed on tumor cells) and T cell TCR V chains. For example, pools of oligonucleotides are tested for their binding to, and affinity for, immobilized SAg receptors using nucleotide chromatography technology well known in the art. Once these high affinity binding oligonucleotides are identified, they are isolated (or, following sequencing, may be synthesized) and administered to a host.

[0269] Also included here is a bifunctional oligonucleotide-peptide chimeric molecule that binds specifically to the SAg receptor on tumor cells as well as the V&bgr; region of the TCR. Such an oligonucleotide will bind simultaneously to tumor cells and T cells (in the process of activation) to produce an anti-tumor response. An oligonucleotide-protein construct is prepared consisting of (a) a peptide sequence of enterotoxin A that binds to the TCR and (b) an oligonucleotide that binds to SAg receptor on tumor cells. The peptide portion of this construct should be devoid of MHC class II binding sites in order to minimize undesired binding of the molecule to class II structures upon administration in vivo.

[0270] In another embodiment, the nucleic acid portion of the chimeric molecule binds to the TCR while the peptide consists of a non-enterotoxin ligand that is specific for the SAg receptor on tumor cells. This construct has the advantage of lacking any binding site for natural antibodies. Yet another additional chimeric molecule consists of an oligonucleotide portion specific for the class II &agr; or &bgr; chain and a second oligonucleotide or a peptide specific for the TCR V&bgr; chain.

[0271] Methods for preparing these constructs are given in Examples 5, 13. These constructs are especially useful for targeting tumors in vivo while also promoting a T cell anti-tumor response. See Examples 18-23. However, these chimeric molecules may also be used ex vivo in the production of tumor specific effector T cells capable of inducing, or effecting, an anti-tumor response when administered to a tumor bearing host. See protocols in Examples 2-5, 15, 16 18-23, 68.

[0272] SAg and GlycosylCeramide Co-Expression

[0273] This may be accomplished using intact bacteria or phage display approaches. Since the precursors and substrates of the glycosyltransferases are not readily available in most mammalian cells, it is more convenient to induce dual expression of GalCer and SAgs in bacteria, for example Sphingomonas paucimobilis, which naturally produce GalCer. Hence, nucleic acid encoding a SAg is transfected into this bacterium together with a suitable promoter well known in the art. The bacterium produces both GalCer and SAg.

[0274] By ensuring that the SAg contains one or more glycosylation sites (by using the appropriate nucleic acid sequence), a glycosylated SAg is produced. Such a SAg binds to the glycosyl-ceramide, e.g., GalCer to form a conjugate that is expressed on the bacterial surface of is secreted. In either form, such a SAg-GalCer conjugate can sensitize NKT cells to produce an anti-tumor response.

[0275] In addition, phage or plasmids encoding the appropriate transferase are transfected into low virulence Staphylococcus species which also produce enterotoxins. The bacterium acquires the capability of expressing GalCer on its surface. These bacterial constructs and compositions are used in vivo in a tumor bearing host to produce an anti-tumor response in protocols given in Examples 5, 13, 15, 16 18-23 and Detailed Description Section 19. They are also are used ex vivo to activate NKT cells or T cells to differentiate to tumor specific effector cells for use in adoptive immunotherapy of cancer by protocols in Example 1, 2, 14-16, 18-23).

[0276] Phage display technology is used to target selected SAg sequences to targets in vivo. The selected peptide is used as a binding sequences in lieu of the full-length polypeptide. This permits elimination from the construct of the antigenic portion of the SAg to which natural antibodies are directed. Cloned genes are expressed as part of phage coat proteins, for example, as fusions with the gene III protein (gIIIp) or the gene vIII protein (gVIIIp). In addition to the displayed gene product, the phage genome (of each particle) includes the gene encoding this product.

[0277] Phage display is preferably done using the filamentous phage f88-4 and comprises forming a fusion that results in the C terminus of the “selected” (i.e., inserted gene's) product and the N terminus of the phage protein gVIIp. Peptides of various enterotoxins are expressed in the phage display—most preferably peptides that bind to the SAg receptor on colon carcinoma cells. These peptides retain their capacity to bind to the TCR and to activate T cells. Also contemplated within this invention is phage display of SAg plus nucleic acid encoding synthesis of GalCer and/or the &agr;-Gal epitope. DNA for synthesis of GalCer is preferably isolated from Sphingomonas paucimobilis; DNA; encoding the galactosyl transferase for synthesis of &agr;-Gal is preferably isolated from Klebsiella aerobacter, Serratia, E. coli and Salmonella organisms which naturally produce and express these epitopes. The phage displays are administered in vivo and are capable of initiating a potent immune response to the tumor using the protocols described in Examples 5 and 13 and Section 19, above. These preparations are also useful for activating T cells or NKT cells ex vivo to produce a tumor specific effector cells for use in adoptive immunotherapy (Examples 2-5, 14-16, 18-23).

[0278] Viral infection of a host cell having the galactosyl transferase results in the shedding of virions that express the &agr;-Gal epitope. When a host mammalian cell has been transfected with nucleic acid encoding SAg, the virus can coexpress the Gal epitope and the SAg on its surface. Such a viral construct is administered in vivo to achieve a therapeutic effect, or, in another embodiment, is employed ex vivo to produce tumor specific effector T or NKT cells for use in adoptive immunotherapy of cancer (Examples 2, 3, 7, 15, 16, 18-23).

26. Combining SAgs with Enterotoxin Precursors (Cell-bound Dimers and Oligomers) and with Enterotoxin Promoters and Transcriptional Regulatory Genes

[0279] Cell-bound SAg Dimers and Oligomers

[0280] Staphylococcal enterotoxins are present in the membrane of enterotoxin producing bacteria in dimeric form and retain potent enterotoxin-like activity when isolated from the membrane. It is in this membrane-bound form that enterotoxins are combined with tumor associated antigens or oncogene products and presented to the T cell system. The dimerization of the enterotoxins may promote clustering for more effective presentation to T cells. Indeed, dimerization or polymerization of enterotoxins or the introduction of tandem repeats of the SAg binding sites for TCR and MHC class II may be achieved by (1) site directed mutagenesis of the enterotoxin plasmid and (2) introduction of sequences for gene amplification, tandem repetition and/or recombination or by (3) introduction of enzymes for peptide chain elongation. The duplication may be at the level of the bacterial operon including its transcriptional regulators, using methods well described in the art.

[0281] Modified plasmid is DNA is introduced into the target tumor cells or into accessory cells, either or both of which are useful in vivo as a preventative or therapeutic vaccine (Examples 1, 2, 15, 16, 18-23). Such genetically transformed cells may also be used ex vivo to produce effector T or NKT cells for adoptive immunotherapy (Examples 1, 2, 7, 15, 16, 18-23).

[0282] SAg agr locus (Accessory Gene Regulator) and other Bacterial Genes and Elements

[0283] At least 15 gene coding for potential virulence factors in S. aureus are regulated by a putative multicomponent signal transduction system encoded by the agr/hld locus. The synthesis of at least 14 exotoxins and enzymes in S. aureus is regulated by a set of trans-acting elements from agr. The agr gene coordinately controls the expression of exfoliatin toxin, toxic shock syndrome toxin, a, b, d toxins, enterotoxin B, lipases and nucleases (Balaban, N. et al., Proc. Natl. Acad. Sci. USA. 92:1619-1623 (1995)). These proteins are members of the histidine protein kinase family of regulators and control a number of virulence determinants (Balaban supra, Novick R P, Meth Enzymol. 204: 587-637 (1991)).

[0284] Compared to wild-type, agr and hld mutants have decreased synthesis of extracellular toxins and enzymes (such as &agr;-,&bgr;-, and &ggr;-hemolysins, leucocidin lipase, hyaluronate lyase and proteases) while having increased synthesis of coagulase and protein A. The agr gene consists of two divergent transcriptional units driven by promoters named P2 and P3. The P2 transcript includes four open reading frames referred to as agrA, B, C, and D, all four of which are required to for the agr response.

[0285] The peptides predicted for agrA and agrC resemble the response regulators and signal transducers of the two-component bacterial signal transduction systems. The primary function of thee four genes discussed above is to activate two promoters; the P3 transcript, RNAIII, however is the actual effector of the exotoxin response. RNAIII activates transcription of secretory protein genes and represses transcriptions of surface protein genes. As a global regulatory system, agr, controls the post-exponential production of exoproteins such as toxins, hemolysins, and exoenzymes. agr is a complex polycistronic locus that encodes a two-component signal transduction pathway that activates transcription of a regulatory RNA molecule that in turn activates transcription of the exoprotein genes.

[0286] Thus, transcriptional regulation of the enterotoxin B gene as well as SED, SEC and staphylococcal capsular polysaccharide gene involves the agr product. (agr does not regulate SEA expression).

[0287] The promoter region of SEA is localized by primer extension analysis. The 5′-end of SEA mRNA is localized 86 bp upstream of the translational initiation codon. A DNA region with good agreement with canonical promoter sequences was observed beginning 8 base pairs upstream of the apparent transcriptional start site. No DNA upstream of the 35 bp region is required for transcription. Both the agr gene and the SEA promoter have been cloned (Peng, H. L. et al., J. Bacteriol. 170:4365-4372 (1988); Borst, D. W. et al., Infec. Immun. 61:5421-5425 (1993)). The xpr locus and the agr locus interact at the genotypic level; agr is autoinduced by a proteinaceous factor produced and secreted by the bacteria and is inhibited by a peptide from an exotoxin-deficient S. aureus mutant strain. The inhibitor, RIP, competes with the activator, RAP. When given as a vaccine, RIP may prove useful as a direct inhibitor of virulence.

[0288] A chromosomal locus (sar) distinct from agr, encodes a DNA-binding protein that is important in regulation, and is required for expression of S. aureus exoproteins including enterotoxin, toxic shock syndrome toxin, hemolysin and staphylokinase. Transcription of Protein A is suppressed by sar and agr.

[0289] A list of plasmids containing bacterial virulence factors useful in this invention is disclosed in Table 49, p. 223 of Patrick, S. et al., Immunological and Molecular Aspects of Bacterial Virulence, John Wiley and Son, New York, N.Y. 1995.

[0290] This invention contemplates the use of the Staphylococcal enterotoxin promoters and transcription factors that activate the enterotoxin biosynthetic cycle. Several Staphylococcal promoters have been identified (Novick, supra). This invention also contemplates the use of the peptide activator RAP which induces agr as well as the peptide inhibitor RIP which induces or represses RNA III.

[0291] SAg-encoding nucleic acid is fused in-frame with Staphylococcus agr nucleic acid and introduced into tumor cells or accessory cells (or the two are cotransfected into these cells). In another embodiment, SAg-encoding nucleic acids placed under the control of an enterotoxin promoter, and this construct is introduced into tumor cells or accessory cells. The agr gene is especially useful because it can be linked to an inducible promoter such as that for corticosteroids or the metallothionein promoter, allowing it to be activated in a controlled manner by exogenous administration of the inducing to the host.

[0292] Methods for introducing the above genes into tumor cells are described in Example 1, 2, 11. The use of such cells in vivo as preventative or therapeutic vaccines are discussed in Examples 15, 16, 18-23. Use of these genetically transformed tumor cells ex vivo to induce effector T, &ggr;/&dgr;T, NK or NKT cells for adoptive immunotherapy is described in Examples 2, 3, 7, 15, 16, 18-23, 68.

27. Combining SAg with Oncogenes, Protooncogenes, Amplified Oncogenes, Transcription Factors or Tumor Markers

[0293] In one embodiment, the nucleic acid encoding a SAg is fused in-frame to oncogene or protooncogene nucleic acid in tumor cells or accessory cells to produce a chimeric nucleic acid which is expressed in, or on the surface of, the cell. This fused gene may be rendered inducible by judicious choice of a promoter or other regulatory sequence. Preferably, such an inducible promoter is induced by a hormone or a metal. A regulatory element, such as one activated by interferon or a cytokine (e.g., Jak or a STAT), may be included in this construct.

[0294] In another embodiment, the nucleic acid encoding SAg is fused in frame to nucleic acid encoding an oncogene which can be amplified markedly. The fused construct is introduced into tumor cells or accessory cells. An amplified “unit” is initially much larger than the size of the actual gene of importance to the oncogenic event(s) (Hellems, R E, Gene Amplification in Mammalian Cells, Marcel Dekker, New York, N.Y. ). Thus a silent gene is co-amplified with one or more genes expressed on an amplicon. This is a preferred site for the inserting gene clusters wherein one gene encodes a SAg, others encode the enzymes of LPS lipid A biosynthesis, optionally together with their native promoters or operons.

[0295] Transcription Factors and Amplified Oncogenes

[0296] Oncogenes are frequently amplified in human tumors and cultured cancer cells. This is more characteristic of solid tumors and relatively rare in lymphoid malignancies. DNA amplification was first observed cytogenetically a double minute chromosomes (DMs) or homogeneously staining regions (HSRs) but today, direct DNA analysis (Southern blotting) or molecular cytogenetic methodologies, such as fluorescence in situ hybridization (FISH) and comparative genomic hybridization (CGH) can be applied. DMs are episomal forms of amplified DNA that generally lack centromeres and are unequally distributed between daughter cells at mitosis. They appear as isodiametric extrachromosomal bodies stainable with all chromatin dyes. HSRs are chromosomally integrated forms of amplified DNA. They represent either the replacement of the normal chromosome banding pattern with an extended region of homogenous staining or the insertion of such a region into an otherwise normally banded chromosome. DMs and HSRs tend to be mutually exclusive and are potentially interchangeable manifestations of the amplified DNA. Thus, DMs can potentially integrate into distant chromosomal sites to generate heritable HSR. Of 22 human tumors analyzed, 91% contained DMs only, 6.5% contained HSRs and 2.5% contained both. In solid tumors of epithelial origin, DMs and HSR were found in 40% of breast carcinomas, 17% of non small cell carcinoma of the lung, 18% of stomach and esophageal cancers and 15% of uterine carcinomas.

[0297] The overwhelming majority of oncogene amplifications in human tumors affect the Myc oncogene family. In small cell lung cancers all three members of the Myc family, c-myc, N-myc and L-myc can be involved. Myc amplification is associated with a more invasive and more metastatic phenotype. N-myc amplification is seen in neuroblastoma and is associated with the late stages and poor prognosis. The amplification units on chromosome 11q13 are seen in (a) breast cancer, (b) squamous cell carcinoma of the head and neck, lung, and esophagus and (c) bladder tumors. The amplification extends for over 1.5 megabase pairs of DNA and includes two bona fide oncogenes: FGF3 and FGF4. It also includes the Bc1-1 CCND1 (cyclin D1) as well as the EMS 1l gene that encodes the human homologue of cortactin. CCND1 has a critical role in amplified DNA since its expression is increased as a consequence of amplification. The other major targets for amplification are the genes encoding the EGF receptor (ErbB1/Her1) and the related ErbB2/Her2. Both genes are amplified in breast cancer and other malignancies. ErbB2 is associated with estrogen receptor-negative breast cancers and poor prognosis.

[0298] Members of the myc gene family are activated in several human tumors as a result of DNA rearrangements through chromosomal translocations or gene amplification. When overexpressed, all myc genes complement mutant c-ras oncogenes in the transformation of primary rat embryonic cells and transform Rat 1-A cells without assistance of other oncogenes. Stimulation of cellular myc expression levels or changes in post-translational modification of myc proteins have been following exposure of cells to many growth promoting stimuli. These features suggest that the myc proteins participate in the final steps of mitogenic signal transduction. The myc proteins act as transcription factors involved in activation and/or repression of target genes. In neuroblastoma, a group whose tumors are generally near diploid or tetraploid with chromosome 1p deletion(LOH) and N-myc amplification have a generally poor response to treatment and a poor prognosis. Genomic amplification of the N-myc cellular oncogene is present in approximately 40% of cases of childhood neuroblastoma and correlates with histopathological signs of advanced disease. This genomic N-myc amplification appears to be associated with tumor progression rather than tumor initiation since early stage tumors rarely exhibit M-myc genomic amplification. Similarly the c-myc family of protooncogenes including N-myc and L-myc are amplified in small cell carcinoma of the lung.

[0299] The amplified oncogenes useful in the present invention include genes encoding transcription factors. The preferred nucleic acids for use in the present invention are c-myc, N-myc, c-abl, c-myb, c-crb, c-Ki-ras, N-ras. N-myc (amplified 5-1000

[0300] fold in neuroblastoma) is preferred. SAg-encoding nucleic acid is cotransfected into tumor cells or accessory cells with amplified oncogenes. The N-myc and L-myc genes have been cloned as c-myc homologous amplified oncogenes from human tumors. In one embodiment, SAg-encoding nucleic acid is fused in frame with nucleic acid encoding oncogenic transcription factors such as FOS, JUN. MYC, MYB and ETS. In another embodiment, such nucleic acid is cotransfected with SAg-encoding nucleic acids. Either of such constructs is introduced into tumor cells or accessory cells. Proteins that interact with FOS and JUN are given in Table 1 p. 157 of Peters G et al., Oncogenes and Tumor Suppressors, Oxford University Press, Oxford UK 1997, incorporated by reference.

[0301] bcr/abl Gene

[0302] SAg-encoding nucleic acid is fused in frame or cotransfected with nucleic acids encoding the following agents and transfected into tumor cells and fused to oncogenic nucleic acids encoding chimeric proteins capable of immunizing the tumor bearing host. An ideal candidates for such fusions is the bcr-abl gene which express the bcr/abl protein in chronic myelogenous leukemia (CML). The c-abl oncogene is amplified in chronic myelogenous leukemia. Scherle P A et al., Proc. Natl. Acad. Sci. USA 87: 1908-1917 (1990) Heisterkamp N et al., Nature 344: 251-253 (1990). Abnormalities in the structure and expression of the human c-abl cellular oncogene have been associated with Philadelphia chromosome-positive CML which is present in more than 90% of cases. This aberrant chromosome marker is generated by a reciprocal translocation between chromosomes 9 and 22 in which the c-abl oncogene is translocated from the distal end of the q arm of chromosome 9 to a relatively restricted 5-6 kb region on chromosome 22 termed the breakpoint cluster region (bcr). This translocation creates a fusion gene that is transcribed as an 8 kb bcr-abl RNA that encodes the aberrant bcr-abl fusion protein product (P210) observed in CML cells. The bcr-abl fusion product has enhanced tyrosine kinase activity compared with the normal p145 c-abl product. Abnormalities in the structure and expression of the c-abl cellular oncogene have not been described in any type of human malignancy other than CML and Ph positive acute lymphatic leukemia. Gene amplification correlates with progression of malignancy.

[0303] EGF Receptor Genes

[0304] SAg-encoding nucleic acid is fused in frame to the nucleic acids encoding the EGF receptor (EGFR) (Ulrich A et al., Nature 309: 418-421 (1984)). The EGFR is the prototype of four-member receptor family. EGFR is frequently overexpressed or mutated in several different types of human tumor. For instance, the EGFR is amplified in 20-40% of human glioblastomas and a variety of epithelial tumors including head and neck squamous cell carcinomas, breast tumors, esophageal tumors and urogenital tumors. Amplification was accompanied by overexpression of the EGFR.

[0305] The erbB2 (her2/neu) Oncogene

[0306] SAg-encoding DNA is fused in frame to DNA encoding a tumor marker such as PSA, c-erbB2(neu), her2/neu, bc1-2 and Brca-1. The principal amplified and functional genes in breast cancer are the growth factor receptor-erbB2, the nuclear transcription factor c-myc, and the genes encoding cell cycle kinase regulatory genes termed cyclin D1 and cyclin EG. Gene amplification is thought to proceed via the initial formation of extrachromosomal, self replicating units (double minute chromosomes) that become permanently incorporated into chromosomal regions where they are called homogeneously staining regions (HSRs) as described above.

[0307] The human counterpart of the oncogene neu known as her2 encodes a protein of the same family as the EGFR. This family of genes has been cloned. Its products belong to a family of receptor tyrosine kinases each with a transmembrane domain, a cysteine-rich extracellular domain and an intracellular catalytic domain. They act as receptors for several peptide growth factors such as EGF, TGF(and neuregulins. The activated receptors are then able to bind to proteins containing src-homology-2 (SH2) domains. The SH2 domain proteins recognize and bind to specific phosphotyrosine-containing sequences of the activated receptor. These SH2 containing adapter molecules, then trigger downstream signalling pathways, ultimately resulting in gene activation.

[0308] The erbB2 (neu/Her2) gene maps to chromosome 17p21 and codes for a 185 kDa transmembrane glycoprotein related to, but not identical to the EGF receptor (Schechter A L et al., Science 229: 976-978 (1985), Bargmann C L Nature 319: 226-230 (1986), Hung M C et al., Proc. Natl. Acad. Sci. USA 83: 261-264 (1986), Yamamoto T et al., Nature 319: 230-234 (1986)). The EGFR bears sequence homology with the erbB1 product. The erbB2 gene is activated by a point mutation which mutates amino acid residue 664 from valine to glutamic acid; this change is associated with transforming its ability. The genes are called erbB, (erbB1, EGFr), erbB2, (neu/Her-2). erbB3(HER-3) and erb B4 (HER-4).

[0309] Amplification and overexpression of erbB2 has been found in a variety of human tumors including carcinomas of the breast, ovaries, colon, lung, liver, stomach, kidney, esophagus, salivary gland, and bladder. Genomic amplification of the neu (C-erb-2) or HER2 cellular oncogene and protein overexpression has been documented in approximately 30% of primary human breast cancers and may correlate with advanced disease and a relatively poor prognosis. More than 50% of all ductal carcinomas in situ of the large cell type express HER2. Amplification occurs in approximately 20% of invasive breast carcinomas. Thus, it is thought that HER2 amplification increases the growth rate but not the metastatic potential of tumor cells.

[0310] A third member of the EGFR family is ERBB3which is present in some human breast cancers with high expression correlating with lymph node metastases. Overexpression of ERBB3 has been observed in epidermoid carcinoma of the larynx and esophageal carcinoma. ERBB4, a fourth member of the EGFR family, was overexpressed in a human mammary tumor cell line. Fisk et al. (J. Exp. Med. 181: 2109-2117 (1995)) described an immunodominant epitope of HER/neu that is recognized by ovarian tumor-specific cytotoxic T lymphocytes. This epitope is useful in this invention. Failure of coexpression of a heterodimeric partner or coinduction of a suppressor phosphatase would explain the lack of immunogenicity of c-erbB2 in mice in nude mice.

[0311] Additional oncogenes, protooncogenes and tumor markers which would be candidates for the fusion in accordance with this invention are w PSA, c-erb B2(neu), Her2/neu, bc1-2, Brca-1. Viral and non-viral oncogenes and protooncogenes which are overexpressed in tumor cells are shown in Table 9.2 and 9.1, p. 171-172 of Franks et al., supra). The functions of the various oncogenes is shown in Table 9.6, p.186, of Franks et al.

[0312] IGF Receptor Genes

[0313] SAg-encoding nucleic acid is fused in frame with nucleic acids encoding insulin-like growth factor (IGF) receptors (IGFRs)and transfected into tumor cells. The IGFR gene is a tyrosine kinase containing transmembrane protein that plays an important role in cell growth control. There is a single IGF1 receptor gene with a complete coding sequence contained in 21 exons (Abbott A M et al., J. Biol. Chem. 267: 10759-10763 (1992); Scott J et al., Nature 317: 260-262 (1985); Liu J et al., Cell 75: 59-63 (1993)).

[0314] IGF1R is expressed at high levels in breast cancer, and amplification of the IGF1R gene has been observed. IGFs play a significant auxiliary role in tumor growth by suppression of apoptosis. The apoptotic effect overexpressed myc is overcome by IGFs. Thus, IGFs facilitate tumor growth by suppression of apoptosis.

[0315] Fibroblast Growth Factor (FGF) Receptor Genes

[0316] SAg-encoding nucleic acid is fused in frame to nucleic acids encoding fibroblast growth factors receptors (FGFs) and transfected into tumor cells. FGF receptor are also be important for the vascularization of certain types of tumors. The expression of FGF1 has been shown to be associated with a switch to an angiogenic phenotype during the development of a fibrosarcoma. Overexpression of FGF receptor by certain tumors may also contribute to their growth. FGF receptors have been shown to be amplified in some breast cancers.

[0317] Platelet Derived Growth Factor (PDGF) Receptor Genes

[0318] SAg-encoding nucleic acid is fused in frame to nucleic acids encoding additional tumor growth factors which are produced or overexpressed and transfected into tumor cells or accessory cells. Growth factors include those in the tyrosine kinase receptor families such as Platelet Derived Growth Factor A and B family (PDGF). PDGF A and B receptors are amplified in malignant glioblastomas in the malignant cells themselves or the stromal cells (Fleming T P et al., Cancer Res. 52: 4550-4556 (1992);Kumabe T et al., Oncogene 7: 627-632 (1992)). The nerve growth factor (NGF), stem cell factor receptor (kit), colony stimulating factor-1 receptor (fins), neurotropin receptor family, transforming growth factor b family, the WNT family, angiogenic receptors

[0319] Other Amplified Oncogenes

[0320] SAg-encoding nucleic acid is also fused to nucleic acid encoding the tyrosine protein kinases which are both membrane associated and transmembrane as described in Table 9.4, p. 179 of Franks et al., supra. Additional chromosomal regions which are amplified in greater than 40% of cases included the 8q24 locus of the c-myc(O) gene, the 11q13 locus of the cyclin D (O), int2 (O), EMS-1 (O), BCL-1 (O), FGF-4 (O) GST (M), MEN1(S) genes, the 17q21 locus of the RARa (S), RARg (S), ERBAa (S), BRCA1 (S), NM23 (S), estradiol 17B dehydrogenase (S) ERG2 (O), HOX2, NGFR (O), WNT3 (O) and the 20q13 locus.

[0321] Nucleic acid encoding SAg is fused or cotransfected into tumor cells with nucleic acid encoding the above oncogenes, amplified oncogenes and protooncogenes, transcription factors and growth factor receptors. These transfectants are prepared as in Examples 1. They are useful in vivo as a preventative or therapeutic vaccine (Examples 15, 16, 18-23). They are also useful ex vivo for inducing tumor specific effector cells (T cells, &ggr;/&dgr; T cells, NK cells, NKT cells) for adoptive immunotherapy (Examples 2-5, 7, 15, 16 18-23, 68).

28. Combining SAg with Angiogenic Receptors and Growth Factor Receptors

[0322] SAg-encoding nucleic acid is cotransfected or fused in frame to nucleic acid encoding an angiogenic receptor such as VEGF and transfected into tumor cells. SAg nucleic acid is also fused to or cotransfected with nucleic acid encoding other angiogenic receptors such as V integrin, other integrins, cadherins or selectins and introduced into tumor cells or accessory cells. SAg-encoding nucleic acid is also cotransfected into tumor cells or accessory cells with nucleic acids encoding angiogenic proteins such as VEGF.

[0323] VEGF is produced by tumor cells and stroma, and its expression correlates with the degree of vascularization and grade of malignancy. VEGF receptors, termed KDR and flt, are expressed mainly by the tumor endothelium. Higher levels of VEGF are found in metastatic than in non-metastatic colon cancers (Tischer E et al., J. Biol. Chem. 266: 11947-11954 (1991). VEGF is especially useful here because it is overexpressed in tumor cells at an early stage of tumorigenesis. The promoter of the VEGF gene lacks a TATA box, but has six GC boxes for transcription factor SP-1 binding and also a site for AP-1 and AP-2 binding.

[0324] The expression of the gene is modulated by several growth factors such as EGF. In some cell types VEGF expression is regulated by IL-1, FGF, PDGF. A common element, mediation of protein kinase C in the regulation of VEGF, has been suggested. VEGF is expressed as a disulfide linked dimer. Long and short forms are generated by alternative splicing and are matrix bound or released, respectively. As a result of its specific effects on endothelial cell migration and proliferation, VEGF is a very potent and specific promoter of angiogenesis. Two well characterized families of angiogenic factors act by binding to tyrosine kinase receptors that have two or three immunoglobulin-like domains, and VEGF binds to two related receptors with seven immunoglobulin-like extracellular domains.

[0325] The TRKA oncogene codes for a receptor for nerve growth factor (NGF). The TRKA gene has been found fused to genes that code for proteins that form dimers in cells leading to the synthesis of a constitutively dimerized and active tyrosine kinase. TRKA may have a tumor suppressor function since its expression in neuroblastoma correlated inversely with n-myc gene amplification. Coexpression of mRNA for TRKA and the low affinity NGF receptor in neuroblastoma correlated with a favorable prognosis.

[0326] Nucleic acid encoding SAg is fused to nucleic acid encoding the above angiogenic factors or receptors and introduced into tumor cells; alternatively, the two nucleic acids are used to cotransfected tumor cells. These transfectants are prepared as in Example 1. They are useful in vivo as a preventative or therapeutic antitumor vaccine (Examples 15, 16, 18-23). They are also useful ex vivo for inducing tumor specific effector cells (T cells, &ggr;/&dgr;T cells, NK cells, NKT cells) for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16 18-23, 68).

29. Combination of SAg with Cell Cycle Protein

[0327] SAg-encoding nucleic acid is fused in frame to nucleic acid encoding a cell cycle protein such as a cyclin which is overexpressed in tumor cells. Examples of these cell cycle proteins which are preferred for such fusions are Cyclins A, B, D1, E. These proteins are generally complexed to kinases or transcription factors at critical checkpoints in the cell cycle. The cyclins, CDKs and their inhibitors are shown in Table 1. p193 of Peters G et al., supra.

[0328] In another embodiment, nucleic acid encoding SAg is cotransfected into tumor cells with nucleic acid encoding a cell cycle protein as above. These transfectants are prepared as in Examples 1. They are useful in vivo as a preventative or therapeutic antitumor vaccines (Examples 15, 16, 18-23). They are also useful ex vivo for inducing tumor specific effector cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15.16 18-23, 68).

[0329] “Tumor specific effector cells” in this section and any other place in this application refer to T cells of any kind or type including but not limited to &agr;/&bgr;+ T cell, &agr;&bgr;−T cells, &ggr;/&dgr;T cells, NK cells, NKT cells. These cells may be used individually or collectively in any combination for adoptive immunotherapy.

30. Combining SAg with Tumor Suppressor Genes, p53 or Developmental Genes

[0330] SAg-encoding nucleic acid is fused in frame with tumor suppressor gene DNA and the fused nucleic acid is introduced into tumor cells or accessory cells. Alternatively, the two nucleic acids are used to cotransfected these cells. Examples of such tumor suppressor genes are shown in Table 9.7 p.187 of Franks L M et al., supra. Examples of mutated tumor suppressor genes include the APC and MCC genes and their isoforms, the DCC gene in colon cancer, the BRCA1 tumor suppressor gene in breast cancer and the DPC gene in pancreatic cancer. The p53 gene and its mutations are also useful in this embodiment. A list of p53 responsive elements and associated proteins useful in this invention is given in Tables 1 and 2 pp. 267-269 of Peters G et al., supra.

[0331] In another embodiment, nucleic acid of developmental genes is used in place of tumor suppressor or p53 genes. Examples of such developmental or differentiation genes are wnt and fwt genes.

[0332] Transfectants are prepared as in Example 1. They are useful in vivo as a preventative or therapeutic antitumor vaccine according to Examples 15, 16, 18-23). They are also useful ex vivo for inducing tumor specific effector cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16, 18-23, 68).

31. Combining SAg with Cell Surface Glycoproteins or their Receptors

[0333] SAg-encoding nucleic acid is fused in frame with a nucleic acid encoding a cell surface glycoprotein and or its receptor and the fused nucleic acid is introduced into tumor cells or accessory cells. Alternatively, the two nucleic acids are used to cotransfected these cells. Examples of these glycoproteins or receptors include integrins, vitronectin receptors, laminin receptors, cadherins, tenascin and CD44 and isoforms, VCAM-1, P-Selectins, E-Selectin, NCAM and MCAM. Transfectants are prepared as in Example 1. They are useful in vivo as a preventative or therapeutic antitumor vaccine according to Examples 15, 16, 18-23). They are also useful ex vivo for inducing tumor specific effector cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16 18-23, 68).

32. Combining SAg with Cytokines and Chemokines and Chemokine Receptors

[0334] SAg-encoding nucleic acid is fused in frame with nucleic acid encoding a cytokines and chemokines, and the fused nucleic acid is introduced into tumor cells or accessory cells. Alternatively, the two nucleic acids are used to cotransfected these cells. Examples of chemokines and cytokines that are useful herein include RANTES, IL-5, IL-7, IL-12, IL-13, IFN-&ggr;, TNF-&agr; and TNF-&bgr;. Chemokines are small (typically 6-10 kDa) peptides that have been divided into two classes designated C—C and CXC based on the sequence of the first two cysteine residues. The two families exhibit preferences for different target cell types: C—C chemokines act primarily on macrophages.

[0335] Chemokine gene expression is induced by the action of other growth factors and cytokines and are actively expressed in solid tumors showing inflammatory involvement and macrophage or neutrophil invasion. Chemokines of the C—X—C class containing the amino acid, sequence motif ELR have demonstrable angiogenic activity which can be inhibited by C—X—C chemokines lacking the ELR motif. Therefore chemokine expression by either tumor cells themselves or elicited from stromal cells by the action tumor-derived growth factors, have the potential to regulate tumor growth by modulation of angiogenesis. G-CSF is a growth factor for granulocyte precursors, and IL-2 is a growth factor for T cells.

[0336] Nucleic acids encoding SAgs are fused or cotransfected into tumor cells with nucleic acids encoding the above cytokines, chemokines and chemoattractants. The transfectants are prepared as in Example 1. They are useful in vivo as a preventative or therapeutic antitumor vaccine according to Examples 15, 16, 18-23). They are also useful ex vivo for inducing tumor specific effector cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15,16 18-23).

[0337] Chemokine Receptors: Previously we showed that 4T1 mammary carcinoma cells transfected with superantigens and CD80 molecules could be used therapeutically to reduce the number of established lung metastases and prolong survival in a murine model of post surgical mammary carcinoma (Pulaski, B. A., Terman, D. S. et al., Cooperativity of Staphylococcal aureus Enterotoxin B Superantigen, Major Histocompatibility Complex Class II, and CD80 for Immunotherapy of Advanced Spontaneous Breast Cancer in a Clinically Relevant Postoperative Mouse Breast Cancer Model, Cancer Research 60: 2710-2715 (2000)). It is believed that the superantigen transfected tumor cells, administered parenterally to the tumor bearing hosts, traffic to organs which are colonized by metastatic tumor cells. At these sites, the tumor cell transfectants secrete superantigen which induces a powerful local T cell inflammatory tumoricidal response.

[0338] The present invention aims to enhance the targeting of the superantigen transfected tumor cells to metastatic sites. This is accomplished by cotransfecting the tumor cells with nucleic acids encoding superantigens and chemokine receptors including but not limited to CXCR4. It has been shown previously that tumor cells expressing CXCR4 will metastasize to organs with a natural abundance of the ligand for CXCR4. For breast carcinoma, this includes organs which are rich in CXCL12 the natural ligand for the CXCR4 receptor.

[0339] While the CXCR4/CXCL12 system is exemplified here, any other chemokine receptor which is expressed in tumor cells and contributes to the metastatic colonization of organs rich in its receptor ligand could be used.

[0340] The gene for the CXCR4 receptor has been identified (Wegner S A et al., J. Biol. Chem. 273: 4754-4760 (1998); Caruz, A M et al., FEBS Lett. 426: 271 (1998); Frodl, R. et al., J. Receptor Signal Tranduct. Res. 18: 321 (1998)). The DNA or RNA encoding the chemokine receptor and a superantigen are cotransfected into tumor cells by methods given in Example 1. The transfected cells are tested in the 4T1 model of metastatic carcinoma in BALB/c female mice as described by Pulaski and Terman et al., Cancer Res. 60: 2710-2715 (2000). Alternatively, the SCID mouse model of established breast cancer using superantigen and chemokine receptor transfected into MDA-MB-231 human breast carcinoma cells as the therapeutic agents described by (Muller A. et al, Nature 410: 50-56 (2001) is used.

[0341] Superantigen and chemokine receptor transfected dendritic cells (using RNA or DNA encoding superantigens and chemokine receptors) are used to promote their migration and colonization of metastatic tumor sites. Once localized to tumor, the transfected dendritic cells phagocytose tumor cells and present them together with expressed superantigen to the T cells which then effect a potent T cell inflammatory tumoricidal response. In addition to tumor cells and dendritic cells mentioned above, other antigen presenting cells, accessory cells such as fibroblasts and macrophages are useful. Epithelial cells or organ-specific cells which express chemokine receptors are useful for transfection of superantigen nucleic acids.

[0342] The therapeutic system may comprise individual or mixed populations of tumor cells or accessory cells transfected with nucleic acids or RNA encoding superantigens and chemokine receptors as well as costimulatory molecules such as CD80, and MHC class II. The optimal therapeutic combinations consists of at least one population (at least 50%) consisting of tumor or accessory cells cotransfected with superantigens and chemokine receptor(s) together with a second cell population of tumor cells and/or accessory cells cotransfected with MHC class II and CD80 or other costimulatory molecule. The epithelial cells or organ specific cell types stipulated above maybe substituted for the tumor cells or accessory cells in this system.

[0343] The transfectants are administered parenterally by infusion or injection according to the protocol of Pulaski, BA ; Terman D S et al. Cancer Res. 60: 2710-2715 (2000). The number of metastases in the lungs as well as survival of experimental and control ice are determined as given by Pulaski, B A, Terman, D S et al. Cancer Res. 60: 2710-2715 (2000).

33. Combining SAg with Transcription Factors AP-1 and NF&kgr;A

[0344] Transcription factor genes may act as oncogenes. The jun family of transcription factors bind specifically to AP-1 sites which confer the effects of potent tumor promoting phorbol esters on responsive genes and specifically bind to c-jun homodimers or c jun/c-fos heterodimers. v-rel encodes members of the NF-kB family of transcription factors. Transforming oncogenes such as v-ets and v-myb also encode transcription factors.

[0345] The T cell signaling system responding to SAgs activates the JAK, TNF (TRAF), IL-2 and IL-12 pathway probably via NF&kgr;A activation. LPS has a T cell stimulating effect and may fuse with SAg to produce additional stimulation or epitope expansion. The NF&kgr;A nucleic acids are fused to a promoter which activates sequences encoding the SAg receptor or the sequences encoding the key V&bgr; domains binding SAgs or regions in the V&bgr; receptor which are activated by the SAgs.

[0346] SAg-encoding nucleic acid is fused in frame with nucleic acids encoding a transcription factor such as those above. Transfectants are prepared as in Example 1. These transfectants are prepared as in Example 1. They are used in vivo as a preventative or therapeutic antitumor vaccine according to Examples 15, 16, 18-23). They are also used ex vivo for inducing tumor specific effector cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16 18-23, 68).

34. SAgs Augment the Immunostimulatory Effects of Tumor Associated Peptides, Binary and Ternary Complexes

[0347] Bacterial SAg are presented to T cells via the MHC class II molecule by multiple low affinity attachments, resulting in stimulation of the T cell with very low concentrations of antigen. SAgs augment the presentation of antigenic peptides to T cells without sterically interfering with each other's ability to bind and activate the TCR. These augmenting peptides are incorporated into the SAg structure. SAgs may also bind to binary or ternary complexes of tumor peptide-MHC class I or tumor peptide-MHC class II complexes, either in solution or affixed to a TCR or the surface of an APC.

[0348] In one embodiment, the SAg is first bound to APCs or T cells followed by addition of complexes between MHC class I or class II and tumor peptide. Alternatively, the SAg may first bind to either cell-bound, soluble or immobilized MHC class I or class II molecules, after which the tumor peptide is added. This trimolecular complex is then presented to the T cell via the TCR.

[0349] In another embodiment, SAg is first bound to an APC or to a TCR V&bgr; chain on an NKT cell. Following this, CD1-glycosylceramide complexes are added and allowed to bind to NKT cell TCR V&bgr; chain. SAg may be bound to first to CD1-glycosylceramide complexes in soluble form, affixed to CD1+ cells or NKT cells via the TCR. SAgs may be bound to CD1 complexes with glycosylceramide or a glycosphingolipid (with a conserved SAg binding site) in solution or when fixed to CD1+ cells or NKT cells. Alternatively, SAgs are bound to ternary complexes consisting of CD1-glycosylceramide affixed to the NKT cell TCR or bound to CD1-glycosylceramide on APCs, in solution or immobilized, before it has affixed to the NKT TCR. SAg is alternatively bound to binary complexes of (a) CD1-glycosylceramide, (b) CD1-glycosphingolipid, (c) CD14-LPS or (d) MHC-tumor peptide complexes that have either a SAg receptor sequence or a TCR V&bgr; SAg-binding sequence.

[0350] The complexes described above are used in vivo as preventative or therapeutic antitumor vaccines according to Examples 4, 15, 16, 18-23. They are also used ex vivo for inducing tumor specific effector cells that are then taken for adoptive immunotherapy of cancer. (See Examples 2-5, 7, 14, 15, 16 18-23, 68).

35. SAgs Combined with Products of Antigen Processing Pathways

[0351] A chimeric gene is prepared consisting of SAg-encoding nucleic acid fused in frame to nucleic acids encoding (a) the endoplasmic reticulum (ER) translocation signal peptide, (b) transmembrane domain, and (c) lysosomal targeting domain of LAMP-1. LAMP-1 is a type 1 transmembrane protein localized predominantly to lysosomes and late endosomes. The cytoplasmic domain of LAMP-1 contains the Tyr-Gln-Thr-Ile sequence that mediates the targeting of LAMP-1 into the endosomal and lysosomal compartments. The specific targeting of the SAg to the endosomal and lysosomal compartments allows SAg peptides to complex with MHC class II molecules and enhance presentation.

[0352] The MHC class I presentation pathway operates on a three level system. At one level there is protein machinery dedicated to peptide manufacture—the proteosome complex. The selective peptide transporters deliver antigens into the ER. The class I molecules themselves exhibit variable affinities for peptides. Genes clustered in the region of the class II gene encode proteosome and transporter. SAg peptides are transported into the ER—primarily through a transmembrane “tube” consisting of two polypeptide chains called TAP-1 and TAP-2 (transporter associated with antigen processing). In mammals, genes encoding TAP-1, TAP-2 and two proteosome polypeptides are all located within the class II region of the MHC.

[0353] The class I pathway starts in the cytosol where proteins produced inside the cell are degraded by the multicatalytic proteosome complex. The peptide products are translocated into the ER by the TAP proteins. In the lumen of the ER, the peptides bind the class I protein groove while the latter are complexed with the chaperone p88, P2M and TAP. After securing a peptide in its binding groove, the class I complex is released from TAP and transported through the Golgi apparatus to the cell surface. TAP genes are closely linked to the LMP2 and LMP7 in the class II MHC gene cluster and belong to a family of molecules involved in ATP-dependent membrane translocation known as the ABC (ATP-binding cassette) transporters. TAP1 and TAP2 function as a heterodimer each subunit having over 500 amino acids each with two hydrophobic domains, six membrane spanning regions and a cytosolic ATP binding motif Both TAP1 and TAP2 subunits are required for peptide binding and translocation. TAP1 appears to be uniquely involved in the interactions with class I/&bgr;2 dimers at the luminal membrane of the ER where it interacts with the membrane proximal region of the &agr;3 domain of class I-&bgr;2m complexes prior to peptide loading. Interaction between class I and TAP is crucial for efficient peptide loading. Antigen presentation is mediated by an additional factor, tapasin. TAP also binds 2M independently of class I heavy chain, perhaps facilitating rapid assembly of class I peptide-binding complexes. TAP heterodimer may show a preference for amphipathic molecules as T cell antigenic determinants are often seen clustered around sequences where amphipathic helical structures are predicted. TAP prefers peptides 8-10 residues in length but may transport peptides ranging from 7-40 residues.

[0354] Invariant chains are transmembrane glycoproteins found in intracellular compartments in association with class II molecules. Multimers consisting of three class I ab dimers and three invariant chains assemble rapidly in the ER and travel across Golgi bodies to the trans-Golgi network that intersects with the endocytic pathway, where class II molecules reside for about 1-3 hr before transit to the cell surface for display to T cells. Alternative splicing of the invariant transcripts produces two isoforms p31 and p41 both of which can operate to assist folding of class II dimers, direct the passage of class II from the ER through an exocytic pathway, and block loading of peptide until peptide sampling can occur as exocytic-endocytic pathways intersect. A four residue targeting signal at the N-terminus of the invariant chain that is essential for intracellular transport to endosomal compartments. The C-terminus and the transmembrane region or the invariant chain are also necessary for sorting of class II-invariant chain complexes to the endosome. p41 appears to regulate the production of a stable 12-kDa SLIP-class II complex capable of enhancing SAg presentation.

[0355] SAg-encoding nucleic acid is fused in frame with nucleic acid encoding a protein involved in the antigen processing pathway such as the invariant chain or TAP which facilitates the expression of the SAg in the context of MHC class I and II, respectively. Tumor cells, accessory cells and hybrids thereof are transfected with fused SAg-invariant chain DNA as in Examples 1 and 5. They are used in vivo as a preventative or therapeutic antitumor vaccine according to Examples 15, 16, 18-23. They are also used ex vivo for inducing tumor specific effector cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16 18-23).)

[0356] SAg polypeptide post translationally is fused or associated with additional molecules such as mono and diglycosylceramides, including but not limited to—anomeric mono—and digalactosylceramides GalCer, &agr;-gal, glycosylated and prenylated SAgs. These constructs translocate with the appropriate trafficking molecule e.g., invariant chain, TAP, LMP, to selected surface receptor such as MHC class I, MHC class II or CD1. These transfectants are prepared as in Example 1. They are useful in vivo as a preventative or therapeutic antitumor vaccine according to Examples 15, 16, 18-23. They are also useful ex vivo for inducing tumor specific effector cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15.16 18-23, 68).

36. SAgs Combined with Signal Transduction Molecules or Heat Shock Proteins (HSPs)

[0357] SAg-encoding nucleic acid is fused in frame to (or cotransfected with) a nucleic acid encoding “signal transduction molecules” such as Ras, JAK 1 and STAT-1a and heat shock proteins HSP-60, HSP-70, HSP-90a, HSP-90b, Cox-2 as well as heterotrimeric G proteins and ATPases. The genes for Staphylococcal HSP-70 useful in this invention have been cloned (Ohta, T et al., J. Bacteriology 176: 4779-4783, (1994)). As used herein, SAg polypeptides are ligated to any of above structures at the peptide or nucleic acid level. Preferred proteins for this embodiment are G proteins, ATPases and HSPs. Chemical conjugation is carried out by conventional methods, e.g., use of preferred heterobifunctional crosslinkers. Alternatively, conjugates are produced genetically as fusion proteins by conventional methods. In yet another embodiment, the conjugates are created by permitting natural binding of the components to each other without chemical modification. Any of the foregoing conjugates or fusion proteins may be used when incorporated into vesicles or exosomes secreted from a cell. See Example 36 for methods and protocols.

[0358] SAg-encoding nucleic acid is fused in frame (or cotransfected) with nucleic acid encoding a signal transduction protein or HSP. Transfectants are prepared as in Example 1. They are used in vivo as a preventative or therapeutic antitumor vaccine according to Examples 15, 16, 18-23. They are also used ex vivo for inducing tumor specific effector cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16 18-23, 68). The peptide or polypeptide conjugates are also useful for the same purposes.

37. SAgs with Specialized Sites for C-terminal GPI Anchoring, Glycosylation, Sulfation, N-Myristoylation, Phosphorylation, Hydroxylation, N-Methylation, Signal Peptide Binding, LPS Binding HSP Binding, Chemokine Binding and Prenylation

[0359] SAg-encoding nucleic acid is fused in frame to nucleic acids encoding the above “specialized sites” and transfected into tumor cells or accessory cells The structures of these sites is given in Table 3, p. 48 of Rocker R B I et al., J. Nutrition 123: 977-990 (1993).

[0360] Tumor or accessory cells express SAgs in a variety of fashions after post-translational modification (Wilkins, M R. et al., Proteome Research: New Frontiers in Functional Genomics Springer Berlin, Germany (1997)). For example, myristoylated SAg will bind to surface lipids and will be minimally secreted. In glycosylated form, the SAg will be routed to the class II pathway and appear bound on the cell surface. When bound to invariant chain, the SAg will be routed to the class II receptor.

[0361] Nucleic acids encoding proteins that active in post-translational modification of SAgs are fused in frame to nucleic acid encoding SAgs. These posttranslational modifiable sites include, but are not limited to, a C-terminal GPI anchor, glycosylation site, palmitoylation site, myristoylation or prenylation site, N-methylation site, hydroxylation site, phosphorylation site, sulfation site, signal peptidase site, carboxylation site and prenylation sites.

[0362] The incorporation of many membrane proteins into the lipid environment is based on sequences of largely hydrophobic amino acids that can form membrane spanning domains. However, a large number of membrane associated proteins do not display hydrophobic elements in their primary sequences. The capacity for membrane association in these cases is often provided by covalent attachment (either cotranslationally or post translationally) of lipid groups to the polypeptide chain. Acylation of proteins by addition of C14 myristic acid to an N-terminal gly residue or addition of C16 palmitic acid by thioester linkage to cysteine residues is in a variety of positions in SAgs. Palmitoylation of SAgs is not restricted to thioester linkage and may occur through oxyester linkages to serine and threonine residues. Furthermore, thioester linkage of fatty acyl groups to proteins is not restricted to palmitate. Longer chain fatty acids such as stearic acid (C18) and arachidonic acid (C20) are also produced. The addition of palmitoyl and/or myristoyl groups with varying lengths confers additional and sufficient binding energy for hydrophobic binding of proteins to receptors, membranes or lipid bilayers. The attachment of palmitate is sufficient whereas the attachment of myristate is insufficient in isolation. Palmitoylation thus provides a means for membrane anchorage of SAgs and can allow effective concentration of an enzyme or other regulatory proteins at the membrane.

[0363] Glycosylated SAg is better capable of binding to oligosaccharide receptors on blood vessels, inflammatory cells or immunocytes. Signal peptide sequences permit the SAg to be routed to various cell surface receptors. Prenylation is important in the membrane attachment and protein-protein interactions of SAgs and oncogene activation. Prenylation, or post translational enzymatic addition of prenyl, geranyl, farnesyl or geranylgeranyl, involves reactions of a prenyl diphosphate with a cysteinyl sulfhydryl group near the C terminus of the protein to give a prenyl-S-Cys moiety.; Characteristically the Cys-ali-ali-Xaa sequence (“ali” is an aliphatic amino acid; Xaa is any amino acid) is recognized by the transferase that catalyzes the reaction. When Xaa is serine, alanine or methionine, the protein is farnesylated; when Xaa is leucine, it is geranylgeranylated. Farnesylation of the protooncogene p21ras is integral both for its membrane association and transforming activity. Farnesylated proteins mediate the induction by IL-1b of NOS whereas a geranylgeranylated proteins repress this induction.

[0364] Nucleic acids encoding HSPs, along with their promoters, are fused in-frame (or cotransfected) with SAg nucleic acid. These include but are not limited to two recently discovered HSP genes, orf37 and orf35 in Staphylococcus aureus that are upstream and downstream of grpE(hsp20), dnaK(hsp70) and dnaJ(hsp40) in the following sequence: orf37-hsp20-hsp70-hsp40-orf35. The promoters are located upstream of orf37 and upstream of hsp40. These fused proteins are useful as preventative or therapeutic antitumor vaccines according to Examples 15,16, 18-23. They are also useful ex vivo for producing a population of anti-tumor T cells, NKT cells or NK cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16, 18-23).

[0365] Most eukaryotic cells are decorated with chemical groups such as phosphates, methyls, sugars, or lipids during or after their translation from mRNA. These extra groups have various functions, often serving as switches or localization signals. One lipid modification is protein prenylation in which a 15-carbon farnesyl or 20-carbon geranylgeranyl group is attached to the protein's —COOH terminus followed by other modifications (proteolysis, methylation, and palmitoylation).

[0366] Most prenylated proteins are members of signal transduction cascades. For example, the—subunits of heterotrimeric guanosine triphosphate (GTP)-binding proteins (G proteins) and virtually all members of the Ras superfamily of proteins. Farnesylation of H, K, N-Ras is essential for the ability of oncogenic mutants of these proteins to transform cells. 30% of established tumor cell lines contain mutationally activated Ras proteins. FTase inhibitors shrink tumors in animals to an undetectable size with no significant toxicity after weeks or months of exposure. Farnesylation is a prerequisite for palmitoylation. Palmitoylation of H-Ras occurs only in the plasma membrane by a putative membrane-bound palmitoyl transferase. Farnesylation may bring a finite amount of H-Ras to all cell membranes, at which point and palmitoylation is required to trap it in the plasma membrane. H-Ras palmitoylation like G protein-subunit palmitoylation, is reversible and may regulate signal transduction. COOH terminal proteolysis of prenylated proteins and methylation are required for palmitoylation, membrane binding and Ras function. Prenyl protein specific protease and methyltransferase like Ftase may be good targets for drugs that prevent oncogenesis.

[0367] Common N terminal additions are fatty acid acylations and glycosylations which provide polypeptide chains with short “lipophilic handles” or recognition sites that serve to facilitate their vectoral transport or compartmentalization are common N-terminal additions. For example, myristic acid in the form of myristyl CoA serves as a substrate for specific N-terminal acylations that are important in anchoring proteins to endoplasmic membranes. The most common C-terminal modifications are amidations, acylations, polyadenylations and the enzymatic additions of tyrosyl residues. Similarly the C-terminal acylation process is complex. Prenylation occurs at Cys residues is often associated with proteins that end in Cys-Val-Ile-Ala. The reaction sequence involves (1) a first prenylation (addition of a farnesyl moiety to Cys) followed by (2) cleavage of the Ala, Ile and Val residues and (3) the carboxymethylation of the resulting C-terminal prenylated cysteine. In addition to providing a membrane anchor, this modification often is essential to function of oncogenes such as Ras.

[0368] Two separate and well characterized pathways for carbohydrate addition: the N-linked dolichol pyrophosphate mediated pathways and the O-linked pathways that utilize UDP sugars as substrates and hydroxylated amino acid side chains as sites for attachments. Side chains amino phosphorylation of specified proteins usually at tyrosyl or serinyl residues as a way of causing cascade-like amplifications in a metabolic system. Methylation and methyl additions can also serve as novel on-off switches for metabolic processes. The targeted amino acids or methyl additions are lysine, histidine and arginine. In prokaryotes, reversible methylations of aspartyl and glutamyl side chains can occur. The best example is carboxymethylation of glutamate which is associated with bacterial chemotaxis and is elaborated by the opening and closing of membrane ion channels upon methylation and demethylation. Post translational modifications can lead to crosslinking and stabilization of protein matrices. Amino acids such as L-lysine, L-glutamine, L-cysteine and L-tyrosine are utilized extensively as sources for protein cross-linking. Examples include the extracellular matrix cross linking of collagen and elastin and the stabilization of keratin-derived matrices and tubulin by -glutamyl lysine crosslinks.

[0369] In bacteria, the majority of proteins that form durable wall associations possess either distinctive N-terminal signals (lipoproteins) or more commonly distinctive C terminal wall associating signals although a number of wall associated proteins possess neither of these types of signals. A number of wall-associated proteins in gram-positive bacteria are anchored to the external surface of the cytoplasmic membrane via a covalently attached lipid moiety. Both gram-negative and gram-positive lipoproteins possess similar distinctive N-terminal signal sequences which contain a tetrapeptide consensus at the cleavage site consisting of Leu-X—Y-Cys where X and Y are predominantly small neutral residues and signal and signal peptidase cleavage occurs between Y and Cys. This sequence directs either co- or post translational modifications involving transfer of glycerol from phosphatidylglycerol to the +1 Cys, followed by the transfer of fatty acids from phospholipid to the glyceryl-prelipoprotein to produce a diglyceride-prelipoprotein. The C terminal end of a large number of Gram positive wall-associated proteins share common structural features that are required to localize these proteins in the cells wall. These C-terminal structures include a number of distinct features. At the extreme C-terminus there is a stretch of 15-22 hydrophobic residues, followed by a short tail of predominantly charged amino acids. Immediately upstream from this hydrophobic/charged-tail domain, there is a highly conserved Leu-Pro-X-Thr-Gly-X (LPXTGX) motif which is usually preceded by a sequence containing a high proportion of regularly spaced prolines. GPI anchors have not been identified on bacterial cell surface proteins. But the strong conservation of the LPXTGX motifs and of a hydrophobic/charged tail residue-helical domain are common structural features that are required to localize these proteins in the cell.

[0370] Protein A is covalently coupled to the cell wall whereas of the proteins are not. Non-covalent interactions may occur in some proteins holding it in the cell wall while cross-linking occurs around proline rich region to form peptidoglycans. Hydrogen or water binding sites can be created by hydroxylation reactions, e.g., hydroxylation of proline in collagen provides sites for intrachain hydrogen and H2O bonding.

[0371] SAg-encoding nucleic acid is transfected into cells together with coding regions to permit the above post translational modifications which contribute to the production of an immunogenic tumor cell, accessory cell (preferably a DC) or a tumor cell/accessory cell hybrid. Such nucleic acids encoding the sites for post-translational modifications of SAgs are useful in the structural modification, translocation, cell surface binding and association with key energy-producing and signal transduction molecules and receptors. The cells expressing the products of these post-translational modifications are useful as a preventative or therapeutic antitumor vaccine according to Examples 15, 16, 18-23). They are also useful ex vivo for producing a population of tumor specific effector cells (&agr;/&bgr;+T cells &ggr;/&dgr; T cells, NKT cells, NK cells) for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16, 18-23).

38. SAgs and SAg Proteomes for Enhanced Immunogenicity, Specificity and Intracellular Trafficking of Soluble or Cell-Bound Binary or Ternary Complexes

[0372] SAgs with genetically engineered binding sites are provided in order to enhance their coupling to bioreactive complexes, peptides and LPS's and galactosylceramides. SAgs with a glycosylation other glycosylceramide binding site bind to glycosylceramide-CD1 or glycosylceramide-CD1 complexes alone in soluble or immobilized form, or cell bound after binding to a receptor on a T cell or NKT cell. SAgs are also provided with an LPS binding site for binding to soluble, immobilized or cell bound LPS-CD14 complexes.

[0373] SAgs are provided with a glycosphingolipid or glycosylceramide site by which they can bind to CD1-glycosylceramide or CD1-glycopsphingolipid complexes present in soluble, immobilized form or affixed to CD1+ cells or NKT cells. Glycosylated SAgs are bound to CD1-glycosylceramide complexes in soluble form or fixed to CD1+ cells or NKT cells. SAgs are also provided with an overexpressed site for MHC class I molecules, to increase the effectiveness of binding to MHC class I-tumor peptide antigen complexes or TCR-bound MHC class I-tumor peptide complexes.

[0374] SAgs are engineered with repeating peptides which bind to the V&bgr; chain to increase clustering. SAgs with an “overexpressed” (in terms of number) SAg receptor site binds to tumor cells expressing SAg receptors. SAgs possess a site for binding HSPs which are useful in immunizing normal or anergic T cells in a tumor patient. SAgs bind to T cell antagonist MHC-tumor peptide complexes converting the binary complex to a ternary complex with T cell agonist activity. Anergic T cells are activated by these ternary complexes.

[0375] SAgs are prepared with an overexpressed site for binding glycosphingolipids or glycosylceramides. These complexes are loaded onto CD1 receptors of antigen presenting cells and presented to the tumor bearing host either in vivo or ex vivo (Examples 4, 5, 7). SAgs with a myristoylation site will bind to bacterial glycolipids such as lipoarabinan or a mycolic acids The binary complex is then loaded onto APCs expressing CD1 receptors. These cells are then used in vivo (Example 14, 15, 16, 18-23) to produce a tumoricidal response. Alternatively, they are used ex vivo to produce tumor specific effector cells for adoptive immunotherapy (Examples 2, 7, 14, 15, 16, 18-23, 68).

[0376] A SAgs may also be prepared with signal sequences for protein sorting and intracellular trafficking. Signal sequences comprise short stretches of amino acids located at the N terminus of a protein, the C terminus or in the middle of the peptide chain. The physical properties of these sequences e.g., their polarity or charge. Signal regions are three dimensional domains on the surface of a protein made up of different fragments of the same peptide chain or by different chains altogether. Structural signals are recognized and bound by receptors located on the membranes of organelles. Signal sequences also serve as recognition sites for enzymes which modify the proteins altering their properties and bring about a change in their fate. Once they have fulfilled their function, some of the signal sequences are removed by sequence specific hydrolases. Signal peptides fused to SAgs guide them to the secretory or exocytosis pathway, or to proteins localized to the endoplasmic reticulum, lysosomes, mitochondria, nucleus, peroxisomes or secretory vesicles.

[0377] Lipid Rafts Comprising SAg Plus Signal Transduction Molecules

[0378] Lipid rafts are small glycosphingolipid- and cholesterol-rich plasma membrane microdomains on the cell surface to which proteins and lipids have variable affinities. They function as platforms for both signal transduction and membrane trafficking.

[0379] Sphingolipid-cholesterol rafts are insoluble in the detergent Triton X-100 at 4° C., in which they form glycolipid-enriched complexes (DIGs). Because of their high lipid content, these detergent-insoluble, glycolipid-enriched complexes (DIGs) float to a low density during gradient centrifugation, which enables any associated proteins to be identified and distinguishes DIGs from other detergent-insoluble complexes. Milder detergents such as octylglucoside will solubilize lipid rafts. Glycosphingolipids are insoluble by themselves, and sphingomyelin is resistant to detergent extraction in the presence of cholesterol.

[0380] A model for the organization of sphingolipid-cholesterol rafts is as follows: Sphingolipids associate laterally with one another, probably through weak interactions between the carbohydrate heads of the glycosphingolipids. The sphingolipid head groups occupy larger excluded areas in the plane of the exoplasmic leaflet than do their predominantly saturated lipid hydrocarbon chains. Any voids between associating sphingolipids are filled by cholesterol molecules which function as spacers. The close-packed sphingolipid-cholesterol clusters behave as assemblies within the exoplasmic leaflet, where the intervening fluid regions are occupied by unsaturated phosphatidyl-choline molecules. Glycosphingolipids usually carry a long fatty acid which is amide-bonded to the sphingosine base and can interdigitate with the cytoplasmic leaflet of the bilayer. As cholesterol is present in both leaflets, it functions as a spacer in the cytoplasmic leaflet as well, filling voids created by interdigitating fatty acid chains. Rafts contain proteins attached to the exoplasmic leaflet of the bilayer by their GPI anchors, proteins bind to the cytoplasmic leaflet by acyl tails (e.g., the Src-family kinase) or proteins associate through their transmembrane domains, Interactions with raft lipids may be mediated by binding to cholesterol and by acylation of C-terminal cysteines.

[0381] The most important property of the lipid microdomains is that specific proteins associate with them. Glycosylphosphatidylinositol (GPI)-anchored proteins and doubly acylated kinases bind to rafts by their lipid moieties. Also several transmembrane proteins have been recovered in DIGs. Several proteins have been identified as residents of these lipid microdomains, including caveolin, GPI-linked membrane proteins, influenza hemagglutinin, the high-affinity IgE receptor, and the B cell integral membrane protein CD20. In addition, several molecules involved in signal transduction have been shown to be associated with lipid rafts such as the G&agr; subunits of heterotrimeric G proteins, the double-acylated Src family protein tyrosine kinases Lck, Lyn, and Fyn, and the Zap70 family protein tyrosine kinase, Syk. The lipid rafts are also associated with actin and actin-binding proteins.

[0382] The function of rafts in signal transduction is to select and concentrate molecules or receptors in a micro-environment of the membrane thus speeding up binding during signalling and preventing inappropriate crosstalk between pathways. They are also depots of cargo molecules and transport machinery for trafficking. Clustering of GPI anchors with rafts leads to interaction with signal-transducing proteins that then become activated. They facilitate interaction with ligands and effectors on both sides of the membrane to include kinases and their substrates for signal transduction. Two Src family kinases, Lck and Fyn, both implicated in T-cell activation, are immunoprecipitated with GPI-anchored proteins after Triton X-100 extraction. Indeed, rafts maintain a pool of the hyperphosphorylated (inactive) Src-like kinase Lck which interacts with rafts by its myristyl and palmitoyl anchor. Trimeric G proteins and Ras also associate with DIGs. Upon cross-linking the TCR, its associated signaling molecules and coreceptors acquire increased affinities toward lipid rafts. Integrity of these domains is required for efficient signal transduction by the TCR. Lipids involved in signal transduction have also been localized to DIGs which include phosphoinositides such as phosphatidyl-inositol-(4,5)-bisphosphate and sphingomyelin.

[0383] Superantigens alone or in combination with other molecules including but not limited to GPI, signal transduction molecules G proteins, ganglioside/glycolipid transfer agents (See glycolipid transfer factors-Section 58 and influenza virus hemagglutinin, HA 2 or Sendai virus or the heptad repeat unit), and tumor associated antigens are coupled to lipid rafts by methods given in Example 4. The lipid rafts can also contain a &agr;-1-4 digalactosylceramides which are natural receptors for SAgs. These derivatized lipid rafts are rapidly integrated into cell membranes and are used to activate inhibitory or apoptotic pathways in tumor cells. They are useful in transferring receptors to tumor cells or T cells which recognize natural ligands for the activation tumor cell apoptosis. They activate T cells and NKT cells by provision of superantigens, receptors and key signal transduction molecules, e.g., lyck or fyn involved in T cell activation. Delivery of tumor associated antigens via lipid rafts, has the added advantage of stimulating T cells from tumor bearing patients which have been anergized in the course of tumor growth.

[0384] Lipid rafts are prepared as given in Example 61. They are useful in vivo as a preventative or therapeutic antitumor vaccine. They are administered parenterally in doses of 0.01-1 &mgr;g in normal saline three times weekly either before or after tumor implantation. When given after implantation, the treatment is continued for four weeks (Examples 5, 15, 16, 18-23, 57-59). They are also useful ex vivo to immunize T or NKT cells to produce a population of tumor specific effector T cells for adoptive immunotherapy of cancer. For ex vivo use the lipid rafts are incubated with T cells (&agr;&bgr;T cells, &ggr;/&dgr;T cells, NK cells, NKT cells) or antigen presenting cells in doses of 0.1-1 &mgr;g for 24 hours after which the cells are harvested and administered (Examples 2-5, 15, 16, 18-23, 57-59, 68).

[0385] GPI-SAg-Ceramide or GPI-SAg-CD1-Ceramide Complexes Expressed on Tumor Cells, Antigen Presenting Cells, Yeast Displays, Sec Yeast Mutants, APC/tc Hybrid and Shed as Exosomes

[0386] Cells Expressing, Overexpressing or Shedding GPI Proteins are Prepared so that they Comprise Covalently- or Noncovalently Bound Mono- or Diglycosylceramides with Terminal or Subterminal &agr;1-2, &agr;1-4 or &agr;1-6 Configurations and SAg Protein or Peptide Moieties.

[0387] The synthetic pathway involves transfection of SAg DNA into a tumor cell or accessory cell or a hybrid thereof. The SAg protein is translated in a precursor form consisting of a receptor-coding region sandwiched between amino and carboxy-terminal sequence signals. In the endoplasmic reticulum, the signal peptides are cleaved and a GPI anchor comprising a glycosylceramide optionally bonded to a phytosphingosine chain is attached at a specific site designated w. Further post-translational modifications are made in the Golgi before trafficking to the outer leaflet of the plasma membrane. Once GPI-SAg molecules arrives at the cell surface, they may remain entirely mobile within the lipid bilayer or may associate within membrane subdomains.

[0388] GPI-SAgs are released from the cell surface into the extracellular milieu. They leave the cell surface as SAg-glycan-lipid complexes, as SAg-glycan complexes or as free SAgs devoid of a GPI anchor. GPI-SAgs released from intact cell are also released free of their lipid moiety, hence their designation as LIP(−) GPI-SAgs, whereas those presumably released with an intact lipid moiety are termed LIP(+) GPI-SAgs. The lipid free moieties are more hydrophilic and therefore soluble in an aqueous environment, whereas the intact lipid-glycan-protein complexes travel in more hydrophobic environments. In the absence of detergents, the released or “shed” LIP(+)-GPI-SAgs in vivo are vesicles with clearly defined lipid bilayers or as hydrophobic aggregates lacking a bilayer morphology. These shed vesicles, often referred to as exosomes, contain many LIP(+) GPI-SAgs. The shedding process itself appears to depend on GPI-proteins, because vesiculation is reduced by 50-90% in cells lacking GPI proteins.

[0389] Shedding is enhanced by treating the tumor cells with 20 mM retinoic acid. In addition high concentrations of glycosphingolipids on the tumor cell surface are generated by selective transport from the site of synthesis to the cell surface. Provision of ceramide containing the &agr;2-hydroxy fatty acid C6OH results in (1) conversion to galactosylceramide, galabiosylceramide and sulfatide and (2) sorting in the trans-Golgi network to the tumor cell surface. GPI-SAgs remain biologically active after being released from the outer leaflet of cell membranes. LIP(+) GPI proteins may also transit to adjacent membranes where they associate with the exogenous membranes by incorporating themselves into the lipid bilayer in addition to binding to surface receptors.

[0390] Additionally, superantigen or oxyLDL receptor nucleic acids are transfected into yeast sec mutant. The yeast sec mutant,6-4, contains a temperature sensitive mutation in a gene product required for the transport of secretory vesicles for the trans-Golgi network to the plasma membrane. Gene expression is initiated by an inducible promoter concomitant results in the arrest of vesicle fusion and the insertion of SAg or LDL receptor protein in the plasma membrane. Thus gene expression begins at the same time that secretory vesicles become unable to fuse with the plasma membrane, ensuring that the desired gene products accumulate in the membranes of these vesicles. The purification of these vesicles is rapid and simple, thereby facilitating the subsequent characterization of the desired gene product. Because the Sec6 protein is known to be involved only in the fusion of these vesicles with the plasma membrane, translocation and processing of proteins in the endoplasmic reticulum and processing in the Golgi are largely unaffected by the Sec6 mutation.

[0391] The transfected superantigen or LDL nucleic acid (plasmid) is expressed as superantigen polypeptide or oxyLDL receptor polypeptide in vesicles in association with yeast GPI-lipid membrane structures. The lipid portion of the SAg-GPI-lipid complex comprises a ceramide with a C26 dihydroxy sphingosine or phytosphingosine configuration which is essential for activating NKT cells. The resulting SAg-GPI-phytosphingosine vesicles have the capacity to activate T cells via the superantigen and NKT cells via the phytosphingosine and thus produce a potent anti-tumor effect. Administered preferably by direct administration into the tumor, the oxyLDL receptors induce an excessive accumulation of endogenous or exogenously administered oxyLDL and LDL at the tumor site. The deposited oxyLDL induces apoptosis and foam cell formation in tumor cells and tumor microvascular endothelial cells resulting in potent tumoricidal response. Optionally, SAg-GPI-phytosphingosine are expressed on these vesicles together with vesicles expressing oxyLDL receptor-GPI-phytosphingosine or oxy LDL receptors. Tumor associated peptides and polypeptides, tumor apoptosis inducing peptides and polypeptides including but not limited to thrombospondin, angiogenesis inhibitor peptides and polypeptides including but not limited to angiostatin or VEGF are also useful fused or conjugated to SAgs in the same sec mutant or coadministered with the SAg-sec mutant in a separate sec mutant. Vesicles containing all of the above constructs including but not limited to SAg-GPI-phytosphingosine or oxyLDL receptor-GPI-phytosphingosine are prepared and isolated according the method of Coury L A et al., Methods in Enzymology 306: 169-186 (1999) and as in Examples 4, 5, 7, 42, 50-51.

[0392] All of the constructs given above are administered preferentially by direct intratumoral injection as given in Example 20. They are useful in vivo as a preventative or therapeutic antitumor vaccine according to Examples 2, 7 14-16, 18-23, 36. They are also useful ex vivo to produce a population of tumor specific effector cells (&agr;&bgr;T, &ggr;/&dgr;T, NK, NKT cells) for adoptive, immunotherapy of cancer (Examples 2-5, 7, 15, 16, 18-23, 68).

[0393] A yeast cell display system is also used to present SAg to T cells, NKT cells or NK cells in the context of phytosphingosine groups present in the yeast cell membrane. The yeast displays are prepared by the method of (Cho B K et al., J. Immunologic Methods, 220: 179-188 (1998) and used to activate T cells, NK cells and NKT cells. The yeast presentation has the advantage of presenting as many as 105 proteins per cell at the yeast surface potentially allowing multivalent interactions to occur between the yeast and target cell. The superantigen gene is transfected into the S. cerevisiae. Individual colonies of the transfected yeast are grown overnight in the Trp-media and harvested in the log phase. Murine splenocytes (105) are incubated with varying number of yeast cells that bear the superantigen. After 20 h in culture, cells are harvested, washed in PBS and screened for activation markers. In this yeast display system constructs including but not limited to SAg-phytosphingosine or SAg-GPI-phytosphingosine, SAg-lipid or lipoprotein conjugates are presented to T cells and NKT cells to produce a population of tumor specific effector cells (T cells, NKT cells or NK cells) useful for the adoptive therapy of cancer under protocols given in Example 2, 7, 14, 15, 16, 18-23. They are also useful as a vaccine or against established tumor as given in Examples 14, 15, 16, 18-23, 68.

39. Effector T Cells: Methods of Lowering Activation Threshold for Activation by SAg

[0394] Tumor peptide MHC complexes are insufficient to activate T or NKT and may even induce antagonism or anergy. SAgs added to the complexes are useful to overcome activating T or NKT cells and overcoming the anergy common in tumor-bearing hosts. To enhance responsiveness to tumor-peptide-MHC-SAg complexes and to overcome anergy, it is desirable to reduce the threshold for signal transduction in an effector T or NKT cell population. To accomplish this, nucleic acids encoding SAg-specific TCR V&bgr; regions are transfected into T or NKT cells to duplicate or otherwise induce overexpression. In addition, measures are taken to alter signal transduction by dimerizing the tyrosine kinase receptors or deleting the inhibitory region of the TCR.

[0395] Most SAgs show selective binding to well defined segments of the V&bgr; chain of the TCR. The TCR genes are clustered on chromosome 7 and include 75-100 V, 2D, 13 J, and 2 C&bgr; genes. The entire 685-kb human locus has been sequenced, the longest contiguous subfamilies that exhibit >75% sequence identity at the DNA level. The human TCR locus is on chromosome 14 and consists of 42 V genes, 61 J genes and 1 C&bgr; gene. The TCR chain genes are on chromosome 6 and consist of approximately 23V, 2D, 12J, and 2C gene segments. The 2 C&bgr; genes form clusters with upstream D&bgr; and J&bgr; segments: C&bgr;1 rearranges only with Db1/Jb1 genes whereas C&bgr;/B&bgr; rearranges with both D&bgr; and J&bgr; segments. Similarly, functional V&bgr; genes appear to rearrange to both J clusters in a random fashion. The &bgr; chain transcripts of antigen-specific T cell clones appear to contain little length variation and harbor conserved N additions.

[0396] A mechanism for achieving diversity in variable (antigen-specific) regions of the TCR involves the random addition of nucleotides inserted at junctional positions during the joining of V&bgr; D&bgr; J segments. It is at this position that nucleic acids encoding the major V&bgr; binding site for a specific SAgs are inserted. This overexpression allows for more selective recognition of SAg and a lower activation threshold by a SAg that selectively binds at that site.

[0397] Nucleic acid encoding SAg receptor is amplified and transfected into T cells to overexpress the SAg receptor on the cell surface These T cells bind SAgs, and this is linked to appropriate signal transduction pathways that deliver a mitogenic signal to the T cell. One method of increasing T or NKT cell reactivity to a SAg is to increase the density of their SAg receptors. Even in the absence of ligand, the equilibrium is shifted from monomeric inactive receptors to dimeric or oligomeric active receptors. Concomitant expression of the corresponding ligand reinforces the signal. Increased numbers of receptors occur after increased transcriptional activation of, or amplification of, the SAg receptor gene. Amplification is the preferred method.

[0398] The SAg receptor may also be mutated so that it engages in ligand-independent dimerization. Examples of such mutations are addition or loss of a cysteine residue in the extracellular domain causing formation of dimeric and disulfide bonded and activated receptors. In addition it is possible to dimerize tyrosine kinases by fusing a tyrosine kinase catalytic domain to a protein which is a functional dimer. These fusion partners are able to form homodimers. Such a fusion protein results in dimerization of kinase domains which allows their autophosphorylation and activation. Interaction with receptors in a manner which promotes dimerization of two different receptors is another method to enhance receptor reactivity. The kinase domain of a receptor may be mutated to increase catalytic activity or alter substrate specificity. Such mutations expand quantitatively and qualitatively the repertoires of substrates in the target cells and thereby shift the balance towards activation and transformation. Mutations in regions involved in negative regulation of receptor function also contribute to the transforming properties. Loss of regions in the C terminus that are regulatory serine phosphorylation or autophosphorylation sites also contributes to excessive receptor activity.

[0399] Effector cells as discussed above are prepared as in Examples 4, 5, 7. They may also be used in vivo as tumor specific effector (T, NK, NKT) cells for the adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16, 18-23, 68).

40. SAg Nucleic Acids Fused of Cotransfected into Tumor Cell with Nucleic Acids Encoding Inducible Nitric Oxide Synthase (iNOS)

[0400] SAg-encoding nucleic acid is fused in frame (or cotransfected) with nucleic acid encoding inducible nitric oxide synthase which produces nitric oxide (NO). NO is derived from terminal guanido-nitrogen of L-arginine which is catalyzed by the constitutive or inducible nitric oxide synthase (iNOS). NO is pleiotropic and is a major cytotoxic mediator secreted by activated endothelial cells and macrophages. Production of NO is associated with apoptosis of tumorigenic cells and with a bystander effect on surrounding non-NO producing tumor cells (bystander effect). Non metastatic tumor cells show high levels of iNOS activity and NO, whereas metastatic cells do not. There is an inverse relation between production of endogenous NO and the tumor cells survivability. In the present invention, tumor cells transfected with SAg-encoding nucleic acid are cotransfected with nucleic acids encoding iNOS. The gene for iNOS has been cloned and characterized by Xie Q et al., Science 256: 225-228 (1992). Tumor cells cotransfected with nucleic acids encoding SAgs and iNOS demonstrate augmented immunogenicity via the expression of SAg as well as enhanced auto- and bystander tumoricidal capacity via NO production.

[0401] After administration to a patient and colonization of metastatic sites, the transfectants induce a powerful local and systemic tumoricidal effect. The presence of NO allows the transfectants to die naturally via auto-apoptosis within a finite period (usually 72 hours) after administration thus minimizing the risk of inducing active metastatic disease. These tumor cell transfectants may also be made to express oncogenes associated with the metastatic phenotype to promote localization of the cells to tumor sites in vivo. The cells may be further transformed by nucleic acid encoding angiostatin or other angiogenesis inhibitors for additional tumoricidal potency. The transfectant are prepared by methods in Example 1-3 and used as a preventative or therapeutic antitumor vaccine by methods in Example 15, 16, 18-23).

41. DCs, Other Accessory Cells and DC/tc Hybrids Expressing and/or Secreting SAg

[0402] Accessory' cells are necessary to generate primary antibody responses in culture. Of the various types of accessory cells, DCs are the most effective APC. DCs are a preferred accessory cell. However, the invention is not confined to DCs. Any other accessory cell type may be used in place of DCs. In particular, accessory cells are defined in Oxford's Dictionary of Biochemistry and Molecular Biology as including fibroblasts, synoviocytes, macrophages, B cells, Langerhans cells and any other cell type which assists in producing an immune response of any kind.

[0403] DCs have exceptional capability to capture antigens, process and present antigenic peptides, migrate to lymphoid organs, and induce primary immune responses of both CD8+ and CD4+ T cells. The ability of DCs to act as potent APC in the induction of T cell responses is attributed to the high expression of MHC molecules and adhesion and/or costimulatory molecules as well as the cells' capacity for to producing cytokines essential for the activation and proliferation of the T cells.

[0404] The number of molecules of antigen-MHC complex on tumor (and infected) cells is typically small (100 per cell), and are recognized by rare T-cell clones (at a frequency {fraction (1/100,000)}) via a TCR that has a low affinity (1 M). In vitro or in vivo, only a few DCs are necessary to provoke a strong T-cell response. In the mixed leukocyte reaction, one DC was sufficient to stimulate 100-3,000 T cells. MHC products and MHC-peptide complexes are 10-100 times higher on DCs than on other APCs such as B cells and monocytes. Mature DCs resist the suppressive effect of IL-10, but synthesize high levels of IL-12 that enhances both innate (NK cell) and acquired (B and T cell) immunity. DCs also express many accessory molecules that interact with various molecules or receptors on T cells to enhance adhesion and signalling (co-stimulation): examples of such pairs are LFA-3/CD58, ICAM-1/CD54, B7-2/CD86. Tumor cells that express the B7 gene elicit CTLs against otherwise silent, subdominant tumor antigens. All these properties of DCs (MHC expression, CD1 expression, secretion of IL-12 and the expression of co-stimulatory molecules) are upregulated within a day of exposure to many stresses and “dangers” including microbial products.

[0405] Infected cells and tumors frequently lack the costimulatory molecules that drive clonal expansion of T cells, the production of cytokines, and T cell development into killer cells. Located in most tissues, DCs overcome challenges by capturing and processing antigens, and displaying large amounts of MHC-peptide complexes on their surface. They upregulate their co-stimulatory molecules and migrate to lymphoid organs, the spleen and draining lymph nodes, where they activate antigen-specific T cells. All of these activities of DCs can be induced by infectious agents and inflammatory products, so that DCs appear to function as “mobile sentinels” that not only bring antigens to T cells but also stimulate those T cells in the induction of immunity.

[0406] DCs are present in most tissues in a so-called “immature” state, unable to stimulate T cells. Although these DCs lack the requisite accessory signals for T-cell activation, such as CD40, CD54 and CD86, they are well equipped to capture antigens, a key event in the induction of immunity; the antigen is then able to induce full maturation and mobilization of the DCs. Terminally-differentiated or mature DCs can readily prime T cells Once activated by DCs, these T cells can complete the immune response by interacting with B cells for antibody formation, macrophages for cytokine release, and target cells resulting in lysis. Thus, immature DCs first handle antigens and then, as mature DCs a day or more later, they potently stimulate T cells.

[0407] DCs stimulate CTLs, which express the accessory molecule CD8 and interact with MHC class I bearing cells, to proliferate vigorously. In the presence of mature DCs and of IL-12, CD4-expressing T-helper cells turn into interferon gamma (IFN)-producing TH-1 cells. IFN activates the antimicrobial activities of macrophages and, together with IL-12, promotes the differentiation of T cells into killer cells (CTL). The capacity of DCs to produce IL-12 and stimulate TH-1 cells leads to microbial resistance. Through IL-4, DCs induce T cells to differentiate into TH-2 cells which secrete IL-5 and IL-4, activate eosinophils and help B cells generate an antibody response, respectively. DCs respond to T cells as well. CD40 and the newly described TRANCE/RANK receptor on DCs are ligated by the TNF (tumor-necrosis factor) family of proteins expressed on activated and memory T cells; this leads to increased DC survival and, in the case of CD40, upregulation of CD80 and CD86, secretion of IL-2 and release of chemokines such as IL-8 and MIP-1a and b

[0408] Immature DCs capture antigen (and particles and microbes in general) by phagocytosis They then form large pinocytic vesicles in which extracellular fluid and solutes are sampled, a process called macropinocytosis. Finally, they express receptors that mediate adsorptive endocytosis, including C-type lectin receptors like the macrophage mannose receptor and DEC-205, as well as Fc, located in most tissues, and Fc receptors. Macropinocytosis and receptor-mediated antigen uptake make antigen presentation so efficient that picomolar and nanomolar concentrations of antigen suffice, much less than the micromolar levels typically employed by other APCs. However, once the DC has captured an antigen, which also provides signals to mature, its ability to capture antigens rapidly declines, and the cell begins to assemble antigen-MHC class II complexes.

[0409] An antigen enters the endocytic pathway of the DC. DCs produce large amounts of MHC class II-peptide complexes due to specialized, MHC class II-rich compartments (MIICs) that abound in immature DCs. MIICs are late-endosomal structures that contain the HLA-DM or II-2M products, which enhance and perform editing functions in the binding of peptide to MHC class II. During maturation of DCs, MIICs convert to non-lysosomal vesicles that discharge their MHC peptide complexes to the surface.

[0410] To generate cytotoxic killer cells, able to eliminate infected cells, and attack tumor cells and transplanted foreign cells, DCs must present peptides (complexed generally to MHC class I proteins) to CD8+ T cells. Display of peptide-loaded MHC class I complexes on the DC surface follows translocation by a peptide transporter from the cytosol to the ER, where complexing occurs and then to the surface.

[0411] Human DCs are characterized by a pattern of surface markers and have the phenotype CD1a+, CD3neg, CD4neg, CD8neg CD20neg, CD40+ CD86+ in the human. The murine phenotype is and CD3neg CD4neg, CD28neg, CD8-B220neg, CD40+, CD80+ and CD36+.

[0412] Maturation of DCs is required for the initiation of an immune response. Microbial products including whole bacteria and the bacterial cell-wall component LPS and inflammatory mediators such as IL-1, GM-CSF and TNF, stimulate DC maturation, whereas IL10 blocks it. Ceramide, which is induced by maturation signals, shuts down antigen uptake by the DC. Mature DCs express high levels of the NF&kgr;B family of transcriptional control proteins (RelA/p65, RelB, RelC, p50, p52) which regulate the expression of many gene encoding immune and inflammatory proteins. Signalling through the TNF-receptor family, for example TNF-R (CD-120a/b), CD40, and TRANCE/RANK, results in activation of NF&kgr;B. Therefore, to induce an immune response through activation of DCs, a pathogen or antigen may have to mobilize the signal transduction pathways of the TNF-R family and TNF-R-associated factors (TRAFs).

[0413] One explanation for the failure of the immune system to eradicate most immunogenic tumors is the lack of tumor antigen presentation by DCs in vivo.

[0414] Several strategies using tumor antigen-charged DCs as vaccines for cancer immunotherapy have been developed. Immunization with DCs pulsed with purified tumor-associated peptides or proteins has been shown to be a powerful method of priming tumor-reactive T cells and inducing host protective and therapeutic antitumor immunity in mice and man. However, such a clinical approach is currently limited due to the paucity of identified human tumor rejection antigens. The polymorphism of the HLA system has also made it difficult to identify tumor-associated peptides as cancer vaccines. In human melanoma, a class of tumor-associated proteins has been identified. However, it is unclear which antigen is the best choice for effective tumor rejection in vivo or how effective any such antigen may be. Thus, immunization with defined tumor antigens is currently limited to a small number of cancers in which candidate antigens have been identified. Anichini et al, J. Immunol. 156:208-217 (1996), showed that the majority of CTL present in HLA-A2.1+ melanoma patients were not directed to the known tumor antigens, Melan-A/Mart-1, tyrosinase, gp100 or MAGE-3. Therefore, immunization with other, yet unidentified, antigens would be more effective in eliciting tumor immunity in these patients. Johnston et al., J. Exp. Med. 183:791-800 (1996) demonstrated that the enhanced immunogenicity of tumor cells engineered to express the B7-1 gene was a result of expansion of the antigenic repertoire of the tumor. This implies that vaccination with multiple tumor antigens may be superior to use of a single dominant epitope. Indeed, in situations where a tumor-associated antigen remains unidentified, a novel approach is needed for presentation of that antigen by a professional APC.

[0415] An alternative approach, not encumbered by these limitations, is to use unfractionated tumor peptides or tumor proteins as a source of tumor antigens. Two studies have shown that administration to mice of APC (from the spleen) or epidermal Langerhans cells pulsed with tumor fragments resulted in protective immunity against tumor challenge. Zitvogel et al., J. Exp. Med. 183:87-97 (1996) showed that vaccination of mice with bone marrow-derived DC pulsed with unfractionated tumor peptides reduced the growth of subcutaneously established, weakly immunogenic tumors. Thus, immunization with multiple tumor antigens may be superior to use of a single dominant epitope.

[0416] One approach to overcome the possible drawbacks of unfractionated tumor antigens is to use mRNA from tumor cells as a “source” of antigen. mRNA can be amplified from a very small number of cells, permitting the generation of sufficient amounts of antigen from minute amounts of tumor tissue Moreover, tumor-specific mRNA can be enriched by subtractive hybridization to remove RNA that is common to normal tissue. This increases the levels of the relevant tumor-specific antigen(s) that can be achieved, and hence, the potency of the vaccine. More importantly, this approach reduces the concentration of nonspecific antigens or, possibly, self-antigens, thereby lessening the potential for autoimmunity. Pulsing DCs with RNA is known to be effective in empowering them to induce CTL responses and tumor immunity.

[0417] The fusion of tumor cells with DCs is another approach to generate a hybrid vaccine that has both potent antigen processing/presenting power along with the endogenous expression of multiple tumor antigens. Such a hybrid cell would be more effective in inducing antitumor immunity. Gong et al., Proc. Natl. Acad. Sci USA 26:6279-6283 (1998), demonstrated that fusion of a relatively immunogenic mouse tumor, MC38 carcinoma, with syngeneic DCs resulted in a vaccine that induced (1) T cell protective immunity against tumor challenge and (2) rejection of an established tumor. Wang et al., J. Immunol. 161:5516-5524 (1998) used the poorly immunogenic B16 (B16.F10) melanoma which does not express MHC and costimulatory molecules. Immunization with irradiated B16 tumor cells failed to induce systemic immunity or elicit functional tumor-reactive T cells. RMA-S is a Rauscher MuLV-induced T cell lymphoma originating in a C57BL/6 (“B6”) mouse that is genetically defective in TAP, and thus, does not process endogenous antigens for binding to MHC. Fusion of DCs with syngeneic tumor cells generated hybrid cells that expressed both DC-associated accessory molecules important for antigen presentation and tumor-derived antigens. The DC/tc hybrids were processed and presented tumor-associated antigens and elicited tumor-reactive CTLs. Vaccination of B6 mice with B16/DC hybrid cells induced partial protective immunity against tumor challenge. Immunization with B16/DC or RMA-S/DC hybrid cell vaccines primed lymph node (LN) T cells, which, after expansion ex vivo, were active in adoptive immunotherapy. The transfer of such vaccine-primed, expanded T cells into tumor-bearing mice reduced the number of established B16 pulmonary metastases and, in the case of RMA-S/DC, effectively eradicated disseminated FBL-3 tumor.

[0418] The present invention includes a hybrid cell made from fusion of a tumor cell and a DC cell further transformed or transfected with a SAg. Nucleic acids encoding SAgs may be introduced into either the tumor cells or the DCs prior to fusion as in Example 1, 2, 3, 25, 26. This fused cells are prepared as in Example 24, 25 and their phenotype established by the retention of DC characteristics, tumor cell antigens and the expression of SAg (Example 25). By virtue of these multiple features, this SAg-expressing DC/tc has the unique capacity activate maximally an anti-tumor immune response.

[0419] SAg stimulation is known to activate CD4+ and CD8+ T cells to recognize and lyse tumors specifically both in vitro and in vivo. The DC component of the hybrid cell provides optimal tumor antigen presentation due to its enormous surface area together with natural expression of costimulatory molecules B7.1, B7,2, adhesion molecules ICAM-1 and ICAM-3, MHC class I and class II and CD1 receptors. B7.1, in particular, provides a basis for expanding the epitope recognition spectrum from dominant to subdominant epitopes. The expressed SAg confers upon the hybrid cell an augmented capacity to activate various classes of cells that mediate both innate and “acquired” or adaptive immunity, including CD4+ and CD8+ T cells, NK cells and NKT. The SAg also contributes to generation of TH-1 cytokines by this class of T helper cells which contributes to an optimal anti-tumor response. The DC/tc hybrid that expresses and/or secretes SAg is abbreviated herein as an “S/D/t” cell and combines the potent activating properties of SAg with the specialized (tumor) antigen presenting capacity of the DC and the tumor antigens provided endogenously by the tumor cell partner. This S/D/t cell thus consolidates in a single cell the capacity to unleash and amplify the full weight of the host immune response specifically against a selected array of tumor associated antigens.

[0420] The present invention also includes the additional introduction, into the S/D/t cell of with additional nucleic acids. In one embodiment, the additional nucleic acid encodes the particular galactosyltransferase enzyme that catalyze the synthesis of the “heterograft epitope” Gal. In another embodiment, the additional nucleic acid encodes enzymes that synthesize galactosylceramide which is the “natural” epitope recognized by the invariant chain of NKT cells.

[0421] To summarize the foregoing section, the present invention includes DCs, other accessory cells or hybrid DC/tc, each transformed to express SAgs as described in Examples 1 and 3. The transformed (or transfected) hybrid cell, the S/D/t cell, expresses (1) the major accessory molecules of DCs cells (such as CD40, CD80 and CD86, MHC class I and II and CD1); (2) tumor associated epitopes provided by the tumor cell fusion partner; and (3) SAg either membrane bound, secreted or both which activates T cells, NK cells and NKT cells to produce a specific or selective tumoricidal response.

[0422] While the tumor S/D/t cells are preferred, SAg-transfected DCs or other accessory cells are also effective in inducing antitumor responses. These are used as a preventative or therapeutic antitumor vaccine, or ex vivo to stimulate a population of T cells, NK cells or NKT cells for adoptive therapy of cancer (Examples 29).

42. DCs Expressing SAg and Tumor Associated Antigens—Production by Processing of Apoptotic Tumor Cells or Tumor Cell Lysates

[0423] DCs expressing SAg and tumor associated antigens are prepared without cell fusion (Example 28). Apoptotic, SAg transfected tumor cells are prepared by first transfecting tumor cells with SAg (Example 1) and then inducing apoptosis by irradiation or other methods well known in the art (Example 28). DCs express &agr;v&bgr;5-binding integrins and secrete thrombospondin which ligates vitronectin expressed on the surface of the apoptotic tumor cell. DC surface CD36 binds to its natural ligand, sequestrin, also expressed on apoptotic tumor cells. The apoptotic SAg-expressing tumor cells are phagocytosed and processed by DCs under conditions described in Example 28.

[0424] In another embodiment, lysates of tumor cells optionally expressing SAg are also used as above. Tumor cells are first transformed to express SAg and then lysed (Example 28. These lysates are “fed” top DCs as in Example 28. DCs treated in this way can now present tumor-associated antigens along with SAg to the immune system. Alternatively, DCs are first transformed to express SAg, and these cells are allowed to phagocytose or process apoptotic tumor cells or lysates. Optionally the tumor cells may have been previously genetically modified with nucleic acids so that they synthesize &bgr;1,3-glucan, LPS, peptidoglycan or Gal Cer.

[0425] The resulting SAg-expressing DC, after phagocytosing apoptotic tumor cells or Iysates, expresses MHC class II, costimulatory molecules CD40, CD80 and CD86, together with SAg and tumor associated antigen. The additional expression of SAg in this system permits more potent activation of T cells, NKT cells and NK cells which recognize the tumor associated antigens expressed on the DC surface in the context of MHC and costimulatory molecules.

[0426] In another embodiment, tumor cells are fused to mammalian cells including but not limited to proximal tubular epithelial cells, other kidney cells including the Madin-Darby canine kidney (MDCK) cell line which express an abundance of alpha anomeric digalactosylceramides which are natural superantigen receptors. In an additional embodiment, tumor cells are fused to cells including but not limited to amphibian intestinal cells which express a high level of phytosphingosine (see Example 25 for cell fusion methodology). The resulting hybrid cells express tumor associated antigens and either galactosylceramides or phytosphingosine. Alternatively, exogenous galactosylceramide or phytosphingosine from the cell membranes of the above kidney or amphibian cells are incorporated into intact tumor cells by methods given in Section 38 and Example 5. These hybrid tumor cells or tumor cells with newly acquired membrane glyco- or phytolipids (TCGP) are further transfected with superantigen nucleic acids to produce hybrid tumor cells or TCGP expressing superantigens, tumor associated antigens, galactosylceramides and/or phytosphingosine (Example 1). These hybrid tumor cells or TCGP are potent activators of T cell, NK cell and NKT cells

[0427] The DCs, hybrid tumor cells, or TCGP given above are used in a preventative or therapeutic antitumor vaccine (Example 29) or ex vivo to activate tumor specific effector cells, T cells, &ggr;/&dgr;T cells, NKT cells, NK cells for the adoptive immunotherapy (Example 29).

43. DCs Expressing or Secreting SAg Cotransfected with a Tumor Associated Antigen or “String of Beads” Tumor Antigens

[0428] When a dominant tumor associated antigen (protein) is known, nucleic acid encoding such an antigen are used to transform DCs which already express or secrete SAg (Example 35). Antigens identified by “SELEX” technology which consists of nucleic acids encoding tumor antigens from distinct structural and functional categories of human tumor associated antigens, including mutants, differentiation variants, splice variants, amplified/overexpressed antigens or retroviral antigens may be used. Nucleic acids encoding tumor antigens used to transfect SAg-expressing DCs or DC/tc hybrids. This invention contemplates transfecting with individual nucleic acids encoding a single antigen, or multiples as in a “string of beads” carried by adenoviral or other vectors known in the art (Example 35). Nucleic acids encoding a “string of beads” or tumor associated antigens identified by SELEX may be fused in frame (or cotransfected with) SAg-encoding nucleic acid into DCs or DC/tc. These SAg- and tumor antigen-expressing DCs or DC/tc hybrids are used as a preventative or therapeutic antitumor vaccines (Example 29) or as stimulators ex vivo of T cells, NKT cells or NK cells for adoptive immunotherapy (Example 29).

[0429] Furthermore, nucleic acids encoding proteins listed in Tables I, II, IV and V, for example, angiostatin, protein A, erb/Neu and HSPs, staphylococcal collagen adhesin, are introduced into and expressed in tumor cells or DCs that express or secrete SAg, or into S/D/t cells. These cells that coexpressing the proteins and peptides of Tables I, II, IV and V together with SAg are useful as preventative or therapeutic antitumor vaccines (Example 29) or as stimulators ex vivo that activate tumor specific effector cells (T cells, &ggr;/&dgr;T cells, NKT cells, NK cells) for adoptive immunotherapy (Example 29, 68).

44. Naked DNA or RNA Obtained from the Various Cells Described Above that Express and/or Secrete SAg

[0430] DNA containing the CpG backbone is extracted from tumor cells or DCs that express/secrete SAgs or S/D/t cells (Example 30-34). The preferred source of DNA or RNA is the S/D/t cells DCs or tumor cells expressing SAg are also useful. Alternatively, the DNA or RNA can be obtained from DCs, tumor cells or DC/tc into which SAgs were introduced by the cells having phagocytosed SAg-transformed apoptotic tumor cells or tumor cell lysates.

[0431] The extracted DNA or RNA is used as a naked DNA or RNA preventative or therapeutic vaccine (Examples 30-34). Alternatively, this nucleic acid material may be used ex vivo to activate T cell, NKT cells or NK cells adoptive immunotherapy (Example 1, 31, 33). This extracted DNA or RNA may be used in an initial step of inducing immune reactivity in regional lymph nodes of tumor bearing subjects. After this “priming,” T cells, NKT cells and/or NK cells are harvested from these lymph nodes, expanded in culture in the presence of additional SAg, SAg-expressing DC or tumor cells, or S/D/t cells to generate a T cell, NKT cell or NK cell population for adoptive immunotherapy (Examples 29).

[0432] DNA or RNA for immunization may also be obtained from the various cells described above that express SAg, and which additionally express or several Staphylococcal adhesins, &bgr;-glucans, LPS, peptidoglycans, teichoic acids, mannose, mannan, protein A and/or their respective binding proteins.

[0433] Also useful for naked nucleic acid immunization are bacterial or insect nucleic acids (with CpG motifs) which encode enzymes that catalyze the biosynthesis of &bgr;-1,3-glucans, LPS, peptidoglycan, &agr;-gal, GalCer, teichoic acids, mannan or mannose. Also useful are bacterial or insect nucleic acids that encode the binding proteins for the above carbohydrate-based molecules, glycoprotein lectins that bind the carbohydrate structures, or protein A. Such nucleic acids are used to co-immunize along with SAg expressing DCs or tumor cells or S/D/t cells. Such combined vaccine preparations are used as a preventative or therapeutic antitumor vaccines (Examples 29, 30). Alternatively, they may be used to initiate adoptive T cell therapy by priming regional lymph nodes T cells which are harvested, expanded in vitro by stimulation with S/D/t cells, accompanied by, or followed with IL-2. The tumor antigen-sensitized T cells are reinfused into subjects as described in Example 29.

45. Exosomes Derived from (1) SAg-Expressing Tumor Cells (2) SAg Expressing-DCs (3) S/D/t Cells or (4) DC/tc Hybrid Cells

[0434] MHC-peptide complexes accumulate in endosomes and lysosomes, which compartments contain MHC class II-enriched internal vesicles that are released outside the cell following direct fusion of the external endosomal membrane with the plasma membrane. These vesicles, termed “exosomes” are capable of stimulating CD4+ T cell clones in vitro. In addition, tumor peptide-pulsed DC-derived exosomes prime specific CTLs in vivo leading to a T cell-dependent eradication or suppressed growth of established murine tumors. In the present invention, the exosomes which have SAgs in addition to tumor associated antigens and MHC class I and class II molecules are prepared. Such preparations are significantly more potent in their ability to induce shrinkage of established tumors and prevent tumor outgrowth.

[0435] Exosomes are prepared from (1) tumor cells or DCs which have been transfected with SAgs (2) S/D/t cells, (3) DCs or hybrid DC/tc which have phagocytosed SAg-expressing apoptotic tumor cells or tumor cell lysates (Example 36). In the above hybrids, either the DC or tumor cell may be transfacted with SAg encoding nucleic acid prior to fusion. The resulting exosomes express MHC class I and class II molecules, SAgs and tumor associated antigen. In order to ensure the routing of the transforming SAg to exosomes, the SAg-encoding nucleic acid should include a sorting signal to localize the SAg to the exosome. These cells may be pulsed with tumor associated antigens shortly before isolation of their exosomes. The isolated exosomes are used as preventative or therapeutic antitumor vaccines (Example 36) or as stimulators ex vivo that activate tumor specific effector cells (T cells, &ggr;/&dgr;T cells, NKT cells, NK cells) for adoptive immunotherapy (Example 36). These various exosome preparations are extremely effective inducers of anti-tumor responses.

46. Cell Surface Display of Recombinant SAg and Tumor Associated Antigens in Bacteria

[0436] Heterologous proteins and various carbohydrate-containing moieties, displayed on the surface of bacterial cells often act as major antigenic systems that stimulate anti-tumor immunity. Such antigens include GalCer, &agr;-gal, &bgr;1,3-glucans, LPS, peptidoglycans, teichoic acids and mannan. These structures will be referred to below collectively as “anti-tumor motifs.” These structures are created by the action of enzymes encoded by a number of bacterial and fungal genes. For example, Sphingomonas paucimobilis expresses GalCer, or Klebsiella aerobacter expresses -Gal and LPS, and Cryptococcus expresses &bgr;1,3-glucan. Because not all the genes responsible for the biosynthesis of these molecules have not been identified, it is difficult to isolate them and introduce them into mammalian cells. These structures are, however, biosynthesized in abundance by bacteria. Immunization with live recombinant bacteria induces both local and systemic immune responses suggesting that gram-positive bacteria might constitute potential live bacterial vaccine delivery systems. The surface molecules of gram-positive bacteria seem to be more permissive for the insertion of extended sequences of foreign proteins than are gram-negative bacteria, in which both translocation through the cytoplasmic membrane and correct integration into the outer membrane are required for proper surface exposure.

[0437] In the present invention, different bacterial surface display systems are used to express natural anti-tumor motifs for developing live bacterial vaccine vehicles. SAgs are provided to bacteria which do not naturally biosynthesize them so that they are expressed together with natural anti-tumor motifs made in the bacteria. These bacteria are then used as preventive or therapeutic antitumor vaccines (Example 28).

[0438] Sphingomonas paucimobilis bacteria express GalCer which can activate the V14 invariant chain expressed by NKT cells. These cells recognizes the galactosylceramide epitope. NK cells, using their NKP1-1 receptors, recognize carbohydrate units such as 1b,3-glucans expressed widely on fungi. NK cells are activated directly by SAgs. Further proliferation is induced by interferon produced by T cells in response to the SAg. Humans have natural antibodies specific for the &agr;Gal epitope. This epitope is constitutively expressed on several bacteria including Klebsiella aerobacter and E. coli.

[0439] Coexpression of SAg with the above anti-tumor motifs in recombinant bacteria or fungi provides potent signals to activate NKT cells, T cells and NK cells and to induce production of TH-1 cytokines. The adhesion molecule VCAM-1 expressed by some SAgs such as enterotoxin C contributes to the process by costimulation. Therefore, the SAg expressing bacteria (whether natural or transformed) are capable of activating all of the major cell types involved in the anti-tumor response.

[0440] In the present approach, the preferred SAg is SEB. SEB is introduced for surface display into S. carnosus. E. coli-staphylococcus shuttle vectors are constructed by taking advantage of (1) the promoter signal sequence and propeptide region from the lipase gene construct derived from S. hyicus and (2) the cell surface attachment part of staphylococcal protein A. A 198-amino-acid region, designated ABP (albumin binding protein), is expressed adjacent to the cell wall to increase accessibility to the surface-displayed target peptides. Staphylococcal enterotoxin B is introduced between the lipase propeptide and the ABP region and the surface exposure of the three different regions are tested separately with different assays.

[0441] These recombinant bacteria are useful as a preventative or therapeutic antitumor vaccine (Example 28) or as stimulators ex vivo of tumor specific effector cells (T cells, &ggr;/&dgr;T cells, NKT cells, NK cells) for adoptive immunotherapy (Example 28, 68).

47. Introduction of Staphylococcal Collagen Binding Adhesins into DCs, Tumor Cells or S/D/t Cells

[0442] Nucleic acids encoding SAgs are transfected into these various cells, as described above, together with nucleic acids encoding Staphylococcal collagen adhesin. Mice immunized with a recombinant fragment of the collagen adhesin were protected against Staphylococcus aureus-mediated septic death. Sera from S. aureus-immunized mice promoted phagocytic uptake (opsonized) and enhanced intracellular killing of the bacteria compared to sera from control mice.

[0443] The collagen binding adhesin is isolated from S. aureus strain Cowan. Sequencing of the cloned corresponding gene cna revealed a 133-kDa polypeptide (close to that of 135 kDa reported for the native protein). This protein is proposed to consist of a signal sequence (S) followed by a large nonrepetitive region (A). Immediately following the A region are three consecutive repeats of a 167 amino acid long unit (B1, B2, B3). A cell wall (W) region consisting of 64 amino acid proline-and lysine-rich domain is followed by stretch of hydrophobic amino acids (M), presumably constituting the cell membrane spanning region. Finally, the C-terminus (C) is made up of a few positively charged amino acids. This model structure is used as the starting point to identify the collagen binding domain. The ligand binding site is localized within the 135-kDa S. aureus collagen adhesin. The collagen binding domain is localized to a 168 amino acid long segment [CBD (151-318)] within the N-terminal portion of the adhesin.

[0444] Using biospecific interaction analysis, bovine collagen was found to contain eight binding sites for CBD (151-318), two of which were high affinity and six low affinity. The deduced amino acid sequence of the ligand binding domain of the collagen adhesin is presented. Subsequently a discrete collagen-binding domain within the collagen adhesin was identified and localized to a region between amino acids Asp209 and Tyr233. The FDA strain 574 of S. aureus encodes a 1185 amino acid collagen adhesin. The complete nucleotide sequence of the cna gene as well as a schematic model of the collagen adhesin have been published. The overall structure resembles that of other gram positive surface structures. The lysine and proline rich hydrophilic region which follows the repeated domains resembles a structure in protein A, staphylococcal fibronectin receptor and streptococcal protein G and M proteins. Also present is the hexapeptide LPKTGM which is similar to the consensus sequence LPXTGE which is conserved among other gram positive surface proteins. The hydrophilic region is thought to mediate the binding of the protein to the cell wall. The presence of hydrophobic amino acids which may traverse the membrane followed by a C-terminal cluster of positively charged residues, possibly located on the cytoplasmic side of the membrane, is characteristic of staphylococcal cell surface proteins.

[0445] In the collagen adhesin, a 29 amino acid signal peptide at the N-terminus is followed by a large nonrepetitive A domain, and the highly homologous domains B1, B2 and B3 (probably a result of a series of stepwise gene duplication events). Collagen binding receptors have been found on other species of bacteria such as the 75× adhesin of uropathogenic E. coli. Type 3 fimbrias from pathogenic enteric bacteria, some species of oral streptococci, Streptococcus pyogenes, Yersinia and Treponema pallidium have all been reported to bind various forms of collagen. Thus the collagen binding appears to be a common modality used by pathogenic bacteria of a diverse group to adhere selectively to host tissues and form a focus of infection.

[0446] Nucleic acids encoding staphylococcus collagen adhesin are introduced into SAg-expressing tumor cells or DCs, or S/D/t cells. The cells co-expressing the staphylococcal collagen adhesin with SAgs are useful as a preventative or therapeutic antitumor vaccines (Example 28) or as stimulators ex vivo that activate tumor specific effector cells (T cells, &ggr;/&dgr;T cells, NKT cells or NK cells) for adoptive immunotherapy (Example 28, 68).

48. Co-Expression of Anti-Tumor Motifs or their Binding Proteins with SAg

[0447] Tumor cells or DCs expressing SAgs, or S/D/t cells, are transformed with nucleic acids encoding enzymes that catalyze the biosynthesis of anti-tumor motifs, including the &agr;-gal epitope, the GalCer epitope, &bgr;-1,3-glucans, LPS, peptidoglycan, teichoic acids or a protein or peptide such as Staphylococcal adhesins, protein A, and/or the binding proteins for the above motifs or proteins. Transformation may be achieve using bacterial plasmids or nucleic acids integrated into an appropriate viral vector. These antigenic structures are fundamental units recognized in the primitive host defense mechanisms (“innate immunity”) of invertebrates, but also evoke responses in mammalian immune systems via the TOLL and NF&kgr;B systems.

[0448] DNA encoding the galactosyltransferase that synthesizes the saccharide structure containing the &agr;Gal epitope, and gene clusters encoding the biosynthetic pathway for LPS are described in Schnaitman C A, et al., Microbiol. Rev. 57: 655-682 (1993). DNA is extracted from bacteria which biosynthesize these molecules and used to transfect DCs, tumor cells, or S/D/t cells For creation of the GalCer structure, the source of DNA is Sphingomonas paucimobilis organisms. Nucleic acids encoding the pathways for biosynthesis of &bgr;-1,3-glucans, peptidoglycans, and protein A have been cloned from insects and Staphylococcus aureus, respectively. These nucleic acids are cloned into suitable expression vectors and introduced into the target cells. Resulting S/D/t cells thus express SAg as well as the anti-tumor motif structure.

[0449] S/D/t cells that co-express Gal can interact with and stimulate NKT cells through the Va14 invariant chain which naturally recognizes the -galactosylceramide epitope. NK cells, via their NKP1-1 receptors, will recognize carbohydrate units such as &bgr;-1,3-glucans on the S/D/t cells. The co-expressed SAg induces further NKT cell expansion. The SAg is also capable of inducing massive proliferation of conventional T cells which can be further promoted by the co-expression of B7-1, B7-2 and ICAM-1 which are normally expressed on DCs. VCAM-1, expressed by some SAgs such as enterotoxin C, also is capable of contributing to this stimulation. As indicated above, NK cells are activated directly or indirectly by T-cell derived interferon.

[0450] The S/D/t cells (as well as tumor cells or DCs expressing SAg) that also express one or more of the anti-tumor motifs are capable of activating all of the major cell types involved in anti-tumor immunity: T cells specific for peptides, NKT cells reactive with lipoproteins and glycosylceramides and NK cells that recognize for oligosaccharides. These cells are useful as preventative or therapeutic antitumor vaccines (Examples 29) or as stimulators ex vivo that activate tumor specific effector cells (T cells, &ggr;/&dgr;T cells, NKT cells or NK cells) for adoptive immunotherapy (Example 29).

49. SAgs Combined with Low Density Lipoproteins (LDL), Oxidized LDL (oxy LDL) Oxidized LDL Mimics and Apolipoproteins

[0451] In the present invention, low density lipoproteins (collectively LDL) intermediate density LDL (IDL), chylomicrons, very low density lipoproteins (VLDL), oxidized LDL (oxyLDL), oxyLDL mimics as well as and apolipoproteins including but not limited to apolipoprotein (a), B100 and E4 are conjugated to superantigens and are useful as anti-cancer agents alone.

[0452] LDLs, oxyLDLs and apolipoproteins are physically trapped or bind to receptors expressed in the dense network of randomly branching blood vessels and sinusoids of the tumor neovasculature and have the capacity to deposit or bind to LDL receptors on the tumor endothelium and to scavenger receptors on macrophages OxyLDL or apolipoproteins bound to tumor endothelium or macrophages they induce apoptosis or they promote inflammation by activating vascular cells and macrophages to generate cytokines, chemoattractants and tissue factor.

[0453] Superantigens in nucleic acid or polypeptide form are conjugated to the lipoproteins and amplify the inflammatory effect of the lipoproteins by inducing apoptosis of endothelial cells, upregulating endothelial cell integrins, adhesins and procoagulant activity while activating macrophages and immunocytes. Any tumor which is neovascularized is eligible for this therapy. These conjugates therefore have the advantages of localizing to disseminated and neovascularized tumor, inducing apoptosis and initiating a powerful anti-tumor response.

[0454] Lipoproteins

[0455] Lipoproteins are globular particles of high molecular weight that transport nonpolar lipids (primarily triglycerides and cholesterol esters) through the plasma. Lipoproteins have been classified on the basis of their densities into five major classes: chylomicrons, very low density lipoproteins (VLDL), intermediate-density lipoproteins (IDL), low-density lipoproteins (LDL), and high-density lipoproteins (HDL). The physical-chemical characteristics of the major lipoprotein classes are presented in Table The core of the spherical lipoprotein particle is composed of two nonpolar lipids hydrophobic lipids, triglyceride and cholesteryl ester, which are present in different lipoproteins in varying amounts. This hydrophobic core accounts for most of the mass of the particle, and consists of triglycerides and cholesterol esters in varying proportions. Surrounding the core is a polar surface coat of phospholipids that stabilize the lipoprotein particle so that it can remain in solution in the plasma. Variable amounts of unesterified cholesterol are interdigitated with the phospholipids of the surface coat. In addition to phospholipid, the polar coat contains small amounts of unesterified cholesterol. Each lipoprotein particle also contains specific proteins (termed apoproteins) that are exposed at the surface and extend into the core. The apoproteins bind specific enzymes or receptors on tumor microvascular cells.

[0456] Chylomicrons

[0457] Chylomicrons are large lipoprotein particles formed within intestinal epithelial cells from dietary triglycerides and cholesterol which are secreted into the intestinal lymph and pass into the general circulation where they adhere to LDL receptors on the tumor microcapillaries. Chylomicron remnants are removed by both LDL receptors and LDL-receptor related protein/alpha2-macroglobulin receptor (LRP). While bound to these endothelial surfaces, the chylomicrons are exposed to the enzyme lipoprotein lipase. The chylomicrons contain an apoprotein, apoprotein CII, that activates the lipase, liberating free fatty acids and monoglycerides.

[0458] Very Low Density Lipoprotein (VLDL)

[0459] Very low density lipoprotein (VLDL)are triglyceride rich particles which are secreted from the liver into the bloodstream after conversion of carbohydrate to glycerol-esterified fatty acids to form triglycerides. VLDL particles are relatively large, carry 5 to 10 times more triglycerides than cholesteryl esters, and contain a form of apoprotein B, designated B 100, that differs from the apoprotein B48 of chylomicrons. The VLDL particles are transported to LDL receptors on tumor microcapillaries, where they interact with the same lipoprotein lipase enzyme that catabolizes chylomicrons. VLDL also binds to the VLDL receptor via apolipoprotein E and lipoprotein lipase. Both apolipoprotein E and lipoprotein lipase are constituents of chylomicron remnants which are a physiological ligand for the VLDL receptor.

[0460] Plasma Apolipoproteins

[0461] Plasma apolipoproteins have a central role in plasma lipid transport. Central to the functions of all apolipoproteins (apo) is specialized regions termed amphipathic helices which have the ability to bind phospholipids. The amphipathic helices in apoA-I, apoA-II, and apoC-III comprise multiple repeats of 22 amino acids or 22-mer periodicity each consisting of a tandem array of two 11-mers which tend to begin or end with a proline. The characteristic spatial arrangement of the hydrophobic and hydrophilic amino acids within the amphipathic helices is that the hydrophobic face is intercalated between the fatty acyl chains of phospholipids and the hydrophilic face is located close to the polar head groups of phospholipids. Such an orientation allows the interaction of protein domains with lipoprotein-modifying enzymes and cellular receptors that control the catabolism of lipoproteins (Lp) and their removal from the circulation. The major apolipoproteins useful in the present superantigen-apolipoprotein conjugates are as follows:

[0462] Apolipoprotein (a)

[0463] Apolipoprotein (a) (Lp (a)) is made by hepatocytes and is secreted into plasma where it forms a covalent linkage by a single interchain disulfide bond to a unique multikringle glycoprotein, with apo B 100 of LDL to form lipoprotein(a). called apolipoprotein(a). Protein apo (a) has structural similarities to plasminogen and consists of multiple bent repeats of amino acid sequences. Apolipoprotein (a) exists in polymorphs distinguished by molecular weights. The molecular basis for the size variation of apo[a] is primarily due to multiple apo[a] alleles that differ in the number of kringle type 2 (plasminogen kringle type 4) repeats. Minor variability in apo(a) size might be due to differences in glycosylation, as carbohydrates make up 25-40% of the apo (a) weight.

[0464] A close structural similarity exists between apo(a) and plasminogen a protease zymogen whose active form cleaves fibrin to dissolve blood clots, is activated by tissue and urokinase plasminogen activators via cleavage at a specific arginine residue. Indeed, in-vitro and ex-vivo studies have shown that apo(a) binds to immobilized fibrin (fibrinogen), to the plasminogen receptor on endothelial cells and competes with tissue plasminogen activator in converting plasminogen to plasmin. Lipoprotein(a) also competes with plasminogen for its high-affinity binding sites in endothelium, platelets, and macrophages. Because of structural homology with plasminogen apo(a)I competitively inhibits fibrin-dependent activation of plasminogen to plasmin and plasmin-mediated activation of cytokine transforming growth factor-b. Hence, Lp(a) is capable of interfering with the fibrinolytic process by acting as a procoagulant. The colocalization of apo(a) with fibrin (fibrinogen) in the arterial wall further suggests that Lp(a) is thrombogenic.

[0465] Lp(a) is a poor ligand for the LDL receptor and is consequently taken up and degraded by unregulated mechanisms, leading to tissue accumulation. Lp(a) is targeted to uptake by macrophages, presumably through the scavenger-receptor pathway. Owing to the lower &bgr;-carotene content, Lp(a) may be more easily oxidized than LDL. Oxidized Lp(a) such as Lp(a) modified by malondialdehyde, a product generated in vivo from aggregated platelets, is avidly taken up by monocyte-macrophages. through the scavenger-receptor pathway. Lp(a) accumulates in either the arterial wall and in vein grafts, respectively suggesting that Lp(a) can also traverse the endothelium of arterial vessels and reach the intima by non-receptor-mediated mechanisms and that this transport process is influenced by the density/size of Lp(a). There, Lp(a) can form complexes with such tissue-matrix components as proteoglycans, glycosaminoglycans, and collagen as well as fibrin. The magnitude of the transfer of Lp(a) from the plasma compartment to the arterial wall is larger when plasma Lp(a) levels are elevated because of a gradient effect or because of a possible direct action of Lp(a) on arterial permeability.

[0466] Apolipoprotein B

[0467] Apolipoprotein B occurs in two forms termed apoB-100 and apoB-48. In humans apoB-48 is produced only by the intestine and apolipoprotein B-100 originates from the liver. Apolipoprotein B-100, which contains 4536 amino acid residues, is the major apolipoprotein of VLDL, IDL, Lp(a) and is the sole apolipoprotein of LDL. ApoB-48 consists of the amino-terminal half of apoB-100, contains 2152 amino acid residues and is devoid of binding domain for the LDL receptor.

[0468] Apolipoprotein E4

[0469] Apolipoprotein (apo) E is a 34-kCa protein coded for by a gene on chromosome 19 and plays a prominent role in the transport and metabolism of plasma cholesterol and triglyceride through its ability to interact with the low density lipoprotein (LDL) receptor and the LDL receptor related protein (LRP). Apolipoprotein E (apoE) is a 34-kda protein component of lipoproteins that mediates their binding to the low density lipoprotein (LDL) receptor and to the LDL receptor-related protein (LRP). Apolipoprotein E is a major apolipoprotein in the nervous system, where it is thought to redistribute lipoprotein cholesterol among the neurons and their supporting cells and to maintain cholesterol homeostasis. Apart from this function, apoE in the peripheral nervous system functions in the redistribution of lipids during regeneration.

[0470] Oxidized LDL

[0471] LDL is also rapidly transported across an intact endothelium and becomes trapped in the three-dimensional cage work of fibers and fibrils secreted by the artery wall cells. This concentration-dependent process does not require receptor-mediated endocytosis. LDL entrapped in arteries or bound to receptors on endothelium or the tumor microcirculation undergoes diverse enzymic and chemical modifications. It can also be introduced into the cell a variety of lipophilic invaders such as lipid peroxidation products and cholesterol oxides that may irreversibly modify cellular functions. The early oxidative modification of the trapped LDL in vivo occurs before monocytes are recruited and results in the oxidization of lipids in LDL with little change in apoB.

[0472] Monocytes recruited to the lesion, are converted into macrophages and the LDL lipids are further oxidized. Once the LDL contains fatty acid lipid peroxides, there follows (especially in the presence of metal ions) a rapid propagation that amplifies dramatically the number of free radicals and leads to extensive fragmentation of the fatty acid chains with the generation of a broad spectrum of oxysterols, shorter-chain aldehydes (e.g., malondialdehyde and 4-hydroxynonenal) some of which involve the covalent binding of short-chain substituents to the amino groups of lysine residues in apoprotein B (and possibly to other portions of the apoprotein B molecule) masking lysine 6-amino groups. Acetyl LDL and scavenger receptors recognize modifications effected by chemical acetylation and highly oxidized LDL.

[0473] Incubation of LDL with endothelial cells, smooth muscle cells, and macrophages in vitro induces oxidation of polyunsaturated fatty acids. Lipid peroxides formed fragment fatty acyl chains and attach covalently to apoB or fragments thereof, thereby rendering the modified particles competent for endocytosis by the scavenger receptor. LDL particles also undergo peroxidation of polyunsaturated fatty acids which produces oxidative modification and conversion of LDL lecithin to lysolecithin.

[0474] Modification of LDL with malondialdehyde, a product of arachidonic acid metabolism or oxidation of LDL leads to foam cell formation. Unlike native LDL, oxidized LDL is mitogenic or induces apoptosis in arterial endothelial and smooth muscle cells. It also induces endothelial cells and monocytes to express high levels of tissue factor and plasminogen activator inhibitor. Levels of P-selectin are increased intracellularly and are released by oxy-LDL which can also directly stimulate PDGF production in endothelial cells. Oxidized LDL also induce the expression of endothelin, to inhibit the expression of nitric oxide synthase, and to inhibit the resulting vasodilation. Platelet accumulation and local increases in thromboxane A, serotonin, ADP, platelet activating factor, and activated thrombin, together with a local reduction in prostacyclin further contribute to a procoagulant state.

[0475] Another stable end product of cellular oxidative modification of LDL is lysophosphatidylcholine, which is generated by phospholipase A2 hydrolysis. This lipid selectively induces the expression of adhesion molecules for monocytes, vascular cell adhesion molecule-1 (VCAM-1), and ICAM-1 in cultured human arterial endothelial cells. TNF-a activation is a prerequisite for the observed lysophosphatidylcholine induction of VCAM-1. Lysophosphatidylcholine also induces monocyte chemotaxis, arrests macrophage migration and induces macrophage proliferation through SR-A-mediated internalization of modified lipoprotein. Finally, lysophosphatidylcholine induces gene expression for smooth muscle/fibroblast growth factors, the A and B chains of PDGF, and heparin-binding epidermal growth factor-like protein in cultured endothelial cells.

[0476] Oxy LDL Mimics

[0477] The cytotoxic effects of highly oxidized LDL are mimicked by higher concentrations of oxysteroid. particularly 7&bgr;-hydroperoxycholesterol. 7&bgr;-hydroxycholesterol, 7-ketocholesterol and 5&agr;-6&agr;-epoxycholesterol. These oxysterols can induce apoptosis in a variety of cells. Of these end products, 73-hydroperoxy-choles-5-en-3&bgr;-ol has been identified as the primary cytotoxic in highly oxidized LDL. This molecule accounts for approximately 90% of the cytotoxicity of lipids extracted from highly oxidized LDL in vitro. Fatty acid hydroperoxides and aldehydes found in oxidized LDL also alter intracellular functions. For example, 4-hydroxynonenal (4-HNE). a component of oxidized LDL, induces binding of the coagulation protein, Factor Xa to endothelial cells. In addition, oxidized LDL and mm-LDL can significantly, induce the release of IL-1 from macrophages. Saponified Cu2+-oxidized LDL and mm-LDL have been shown to contain 9-HODE, 13-HODE, and cholesterol-9-HODE; which increase IL-1 release from macrophages. 4-HNE also causes a variety of effects on monocytes, including stimulation of monocyte migration through induction of chemoattractant proteins and initiation of apoptosis

[0478] Mildly Oxidized LDL (mm-LDL)

[0479] Mildly oxidized LDL (mm-LDL) induces elevated levels of cAMP by a G protein-mediated mechanism and induces inflammatory molecules both by increasing the rates of gene transcription and by stabilizing the mRNA for these genes. Exposure of the arterial wall to (mm-LDL) or biologically active products of lipid peroxidation results in binding to the LDL-R. mm-LDL also induces monocytes to bind to endothelial cells. and induces changes which affect monocyte binding, tethering, activation, and attachment. mm-LDL also induces an inflammatory phenotype in endothelial cells and proinflammatory cytokines accompanied by increase the levels of the transcription factor, NF kB, which has been linked to the expression of a variety of adhesion molecules. In particular, lysophosphosphatidylcholine, a product of LDL oxidation, has been shown to be a chemoattractant for monocytes and T-lymphocytes, to induce the adhesion molecules VCAM-1 and ICAM-1, and to increase levels of PDGF and heparin-binding epidermal growth factor mRNA in endothelial cells and smooth muscle cells. Increases in ICAM-1 expression lead to enhanced monocyte adhesion to the vessel wall.

[0480] Moreover, mm-LDL induces endothelial cells to produce the potent monocyte activators monocyte chemoattractant protein 1 (MCP-1) and monocyte colony stimulating factor (M-CSF). Macrophage Class A scavenger receptors and CD36, a Class B scavenger receptor are up-regulated by M-CSF. Once bound to specific scavenger receptors, mm-LDL can initiate cell signaling events in vascular cells stimulating phosphoinositide metabolism and calcium flux as well as stimulate phospholipase E1 activity through a tyrosine kinase-dependent mechanism independent of protein kinase C. This induces the release of phosphatidic acid or arachidonic acid for eicosanoid production in the vessel wall. A portion of this activity may be mediated by the Class A scavenger receptor ligands which stimulate macrophage urokinase expression and IL-1 production a growth factor for smooth muscle cells.

[0481] The biological properties of the lipids in mildly oxidized LDL differ from those induced by the lipids in highly oxidized LDL. For example, the expression of tissue factor by endothelial cells is induced by mildly oxidized LDL but not by highly oxidized LDL. The lipids in highly oxidized LDL are cytotoxic, whereas the lipids in mildly oxidized LDL are not. Mildly oxidized LDL induced the activation of the NF&kgr;B-like transcription factor and the increase in the appearance of specific oxidized phospholipids. With continued oxidation, highly oxidized LDL such as lysophosphatidylcholine and oxidized sterols are produced with different biological activity as given above.

[0482] The ability of mm-LDL to induce monocyte adherence to endothelial cells is mimicked by three polar bioactive lipids isolated from mm-LDL as well as oxidized 1-palmitoyl-2-arachidonyl-sn-glycerophosphocholine. The molecular structure of two bioactive lipids were identified

[0483] 1-palmitoyl-2-(5-oxovaleryl)-sn-glycero-3-phosphocholine (m/t 594.3) and 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (m/t 610.2). The third lipid (m/t 831) has tentatively been described as an arachidonic acid-containing phospholipid containing three or four oxygen molecules, potentially forming a conjugated triene structure characteristic of leukotrienes. The latter serves as a substrate for paraoxonase, and those with fragmentation products such as 5-oxyvalerate at the sn-2 position may represent substrates for PAF acetylhydroxylase.

[0484] Glycated LDL

[0485] Glycated LDL is recognized less well by the LDL receptor, but is taken up more rapidly by macrophages. Very prolonged exposure of LDL to high concentrations of glucose leads to glucose-mediated cross-linking and the generation of advanced glycosylation end products, which macrophages recognize in a specific saturable fashion.

[0486] Artificial Complexes of LDL

[0487] Artificial complexes of LDL formed by incubation with fibronectin, heparin, and fibrillar collagen are also candidates, and the uptake there appears to be through recognition of the fibronectin. Complexes of LDL with itself are taken up more rapidly than native LDL via the LDL receptor. After incubation with neutrophils LDL is taken up more rapidly by macrophages. This is attributable to the dimerization of LDL by the action of secreted neutrophil elastase on native LDL

[0488] Apoprotein Genes

[0489] The genes for the major apoproteins associated with the lipoproteins have been cloned. These include apolipoprotein (a) (McLean J W Nature 330: 132-137 (1987)), apolipoprotein B-100 (Chen S H J. Biol Chem. 261: 12918-12921 (1986)), apolipoprotein E4 provided by Drs. S Lauer and J. Taylor. Lp(a) has been cloned from cDNA libraries constructed from human liver mRNA (McLean J W Nature 330: 132-137 (1987)). Complete sequence analysis of a 14 000-base-pair (bp) DNA copy of apo(a) mRNA showed many exact or nearly exact repeats of a 342-bp sequence occurred. Indeed, most of the mRNA consist of 22 tandem exact repeats and 15 modified repeats. Apolipoprotein (a) belongs to a gene family that includes genes encoding clotting factors, structural proteins, and growth factors. Domains shared by these proteins are protease-like domains, kringle units, calcium binding domains, and epidermal growth factor precursor domains.

[0490] In the present invention, superantigens are ligated to the major classes of lipoproteins in human plasma including LDL, IDL, HDL, VLDL, chylomicrons and remnants containing apoproteins and mm-LDL, oxy LDL isosterols, inositols, lysophosphatidylcholine, synthetic mimics of LDL activity and oxyLDL byproducts by methods given in Example 47 Because of their unique capacity to adhere to tumor microvasculature and evoke an apoptotic/inflammatory/prothrombotic response, the lipoprotein structures preferred for ligation to SAg include but are not limited to Lp(a), LpB-1000 or B-47, oxyLDL, oxyLDL byproducts, oxyLDL mimics and IDL.

[0491] The lipoproteins used for conjugation are prepared as in Examples 48-49. The superantigens used for conjugation are preferentially in nucleic acid or phage form but may also be in peptide, polypeptide nucleic acid or phage display form. They are coupled to the various LDL, oxyLDL or apolipoproteins via methods given in Examples 3, 5, 47. Alternatively, SAg are incorporated or bound or conjugated to a vesicular, exosomal structures shed from normal, tumor or sickled cells expressing LDL, oxy LDL, oxyLDL mimics or apolipoproteins.

[0492] Superantigens are also integrated into liposomal structures prepared to express natural or synthetic LDL, oxyLDL, apolipoproteins or oxyLDL mimics as described in Section 45 and Examples 3, 5, 6, 36, 42. Optionally, integrin ligand sequences such as RGD are added to facilitate the localization of the conjugates to the tumor microvasculature binding to the &agr;v&bgr;3 integrin and &agr;v&bgr;5 integrin which are expressed therein (see Example 6). These superantigen-lipoprotein conjugates are physically trapped in the dense network of randomly branching blood vessels of the tumor microcirculation and also bind to LDL or scavenger receptors expressed in the tumor neovasculature.

[0493] Constructs consisting of naked Sag nucleic acids containing CpG backbone fused to apoprotein nucleic acids alone or incorporated into liposomes are prepared as in Example 3, 6, 14, 30-31 and delivered to the tumor sites in vivo as in Examples 14, 30-31. These constructs are useful in vivo as a therapeutic antitumor vaccines according to Examples 14, 15, 16, 18-23. They are also useful ex vivo for producing a population of tumor specific effector cells (T cells, &ggr;/&dgr;T cells, NK cells, NKT) cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16, 18-23).

[0494] Tumor Cells or Sickled Erythrocytes and Vesicles Expressing SAg and Apolipoproteins

[0495] Superantigen nucleic acids are fused in frame to nucleic acids encoding apoproteins including but not limited to apoproteins Lp(a), B-48 and 100 and E3 and transfected into tumor cells in vivo to produce tumor cells expressing superantigens and apoproteins. These tumor cells are recognized by apoprotein receptors in tumor microvasculature. Tumor cells are also transfected ex vivo with the identical nucleic acid constructs. A RGD sequence is added to promote deposition in the tumor microvasculature which are useful. These tumor cell transfectants expressing Sag, apoprotein and RGD bind to apoprotein receptors and integrins respectively expressed in tumor microvasculature wherein they initiate a potent and localized anti-tumor response.

[0496] Superantigen nucleic acids together with nucleic acids encoding either apo(a), apoB and apoE4 are also transfected into nucleated sickled erythrocytes (e.g., proerythroblast or normoblast phase) by methods given in Examples 1 and 6. The integrin ligand RGD nucleic acids are transfected into tumor cells or sickled cells to facilitate the localization of the transfected tumor cells and sickled cells to integrins expressed in the tumor neovasculature in vivo (see Example 6). Alternatively, the sickled erythrocytes or tumor cells acquire the apolipoprotein or oxyLDL by coculture with liposomes which express the apolipoprotein or oxyLDL (see Section 7 & Example 5).

[0497] These tumor cells or sickle cell transfectants are administered parenterally and are capable of trafficking to tumor microvasculature wherein they bind to apolipoprotein and scavenger receptors on endothelial cells and macrophages. The transfectants are phagocytosed by macrophages cells and induce endothelial cell apoptosis. SAgs expressed on the tumor cells and sickle cells also induce a local T cell inflammatory anti-tumor response which envelops the neighboring tumor cells.

[0498] These tumor cell and sickle cell constructs are prepared by methods given in Examples 1 & 6 and are useful in vivo against primary and/or metastatic tumors according to Examples 14, 15, 16, 18-23.

[0499] Tumor Cells & Endothelial Transfected in Vivo with SAg and Lipoprotein Receptors or Oxidized Lipoprotein Receptors

[0500] The genes encoding the LDL oxyLDL, VLDL, LRP, CD36, SREC and LOX-1 receptors as well as macrophage scavenger receptors, expressed on endothelial cells and macrophages and have been cloned. Nucleic acids encoding receptors for various apolipoproteins including but not limited to the LDL or apo a, apoB or apo E receptor, CD36 receptor, LRP receptor, macrophage scavenger receptor, endothelial cell oxyLDL receptor (LOX-1) and endothelial cell scavenger cell receptor (SREC) alone or together with nucleic acids encoding superantigens are injected directly into tumor sites. The same nucleic acids are transfected into tumor cells in vivo. Transfection of these receptors into tumor cells and tumor microvascular endothelial cells results in the expression of the LDL receptor protein with high affinity binding specificity for LDL oxyLDL and Lp(a). Exposure of the transfected tumor cells or endothelial cells to exogenously introduced oxidized LDL (especially sterol and lysocholinephosphatidic acid) induces tumor endothelial cell apoptosis analogous to that seen in endothelial cell after exposure to oxyLDL. The transfected tumor cells internalize and degrade the oxyLDL and because they, like macrophages, have no means of down regulating the scavenger receptor are transformed to “foam cells” and undergo apoptosis.

[0501] LDL Receptor (LDL-R)

[0502] The high affinity receptor for LDL known as the apoB receptor or the LDL receptor (LDL-R) found on tumor microvascular cells as well as hepatic cells and macrophages binds LDL, VLDL and chylomicron remnants via their associated apoproteins. Apolipoprotein B-100 gene has been cloned (Chen S H J. Biol Chem. 261: 12918-12921 (1986)). The LDL gene is more than 45 kilobases in length and contains 18 exons. Thirteen of the 18 exons encode protein sequences that are homologous to sequences in other proteins: five of these exons encode a sequence similar to one in the C9 component of complement; three exons encode a sequence similar to a repeat sequence in the precursor for epidermal growth factor (EGF) and in three proteins of the blood clotting system (factor IX, factor X, and protein C); and five other exons encode nonrepeated sequences that are shared only with the EGF precursor. Tb LDL receptor appears to be a mosaic protein built up of exons shared with different proteins, and it therefore belongs to several supergene families (Sudhof T C et al., Science 228: 815-22 (1985)).

[0503] Regulation of LDL-R expression occurs primarily at the transcriptional level and is controlled by levels of free cholesterol in the cell. Inflammatory mediators such as growth factors and cytokines can promote the binding and uptake of LDL. These mediators include PDGF, TGF-b, basic fibroblast growth factor, TNFa, and IL-1. Some of these mediators, such as TNF-a and IL-1, affect transcriptional regulation of the LDL-R gene at the level of the promoter.

[0504] VLDL Receptor

[0505] The VLDL receptor has been described as a new member of the LDL receptor supergene family that specifically binds VLDL and chylomicron remnants via apolipoprotein E and lipoprotein lipase. Both apolipoprotein E and lipoprotein lipase are constituents of chylomicron remnants, and a physiological ligand for the VLDL receptor (Niemeier A et al., J. Lipid Res. 37: 1733-42 (1996)).

[0506] LRP Receptor

[0507] The alpha 2-macroglobulin receptor or lipoprotein receptor-related protein (LRP) (LRP) is a cell-surface glycoprotein of 4525 amino acids that functions as a multifunctional receptor which binds and rapidly internalizes several plasma proteins. These include alpha 2-macroglobulin-protease complexes, free plasminogen activators as well as plasminogen activators complexed with their inhibitors, and beta-migrating very low density lipoproteins complexed with either apolipoprotein E or lipoprotein lipase tissue and urokinase-type plasminogen activators, plasminogen activator inhibitor-1, lipoprotein lipase, and lactoferrin. The active receptor protein is derived from a 600-kDa precursor, encoded by a 15-kb mRNA, cloned and sequenced in human, mouse, and chicken. The entire human gene (LRP1) coding for A2MR/LRP has been cloned. The gene covers about 92 kb and a total of 89 exons, varying in size from 65 bases (exon 86) to 925 bases (exon 89) have been identified. The introns vary from 82 bases (intron 53) to about 8 kb (intron 6). In the introns, 3 complete and 4 partial Alu sequences have been identified. Interexon PCR from exon 43 to 45 yielded a fragment of 2.5 kb. Attempts to subclone this fragment yielded inserts ranging between 0.8 and 1.6 kb. Sequencing of 3 subclones with different-size inserts revealed a complex repetitive element with a different size in each subclone. In the mouse LRP gene this intron is much smaller, and no repetitive sequence was observed. In 18 unrelated individuals no difference in size was observed when analyzed by interexon PCR (Van Leuven, F et al., Genomics 24: 78-89 (1994))

[0508] The LRP receptor is mainly responsible for the binding and internalization of chylomicron remnants as well as apoE-containing HDL. ApoE-containing lipoproteins are taken up and degraded by receptor-mediated endocytosis. Apolipoprotein E3- and apoE4-containing lipoproteins have a similar binding affinity and cause a similar degree of lipoprotein internalization via the LDL-R and the LRP. LRP can mediate the degradation of tissue factor pathway inhibitor (TFPI), a Kunitz-type plasma serine protease inhibitor that regulates tissue factor-induced blood coagulation,

[0509] The 3 9-kDa receptor-associated protein (RAP) associates with the multifunctional low density lipoprotein (LDL) receptor-related protein (LRP) and thereby prevents the binding of all known ligands, including alpha 2-macroglobulin and chylomicron remnants. RAP is predominantly localized in the endoplasmic reticulum and functions as a chaperone or escort protein in the biosynthesis or intracellular transport of LRP. RAP promotes the expression of functional LRP in vivo and stabilizes LRP within the secretory pathway.

[0510] Macrophage Scavenger Receptors

[0511] Scavenger receptors mediate the endocytosis of chemically modified lipoproteins, such as acetylated low density lipoprotein (Ac-LDL) and oxyLDL. Functional MSR are trimers of two C-terminally different subunits that contain six functional domains. The MSR gene has been cloned in an 80-kilobase human and localized to band p22 on chromosome 8 by fluorescent in situ hybridization and by genetic linkage using three common restriction fragment length polymorphisms. The human MSR gene consists of 11 exons, and two types of mRNAs are generated by alternative splicing from exon 8 to either exon 9, (type II) or to exons 10 and 11 (type I). The promoter has a 23-base pair inverted repeat with homology to the T cell element. Exon 1 encodes the S-untranslated region followed by a 1 2-kilobase intron which separates the transcription initiation and the translation initiation sites. Exon 2 encodes a cytoplasmic domain, exon 3, a transmembrane domain, exons 4 and 5, an alpha-helical coiled-coil, and exons 6-8, a collagen-like domain. The position, of the gap in the coiled coil structure corresponds to the junction of exons 4 and 5. The human MSR gene consists of a Macrophage scavenger receptors (MSR) mediate the binding, internalization, and processing of a wide range of negatively charged macromolecules. Functional MSR are trimers of two C-terminally different subunits that contain six functional domains. The MSR gene has been cloned in an 80-kilobase human and localized to band p22 on chromosome 8 by fluorescent in situ hybridization and by genetic linkage using three common restriction fragment length polymorphisms. The human MSR gene consists of 11 exons, and two types of mRNAs are generated by alternative splicing from exon 8 to either exon 9 (type II) or to exons 10 and 11 (type I). The promoter has a 23-base pair inverted repeat with homology to the T cell element. Exon 1 encodes the S-untranslated region followed by a 1 2-kilobase intron which separates the transcription initiation and the translation initiation sites. Exon 2 encodes a cytoplasmic domain, exon 3, a transmembrane domain, exons 4 and 5, an alpha-helical coiled-coil, and exons 6-8, a collagen-like domain. The position of the gap in the coiled coil structure corresponds to the junction of exons 4 and 5. The human MSR gene consists of a mosaic of exons that encodes the functional domains. Furthermore, the specific arrangement of exons played a role in determining the structural characteristics of functional domains (Emi M et al., J. Biol. Chem. 268: 2120-5 (1993)).

[0512] Scavenger receptors on tumor endothelium and stroma bind oxidized LDL, apoptotic cells, and anionic phospholipids. Class A receptors, includes the type I and II macrophage scavenger receptors (SR-M and SR-MI). They are found predominantly on macrophages and activated smooth muscle cells. SR-M and SR-MI are homotrimeric membrane proteins, which are derived from alternatively spliced mRNA products of a single gene. Ligands for class A receptors include acetylated LDL, oxidized LDL, fucoidan, and carrageenan. The second class, Class B scavenger receptors, includes CD36 and SR-El, which are found in adipose tissue, lung, liver, and macrophages.

[0513] Acetyl LDL Receptor

[0514] Acetyl LDL receptor or the scavenger receptor, is distinct from the LDL receptor and does not recognize native LDL. It has been found on tumor microvascular cells as well as monocyte/macrophages, Kupfer's cells, and endothelial cells, particularly the sinusoidal endothelial cells in the liver. The same receptor also recognizes other chemically modified forms of LDL, including acetoacetyl LDL and malondialdehyde-conjugated LDL. The acetyl LDL receptor binds OxLDL LDL modified by incubation with cultured endothelial cells. LDL incubated with cultured endothelial cells for 12 to 18 hours, undergoes a physical and chemical changes and the resulting endothelial cell-modified form of LDL is taken up by cultured macrophages 10 times more rapidly than native LDL. Thus, all three the major cell types in the artery wall can convert LDL to a form recognized by the acetyl LDL receptor.

[0515] CD36 Receptor

[0516] CD36, a multigland glycoprotein structurally related to SR-BI and CLA-1 found on monocytes, endothelial cells is a high affinity receptor for the native lipoproteins HDL, LDL, VLDL and for OxLDL and AcLDL. The CD36 gene has been cloned (Endemann G et al, J. Biol. Chem. 268:11811-6 (1993)).

[0517] Endothelial Receptors for OxyLDL: The LOX-1 Receptor (C-Type Lectin Receptor) & Scavenger Receptor Expressed by Endothelial Cells (SREC)

[0518] Endothelial dysfunction or activation elicited by oxidatively modified low-density lipoprotein (Ox-LDL) is characterized by intimal thickening and lipid deposition in the arteries. Ox-LDL and its lipid constituents impair endothelial production of nitric oxide, and induce the endothelial expression of leukocyte adhesion molecules and smooth-muscle growth factors. Vascular endothelial cells in culture and in vivo internalize and degrade Ox-LDL through a putative receptor-mediated pathway that does not involve macrophage scavenger receptors.

[0519] LOX-1 Receptor

[0520] LOX-1, a novel receptor for oxy-LDL, is a membrane protein that belongs structurally to the C-type lectin family, and is expressed in vivo in vascular endothelium and vascular-rich organs. The LOX-1 receptor from vascular endothelial cells has been cloned (Hoshikawa H et al., Biochem. Biophys. Res. Commun. 245: 841-6 (1998)). Mouse LOX-1 is composed of 363 amino acids with a C-type lectin domain type II membrane protein structure and triple repeats of the sequence in the extracellular “Neck domain,” which is unlike human and bovine LOX-1. LOX-1 binds oxidized LDL with two classes of binding affinity in the presence of serum. The binding component with the higher affinity showed the lowest value of Kd among the known receptors for oxidized LDL. With respect to ligand specificity, LOX-1 is a receptor for oxy-LDL but not for Ac-LDL and recognizes a protein moiety of oxy-LDL with a ligand specificity that is distinct from other receptors for oxy-LDL, including class A and B scavenger receptors.

[0521] Scavenger Receptor Expressed by Endothelial Cells (SREC)

[0522] The primary structure of the SREC molecule has no significant homology to other types of scavenger receptors, including the LOX-1 receptor. The cDNA encodes a protein of 830 amino acids with a calculated molecular mass of 85, 735 Da (mature peptide). The cloned has an N-terminal extracellular domain with five epidermal growth factor-like cysteine pattern signatures and long C-terminal cytoplasmic domain (391 amino acids) composed of a Ser/Pro-rich region followed by a Gly-rich region (Adachi H et al, J. Biol. Chem. 272:31217-20 (1997)

[0523] The SREC mediates the binding and degradation of acetoacetylated (AcAc) and acetylated (Ac) low density lipoproteins (LDL). Isolated sinusoidal endothelial cells from the rat liver show saturable, high affinity binding of AcAc LDL and degrade AcAc LDL 10 times more effectively than aortic endothelial cells. Specific sinusoidal endothelial cells bearing the SREC not the macrophages of the reticuloendothelial system, are primarily responsible for the removal of these modified lipoproteins from the circulation in vivo. For this reason, the SREC receptor and the LOX-1 receptors are preferred for use in transfecting tumor cells tumor endothelium in vivo.

[0524] Polypeptide or naked DNA encoding receptors for LDL oxyLDL, VLDL, LRP, CD36, SREC, LOX-1 and macrophage scavenger receptor (collectively o-LDL receptors) are used individually or together with SAg polypeptide or naked DNA containing the CpG backbone are prepared as in Examples 1, 2, 3, 30-31. Alternatively, SAg are incorporated or bound or conjugated to vesicular or exosomal structures shed from cells expressing the LDL, oxy LDL receptors. Superantigens are also incorporated into liposomal structures which express natural or synthetic LDL, oxyLDL receptors as described in Section 45 and Examples 3, 5, 6, 36, 42. All of these constructs are administered in vivo by any route but preferably by intratumoral injection as in Examples 2, 6, 14, 30-31. Once localized, and expressing o-LDL receptor(s) in tumor sites in vivo, lipoprotein preparation(s) containing their respective ligands are administered to the host. These LDL, oxyLDL or lipoproteins are non toxic to the host generally but upon binding to a dense population of receptors in the tumor induce apoptosis of tumor cells and endothelial cells expressing the receptors and initiate a well localized anti-tumor response. The presence of the SAg at the same site amplifies the immune and inflammatory anti-tumor effect. The advantage of this system is the minimal toxicity to the host since the o-LDL receptors are of host origin and the lipid infusions consist of substances which are indigenous to the host. These constructs are useful in vivo against primary or metastatic tumors according to Examples 14, 15, 16, 18-23.

50. SAg Inserted into Oncolytic Viral Vectors: SAg-Viral Antigen Nucleotides & Fusion Proteins and Conjugates

[0525] SAgs and HPV-E6 or 7 polypeptides are chemically conjugated by methods given in Examples 3. Alternatively, the naked nucleotides comprising SAgs (with immunostimulatory sequences) and the HPV-E6 or E7 are prepared as chimeric nucleotides or proteins by methods given in Examples 5, 30, 31 60. The SAg nucleic acids are inserted into several sites in lytic and oncogenic viruses. For example, in HPV, the SAg nucleotide is substituted for a minimally functional domain such as viral capsid nucleotides whereas in adenoviruses, SAg is substituted for the E1 or E3 nucleotides as in Example 60 These constructs are transfected into tumor cells in vivo. Since HPV is not a good vector the SAg-HPV E6 or E7 chimeric plasmid is introduced preferentially into vaccinia virus for purposes of transfection. In tumor cells, the HPV E6 protein triggers the inactivation of P53 via the ubiquitin pathway favoring the proliferation of virus and eventual tumor cell oncolysis. With viral oncolysis, the SAg nucleic acids and transcribed polypeptide are shed and the virus (and SAg nucleotides) then infect new tumor cells while the shed SAg polypeptide induces a T cell tumor inflammatory response. Preparation of the SAg-viral constructs is given in Example 60. Chimeric plasmids are prepared consisting the SAg fused to viral epitope known to be immunogenic. An example of this construct is SAg-E6 or E7 construct as given in Example 60. The SAg-HPV E6 or E7 chimeric gene is transfected into tumor cells as given in Examples 1 and 60. The SAg-HPV-E6 or E7 chimeric gene, tumor cells transfected with and expressing SAg and HPV-E6 or E7 epitopes, polypeptide conjugates or fusion proteins comprising SAgs and HPV-E6 or E7 or are used as preventative or therapeutic vaccines under protocols given in Examples 14, 15, 16, 18-23, 30, 31, 60.

[0526] DNA Vaccine Comprising a SEB Gene Linked to a to Papilloma Virus Antigen Gene (SEB-E7 and SEB-E1) Confer Protection Against Tumor Challenge in Mouse and Rabbit Tumor Models.

[0527] We evaluated protective and immunotherapeutic potential of modified DNA vaccines by administration of fusion genes comprised of Staphylococcal enterotoxin B (SEB) and HPV-16 E7 or CRPV E6, E7, E8 (SEB-E6,E7,E8) in mouse and rabbit models.

[0528] Methods: Methods for preparation of the fusion proteins and their administration are given in Example 71.

[0529] We used particle bombardment with a gene gun to vaccinate C57BL/6 mice and inbred EIII/JC rabbits intradermally. Mice received IIPV16-E7, vector, SEB-E7 and E7-SEB fusion genes; rabbits received CRPV E1, E6, E7, E8 genes, SEB gene, and CRPV E1, E6, E7, E8 fused to SEB. Then animals were challenged with HPV16 E6 and E7-containing TC-1 cells (mice) or CRPV (rabbits). In a therapeutic study, we used vector, CRPV-E7gene, SEB-E7 and E7-SEB fusion genes repeatedly at various time points to vaccinate outbred New Zealand white rabbits beginning 80 days after infection with CRPV at which time, papillomas were large and established.

[0530] Mouse Model: Protection with SEB-HPV16E7 Immunization

[0531] We used particle bombardment with a gene gun to vaccinate C57BL/6 mice intradermally. Mice received HPV16-E7, vector, SEB-E7 and E7-SEB fusion genes. Mice were challenged with HPV16 E6 and E7-containing TC-1 cells (mice) Mice receiving the SEB-E7 fusion gene showed complete protection against challenge with TC-1 tumour cells, and remained tumour free for 40 days. In contrast, groups of mice receiving E7-SEB, E7 only, SEB and vector all developed tumours that grew rapidly and reached 14 mm in diameter after 4 weeks. See FIG. 3.

[0532] Rabbit Model: Protection with SEB-HPV16E1 and SEB-E7 Immunization

[0533] Particle bombardment with a gene gun was used to vaccinate inbred EIII/JC rabbits intradermally. Rabbits received CRPV E1, E6, E7, E8 genes, SEB gene, and CRPV E1, E6, E7, E8 fused to SEB. Rabbits were challenged with CRPV.

[0534] The SEB-E1 fusion gene was the most effective in inhibiting the growth of the outgrowth of CRPV-induced papillomas. See FIG. 4.

[0535] In a second experiment, 3 of 4 vector- and 3 of 4 CRPVE7-SEB-vaccinated rabbits developed malignancies 420 days after CRPV infection. At this same time point, 5/5 rabbits receiving CRPVE7 and 5/5 rabbits receiving SEB-CRPVE7 were cancer free (Table 1). The mean time to onset of squamous carcinoma of CRPV-induced skin papillomas showed was delayed for groups of rabbits receiving SEB-E7 and E7 only, compared to E7-SEB and vector group (P<0.5). One of 5 rabbits receiving SEB-CRPVE7 showed therapeutic clearance of the primary papillomas (See table below). 2 Rabbits with cancer/rabbits vaccinated with Day after the following constructs CRPV pCX- pCX- PCX-SEB- PCX-CRPV- infection EGFP CRPV-E7 CRPV-E7 E7-SEB 338 2/4 0/5 0/5 0/4 359 2/4 0/5 0/5 1/4 389 2/4 0/5 0/5 2/4 423 3/4 0/5 0/5 3/4 440 3/4 0/5 1/5 3/4

[0536] Gene gun-mediated DNA vaccination by administration of fused genes induced strong antitumor immunity in animal models which may have implications in the future design of antigen-specific cancer immunotherapy. Homologues of the papilloma antigens are also contemplated in this invention as fusion partners for the SAg. Likewise, the superantigen homologues may serve as fusion partners for the papilloma antigens or homologues. Homologues that are encompassed by this invention are given in Example.

[0537] An SE or an SE such as SEB (with Dominant Epitope Deleted) Conjugated to Papilloma Virus E7 or E1 or Other Tumor Specific Antigens such as the MUC1 Antigen and Costimulants OX-40 Ligand or 4-1BB1.

[0538] HPV-16 E7 is a model antigen because HPVs, particularly HPV-16, are associated with most cervical cancers. The HPV 16 E7 protein has been identified as a zinc binding phosphoprotein with two Cys-X—X-Cys domains composed of 98 amino acids. HPV-16 E7 is characterized as a cytoplasmic/nuclear protein and is more abundant than E6 in HPV-associated cancer cells. Early observations analyzing HPV genomes and the viral transcription pattern in cervical carcinoma cell lines revealed frequent integration of viral DNA and the consistent expression of the viral early E7 gene. The same gene is necessary for immortalization of various types of human cells. The HPV oncogenic protein E7 is important in the induction and maintenance of cellular transformation and is coexpressed in most HPV-containing cervical cancers. E7 gene expression is also necessary for the proliferative phenotype of cultured cervical carcinoma cells. Therefore, vaccines or immunotherapies targeting E7 and/or E6 proteins may provide an opportunity to prevent and treat HPV-associated cervical malignancies. While E1, E6, E7 are exemplified in this disclosure, other antigens associated with the papilloma virus induced tumors will serve equally as well and are contemplated as part of this invention.

[0539] SAgs and HPV-E7 or E1 polypeptide or are recombinantly fused together with nucleic acids encoding the OX-40 ligand All of the components of the construct are in DNA or polypeptide form. This construct is tested in murine and rabbit models of HPV infection as a vaccine or against established tumors as in the above rabbit and mouse papilloma models. Immunization schedules are given in Example 71. The constructs are also used to treat established papillomas using the same rabbit and mouse models but administering the constructs when the tumors are established 30-90 days after tumor implantation. The treatments are given parenterally by injection or infusion twice or three times weekly for 4-6 weeks Nucleic acid constructs are injected preferably intratumorally twice to three times weekly for four weeks.

[0540] Dendritic Cell Ingestion of Necrotic HPV Infected Tumor Cells

[0541] Dendritic cell are exposed to SAg and HPV-E6 or E7 transfected tumor cells which have undergone necrosis by methods including but not limited to several cycles of freezing and thawing (Sauter B et al., J. Exp. Med. 191: 423-433 (2000)). The dendritic cells ingest the necrotic tumor cell transfectants. In the dendritic cells, the viral antigens undergo cross priming to the class I pathway. These primed dendritic cells are then harvested and administered to the tumor bearing host as given in Examples 26-28, 60. They are also used to sensitize T cells ex vivo.

[0542] In another embodiment, the DNA and RNA from these SAg-HPV-E6 or E7 transfected tumor cells or dendritic cells are extracted and utilized for in vivo therapy as in Examples 30-34, 60. While the HPV-E7 exemplified herein is a viral immunogen, the method is applicable to any other immunogenic viral constituent associated or etiopathogenic in the malignant process. Non-viral tumor associated antigens given in Rosenberg S A Cancer: Principles and Applications of Biologic Therapy in Principles & Practice of Oncology sixth edition edited by V T DeVita, S Hellman, S A Rosenberg, J. B Lippincott Co., Philadelphia 1999); Ostrand-Rosenberg, S. In: Gene Therapy of Cancer, E. C. Lattime et al., eds, pp. 33-44 Academic Press San Diego, Calif. 1999; Schreiber, H., In: Fundamental Immunology, W E Paul, ed., Raven Press, New York, 1993, are also useful. The viruses include but are not limited to adenovirus, EB virus, herpesvirus, hepatitis B, cytomegalovirus and Kaposi's sarcoma. DNA vectors encoding SAg and other viral or non viral tumor associated antigens are also functionally enhanced in producing an antitumor effect by the inclusion of immunostimulatory sequences, optimal promoters, introns, and polyadenylation signals. (Donnelly J J et al., Annu. Rev. immunol. 15: 617-648 (1997).

[0543] Selectivity of SAg-Viral Nucleotides for Tumor Cells

[0544] Maximum selectivity of the viral-SAg construct for tumor tissue in vivo is achieved by increasing the expression of genes necessary for replication in tumor cells or by decreasing expression of such genes in normal cells. Approaches to express genes necessary for replication only in specific tissues are used. Tumor-specific viral-SAg gene expression is accomplished through the use of tissue-specific promoters. Such promoters are activated preferentially in the tissue of tumor origin. Tumors arising from nonvital organs are amenable to this approach (e.g. prostate cancer or melanoma). Tissue-specific gene expression is achieved using adenovirus and retroviral vectors. The adenoviral E1B promoter is replaced with albumin or immunoglobulin promoters, resulting in liver- or myeloma-specific E1B mRNA transcription, respectively. The E1A enhancer markedly increases transcription from the albumin promoter, particularly in the presence of the E1A protein. The prostate-specific promoter and the alphafetoprotein promoter are exchanged with the E1A promoter to achieve enhanced replication in cells from the prostate (cancer and normal cells) and in hepatocellular carcinomas, respectively. In one embodiment, the SAg nucleotide is introduced into the above adenoviral constructs preferably at non functional sites as given in Example 60. The viral construct exhibits specificity for tumor cells and induces oncolysis. SAg expressed on the tumor cells induces a T cell inflammatory response. SAg polypeptide is also produced by the SAg-viral transfected bystander tumor cells that are infected with the SAg-viral construct and induces a potent inflammatory T cell tumoricidal response.

[0545] The preferred virus for insertion of the SAg nucleotide is an attenuated adenovirus d11520 that lacks the 827-base pair which encodes a 55-kilodalton E1B-55-kDa protein that inactivates P53. The binding of E1B to p53 is necessary for efficient replication in normal cells. However, E1B-55-kDa is dispensable in tumor cells lacking functional P53. Indeed, P53 function is lost in over 50 percent of all human cancers. Similarly, the deletion of specific RB-binding sites in the E1A protein leads to selective replication in cancer cells with abnormalities in the RB pathway and in proliferating normal cells. Such attenuation of viruses potentially decrease replication in tumor cells. Replication competence is better maintained by selectively mutating the gene rather than deleting it completely. For example, second generation adenovirus E1B-55-kDa gene mutants still lack p53-binding but retain the viral mRNA transport function (which is lost with the total E1B-55-kDa gene deletion); these viruses replicate more efficiently in p53-deficient cells than do mutants completely lacking the 55-kDa gene. SAg nucleotide is inserted into the dl1520 as given in Example 60. SAg protein is produced by the transfected tumor cell or by bystander tumor cells that are infected by the dl1150-SAg after viral-induced oncolysis. The SAg induces a potent T cell tumoricidal inflammatory response.

[0546] An additional approach to abrogating replication in normal cells, but not in tumor cells, is to delete/mutate genes necessary for replication in normal cells that are dispensable in tumor cells. For example, HSV-1 ribonucleotide reductase and thymidine kinase are essential for viral DNA synthesis in quiescent cells, whereas in rapidly proliferating cells these enzymes are not necessary. In a clinical situation such as primary brain cancer the tumor cells are susceptible to replication and lysis by such deletion mutants. In contrast, the surrounding neurons are quiescent and resistant to viral replication. This approach results in a proliferating-cell-specific, and not a cancer-specific, therapeutic agent. Nucleic acids encoding SAg are inserted into the HSV deletion mutants. SAg protein is produced by the transfected tumor cell or by bystander tumor cells that are infected by the SAg-HSV deletion mutants after viral-induced oncolysis. The SAg induces a potent T cell tumoricidal inflammatory response.

[0547] A class of negative selectable markers includes genes whose enzyme protein products convert a prodrug into its toxic form. This class is termed suicide genes. Genetic modification of tumor cells with the herpes simplex virus thymidine kinase gene (HSV-TK) results in killing of the gene-modified tumor cells by the antiviral drug ganciclovir (QCV). GCV is a derivative of acyclovir, which are nucleoside analogs that can be phosphorylated by the viral thymidine kinase gene into a monophosphate form. Normal cellular enzymes can then di- and triphosphorylate the monophosphate form into a toxic drug, which functions as a DNA chain terminator and an inhibitor of the viral DNA polymerase. The HSV-TK enzyme is almost 1,000-fold more efficient at monophosphorylating GCV than is the cellular thymidine kinase. Thus, GCV is virtually nontoxic to uninfected cells at therapeutic concentrations of the drug (1-10 &mgr;M). Because the toxic metabolite of GCV is phosphorylated, its ability to cross cell membranes is impaired and thus its half-life within the cell is six times longer (18-24 hours) than that of unmodified GCV. The increased cellular half life of the phosphorylated CCV is an important feature of the anticancer effects of HSV-TK-gene-modified tumors.

[0548] An important feature of the tumoricidal response induced by suicide genes is that as few as 10% of the cells in a tumor containing the HSV-TK-gene-modified cells are sufficient to kill the entire tumor population. In addition long-term gene expression is not required because tumor cells expressing the HSV-TK suicide gene are killed after only a short exposure to GCV undergoing apoptotic or programmed cell death initiated by the triphosphorylated toxic drug metabolite.

[0549] In this embodiment, the SAg nucleic acids are cotransfected into tumor cell together or fused to the HSV-TK gene with the HSV-TK gene after which GCV is introduced. The SAg gene is unaffected by GCV. Expression of SAg nucleotides and polypeptides released from tumor cells undergoing viral oncolysis enhances the primary tumor killing and the bystander effect of the suicide genes. by inducing a T cell inflammatory tumoricidal response.

[0550] Other viruses with specificity for tumor cells, proliferating cells, ras or ras pathway activation or p53 mutations in which SAg nucleic acids are inserted include autonomous parvoviruses, reoviruses and Herpes simplex virus-1. Adenovirus (serotype 5) which is selective for malignant prostate cells due to E1A expression driven by a PSE element and adenovirus (⅖ chimera) which is avid for cells lacking p53 function due to a E1B-55 kD gene deletion and insertion of HSV-tk/CD fusion are also be used as vectors for superantigen nucleic acids and targeting superantigens selectively to tumor sites.

[0551] Replication-selective adenoviruses mediate anti-tumor effects in variety of ways and are ideal vectors and devices for targeting superantigen nucleic acids to tumor in vivo. Adenoviruses exert direct tumor cytotoxicity modulated by E3 11.6 kD and EORF4. They augment anti-tumor immunity via CTL infiltration and direct killing (modulated by E3gp19 kD), antigen release (modulated by E3 11,6 kD), augment immunostimulatory cytokine induction and increase anti-tumor cytokines (e.g., TNF, modulated by E3 10.4/14.5, 14.7 kD), enhance sensitivity to cytokines (e.g., TNF, modulated by E1A), and increase sensitization to chemotherapy. Superantigen nucleic acids are integrated into the genome of any of the adenoviruses with the above properties and administered parenterally, intratumorally or intrathecally to tumor bearing hosts. The superantigen nucleic acids are targeted to tumor sites where they transfect tumor cells or non-tumor cells in the vicinity of the tumor resulting in the expression of superantigen polypeptide. In this way a T cell inflammatory tumoricidal effect is therefore induced localized selectively to the tumor sites.

[0552] In another embodiment, SAg nucleic acids are also inserted into a viral vector which contains a site of expression or overexpression of a host tumor associated antigen. Nucleotides encoding tumor associated antigens (TAAs) such as immunodominant Mart-1, tyrosinase or Mage are preferred although any TAA nucleotide are used. These viral vector with sequences encoding SAg and tumor associated antigen retain their specificity for tumor cells by incorporating a tissue or tumor specific promoter or driver encoding a key protein or transcription factor such as prostate specific antigen, human kallikrein promoter or alphafetoprotein or host tumor suppressor binding protein. The examples of nucleic acids encoding SAg expressed a HPV E6 or E7 or prostate specific antigen plasmid are given above.

[0553] These SAg-viral constructs given above are transfected into tumor cells in vivo. They are given directly into tumor tissue or injected parenterally (intramuscularly, subcutaneously, intrathecally, intraperitoneally or intravenously) where because of their selectivity for tumor or proliferating tissue will localize in tumors. In another embodiment, SAg-viral naked DNA constructs are administered as a vaccine parenterally (intramuscularly, subcutaneously, intrathecally, intraperitoneally or intravenously) or directly into tumor cells in vivo. Peptide or polypeptide conjugates, fusion proteins comprising SAg linked to viral epitopes and/or tumor antigens are also useful, e.g., HPV-E6 and E7. These constructs are used as a preventative vaccines or against established tumors under protocols given in Examples 60.

[0554] Plasmid DNA and RNA Vectors for Production of Superantigens

[0555] To increase the potency of candidate nucleic acid vaccines, a self-replicating nucleic acid vaccine is created. The alphaviruses, accomplish self-replication through the action of a polyprotein called RNA replicase, that is encoded within a single open reading frame. Members of the Alphavirus genus include Sindbis virus, Semliki Forest Virus (SFV) and Venezuelan equine encephalitis (VEE). Alphaviruses contain a single strand of RNA that are directly translated by ribosomes (because of its positive polarity) producing the replicase polyprotein. This polyprotein is cleaved into four subunits that can then drive not only its own replication, but the replication of a structural protein that comprises the viral coat. Theoretically up to 200,000 copies of the RNAs and 100,000,000 molecules of heterologous proteins are made in a single cell.

[0556] The activity of a replicase-containing RNA vaccine is exemplified in various engineered DNA plasmids which are transcribed and capped in vitro. A single injection of as little as 0.1 &mgr;g the self-replicating RNA encoding a model tumor antigen, &bgr;3-galactosidase (p-gal), is sufficient to elicit antigen-specific antibody and cytotoxic T lymphocyte responses. As little as 1 &mgr;g of the self-replicating RNA consistently achieves complete protection from challenge with the &bgr;-gal-expressing CT26.CL25 tumor cell line. The replicase-based RNA vaccine is therapeutically effective in mice bearing tumors injected intravenously two days before the initiation of treatment. Tumor-bearing mice immunized with self-replicating RNA had significantly lower numbers of metastases and survived on the average 10-20 days longer than mice treated with non-replicating RNA. In addition, a several log enhancement of immunogenicity of the self-replicating vector was not merely due to enhanced production of antigen by the self-replicating RNA immunogens but rather to the induction of apoptosis by double-stranded RNA intermediates. The self-replicating RNA enhances the presentation of antigen by dendritic cells which occurs because of increased antigen uptake of cells that die apoptotically as a result of the activity of the self-replicating vector. Furthermore, double-stranded RNA intermediates formed during RNA replication induce maturation and activation of dendritic cells, either directly, or through the elaboration of local “danger signals”. DNA plasmids using a CMV promoter which can also generate a long positive strand of RNA (replicon) encoding a SAg which like the alphaviral genome itself is then capable of self replication are also useful. Similarly, any RNA or DNA vectors carrying nucleic acids encoding SAg which are enhanced by optimizing promoters, introns, and polyadenylation signals are useful (Donnelly, J J et al. Annu. Rev. Immunol. 15: 617-648 (1997); Leitner W W et al., Cancer Res. 60: 51-55 (2000)). In this embodiment, SAg is substituted for the LacZ to produce the pRep-SEB as given in Example 60. The pRep-SEB is used as a preventative vaccine and against established tumor as given in Example 60. There are used as preventative vaccines or against established tumor as given in Examples 60

[0557] Tumor Cells Transfected with SAg & SAg-Viral Constructs Induce Tumor Necrosis and Enhance Tumor Antigen Presentation by Dendritic Cells.

[0558] SAgs are capable of inducing an necrotizing tumoricidal response associated with generation of cytotoxic T cells and inflammatory cytokines (Dow S W et al., J. Clin. Invest. 101: 2406-2424 (1998 ). Tumor cells transfected with SAg-viral constructs undergo oncolysis. The SAg expressed in the construct induces a necrotizing tumoricidal response. Dendritic cells process the necrotic tumor cells to induce a T cell tumoricidal effect. Macrophages phagocytosing the SAg-viral transfected tumor cells are activated to become tumoricidal. When SAg-viral transfected tumor cells are exposed to exogenous apoptotic stimulus such as chemotherapy or radiation, the apoptotic tumor cells release SAg nucleotides and polypeptides together with intact virus The released virus spreads to infect neighboring tumor cells while the SAg polypeptide released from the lysed tumor cells produces a T cell inflammatory tumoricidal response accompanied by activation of tumoricidal macrophages.

[0559] Tumor cells transfected with the SAg-viral constructs express both viral and SAg epitopes. In the case of HPV, E6 or E7 epitopes are tumor specific antigens. Exposure to SAg together with viral antigen increases the immunogenicity of viral antigens by activating viral specific cytolytic CD8+ cells (Coppola M A et al., Int. Immunol. 9: 1393-1403 (1997). Hence, viral (tumor specific) epitopes coexpressed on tumor cells and presented with superantigen polypeptide produces an enhanced anti-viral response directed to viral epitopes expressed on the transfected tumor cells.

[0560] Dendritic cells ingesting apoptotic or necrotic tumor cells containing SAg-viral nucleotides, transcribe, express and present SAg and to T cells which are activated produce a tumoricidal response. T cells are also exposed in vitro to dendritic cells expressing SAg and viral epitopes from ingested apoptotic or necrotic tumor cells in vitro. These tumor sensitized and SAg activated T cells are used for adoptive immunotherapy of cancer as given in Examples 60.

[0561] The DNA and RNA from tumor cells transfected with nucleic acids encoding SAg and viral epitopes, or dendritic cells after ingestion of SAg transfected tumor cells are extracted and used as naked DNA constructs for in vivo cancer therapy as in Examples 30-34, 60. While the viral epitopes HPV-E-6 and E7 are exemplified herein, the method is applicable to other viral epitopes which are known to be associated or etiopathogenic in the malignant state including but not limited to adenovirus, EB virus, herpesvirus, hepatitis B, cytomegalovirus and Kaposi's sarcoma epitopes.

[0562] Adenovirus Containing Superantigen Linked to Modified Form of I&kgr;B&agr;.

[0563] The superantigen gene is linked the gene expressing a modified form of I&kgr;B&agr; and inserted into a viral vector such as adenovirus, vaccinia or any of the well established viral vectors well known in the art and transfected into tumor cells. The modification of I&kgr;B&agr; blocks its ability to be phosphorylated and to be subsequently degraded, thereby preventing NF&kgr;B activation and translocation to the nucleus. In the absence of NF&kgr;B activation exogenous TNF&agr; induces apoptosis in the I&kgr;B&agr; treated tumor cells. The virus also induces lysis of the tumor cells and concurrently release of the SAg polypeptides and nucleic acids from tumor cells activates tumoricidal macrophages, induces a necrotizing inflammatory response which stimulates a T cell tumoricidal response.

[0564] SAg-viral constructs are prepared by methods given in Example 60. The SAg-viral constructs are administered intratumorally or parenterally in the tumor models as given in Examples 60.

51. Augmented Immune Response to Cancer and Infectious Diseases: Deletion/Inactivation of Immunocyte Inhibitory Receptors and Receptor Tyrosine Based Inhibitory Motifs (ITIMs)

[0565] Many lipid-based tumor associated antigens (collectively Lip-TAAs) consist of lipids, glycolipids, gangliosides, sphingolipids and lipopeptides, all of which are weak immunogens and fail to evoke effective tumoricidal immune responses. The same may be said of lipid based antigens associated with infectious organisms. For example, tumor gangliosides on the surface or shed from tumor cells actually suppress T cell and antigen presenting or accessory cell function. The present invention provides an approach directed at inhibitory receptors (IRs) and their inhibitory motifs, described below, which recognize (1) Lip-TAAs, (2) lipid-based infectious disease associated antigens (Lip-IDAs) and (3) superantigens (SAgs) or self molecules associated with superantigens (“SagSMs”). Deletion or inactivation of these IRs or their inhibitory motifs by pharmacologic or genetic means results in an enhanced cellular response to tumors or infectious organisms. The IRs specific for Lip-TAAs, Lip-IDAs and SAgSM are abbreviated, respectively, IRTAA, IRIDA and IRSAg.

[0566] Lipid antigens are presented to cells of the immune system in the context of their natural antigen-presenting receptors, such as CD1 or attached to lipoproteins. The present invention is designed to deactivate or eliminate the inhibitor receptors (IRTAA, IRIDA and IRSAg) on T cells, NK cells and NKT cells, all of which inhibit responses to lipid antigens presented in the context of CD1 or a suitable surrogate, prior to exposure of these cells to a specific Lip-TAA, Lip-IDA or SAgSM. The IRs recognize and respond to the same Lip-TAAs+self (e.g., CD1 or MHC) as do activation receptors with, among other consequences, an inhibitory signal to the activation receptor after activation receptor engagement by its ligand. The cell populations bearing such IRs include but are not limited to T cells, NK cells and NKT cells. Antigen presenting or accessory cells (APCS) including but not limited to macrophages, dendritic cells and fibroblasts also express IRTAA, IRIDA

[0567] After exposure to Lip-TAAs, a responding cell such as a T cell, NK cell or NKT cell devoid of an IRTAA becomes tumoricidally activated due to the unopposed stimulation of activation receptors. This is particularly advantageous when the stimulus is a weakly immunogenic Lip-TAA which binds to IRs. Similarly after exposure of APCs to Lip-TAAs, a responding cell devoid of an IRTAA becomes capable of processing, expressing and presenting LipTAAs (and in the case of macrophages become tumoricidally activated) due to the unopposed stimulation of activation receptors to LipTAAs. Likewise, after exposure to Lip-IDAs, responding T cells, NK cells or NKT cells devoid of IRIDAs become cytolytic for (or otherwise destructive of) the infectious organism bearing the Lip-IDA. Similarly, if a Lip-TAA or Lip-IDA are physically associated, for example, genetically fused or chemically conjugated, to a SAgSM, after exposure to a combination of the SAgSM and the Lip-TAA or Lip-IDA, responding cells lacking the IRSAg (and lacking IRTAA or IRIDA) become hyperresponsive to these antigens.

[0568] Inhibitory Receptors (IRs) and their Motifs

[0569] Most of the IRs are members of one of two protein families: (1) Type I integral membrane proteins belonging to the Ig superfamily, and (2) Type II integral membrane proteins of the C type lectin superfamily, expressed as disulfide linked homodimers or heterodimers. These IRs are inert when self-aggregated but are able to abolish cellular signaling when co-ligated to activation receptors. Their cytoplasmic domains contain one or more motifs termed “immunoreceptor tyrosine-based inhibition motifs” or ITIMs, defined by the six-amino acid sequence (ILV)xYxx(LV) (where x is any amino acid). ITIM sequences are phosphorylated upon receptor co-ligation to create a binding site for cytoplasmic factors with SH2 domains that can transmit the inhibitory signal intracellularly. When phosphorylated, IRs recruit one or more types of tyrosine phosphatases, such as SHP-1, which dephosphorylates molecules in the activation cascade. All the identified families of IRs with specificity for MHC class I molecules have ITIM sequences in their cytoplasmic tails.

[0570] ITIM Sequences in their Cytoplasmic Tails.

[0571] For each IR, there exists a counterpart activating receptor with a highly homologous extracellular domain and a short cytoplasmic tail that lacks signaling capacity. The transmembrane domains of these activation receptors are characterized by the presence of a charged amino acid, a hallmark of receptors that associate with accessory subunits containing the immunoreceptor tyrosine-based activation motif (ITAM). ITIM-bearing receptors commonly inhibit activating signals triggered by receptors with an ITAM in their cytoplasmic tails, for example, B cell Ig receptors, TCRs, and Fc receptors (FcRs).

[0572] Cell activation mediated by ITAM-containing receptors involves phosphorylation and activation of several tyrosine kinases and subsequent activation of phospholipase C&ggr; (PLC&ggr;) and phosphatidylinositol 3-kinase (PI3-K), together leading to the production of phosphoinositol messengers and a mobilization of intracellular Ca2+ and a sustained increase in cytoplasmic Ca2+ levels. Engagement of an IR has a dominant effect, blocking the activation of an activation receptor. In the immune system, this has effects of blocking of cytotoxicity (by T, NK and NKT cells) and cytokine production.

[0573] IRs use two different pathways to terminate cell activation depending on the type of molecule that is recruited to the phosphorylated ITIM sequences:

[0574] (1) protein dephosphorylation mediated by tyrosine phosphatases, including SHP-1 and SHP-2, which abrogate the most proximal events in the activation cascade resulting in the abolition of Ca2+ mobilization, and

[0575] (2) an inhibitory signal is generated via phosphoinositol phosphatase SHIP which hydrolyzes phosphoinositol messengers.

[0576] This latter signal does not affect proximal events triggered by the activating receptor, such as the activation of kinases, receptor phosphorylation, or Ca2+ release from intracellular stores. Rather, it specifically impedes extracellular Ca2+ influx and therefore blocks a sustained increase in cytoplasmic Ca2+.

[0577] SHP-1, SHP-2 and SHIP, recruited by IRs, are associated with antigen-binding receptors, Fc receptors, growth factor and cytokine receptors, and their loss, deficiency or absence results in augmented cell activation and proliferation. These phosphatases do not function through recruitment to IRs, but rather via association with stimulatory receptors to set thresholds or to prevent unsolicited cell activation. The dissociation of an antigen from molecules recruited by SHP-1, SHP-2 and SHIP would abort a negative signal and augment cell reactivity, in particular to antigens of tumors and infectious organisms as well as to SAgs.

[0578] Augmented Immune Response to Tumors and Infectious Agents: Dual Inactivation or Deletion of IRTAAs or IRIDAs and SAgSMs and their ITIMs

[0579] In the present invention, deactivation or deletion of IRs in T cells, NK cells, NKT cells or APCs is accomplished either ex vivo, in vivo or both, prior to exposure to the Lip-TAAs (Examples 51 and 52). This effect is achieved by several approaches, including, but not limited to, the use of a specific antibody or antibody fragment directed to the IR(s), gene knockout, e.g., by homologous recombination exposure to an antisense nucleotide or siRNA. Deletion of IRs leads to a significant enhancement of T cell activation in response to Lip-TAAs and SAgs. In particular, the immune cells with deleted IRs are capable of responding to subdominant and dominant Lip-TAAs on tumor cells, differentiating into effector cells such as CTL, and secreting cytokines that contribute to the tumoricidal response. The APCs deleted of IR are capable of, processing and presenting Lip-TAAs (expressed on or shed by tumor cells) to immune cells such as T cells, NK cells or NKT cells. Macrophages deleted of IRs become tumoricidally activated.

[0580] When stimulated, the IRTAA, IRIDA, IRSAg and their respective ITIMs inhibit cellular activation by the activation receptors that are specific for Lip-TAAs. The IRTAAs and IRIDAS on &agr;/&bgr; TCR-bearing T cells confer specificity, respectively, for Lip-TAAs and Lip-IDAs (for inhibitory signalling), optionally in the context of a CD1 or a CD1 isoform. Sequence analysis of a panel of CD1-restricted, lipid-specific inhibitory TCRs on TCR positive cells reveals the incorporation of template-independent N nucleotides that encode diverse sequences and frequent charged basic residues at the V(D)J junctions. The TCR CDR3 loops containing charged residues project between the CD1 &agr;-helices, contacting the lipid antigen hydrophilic head moieties as well as adjacent CD1 residues in a manner that explains antigen specificity and CD1 restriction.

[0581] The IRTAAs respond specifically to Lip-TAAs, including fatty acids, ceramides, glycolipids, sphingolipids, glycosphingolipids, phosphosphingolipids, gangliosides, sialylated glycans and lipopeptides. IRTAAs also recognize sialic acid and carbohydrates in Lip-TAAs. Sialic recognition is exemplified by Siglecs (sialic acid binding lectins), carbohydrate recognition by some C type lectins both with ITIMs in their cytoplasmic tail. The sialic acid binding region of Siglecs is localized within the membrane-distal, amino-terminal domain. Each Siglec preferentially recognizes aspects of its sialylated ligands, such as the side chain, the N-acyl group, the linkage from the 2-position, and sometimes the underlying sugars Recognition involves the entire sialic acid molecule, including the carboxylate group at the 1-position, the linkage from the 2-position, the N-acyl group at the 5-position, and the exocyclic hydroxyl groups at the 7-, 8-, and 9-positions.

[0582] IRIDAs recognize Lip-IDAs derived from bacteria, mycobacteria, parasites, fungi, protozoans or plants and respond by producing an inhibitory T cell response. Lip-IDAs comprise sphingolipids, glycopeptides, phytoglycolipids, mycoglycolipids, lipoarabinans, mycolic acids, Braun's lipopeptide, inositolphosphorylceramides and plant phosphatidylinositol. Sphingolipids with inositolphosphate-containing head groups showing the general structure of ceramide-P-myoinositol-X (with X referring to polar substituents), including ceramide-p-inositol-mannose, inositol-1-P-(6)mannose(&agr;1,2inositol-1P-(1)ceramide, (inositol-P)2-ceramide, inositol-P-inositol-P-ceramide and inositol-P-inositol-P-ceramide are also useful in native form or naturally conjugated to GPI to activate T cell activation and inhibitory TCRs.

[0583] The present invention contemplates the dual deletion or inactivation, in the same cells, of the IRs along with their respective ITIMs. Deletion or inactivation of these IRs augments the cell's responses to a tumor or an infectious agents after exposure to Lip-TAAs or Lip-IDAs together with SAgSM. The lipid-based antigens are also immunogenic when conjugated or fused to SAgSM or to free SAg.

[0584] Inhibitory receptors with cytoplasmic ITIMs which would be amenable to deletion of their IRTAA and ITIMs include but are not limited to those described below.

[0585] 1. Sialic Acid Binding Lectins (Siglecs) are described in section 56.

[0586] 2. Leukocyte associated Ig-like receptor-1 (LAIR-1) is a surface molecule expressed on human mononuclear leukocytes that functions as an inhibitory receptor on human NK cells. It is also expressed on T cells, B cells, macrophages, and dendritic cells. It is a type I transmembrane glycoprotein with a single If-like domain in the extracellular region and a cytoplasmic tail containing two ITIMs. Cross-linking of LAIR-1 on NK and T cells delivers an inhibitory signal that decreases target cell lysis. Some of the family members bind MHC class I molecules or viral MHC class I homologues. This group of receptors has not been shown to have reactivity or specificity for Lip-TAAs.

[0587] 3. Killer cell inhibitory receptors (KIR) are a family of type I integral membrane protein in the Ig superfamily expressed on the surface of subsets of human NK and CD4+ and CD8+ T cells, predominantly CD28+ memory cells. They recognize to public epitopes formed by polymorphisms at the C terminal portion of al helix of class I HLA-B and HLA-C alleles. Upon binding to HLA class I molecules KIRs prevent activation of NK cells. KIR binding to polymorphic HLA-B and HLA-C inhibits production during SAg T cell stimulation (IRSAgs) diminishes the production of SAg-induced effector T cells.

[0588] Each KIR of the Ig superfamily has two ITIM sequences (YxxL) separated by a stretch of about 26-28 amino acids. These ITIM motifs (discussed above) are critical for the inhibitory signals generated upon binding to a class I ligand. These KIRs generate a negative signal by recruiting and activating two protein tyrosine phosphatases containing a Src homology region 2 (SH2) domain, SHP-1 and SHP-2. (Whereas the KIR inhibitory signal utilizes SIIP-1, the signal of another IR, Fc&ggr;RII, depends on the phosphoinositol phosphatase SHIP). These tyrosine phosphatases dephosphorylate molecules in the activation cascade and thereby counter the stimulatory effects of the tyrosine kinases associated with activation pathways. SHP-1 binds preferentially to the sequence VxYxxL. The more N-terminal ITIM (VTYAQL) binds to both SH2 domains of SHP-1, and does so more avidly than does the C-terminal ITIM (IVYELL). The N-terminal ITIM appears to be sufficient for the inhibitory signal.

[0589] 4. Dendritic cell immunoreceptor (DCIR) is a type II membrane glycoprotein with a single carbohydrate recognition domain(CRD). It contains ITIMs in their cytoplasmic tails. DCIRs are strongly expressed on dendritic cells, monocytes, macrophages, B lymphocytes, and granulocytes but not on NK or T cells. These receptors do not recognize gangliosides or sialylated glycans.

[0590] Engagement of the IR has a dominant effect, blocking activation. KIRs inhibit the lytic function of CTLs activated by bacterial SAgs and regulate other T cell responses. Hence, one consequence of disrupted KIR recognition of self-class I molecules is increased T cell cytokine production in response to SAg stimulation.

[0591] 5. Immunoglobulin-like transcripts (ILTs) are closely related to KIRs, bind MHC class I molecules and also contain ITIM sequences in their cytoplasmic tails. Neither KIRs nor ILTs have been shown to have reactivity or specificity for Lip-TAAs.

[0592] 6. PD-1 is a type one transmembrane protein with an extracellular region consisting of a single IgG-like variable (IgV) domain. It is an inhibitory member of the CD28 family. As with the other CD28 family members, its ligands, PD-L1 and PD-L2, are related to the B7 proteins. PD-1 is expressed on activated B and T cells, and engagement of PD-1 has been shown to inhibit T cell proliferation and cytokine production in response to anti-CD3 and anti-CD28 antibody stimulation. Mice deficient in PD-1 expression develop autoimmune disorders characterized by production of high titers of autoantibodies, indicating an important role in the regulation of autoreactive B cells. Unlike CTLA-4, the cytoplasmic tail of PD-1 contains a immunoreceptor tyrosine-based inhibition motif. The ITIM sequence like those found in several other classes of inhibitory receptors, including the killer inhibitory receptors found on NK cells and Fc&ggr;RIIB on B cells, and functions by recruiting SH2-containing phosphatases. There appear to be receptor and cell type specificities in the identity of the phosphatase (SHP-1, SHP-2, or SHIP) recruited by the ITIM motif. It is unknown which phosphatase is involved in PD-1 function, although, as with CTLA-4, there is some evidence for preferential activation of SHP-2. This system is active at low antigen concentrations inhibiting strong B7-CD28 signals. Hence, this system is likely to be activated early in tumor growth when relatively low concentrations of TAA and IRTAA are exposed to T cells resulting in the well known antigen specific hyporesponsiveness characteristic of this phase of tumor growth.

[0593] 7. B7-H1 is a cell surface glycoprotein belonging to the B7 family of costimulatory molecules. It is expressed on a wide variety of tumor cells including colon, lung, ovarian and breast carcinoma after exposure to IFN-&ggr;. Cancer cell associated B7-H1increases apoptosis of antigen specific T cell clones and promotes growth of tumor cells. The apoptotic effect is mediated largely by one or more receptors other than PD-1. It is possible that the inhibition is related to activation of an ITIM sequence (as yet unidentified) that is part of the immunoregulatory costimulation network activated by antigens presented in the context of CD-1.

[0594] In one embodiment, this invention provides a population of immunocytes and APCs that are hyperresponsive to Lip-TAA and SAgs. These cells have been modified by functionally inactivating ITIMs (or the SH-2- or SHIP-binding sites thereof) in IRTAA. IRIDA and IRSAg using (a) pharmacologic agents, (b) specific (intracellular) antibodies and (c) gene knockouts.

[0595] In another embodiment, the IRs are deleted or inactivated in vivo or ex vivo before exposing the cells to Lip-TAAs or SAgs by providing an antisense molecule which inactivates the relevant inhibitory ITIM or related signaling sequences. Cells treated in this way will then be activated in vivo when exposed to (1) Lip-TAA expressed endogenously on tumor cells or as exogenous purified Lip-TAA preparations; (2) Lip-IDAs derived from infectious agents and expressed endogenously on the organisms or as exogenous purified Lip-IDA preparations; or ( 3) SAg. Lip-TAAs, Lip-IDAs or SAgSM are thus used in vivo as preventive vaccines or as therapeutic agents in the treatment of established cancer or infectious disease (Example 54). Alternatively, IRTAAS, IRIDAS, IRSAgS or their respective ITIMs on cells of the immune system (including T cells, NK cells, NKT cells) and antigen presenting cells (including macrophages, dendritic cells, fibroblasts) are deleted or inactivated ex vivo using methods described in Examples 51 and 52. Thereafter, these cells are exposed to Lip-TAAs, Lip-IDAs or SAgSM as in Examples 53 and 54. When it is desired to augment immune responsiveness to Lip-TAA or Lip-IDAs and SAgSM, cells are exposed to those molecules simultaneously or sequentially as described in Example 54.

[0596] Deleterious side effects such as uncontrolled T cell activation and autoimmune responses by cells depleted of their IRs in vivo are prevented or minimized by ex vivo transduction of cells having the deactivated or deleted IRs with the HSV thymidine kinase gene. Such transduced cells become susceptible to killing by ganciclovir in vivo as described in Example 56, providing a “suicide” type mechanism to control these cells' actions.

[0597] Any IRTAA, IRIDA, IRSAg can be inactivated or deleted (by the methods of Examples 51 and 52) regardless of whether it is a member of one or another recognized or new receptor superfamily or subfamily, as long as the IR retain its functional properties and results in augmented responses to Lip-TAAs, Lip-IDAs and SAgSM (Examples 53, 54).

52. Deletion of Lip-TAA, Lip-IDA & SAgSM Motifs which Selectively Bind and Activate IRTAAs, IRIDAs and IRSAgs

[0598] The structural motifs in the Lip-TAA, Lip-IDA and SAgSM molecules which are responsible for selective binding to IRTAAS, IRIDAs and IRSAgs and for generating an inhibitory signal, termed “antagonist motifs,” are deleted from the Lip-TAA, Lip-IDA and SAgSM molecules. In this way, the remaining agonist motifs selectively bind and stimulate the activating receptors (e.g., via activity at their ITAMs) without activating the dominant IRs or their ITIMs. This results in enhanced signaling and activation of the immune cell population in response to weakly immunogenic Lip-TAAs, Lip-IDAs and SagSM (as well as with free SAgs.

[0599] In another embodiment, the approach of the present invention is to functionally inactivate, in a reversible manner, the molecules in the enzymatic pathway that produce activation of the IR following exposure to Lip-TAAs, Lip-IDAs or SAg, preferably the various phosphatases described above. This can be accomplished preferentially using gene silencing RNA interference molecules targeting the coding sequences of the IR (Example 74). Additional method s for deletion include intracellular antibodies, gene knockout via antisense (Examples 51 and 52). This leads to unopposed signaling by the activation receptor and cellular hyperresponsiveness to the lipid-based antigens, SAgSM or SAg.

53. Deletion of Nucleic Acids Encoding IRTAAs, IRIDAs, IRSAgs, their ITIMs or Fas Genes

[0600] The present invention provides a cell of the immune system or an accessory cell depleted not only of IRTAAS, IRIDAs, IRSAgs but also devoid of Fas receptors. Such a cell is (a) hyperresponsive to Lip-TAAs, Lip-IDAs and SAgSM or free SAgs, and (b) resistant to apoptotic signals from tumor cells that secrete Fas ligand. Therefore, when administered to a subject, these cells manifest their tumoricidal properties even while penetrating tumor tissue without being subject to inactivation induced by the high local concentration of gangliosides released from the tumor or apoptosis due to Fas ligand secreted by the tumor cells. The deletion or functional inactivation of the Fas gene in cells of the immune system, including T cells, NK cells and NKT cells, is accomplished ex vivo preferentially by RNA interference using siRNA targeting the RNA coding sequence FAS (Example 74) or by homologous recombination or using antisense oligonucleotides (Examples 51 and 52). These apoptosis-resistant, hyperresponsive cells are useful for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16 18-23, 54).

54. Genes Encoding IRTAA, IRIDA, IRSAg, ITIMs and ITAMs

[0601] Genes encoding the IRs and their ITIMs are cloned using conventional techniques. Their size and chromosomal location are determined using well established methods. It is predicted that the ITIMs represent no more than about a 40 base pair segment. In the present invention, genes encoding IRTAAs, IRIDAs, IRSAgs and their ITIMs including but not limited to ITIM sequences in Siglecs, LAIRs, KIRs, DCIRs, ILTs and PD-1s are deleted or inactivated in immunocytes and APCs in vivo or ex vivo preferentially by RNA interference targeting the coding sequences of in Siglecs, LAIRs, KIRs, DCIRs, ILTs and PD-1s (Example 74) or by antisense methodology (Examples 51 and 52). These cells are then exposed to Lip-TAAs, Lip-IDAs and SAgSM or free SAgs in vivo or ex vivo (Example 53, 54). The ex vivo treated immune system cells are used for adoptive immunotherapy of cancer and infectious disease (Examples 2-5, 7, 15, 16 18-23, 53, 54).

55. Therapeutic Composition: SAg or SAgSM Conjugated to Lip-TAAs and Lip-IDAs

[0602] In one embodiment, SAgs are chemically conjugated to Lip-TAAs (of the types listed above). In another embodiment, SAgs are conjugated to Lip-IDAs such as glycans and peptidoglycan antigens derived from bacteria, mycobacteria, parasites, fungi or plants. These families are listed above. These lipid based molecules also include sphingolipids with inositolphosphate-containing head groups as listed above. These molecules are used in native form or may be conjugated to GPI structures. They may be obtained by isolation from shed membranes, exosomes, or vesicles of the native organism. Example 55 describes extraction and purification of these lipids. SAg-Lip-TAA or SAg-Lip-IDA conjugates are prepared by methods of Examples 4-5. For immunization, these conjugates may be used alone or loaded onto soluble CD1 receptors or onto the surface of APCs (Example 5). Example 5 also describes these conjugates with attached GPI, fused to cell membranes, for example, tumor cell or erythrocyte membranes. In this form, the conjugates are used to activate T cells, NKT cells or NK cells.

[0603] These conjugates are used in vivo as therapeutic antitumor vaccines according to Examples 14, 15, 16, 18-23. They are also useful ex vivo for producing a population tumoricidal T cells, NK cells or NKT cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16, 18-23). They are used ex vivo to activate cells in which IRTAA, IRIDA or IRSAg have been deleted such as by siRNA-RNA interference preferentially-Example 74, gene knockout-Examples 51,52 or antisense-treatment, Example 53, 54. These hyperresponsive immune cells are then infused into the subject using protocols set forth in Examples 15, 16, 21, 23, 53, 54.

[0604] Conjugates between SAg and a Lip-IDA derived from a fungal, parasitic or mycobacterial sources are also used for the treatment of infectious diseases such as tuberculosis, leishmaniasis, trypanosomiasis as disclosed in Example 53. They are also useful ex vivo for activating a population of cells in which IRIDAs specific for bacterial, fungal, parasitic or mycobacterial antigens have been (1) deleted (via gene knockout) or (2) functionally inactivated (via antisense) for use in adoptive immunotherapy of infectious disease (Examples 51, 52, 53).

56. Lip-TAA Receptors and Receptor Mimics for Binding Lip-TAAs in Tumor Bearing Hosts Immunosuppressive Lip-TAAs

[0605] Lip-TAAs consist of sialic acid-containing glycosphingolipids; gangliosides, which are potent inhibitors of the immune response. Synthesized and shed in particularly high amounts by tumor cells, these molecules have been shown to enhance tumor formation and progression in vivo. In the tumor cell microenvironment and ultimately in the circulation associated with low density lipoprotein molecules, tumor gangliosides are mediators of tumor-related host immune suppression. Tumor gangliosides and glycosphingolipids (LipTAAs) are known to suppress antigen or mitogen induced T or NK cell activation, cytotoxic T cell generation and monocyte accessory cell function. Indeed, tumor production and shedding gangliosides in the course of tumor growth is one explanation for the tumor antigen specific immunosuppression which appears within a few days after tumor implantation. For tumor ganglioside induced T cell inhibition, ceramides with C16-C18 fatty acyl groups are more immunosuppressive than those with longer fatty acyl chains and the presence of the sialic acid is required.

[0606] Immunocytes

[0607] LipTAAs have also been shown to modulate expression of lymphocyte surface molecules CD2, CD3, CD4, CD5, and CD8. They interact directly with T cells to induce T cell suppression of lymphoproliferation in response to mitogen or antigen primed monocytes. They inhibit cytotoxic effector function, trigger endocytosis of the CD4 molecule and interfere with the binding of IL-2 to its T cell receptors. Dephosphorylation of the T cell retinoblastoma protein (pRB) via phosphatase activation is an additional mechanism of the immunosuppressive effect.

[0608] Antigen Presenting Cells

[0609] LipTAAs induce a specific, non-toxic and reversible inhibition of the capacity of human monocytes to induce a MIIC class II-restricted T-cell proliferative responses in vitro. This accessory cell function is a key initial step in the induction of a cellular immune response to LipTAAs. Inhibition of accessory cell function occurs after antigen processing at the step of antigen localization to the APC MHC receptor. LipTAAs inhibit the production of IL-1&bgr;, TNF &agr; and IL-6 by stimulated adherent cells. They interfere with dendropoiesis and the expression of costimulatory molecules CD80, CD83, CD86 on antigen presenting cells and dendritic cells, in which case tumor associated antigens presented in the absence of costimulation induce specific T cell tolerance.

[0610] Sialic Acid Binding Ig-Superfamily Lectins (Siglecs) Receptors, Homologues or Mimics

[0611] Siglecs (sialic acid binding Ig-superfamily lectins) are a multigene family of sialic acid binding proteins, each with a distinct specificity for the type of sialic acid recognized and its linkage to subterminal sugars. The family consists of sialoadhesin (siglec-1) localized to macrophages, CD22 (siglec-2) to B cells, CD33 (siglec-3) to myelomonocytic cells, myelin-associated glycoprotein or MAG (Siglec 4a)/Schwann cell myelin protein or SMP (siglec-4b) to oligodendrocytes and Schwann cells in the nervous system, Siglec-5 to neutrophils and monocytes Siglec-6/OBBP-1 to B cells and placental trophoblasts and Siglec-7 expressed in spleen, peripheral blood leukocytes and liver. Siglec-3, 5, 6, 7 bear an extracellular sialic acid binding site and an intracellular ITIMs (tyrosine-based inhibitory motif). Siglec binding sites for sialic acid are often masked by endogenous ligands and can be unmasked by transfection of sialyltransferases, sialidase treatment or cellular activation.

[0612] Structurally, Siglecs are a group of cell surface immunoglobulin superfamily lectins and a subset of the “1” type lectins which bind sialic acid. Family members each have a single V-set NH2-terminal Ig domain followed by a variable number of C2-set Ig domains, as many as 16 for sialoadhesin, or as few as one for CD33. The V- and adjacent C2-set domains display an unusual conserved pattern of three cysteines in each domain. These result in an intra-□&bgr;-sheet disulfide bond in the V-set domain, a predicted interdomain disulfide and a canonical inter-&bgr;-sheet disulfide within the C2 set domain. The postulated interdomain disulfide is a unique feature of the siglec family.

[0613] There is significant amino acid and nucleotide sequences homology among the Siglec 1-7. cDNAs for all of the Siglecs are known (See Example 58). Siglecs 3, 5, 6 and 7 form a closely related cluster. Siglec family members CD33-or Siglec 3, Siglec 5, Siglec 6, and Siglec 7 contain a conserved consensus sequence surrounding the intracellular tyrosine residues of all four of these molecules [E(I/L)xYAxL-(12-18 residues)-(T/N)EYSE(I/V)(K/R)]. As with Siglec-2 and 4a, the cytoplasmic tail of Siglec-3 is tyrosine-phosphorylated upon engagement. Once the tyrosines are phosphorylated, the first one is part of an ITIM (Immunoreceptor Tyrosine-based Inhibitory Motif; consensus: L/I/V/SxYxxLN), which is found in many members of the Ig superfamily (including Siglec-2/CD22), and forms a potential docking site for the SHP-1 tyrosine phosphatase. The second tyrosine-containing motif [(T/N)EYSE(I/V)] is similar to the sequence (TxYxxI/V) reported in SLAM, an immunoregulatory molecule of the Ig superfamily. This motif is the docking site in SLAM for an SH2-containing molecule SAP (SLAM-associated protein), which blocks recruitment of the tyrosine phosphatase SHP-2 to its docking site in the SLAM cytoplasmic region. A similar interplay occurs between the recruitment of phosphatases to the ITIM motif in Siglecs and the presence; of SAP or SAP-like inhibitors to the SAP binding motif.

[0614] In contrast to the majority of immunoglobulin superfamily members which recognize protein ligands, Siglec family members have all been shown to bind to specific sialylated glycans. Each Siglec recognizes aspects of its sialylated ligands, such as the side chain, the N-acyl group, the linkage from the 2-position, and sometimes the underlying sugars Whereas CD22 strongly prefers glycans terminating in the Sia&agr;2-6Gal, the other members of the family bind to Sia&agr;2-3-Gal-terminating structures. Sn preferentially interacts with cells of the granulocytic lineage and MAG with neuronal processes. Siglec-6 has a protein ligand, i.e., leptin. For sialoadhesin (Siglec 1) and MAG (Siglec 4a), specific cell populations bearing their cognate ligands are granulocytic lineage cells and neuronal processes respectively.

[0615] The sialic acid binding property of the family is mediated primarily by an amino-terminal V-set Ig domain, with some contribution by the next C2-set domain. Recognition involves the entire sialic acid molecule, including the carboxylate group at the 1-position, the linkage from the 2-position, the N-acyl group at the 5-position, and the exocyclic hydroxyl groups at the 7-, 8-, and 9-positions. Arginine present in all the Siglecs is essential for sialic acid-dependent binding. Other important interactions include hydrophobic contacts between conserved aromatic amino acids on the A and G B strands of the V set domains with the N-acetyl and glycerol side groups of N-acetyl-neuraminic acid. For Sn and CD22, the binding site has been mapped to the GFCC′ face of the V-set domain by site directed mutagenesis. In the center of this site is an arginine residue which is found in all members of the Siglec family. The high sequence similarities in this area suggests that it represents the binding site also in MAG, SMP and CD33. For MAG the Arg residue is necessary for the binding of sialylated glycans.

[0616] Myelin Associated Glycoprotein (Siglec 4a)

[0617] The ligands for myelin-associated glycoprotein (MAG, Siglec 4a) are a limited set of structurally related gangliosides, known to be expressed on myelinated neurons in vivo. The neural sialoadhesins, myelin associated glycoprotein (MAG) and Schwann cell myelin protein (SMP), had similar and stringent binding specificities. Each required an &agr;2,3-linked sialic acid on the terminal galactose of a neutral saccharide core, and they shared the following rank-order potency of binding: GQ1ba>>GD1a=GT1b>>GM3=GM4>>GM1, GD1b, GD3, GQ1b (nonbinders). Major brain gangliosides GT1b and GD1a adhere to MAG. The simplest ganglioside ligand for MAG is GM3 bearing N-acetylneuraminic acid, whereas GM3 bearing N-glycolylneuraminic acid did not support adhesion. The simplest ganglioside ligand for MAG is GM3 bearing N-acetylneuraminic acid, whereas GM3 bearing N-glycolylneuraminic acid did not support adhesion. GQ1b alpha expressed on cholinergic neurons, is more potent than GT1b or GD1a in supporting MAG-mediated cell adhesion. An alpha 2,3-N-acetylneuraminic acid residue on the terminal galactose of a gangliotetraose core is necessary for MAG binding, and additional sialic acid residues linked to the other neutral core saccharides [Gal(II) and GalNAc(III)] contribute significantly to binding affinity. Binding is enhanced by pretreatment of MAG-expressing cells with neuraminidase. For MAG, the specific cell populations bearing its cognate ligands are neuronal processes.

[0618] Sialoadhesin

[0619] Sialoadhesin had less exacting specificity, binding to gangliosides that bear either terminal &agr;2,3- or &agr;2,8-linked sialic acids with the following rank-order potency of binding: GQ1ba>GD1a=GD1b=GT1b=GM3=GM4>GD3=GQ1b>>GM1. In the case of sialoadhesin (Siglec-1), a crystal struct has been elucidated in the presence of bound ligand, confirming that all of these aspects of the sialic acid molecule are actually in direct contact with the binding site. Target ligands for the sialoadhesins are glycoconjugates in which a terminal sialic acid is essential for binding. Sialoadhesin binds predominantly to terminal &agr;2,3-linked sialic acids, although weaker binding to &agr;2,8-linked sialic acids was demonstrated. In contrast, CD22 bound only to &agr;2,6-linked sialic acids, whereas MAG and CD33 bind only to &agr;2,3-linked sialic acids. Among structures with &agr;2,3-linked sialic acids, MAG bound preferentially to “3-0” structures (NeuAc &agr;2,3Gal&bgr;1,3GalNAc), which are common termini on gangliosides (the major sialoglycoconjugates of the nervous system) and 0-linked glycoproteins. Sialoadhesin and CD33 bound similarly to “3-0” and “3-N” (NeuAc &agr;2,3Gal&bgr;1,4GlcNAc) structures.

[0620] CD22 (Siglec 2)

[0621] CD22 (Siglec 2) a B lymphocyte antigen preferentially binds to glycans terminating in Sia&agr;2-6Gal and glycoconjugates terminating in sialic acid. The minimal structure recognized by this lectin is the trisaccharide Sia&agr;2-6Gal&bgr;1-4GlcNAc, as found on N-linked, 0-linked, or glycolipid structures. One prominent ligand for CD22 is the highly glycosylated leukocyte surface protein CD45. CD22 binds to the sialoglycoconjugate NeuAc&agr;2-6Gal&bgr;1-4GlcNAc carried on CD45-thy N-glycans. The other members of the family bind to Sia&agr;2-3Gal-terminating structures. Specifically, the critical features required for CD22 binding include the exocyclic hydroxylated side chain of the Sial residue and the &agr;C2-6 linkage position to the underlying Gal unit. CD22 expressed on cell surfaces is structurally and functionally a multimeric protein, demonstrating a higher apparent affinity for multiply sialylated compounds over monosialylated compounds.

[0622] CD33 (Siglec 3)

[0623] CD33 is a member of the Ig superfamily that is restricted to cells of the myelomonocytic lineage but whose functions and binding properties are unknown. It shares sequence similarity with sialoadhesin, CD22, and the myelin-associated glycoprotein which constitute the sialoadhesin family of sialic acid-dependent cell adhesion molecules. CD33 is a fourth member of this family. A recombinant soluble form of CD33, Fc-CD33, bound red blood cells with a specificity similar to that of sialoadhesin, preferring NeuAc2,3Gal in N-and 0-glycans over NeuAc&agr;2,6Gal in N-glycans. Pretreatment of the CD33-transfected cells with sialidase rendered them capable of mediating sialic acid-dependent binding. CD33 can function as a sialic acid-dependent cell adhesion molecule and that binding can be modulated by endogenous sialoglycoconjugates when CD33 is expressed in a plasma membrane.

[0624] The Siglec polypeptide family of receptors, homologues or mimics are prepared from their cDNAs using recombinant techniques as in Example 58. These receptors are used to bind circulating immunosuppressive Lip-TAAs in vivo. They are expressed as part of a chimeric receptor with additional molecules such as Fc fragments which facilitate the removal of Lip-TAAs from the tumor bearing host. They are also useful when administered in advance of T cells, NK cells or APCs in which IRTAA, IRIDA inhibitory receptors have been deleted ex vivo (e.g., via gene knockout) or inactivated (e.g., via antisense) Example 58.

[0625] Additional Lip-TAA Binding Molecules:

[0626] Prosaposin (SAP precursor) exists as an integral membrane protein bound by a mannose-6-phosphate-independent mechanism. Prosaposin is the precursor or four smaller lysosomal saposin A, B C and D proteins. Both prosaposin and mature saposins interact specifically with glycolipids and serve as nonenzymatic cofactors in the hydrolysis of glycosphingolipids by acidic glycosidases. As a family they are known as sphingolipid activator proteins. Prosaposin is the only member of the saposin family with an extralysosomal location existing as a membrane bound or secretory protein. It exhibits ubiquitous expression, evolutionary conservation, and diverse tissue inducibility.

[0627] The function of the secreted form of prosaposin is as a glycolipid binding and transfer protein in vivo. Prosaposin and saposins are capable of transferring gangliosides from donor liposomes to acceptor membranes including erythrocyte ghost membranes. With its four lipid binding domains prosaposin forms clusters with certain sphingolipids in the plasma membrane and regulates their endocytosis and degradation. Prosaposin, but not mature SAPs, has been detected inhuman secretory fluids like cerebrospinal fluid, semen, milk, pancreatic juice, and bile. In rat tissues, skeletal muscle, heart, and brain contain mainly precursor forms, while mature forms dominate in spleen, lung, liver and kidney.

[0628] Prosaposin and saposins A, B, C, and D form stable complexes with 13 different gangliosides. Gangliosides of the gangliotetraose type (“a”) series) bind with high affinity, whereas (“b”) series gangliosides, 0-acetylated gangliosides, and gangliosides with shorter carbohydrate chains, bind with lower affinity. Several gangliosides (“a” series) bind to prosaposin with high affinity forming stable ganglioside-prosaposin complexes.

[0629] The derived amino acid sequence of SAP precursor is given in O'Brien J S et al, Science 241: 1098-1101 (1988). Amino acids 229 to 323 are colinear with the chemically sequenced amino acids of SAP-2. The nucleotide sequence from which the protein sequence was derived is deposited in the GenBank (access code J03086). The four SAP-like domains are aligned to emphasize the nearly identical placement of cysteine residues, glycosylation sites, and conserved proline residues.

[0630] Prosaposin cDNA has been elucidated by O'Brien J S et al., Science 241: 1098-1101 (1988). The open reading frame contains regions coding for mature SAP-1 and SAP-2 and the four SAP-like domains. Domains 1 to 4 correspond to amino acid residues 47 to 130, 182 to 262, 298 to 377, and 392 to 474, respectively. The prosaposin gene covers a region of at least 17 kb on segment q21 of chromosome 10. The positions of its 14 introns, the cysteine residues and the N-glycosylation sites show some regularities supporting the assumption that the sap-precursor gene arose by sequential duplication of an ancestral gene coding for only one sap. Exon 8 consists of only nine base pairs which code for three amino acids near the C-terminus of sap-B. In different human cDNA libraries, cDNAs are found with or without the nine bases of exon 8. After amplification by polymerase chain reaction and direct sequencing, these two forms and a third one containing only the last six bases of exon 8 are detected in cDNAs prepared from cultured human skin fibroblasts. All three forms are found in cells from a normal proband and from two patients with sap-B deficiency due to a point mutation in exon 7. The cDNA of prosaposin without the nine extra bases of exon 8 encodes a polypeptide chain of 524 amino acids starting with a typical signal peptide or amino acids for entering the ER.

[0631] The prosaposin cDNA construct is also generated by amplifying a rat testicular Zap cDNA library by PCR (polymerase chain reaction) with two synthetic oligonucleotide primers. A positive signal of 1.7 KB was isolated, subcloned into the pGEM-7Zf(+). Sequence analysis showed a near-identical nucleotide and amino acid similarity to a previous rat prosaposin cDNA.

[0632] The nucleic acids encoding Siglecs, prosaposin, saposins or other Lip-TAA binding proteins are inserted into the RNA (or DNA) replicating vector to create a pRcp-Lip-TAA binding protein. This construct is administered in vivo, e.g., intratumorally, subcutaneously or parenterally wherein it produces the Lip-TAA binding protein which binds to Lip-TAAs produced or shed by tumor cells and prevents them from exerting their immunosuppressive effects on host T cell and antigen presenting cell function.

[0633] Saposins

[0634] Saposins are a family of four small glycoproteins, all of which are derived from prosaposin, and are involved in the lysosomal hydrolysis of various sphingolipids. They are water soluble and highly hydrophobic. Saposin B binds to complex gangliosides (such as GM1 and GD1a) and transports them from donor to acceptor liposomes. Prosaposin and all the saposins bind gangliosides, sulfatides, and cerebrosides to varying degrees and facilitate glycolipid insertion into erythrocyte ghosts or brain microsomes to differing extents. Also, the sulfatide activator protein (SAP A) markedly accelerates the transfer of complex gangliosides compared with simpler glycolipids having shorter carbohydrate chains.

[0635] The amounts of ganglioside bound in vivo depends on many factors, including the state of the ganglioside (micellar or membrane bound), the type of ganglioside, the pH of binding, the presence of divalent cations, other lipids, and other binding proteins. The highest affinity of prosaposin (and saposins A, B, C, and D) is for the “a” series gangliotetraose-type gangliosides possessing terminal sialic acid residues. Ganglioside GQ1b has a unique potency to enhance neuroblastoma cell proliferation and to increase the number and total length of neurites (neuritogenesis) in vitro. This ganglioside is bound tightly by prosaposin.

[0636] Although one SAP, i.e., GM2 activator protein, has been shown to display in vitro glycolipid transfer activity, this SAP is clearly selective for ganglioside GM2 Other SAPs (four of five) are encoded by a single gene and enter the lysosome as a single 65-73-kDa precursor chain that is processed into four similarly sized (˜13 kDa), fairly homologous polypeptides (SAPs A-D) that are heavily glycosylated and have acidic pI values.

[0637] Homologies among the saposins range between 16% (saposin B/saposin C) and 39% (saposin A/saposin C) with 15 amino acids being conserved in all four proteins, among them all six cysteine residues and an N-glycosylation signal. When placement of amino acids with similar properties at the same position in each sequence is considered, the similarity among saposins increases to between 47% (saposin B/saposin C) and 60% (saposin A/saposin C).

[0638] Models of each saposin indicate a compact rigidly cross-linked disulfide-bridged polypeptide containing a common hydrophobic pocket, suggesting that they should all act as lipid binding proteins.

[0639] cDNAs encoding for SAP-1 and SAP-2 have been isolated (O'Brian J S et al., Science 241: 1098-1101 (1988)). The nucleotide sequence of the largest cDNA is colinear with the derived amino acid sequence of SAP-2 and with the nucleotide sequence of the cDNA coding for the 70-kilodalton prosaposin (prosaposin cDNA). The coding sequence for mature SAP-2 is located 3′ to that coding for SAP-1 in the prosaposin cDNA. Both SAP-1 and SAP-2 are derived by proteolytic processing from a common precursor that is coded by a genetic locus on human chromosome 10. Two other domains similar to SAP-1 and SAP-2 are also identified in prosaposin. Each of the four domains is approximately 80 amino acid residues long, has nearly identical placement of cysteine residues, potential glycosylation sites, and proline residues. Each domain also contains internal amino acid sequences capable of forming amphipathic helices separated by helix breakers to give a cylindrical hydrophobic domain that is stabilized by disulfide bridges. Protein immunoblotting experiments indicate that prosaposin (70 kilodaltons) as well as immunoreactive SAP-like proteins of intermediate sizes (65, 50, and 311 kilodaltons) are present in most human tissues.

[0640] Glycolipid Transfer Protein

[0641] Glycolipid transfer protein (GLTP), a nonglycosylated, cytoplasmic protein is present in most animal cells, and is a cytoplasmic protein. The purified protein has a molecular weight near 23 kDA and has an isoelectric point near 9.0. It contains 209 amino acids residues a high level of amino acids with non-polar side chains (48%). Northern blot analysis of shows a single transcript of 2.2 kilobases and the following hierarchy of RNA levels: cerebrum>kidney>spleen congruent with lung congruent with cerebellum>liver>heart muscle. The amino acid sequence of a glycolipid transfer protein from pig brain has been determined by automatic sequencing and fast atom bombardment mass spectroscopic analysis of peptides produced by chemical and enzymatic cleavage reactions. The protein consists of 208 residues, with N-acetylalanine as the N-terminal residue and valine as the C-terminal residue. It contains 3 cysteine residues. The primary structure of the glycolipid transfer protein from pig brain is as follows: 3 Acetyl- A-L-L-A-E-H-L-L-K-P-L-P-A-D-K-Q-I-E-T-G-P-F-L-E-A-V-S-H-L-P  30 P-F-F-D-C-L-G-S-P-V-F-T-P-I-K-A-D-I-S-G-N-I-T-K-I-K-A-V-Y-D  60 T-N-P-A-K-F-R-T-L-Q-N-I-L-E-V-E-K-E-M-Y-G-A-E-W-P-K-V-G-A-T  90 L-A-L-M-W-L-K-R-G-L-R-F-I-Q-V-F-L-Q-S-I-C-D-G-E-R-D-E-N-H-P 120 N-L-I-R-V-N-A-T=K-A-Y-E-M-A-L-K-K-Y-H-G-W-I-V=Q-K-I-F-Q-A-A 150 L-Y-A-A-P-Y-K-S-D-F-L-K-A-L-S-K-G-Q-N-V-T-E-E-E-C-L-E-K-V-R 180 L-F-L-V-N-Y-T-A-T-I-D-V-I-Y-E-M-Y-T-K-M-N-A-E-L-N-Y-K-V-OH 208

[0642] The purified GLTP is a mixture of two forms of a protein; one of them (about 15%) with an intramolecular disulfide bond, and a reduced form (about 800) without one. GLTP with an intramolecular disulfide bond has twice as much activity as the reduced form, and formed more GLTP-glycolipid complex. GLTP is distinctly different from other soluble proteins that interact with glycolipids such as other types lipid transfer proteins, and lectins with mannose recognition/binding domains.

[0643] GLTP is specific for neutral glycosphingolipids and gangliosides but not phospholipids or neutral lipid intermembrane transfers. The protein transfers, by a carrier mechanism, glycolipids with a &bgr;-glucosyl or &bgr;-galactosyl residue directly linked to either ceramide or diacylglycerol hydrophobic backbone. It has been shown that GLTP facilitates the transfer of glycolipids only when both the donor and acceptor membranes are in the liquid-crystalline state. The GLTP-glycolipid complex is formed as a result of removal of a glycolipid molecule from a membrane and binding to a GLTP molecule. GLTP from pig brain facilitates the transfer of glycosphingolipids which include glucosylceramide, galactosylceramide, lactosylceramide, sulfatide. lactosylceramide-II-sulfate, globotriaosylceramide, globotetraosylceramide, globopentaosylceramide, sialosyllactosylceramide, and GM1 ganglioside. The transfer of Man&bgr;1-4Glc&bgr;1-ceramide and Man&agr;1-4Man&bgr;1-4Glc&bgr;1-ceramide is also facilitated by GLTP from pig brain. In addition to glycosphingolipids, GLTP from pig brain also facilitates the transfer of 3-[Gal&bgr;1]-sn-1,2-diacylglycerol, 3-[Gal&agr; 1-6Gal&bgr;1]-sn-1,2-diacylglycerol, and 3-[Glc&bgr;1]-rac-1-2-dipalmitylglycerol. The protein does not facilitate the transfer of 3-[Man&agr;1-3Man&agr;1]-sn-1,2-diacylglycerol, 3-[Glc&agr;1]-sn-1,2-diacylglycerol, phosphatidylcholine, phosphatidylinositol, phosphatidylethanolamine, cholesterol, or cholesteryl oleate. GLTP from pig brain stimulates the transfer of pyrene-labeled sphingomyelin to a very small but significant extent. GLTP recognizes and binds the sugar residue directly linked to either ceramide or diacyglycerol in addition to the nonpolar portion of glycolipids.

[0644] The cloned bovine and porcine brain cDNAs for GLTP contain 627-bp open reading frames. The encoded amino acid sequences in the full-length bovine and porcine cDNAs are identical, consisting of 209 amino acid residues, Expression of GLTP-cDNA in Escherichia coli using pGEX-6P-1 vector results in glutathione S-transferase-GST-GLTP fusion protein with 50% of expressed fusion protein being soluble and active. Proteolytic cleavage of GSTGLTP fusion protein (bound to GST-Sepharose) and affinity purification resulted in fully active GLTP. Northern blot analyses of bovine tissues showed a single transcript of ˜2.2 kilobases and the following hierarchy of mRNA levels: cerebrum>kidney>spleen, lung, cerebellum>liver>heart muscle.

[0645] Non-Specific Lipid Transfer Proteins (nsLTPs)

[0646] Nonspecific lipid transfer proteins (nsLTPs) are present in both animals and plants and represent a group soluble proteins that catalyze the in vitro transfer of a wide range of lipids, including glycolipids. Although able to transfer different neutral glycosphingolipids and ganglioside GM1 between membranes, nsLTPs clearly differ from GLTP with regard to lipid selectivity and ability to actively transfer all common phosphoglycerides as well as cholesterol. Also, despite having basic isoelectric points (pI 8.6-9.6) like GLTP (pI 9.0), nsLTPs are much smaller (13.2 kDa) than GLTP (23.9 kDa) and are initially encoded in precursor form (15.3 kDa; pre-nsLTP). A tripeptide targeting sequence (Ala-Lys-Leu) in the C-terminal end directs certain nsLTPs to peroxisomes, where a 20-amino acid presequence is cleaved. No known organelle targeting sequences appear in the primary sequence of GLTP, which is consistent with its putative cytoplasmic localization. Given the differences in selectivity and structure along with the lack of sequence homology revealed by searches on-line data bases, available evidence indicates that GLTP is distinctly different from known nsLTPs and other lipid transfer proteins.

[0647] A non-specific transfer protein isolated from beef liver accelerates the exchange and net transfer of phospholipids and cholesterol between natural and artificial membranes (Crain R C et al., Biochemistry 19:1433-1439 (1980)). The bovine liver protein transfers phosphatidylcholine, phosphatidylethanolamine, phosphatidylinositol, sphingomyelin, phosphatidic acid, phosphatidylserine, phosphatidylglycerol, and cholesterol and also promotes net transfer of phospholipids from multilamellar vesicles to human high density lipoproteins or from small unilamellar vesicles to mitoplasts. This protein also accelerates the net transfer of cholesterol from small unilamellar vesicles to multilamellar vesicles.

[0648] Bloj et al., J. Biol. Chem. 256:5988-5991 (1981) demonstrated that this protein also accelerates the transfer of labeled glycosphingolipids between membranes. The protein shows little specificity toward the polar head of complex lipids and is known to transfer the sphingophospholipid, sphingomyelin. Di-palmitoylphosphatidylcholine is transferred 2.6 times faster than globotetraglycosylceramide from egg phosphatidylcholine vesicles to erythrocyte ghosts. Crain et al., Biochemistry 19:1433-1439 (1980)) noted that phosphatidylcholine transfer was 3 times faster than that of sphingomyelin. Glycerophospholipids are better substrates than sphingolipids for the lipid transfer protein. The nonspecific lipid transfer protein is the first protein shown to move complex neutral glycosphingolipids and gangliosides between membranes. In vivo such proteins serve to facilitate the transfer of glycolipids from their sites of initial synthesis to other sites where glycosylation may take place or where the glycolipids express their biological functions.

[0649] Additional Ganglioside Binding Proteins

[0650] Ganglioside binding proteins especially in brain or cultured neuronal cell lines are membrane-associated and specifically bind gangliosides of the “b” series with high affinity. This protein is localized to myelin membrane preparations; it differs from prosaposin in both specificity and localization. In cultured cerebral granular cells several membrane proteins bind photoreactive ganglioside GM1 derivative. Two prominent proteins so-labeled are released by trypsin and their molecular masses (46 and 31 kDa) are similar to the initial products of proteolysis of prosaposin. However, additional binding proteins varying from 12 to 112 kDa are also present and other ganglioside binding proteins that have basic isoelectric points.

[0651] Two glycolipid transfer proteins isolated from calf brain catalyze the transfer of gangliosides and neutral glycosphingolipids from phosphatidylcholine vesicles to erythrocyte ghosts (Gammon C M et al., Biochemistry 26: 6239-6243 (1987)). Purification by differential centrifugation, ammonium sulfate precipitation, and gel filtration and fast protein liquid chromatography (Mono S), produced two peaks of activity. The major band of both fractions with a molecular mass of approximately 20,000 daltons catalyzed the transfer of ganglioside GM 1 as well as asialo-GM1, but transfer protein I (TPI) is more effective with di- and trisialogangliosides. Transfer protein II (TPII)is more specific for neutral glycolipids in that GA1 is transferred more rapidly than any of the gangliosides; however, lactosylceramide transfer is relatively slow. Neither protein catalyzed transfer of phosphatidylcholine.

[0652] The specific transfer activity toward additional glycolipid substrates. revealed TPI to be more reactive toward GM1 than GA1, its asialo derivative. The other gangliosides are only slightly less reactive while Lac-Cer is the least effective substrate. A different order of reactivity is seen for TP II: GA1 was transferred somewhat more efficiently than GM1, and the other gangliosides are transferred at considerably lower rates. Neither protein catalyzes the transfer of phosphatidylcholine. TPI, with an apparent preference for gangliosides over neutral glycolipids of shorter chain is a different protein from GLTP. The fact that neither this transfer proteins nor GLTP catalyzed transfer of phospholipids indicates a basic difference from the transfer protein of bovine liver described by Bloj et al., J. Biol. Chem. 256:5988-5991 (1981).

[0653] The activator protein which promotes hexosaminidase A catalyzed hydrolysis of GM2 and GA2 also functions as a ganglioside transfer protein in the absence of enzyme (Conzelmann W et al., Eur. J. Biochem. 123:455-464 (1982)). The activator protein extracts glycolipid monomers from micelles or liposomes to give water-soluble-complexes with a stoichiometry of 1 mol of glycolipid/mol of activator protein. In the absence of enzyme the activator acts in vitro as glycolipid transfer protein, transporting glycolipids from donor to acceptor membranes. The activator protein is specific for ganglioside GM2. Other glycolipids (GM3. GM1. GD1a and GA2) form less stable complexes with the activator and are transferred at a slower rate (except for ganglioside GM1) than ganglioside GM2.

[0654] In the present invention, Lip-TAAs receptors on T cells, &agr;/&bgr;+ or &agr;&bgr;--T cells, &ggr;/&dgr;T cells, NKT cells, NK cells and/or antigen presenting cells of any type and dendritic cell used individually or collectively in any combination are inhibited deleted or mutated (to functionally deactivate them) in vivo using antisense techniques given in Examples 51, 52 or preferentially RNA interference as given in Examples 18-20, 74. These receptors are tested in vivo in animal models as given in Examples 18-20, 51, 52, 57-59, 74. Ex vivo deletion, inhibition, mutation of LipTAAs receptors on immunocytes or accessory cells is effected by antisense or gene knockout, ribozyme knockout techniques (Examples, 51, 57-60) or preferentially RNA interference (Examples 18-20, 74). These cells with deleted or inactivated LipTAAs receptors are incubated with Lip-TAAs ex vivo for 24 hours. They are also effective without specific ex vivo antigen stimulation assuming that they will encounter the specific Lip-TAA in vivo. They are useful in conventional models of tumor outgrowth and established tumors as welll as adoptive immunotherapy protocols given in Examples 18-20, 57-59, 68. Prior to the adoptive transfer of IRTAA depleted and activated immunocytes or APCs (1-4 hours is preferred but 24-72 hours is acceptable), tumor bearing hosts are treated with decoy LipTAA receptor polypeptides to prevent circulating LipTAAs associated with serum lipoproteins from tolerizing the infused immunocytes or accessory cells (Examples 57-59).

[0655] In another embodiment, purified LipTAAs receptor or transfer protein genes are used to prepare purified LipTAAs receptor or transfer polypeptides. These structures are useful as intact polypeptides, fragments or chimeric (e.g., fused to Fc fragment) proteins with conserved Lip-TAA binding domains. These purified receptors, fragments or chimeras are useful as decoys in vivo to bind Lip-TAAs in vivo thus preventing them from exerting their immunosuppressive effects on immunocytes and accessory cells. They are prepared in soluble form or they are incorporated into phage displays or liposomes and used in vivo in tumor systems given in Examples 57-59.

[0656] Similarly, the present invention contemplates the reduction/deletion of immunosuppressive ganglioside production/secretion in ganglioside-producing tumor cells such as neuroblastoma-tumor cells. Production of mono-, di- and tri-sialo gangliosides GM1 GM2, GM3, GD1a, GD1b, GD3, GT1a, GT1b production is inhibited by introduction of silencing, inhibitory siRNA specific for sequences encoding ganglioside glucosyltransferases, ganglioside galactosyltransferases or ganglioside sialyltrasferases in tumor cells (Example 74). Other ganglioside transferases active in the synthesis of authentic or incomplete gangliosides with substantially the same function as the native gangliosides may also be targeted by siRNAs. Human or mouse neuroblastoma cell lines, e.g., human SK—N-BE and murine Neuro-2a NB cells are used to induce tumors in SCID mice. Transfection of siRNA specifie for the coding regions of ganglioside glucosyltranferases, ganglioside galactosyl transferases or ganglioside sialyltrasferases in tumor cells is accomplished ex vivo prior to tumor cell. implantation as given in Examples 1 and 74. The outgrowth of tumors is monitored in the siRNA transfected and mock transfected tumor groups. Tumor outgrowth is minimal in the mice injected with tumor cells transfected with the siRNA whereas mock transfected tumor cells grow rapidly and kill the mice within 28 days of implantation. In this way, the powerful immunosupressive effects of tumor gangliosides on T cells and antigen presenting cells is minimized or eliminated.

57. Deletion of Nucleic Acids Encoding Src-Like Adapter Protein (SLAP) SLAP Protein

[0657] The Src-like adaptor protein (SLAP) contains Src homology (SH)3 and SH2 domains, which are highly homologous to those of Lck and other Src family members. Like Lck. this Src-like adaptor protein (SLAP) contains a short unique NH,-terminal domain, followed by SH3 and SH2 domains. However, it does not contain a tyrosine kinase domain. Instead of a kinase domain. SLAP contains a unique COOH terminus of 104 residues. Both the SH3 and SH2 domains of SLAP are highly homologous to those of Lck and share with them 55 and 50% identity, compared with 42 and 43% with c-Src, respectively A structure-function analysis revealed that both the SH3 and SH2 domains contribute to this inhibitory function. SLAP was cloned using a yeast two-hybrid screen (21).

[0658] SLAP is expressed in T cells. When expressed in Jurkat T cells it can specifically inhibit TCR signaling leading to nuclear factor of activated T cells (NEAT)-, activator protein I (AP-1)-, and interleukin 2-dependent transcription. The SH3 and SH2 domains of SLAP are required for maximal attenuation of TCR signaling. SLAP acts proximally in the TCR signaling pathway. In stimulated Jurkat cells, SLAP associates with a molecular signaling complex containing CD3&zgr;, ZAP-70, SH2 domain-containing leukocyte protein of 76 kD (SLP-76), Vav, and possibly linker for activation of T cells (LAT). Collectively, these results suggest that SLAP interacts with the stimulated TCR complex to downregulate TCR-mediated signals by interfering with the proximal signaling events. Therefore, the differential expression of SLAP protein in T cells regulates sensitivity to TCR stimulation, thus influencing mature T cell responses to antigenic stimulation.

[0659] The present invention contemplates the deletion of inhibitory adaptor proteins such as SLAP from T cells in tumor bearing hosts using antisense techniques in vivo as given in Example 51. Alternatively, SLAP deletion can be achieved ex vivo in a population of T cells including &ggr;/&dgr; T cells, &agr;/&bgr; T cells using gene knockout or antisense techniques as given in Examples 51-52. These T cells are harvested and used for the adoptive immunotherapy of cancer as given in Examples 15, 16, 21, 23, 68.

58. Superantigen Conjugated to Thrombospondin I and Type 1 Repeat Peptides of Thrombospondin and Other Molecules Inducing Apoptosis of Endothelial Cells

[0660] In the present invention, superantigens are conjugated to molecules which induce apoptosis of endothelial cells. Superantigens are known to induce tissue inflammation and in the absence of effector cells or their mediators are capable of inducing endothelial cell injury. They are conjugated to thrombospondin 1 and type 1 repeat peptides of thrombospondin which also induce apoptosis of tumor neovascular endothelial cells. The native sequence KRFKQDGGWSHWSPWSSC or the modified sequence which lacks the TGF, activating sequence KRAKAAGGWSHWSPWSSC equally stimulated DNA fragmentation. The basic residues and the WSXW motif are both required for optimal activity. The thrombospondin and/or the superantigen in the conjugate may be used in nucleic acid form. The superantigen polypeptide or nucleic acid in the conjugate is capable of evoking an inflammatory response in the tumor microvasculature while the thrombospondin induces apoptosis of tumor endothelial cells. Conjugations of polypeptides and/or nucleic acids are carried out by methods given in Example 4 and 5. The conjugates are prepared by chemical crosslinking using homo or heterobifunctional crosslinking agents, carbodiimide, cyanoborohydride or glutaraldehyde as given in Hermanson G. Bioconjugate Technology Academic Press, New York, N.Y. (1996). They are also prepared as fusion proteins or phage displays according to protocols given in Examples 5 and 6. They are also useful in nucleic acid form as a chimeric SAg-thrombospondin nucleic acid construct since the CD36 gene has been cloned (Wyler B et al., Thromb. Hemost. 70: 5001505 (1993); Armsella A L et al., J. Biol. Chem. 269: 18985-18991 (1994). The conjugates are useful as a preventative or therapeutic anti-tumor vaccine according to Examples 15, 16, 18-23. They are also used ex vivo to produce tumor specific effector cells for adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16, 18-23).

59. Removal of SE-Specific Antibodies with Anti-Idiotype Antibodies

[0661] It is well established that naturally occurring antibodies specific for SEs are present in a large percentage of human patients. During clinical trials using a fusion protein of SEA conjugated to a tumor specific antibody, antibodies specific for SEA appeared in the serum. The titer of these antibodies often rose with treatment and their appearance correlated with increased toxicity. These antibodies also interfere with the ability of the SE conjugates to induce tumoricidal effects by binding to the T cell activating epitopes of SE in the conjugates precluding the conjugate from stimulating a tumoricidal T cell response. The antibody-bound SE conjugates as large immune complexes are also readily taken up by reticuloendothelial cells and therefore diverted from targeting the tumor.

[0662] To solve this problem, antibodies specific for the idiotypic region-of anti-SE antibodies are prepared by methods given in Example 57. The anti-idiotype is preferably of the Ab2&bgr; reticuloendothelial cells which is an internal image anti-idiotype and has the capacity to mimic the antigen used to generate the SE-specific antibody. The Ab2&ggr; antibody recognizes an Id within the antigen binding site, a characteristic similar to Ab2&bgr; but fails to exhibit biological mimicry of the antigen. This particular subset of anti-idiotype antibodies would be the most desirable in the present case as it would not further activate the host anti-SE response, however the others could be useful as well. The anti-Ids could also be prepared in hybridoma or genetic form and used in vivo (via transfection of autologous antibody producing cells or implantable chambers) to provide a continuous amount of anti-id for the duration of use of the SE-conjugates).

[0663] The anti-Ids are prepared and administered as less immunogenic Fab, F(ab)′2, or Fv fragments and humanized to avoid alloimmunization. In the case of SEB, the dominant B cell epitope is the C-terminal region (aa 225-234) which may be used to isolate the major SE specific antibodies. Anti-SE idiotypic antibodies are detected and characterized as given in Example 57. The amount of anti-idiotype antibody administered is sufficient to neutralize all the circulating SE specific antibodies. Doses would range from 100 ng to 1000 mg and could be predicted based on in vitro neutralization tests determining the amount of antibody required to bind all of the antigen in a small volume of serum. When the level of these antibodies is undetectable, the SE-tumor specific antibody conjugate is administered in doses effective to kill the tumor. This could range from 2-15 ng/kg-100 ug/kg of SE in the conjugate. Devoid of SE specific antibodies to neutralize T cell activating activity and divert the SE conjugate from the tumor site, the SE conjugate is able to target the tumor in vivo and initiate a tumoricidal response. The preferred route of injection is intravenous but other parenteral routes such as intraperitoneal, intrathecal and intratumoral may be useful as well. The preferred method of administration is via infusion although injection, sustained release formulations and microinfusion or osmotic pumps may also be useful.

[0664] Epitopes that Saturate MHC Class II and Neutralize SE Antibody Binding.

[0665] The present invention contemplates the use of superantigen peptide or nucleotide epitopes recognized by superantigen specific antibodies in the circulation of cancer patients which neutralize the therapeutic effect of superantigen specific antibodies. Following neutralization, therapeutic superantigen-tumor specific ligand conjugates are administered which target the tumor and express their tumoricidal effects in vivo. A dominant epitope on SEB recognized by anti-SEB antibodies is the sequence 225-234 (Nishi et al., J. Immunol. 158: 247-254 (1997) and an epitope on SEA recognized by anti-SEA antibodies is the sequence 121-149 (Hobieka et al., Biochem. Biophys. Res. Comm. 223: 565-571 (1996).

[0666] A preferred epitope to neutralize SE-specific antibodies also has marginal superantigen properties compared to the native agent as shown by their inability to induce proliferation of T cells via V&bgr; and express mRNA encoding TH1 cytokines IL-2, and IFN&ggr;. An example of an SEB mutant with minimal T cell proliferative activity and cytokine activation has a single residue change from the wild type around a conserved leucine (L45). These mutants are designated Q43P, F44P or L45R (Woody M A et al., J. Infect. Dis. 177:1013-1022 (1998). An anti-idiotype peptide or whole antibody, F(ab′)2 or Fv, specific for the variable region of the SE antibody is also useful in saturating the antigen binding region of the SE antibody. The latter peptide is prepared as a monomer, dimer or polymer or attached to a carrier conjugates.

[0667] A second peptide or antibody (including F(ab′)2 or Fv) specific for the alpha1 subunit of the DR class II molecules (the MHC class II binding site for SEB) blocks SEB binding to its non-polymorphic MHC class II receptor and inhibits class II-TCR interactions. This blocking construct saturates MHC class II binding sites so that when therapeutic SAg-tumor specific ligand conjugates are administered, they are not diverted to MHC class II receptors. Further, the blocking construct does not interfere with the T cell activating function of the therapeutic SAg-mAb drug because the latter binds to tumor via its tumor specific antibodies and activates the T cell TCR via a non-MHC class II dependent mechanism.

[0668] The SE antibody neutralizing agent (either the SE antibody neutralizing peptide or anti-idiotype antibody) and MHC class II blocking agent (either inactive SE or anti-DR alpha 1antibody or inert SE peptide) are administered one hour before the administration of the SE-monoclonal antibody therapeutic conjugate. The amount of epitope or anti-idiotype antibody required to neutralize the anti-SE antibody is determined by measuring the amount of SE antibody present in the serum of the subject. A therapeutic dose is selected that neutralizes all of the anti-SE binding activity in the serum. The MHC class II binding peptide or anti-MHC class II alpha1 domain antibody is administered in amounts sufficient to saturate all the MHC class II alpha I domain receptors. One hour after administration of the two blocking constructs, the therapeutic SAg-mAb conjugate is used to localize and target tumor in vivo. Preferentially, the tumor specific antibody or receptor ligand in the conjugate has a greater affinity for the tumor than the SAg in the conjugate has for the class II molecule thus preventing the SAg from binding all MHC class II receptors and favoring binding of the conjugate to the tumor.

[0669] To reduce affinity of the SE or SPE-mAb conjugate for endogenous MHC class II binding sites, the high affinity Zn++-dependent MHC class II binding sites in SEA, SEC2, SEC3, SED, SPEA, SPEC, SPEG, SPEH, SMEZ, SMEZ2, Mycoplasma arthritides are deleted or replaced by inert sequence(s) or amino acid(s). These structural alterations in SE or SPEA reduce the affinity for MHC class II receptors from a Kd of 10−7 or 10−8 to 10−5. In the case of SEB and SSA and other SEs or SPEs which have multiple low affinity MHC class II binding sites (Kd 10−5-10−7), alteration of the MHC class II binding sites is not necessary to further reduce affinity for MHC class II receptors; at the very least only one or two of these sites near the N terminus of the molecule may require structural deletion of substation.

[0670] To further reduce affinity of the SE or SPE-mAb conjugate for endogenous (and sometimes preexisting) SE specific antibodies, the SE dominant epitope on the SE molecule in the conjugate is either removed or replaced by an inert sequence. For example, the dominant B cell epitope in SEB, amino acids 225-234 is replaced by sequence 209-212 from SPEA.

[0671] Tumor specific antibodies, Fab, F(ab)′2 or single chain Fab or Fv fragments conjugated to SE or SPE in the SE or SPEA-mAb conjugate are used which have a higher affinity for tumor antigens (Kd 10−11-10−14 or lower) than the SE or SPE class II binding sites and SE epitopes (dominant or primary, secondary or tertiary etc.) in the conjugate have for endogenous MHC class II receptors (Kd 10−5 to 10−7) and circulating SE antibodies (Kd 10−7 to 10−11) respectively.

[0672] To further enhance the affinity of the tumor specific antibody in the conjugate for tumor cells in vivo, the tumor specific antibodies are used which are specific for more than one antigenic structures on the tumor, tumor stroma or tumor vasculature or any combination thereof. The tumor specific antibody or Fab′2, Fab or single chain Fv fragments are mono or divalent like IgG, polyvalent for maximal affinity like IgM or chimeric with multiple tumor (tumor stroma or tumor vasculature) specificities. Thus, when the SE or SPE-mAb conjugate is administered in vivo, it will preferentially bind to tumor cells rather than to endogenous SE antibodies or MHC class II receptors.

[0673] The SE-mAb or SE-monoclonal Fab/Fv conjugates described above are administered parenterally, intratumorally, intrathecally, intraperitoneally, intrapleurally by infusion or injection in conventional or sustained release vehicles as given in Section 66 in dosages of 0.01 ng/kg to 100 &mgr;g/kg using protocols given in Examples 5, 7, 14, 15, 16, 18-23, 38.

60. New Streptococcal Pyrogenic Exotoxins, Staphylococcal Enterotoxins and SETs for Tumor Therapy

[0674] Streptococcal pyrogenic exotoxins SPEA, SPEB, SPEC, SPEG, SPEH, SPEH SME-Z, SME-Z2 and SSA are superantigens induce tumoricidal effects. SPEG, SPEH, and SPEJ genes were identified from the Streptococcus pyogenes M1 genomic database at the University of Oklahoma. A fourth novel gene (smez-2) was isolated from the S. pyogenes strain 2035, based on sequence homology to the streptococcal mitogenic exotoxin z (smez) gene. SMEZ-2, SPE-G, and SPE-J are most closely related to SMEZ and streptococcal pyrogenic exotoxin (SPE)-C, whereas SPE-H is most similar to the staphylococcal toxins than to any other streptococcal toxin. Recombinant (r)SMEZ, rSMEZ-2, rSPE-G, and rSPE-H were mitogenic for human peripheral blood lymphocytes. SMEZ-2 is the most potent superantigen (SAg) discovered thus far. All toxins, except rSPE-G, were active on murine T cells, but with reduced potency. Binding to a human B-lymphoblastoid line was shown to be zinc dependent with high binding affinity of 15-65 nM. Evidence from modeled protein structures and competitive binding experiments suggest that high affinity binding of each toxin is to the major histocompatibility complex class II &bgr; chain. Competition for binding between toxins was varied and revealed overlapping but discrete binding to subsets of class II molecules in the hierarchical order (SMEZ, SPE-C)>SMEZ-2>SPE-H>SPE-G. The most common targets for these SAgs were human V&bgr;2.1- and V&bgr;4-expressing T cells.

[0675] There are four naturally occurring SPEA alleles, and three of these, SPEA1, SPEA2, and SPEA3, encode toxins differing by a single amino acid. The toxin encoded by SPEA4 is 9% divergent from the other three, with 26 amino acid changes. Twenty mutant forms of SPEA1 (SPEA encoded by allele 1), and the mutant toxins were analyzed for mitogenic stimulation of human peripheral blood mononuclear cells, affinity for class II major histocompatibility complex molecules (DQ), and disulfide bond formation. Residues necessary for each of these functions were Identified., The product of allele 2, SPEA2, had slightly higher affinity for the class II MHC molecule compared with SPEA1 but not significantly greater mitogenic activity. SPEA3, however, was significantly increased in mitogenic activity and affinity for class II MHC compared with SPEA1. Thus, there is evidence that the toxin encoded by some of the highly virulent S. pyogenes STSS-associated isolates is a more active form of SPEA.

[0676] A new ˜28-kDa superantigen protein designated streptococcal superantigen (SSA), was isolated from culture supernatants. SSA stimulated proliferation of human T cells bearing V&bgr;1, V&bgr;3, V&bgr;5.2, and V&bgr;15 in an MHC class II-dependent manner. N-terminal sequencing found the first 24 residues of SSA to be 62.5% identical to staphylococcal superantigens SEB, SEC1, and SEC3.

[0677] Newer Staphylococcal enterotoxins SEG, SEH, SEI, SEJ, SEK, SEL, SEM, ENT, ENT1, ENT2, also show superantigenic activity and are capable of inducing tumoricidal effects. The homology of these toxins to other toxins in the family ranges from 27-64%. Selective expansion of TCR V&bgr; subsets has been demonstrated for each. (Jarraud S et al., J. Immunol. 166: 669-677 (2001); Jarraud S et al., J. Clin. Microbiol. 37: 2446-2449 (1999); Munson, S H et al., Infect. Immun. 66:3337-3345 (1998 The above streptococcal and newer enterotoxins retain T cell activation and VB usage. SPEA, SPEC, SPEG, SPEH, SME-Z, SME-Z2, SEG, SEH, are known to utilize zinc as part of high affinity MHC class II receptor. Amino acid substitution(s) at the high affinity zinc dependent class II binding site is used to reduce their affinity for MHC class II receptor. Tumor localization is insured by the fusion with tumor specific antibodies, F(ab′)2 or single chain Fv fragments. Additional or alternative tumor localizing motifs may be added to the toxin molecules which include but are not limited to an RGD motif, VEGF (localizing to KDR tyrosine kinase receptors on vascular endothelium) and other tumor receptor ligands.

[0678] These proteins and their homologues are isolated and characterized as in Example 62 and Section 64. These proteins and their homologues are useful as preventative or therapeutic antitumor vaccines according to Examples 4, 15,16, 18-23 and in nucleic acid form as in Example 31. They are administered as given in Example 14 preferably parenterally by injection or infusion. They are also useful ex vivo for producing a population of tumor specific effector cells (T cells, &ggr;/&dgr;T cells NKT cells, NK cells) for adoptive immunotherapy of cancer (Examples 2-5, 7,14, 15, 16, 18-23, 68).

[0679] In the present invention, these agents in protein or nucleic acid form is used to treat tumors. These agents may be administered intratumorally or parenterally by injection or infusion as given in Examples 14-16, 18-23. Allelic forms, homologues or mutants of the native agents as given in section 65 are also useful in treatment. They are used to induce tumor killing as a vaccine or against established tumors under protocols given in Examples 14-16, 18-23

62. Staphylococcal Exotoxin Like Proteins

[0680] The Staphylococcal exotoxin-like proteins (SETs) encoded by a new group of S. aureus exotoxin genes with sequence homology to the native enterotoxins and retain the consensus sequences that are found in staphylococcal and streptococcal exotoxins and toxic shock syndrome toxin 1. These agents stimulate the production of interleukin-1&bgr;, IL-6, and TNF&agr; by human peripheral blood mononuclear cells and induce tumoricidal responses (Williams, R J et al., Infect. Immun. 68:4407-4415 (2000)). Natural preexisting antibodies specific for these agents are not generally present in human serum.

[0681] The four complete set genes encode proteins of between 227 and 234 amino acids, which have 38 to 53% homology to each other. The partial set2 gene encodes the C-terminal 172 amino acids of this protein. An alignment of the amino acid sequences of the SET proteins is shown in FIG. 2 of Williams et al., supra. Each of the set proteins (apart from set2, for which the N-terminal region has not been sequenced) possesses putative N-terminal signal sequences, as determined using the Signal algorithm for gram-positive bacteria, indicating that these are secreted proteins. The mature extracellular proteins are predicted to consist of 201 (set1), 204 (set3), 202 (set4), and 207 (set5) amino acids. Although the similarity between the set proteins and the known staphylococcal and streptococcal exotoxins is low, being around 25%, each of the set proteins possesses the staphylococcal/streptococcal exotoxin consensus signature 2 (K—X2-[LIV]-X2-[LIV]-D-X3-R—X2-L-Xs-[LIV]-Y) as determined by searches of the PROSITE database. In addition, the set proteins have an amino acid sequence which is similar to the exotoxin consensus signature 1 (PRO-SITE, PCOC00250). set1, set2, and set5 have the greatest homology to SPEC and 25% sequence identity, respectively), while set3 and set4 are most closely related to TSST-1 (25 and 27% identity, respectively). Based on this homology, the set sequences were modeled against two target protein structures, TSST-1 (PDB file 2tss) and SPEC (PDB file Ian8). The protein models of set1 and set5 depict two domain structures joined by a central &agr;-helix. Domain B has topology equivalent to the oligosaccharide- and oligonucleotide-binding fold (OB-fold) found in SPEC and other unrelated toxins. However, the A domain of set1 and set5 differs from that of SPEC in that it has one less &bgr;-strand in the &bgr;-grasp motif. The missing &bgr;-strand corresponds to &bgr;12 in the SPEC model and is important in zinc binding and in providing biological activity. The protein models of set5 and set4 also depict a two-domain structure joined by a central &agr; helix (Williams et al., supra). Once again, the B domain forms a &bgr;-barrel structure. The &bgr;-grasp motif of the A domain in set3 and set4 is similar to that of TSST-1. However, the short N-terminal &agr;-helix (aj of TSST-1 is not maintained in set3 and set4. Although there is low amino acid sequence identity between the set proteins and those of the target protein structures, these theoretical models demonstrate that the set proteins could adopt typical superantigen-type structures.

[0682] These proteins and their homologues are isolated and characterized as in Example 63 and Section 65. These proteins and their homologues are useful as preventative or therapeutic antitumor vaccines according to Examples 4, 15,16, 18-23 and in nucleic acid form as in Example 31. They are administered as given in Example 14 preferably parenterally by injection or infusion. They are also useful ex vivo for producing a population tumor specific effector cells (T cells, &ggr;/&dgr; T cells, NKT cells, NK cells) for adoptive immunotherapy of cancer (Examples 2-5, 7,14, 15, 16, 18-23, 68).

[0683] These agents may be administered intratumorally or parenterally by injection or infusion as given in section 14-16, 18-23. Allelic forms, homologues or mutants of the native agents as given in section 65 are also useful in treatment. They are used to induce tumor killing as a vaccine or against established tumor under protocols given in Examples 14-16, 18-23.

62. Streptococcal Pyrogenic Exotoxin B with RGD sites, Cysteinyl Protease (Interleukin 1&bgr; Convertase) and Metalloproteinase Activity

[0684] The structural gene for SPE B was cloned and characterized. The speB gene (1194 bp) encodes a 398-amino-acid protein. A presumed signal peptide of 26 amino acids is cleaved to result in a mature extracellular protein (zymogen) with 372 residues. Subsequently, Kapur et al. (109) used an automated DNA sequencing strategy to study speB allelic variation in 67 strains expressing 39 M protein serotypes and five provisional M serological types and representing 50 phylogenetically distinct clones identified by multilocus enzyme electrophoresis. The speB gene is well conserved and allelic variation is due solely to accumulation of point mutations. A total of 39 distinct speB alleles was identified, and based on predicted amino acid sequences, 33 of the 39 alleles would encode one of three mature protease variants that differ from one another at only one or two amino acids clustered in a 10-amino-acid region (residues 308-317) that contains a linear B-cell epitope. A total of 61 of 64 (95%) strains examined, including strains representing all 39 alleles sequenced, expressed a product that reacted with polyclonal rabbit antisera specific for purified cysteine protease. The data demonstrated that the zymogen and protease are very well conserved, and virtually all strains expressed the speB gene under the conditions assayed.

[0685] The human pathogenic bacterium Streptococcus pyogenes (group A streptococcus) produces a cysteine protease that is thought to be an important virulence factor. The protein is made as an inactive zymogen of 40,000 Da, which is converted to a 28,000-Da active form by proteolysis or auto-catalytic truncation in reducing conditions of the N-terminal 118 amino acid residues (the prosegment), to generate the mature, active protease (mSpeB) of 253 residues (27.6 kDa). The catalytic site differs from most other cysteine proteases in that it lacks the Asn residue of the Cys-His-Asn triad. The prosegment has a unique fold and inactivation mechanism that involves displacement of the catalytically essential His residue by a loop inserted into the active site. The structure also reveals the surface location of an integrin-binding Arg-Gly-Asp (RGD) motif that is a feature unique to SpeB among cysteine proteases.

[0686] Virtually all S. pyogenes strains have the structural gene (speB) and express active enzyme The zymogen or active protease is also known as streptococcal pyrogenic exotoxin B (SPE B). Sequence analysis of the 1,197-bp speB gene from 67 isolates shows that the gene is highly conserved in natural populations of S. pyogenes. The protease cleaves fibronectin (FN) and vitronectin, two abundant extracellular matrix proteins involved in maintaining host tissue integrity and also activates a 66 kilodalton human endothelial cell matrix metalloprotease. In addition, the protease cleaves human interleukin-1&bgr; precursor to generate mature interleukin-1&bgr; with full biologic activity. Purified SpeB causes a cytopathic effect on cultured human endothelial cells. Biochemical and genetic analyses have shown that both zymogen and active enzyme contain only one cysteine residue (C-192) which participates in enzyme active-site formation and catalysis.

[0687] All serotype M1 organisms, which are the most common cause of invasive disease, and some 20% of other isolates, have an RGD sequence motif at this site. RGD motifs mediate ligand binding to many integrins and the RGD-containing variant of SpeB binds to the human integrins &agr;v&bgr;3 and &agr;q1b&bgr;3 through this motif (Kagawa et al., Proc. Nat'l Acad. Sci. USA 97: 2235-2240 (2000)). Integrins are heterodimeric membrane proteins located on the surface of mammalian cells which are overexpressed in invasive tumors. The 3-aa sequence Arg-Gly-Asp (RGD) is critical for recognition by many integrins. SPEB as well as microbial pathogens as Borrelia burgdoferi, Yersinia spp., Bordetella pertussis, adenovirus, echovirus, foot-and-mouth disease virus, and hantaviruses bind integrins usually through an RGD motif.

[0688] In the SpeB structure, Gly-163 and Asp-164 are fully solvent-exposed. The exposure of the Asp-164 side chain is particularly significant because integrin binding is believed to occur through coordination of the Asp residue of the RGD motif to a divalent metal on the integrin receptor. The RGD motif in SpeB is located on a surface loop inserted between a short &bgr;-strand and the &agr;-helix that leads into the C-terminal protease domain and is remote from both the active site of mSpeB and the site where the prosegment associates with the protease, implying that integrin binding through this RGD motif can occur for both the zymogen and mature protease forms of SpeB. Hence, when the protease is bound through its RGD motif, its active site should be fully exposed. Integrin binding thereby could concentrate mSpeB at the host cell surface, enhancing the efficiency of local degradation of host molecules such as fibronectin and vitronectin.

[0689] These proteins and their homologues are isolated and characterized as in Example 64 and Section 65. These proteins and their homologues are useful as preventative or therapeutic antitumor vaccines according to Examples 4, 15,16, 18-23 and in nucleic acid form as in Example 31. They are administered as given in Example 14 preferably parenterally by injection or infusion. They are also useful ex vivo for producing a population of tumor specific effector cells (T cells, &ggr;/&dgr;T cells NKT cells, NK cells) for adoptive immunotherapy of cancer (Examples 2-5, 7,14, 15, 16, 18-23, 68).

[0690] In the present invention, SPEB in protein or nucleic acid form is used to treat tumors.

[0691] These agents may be administered intratumorally or parenterally by injection or infusion as given in section 14-16, 18-23. Allelic forms, homologues or mutants of the native agents as given in section 65 are also useful in treatment. They are used to induce tumor killing as a vaccine or against established tumors under protocols given in Examples 14-16, 18-23.

63. Non-Staphylococcal Enterotoxins and Streptococcal Pyrogenic Exotoxins as Tumoricidal Agents: Yersinia Species Superantigen with a Natural RGD Motif as a Tumoricidal Agent

[0692] Yersinia pseudotuberculosis has a molecular weight 14,500 and has no C—C loop. the DNA expressed in Escherichia coli DH10B. Sequencing of the YPM gene revealed that the gene contained an open reading frame of 456 base pairs encoding a precursor form of 151 amino acid residues with m.w. 16,679 that is processed into a mature form of 131 amino acid residues with m.w. 14,529. Homology analysis revealed that the homology of amino acid sequence is quite low among YPM and other well known bacterial superantigens. It is a known superantigen with the ability to bind directly to MHC class II molecules and selectively stimulate T cell populations bearing particular V&bgr; elements in TCR The recombinant YPM expressed by the cloned gene exerted a mitogenic activity on human PBMC at a concentration of approximately 1 pg/ml. with VB usage 3, 9, 13.1-3 in humans and in mice 7, 8.1-3. Like the native YPM, the cloned YPM required the expression of MHC class II molecules on accessory cells in the induction of IL-2 production by human T cells (Tohru M et al., J. Immunol. 154: 5228-5234 (1995); Ito, Y et al., J. Immunol. 154: 5896-5906 (1995); Uchiyama T et. al., J. Immunol. 151: 4407 (1993)). The yersinia superantigen also contains an RGD motif hence, this molecule in native form has tumor localizing capability. In addition, unlike some of the SEs or SPEs, most humans do not have preexisting antibodies to YPM.

[0693] These proteins and their homologues are isolated and characterized as in Example 65 and Section 65. These proteins and their homologues are useful as preventative or therapeutic antitumor vaccines according to Examples 4, 15,16, 18-23 and in nucleic acid form as in Example 31. They are administered as given in Example 14 preferably parenterally by injection or infusion. They are also useful ex vivo for producing a population of tumor specific effector cells (T cells, &ggr;/&dgr;T cells, NKT cells, NK cells) for adoptive immunotherapy of cancer (Examples 2-5, 7,14, 15, 16, 18-23, 68).

[0694] These agents may be administered intratumorally or parenterally by injection or infusion as given in section 14-16, 18-23. Allelic forms, homologues or mutants of the native agents as given in section 65 are also useful in treatment. They are used to induce tumor killing as a vaccine or against established tumor under protocols given in Examples 14-16, 18-23.

63. Viral Vectors Expressing Antibodies or Ligands for Tumor Structures or Receptors and DNA Binding Proteins e.g., Protamine, Poly-L-Lysine Binding Superantigen DNA

[0695] To circumvent the problem of naturally occurring antibodies to SEs, the present invention contemplates the use of nucleic acids encoding the SEs which are transported to the tumor by tumor localizing motifs expressed on the construct. The superantigen nucleic acids are carried as part of a viral vector or connected to the vector by a DNA binding protein such as protamine or poly L-lysine. The present invention contemplates viral vectors such as adenoviruses which express tumor targeting motifs including but not limited to intact antibodies or fragments of antibodies in any form e.g., single chain Fv or F(ab)′2 fragments. These antibodies are preferably of high affinity for a targets on tumor cells which include but are not limited to the Erb/Neu receptor and tumor specific antigens. Vectors also carry nucleic acids encoding tumor localizing motifs which are expressed on their surface including but not limited to RGD motifs which bind to integrins &agr;v&bgr;3 and &agr;q1b&bgr;3 in tumors, chemokine receptors e.g., CXCR4 which bind to CXCL12.

[0696] Vectors, which themselves have natural and intrinsic RGD binding motifs including but not limited to adenovirus, echovirus, foot and mouth disease virus and Hanta virus, are used. The disease causing segment(s) of the these viruses are attenuated or deleted while their tumor localizing properties are retained.

[0697] DNA binding proteins which bind the virus to exogenous superantigen DNA include but are not limited to protamine or poly-l-lysine. Nucleic acids encoding these DNA binding proteins are integrated into the viral vector which are expressed on the viral surface. Exogenous superantigen DNA binds to the DNA binding protein (e.g., protamine or poly-l-lysine) expressed on the viral surface.

[0698] A tumor localizing motif on the vector makes contact with the tumor cell receptor or antigen wherein the superantigen DNA (as either an integral part of the virus or exogenously bound to the virus) is endocytosed. Once inside the target tumor cell, the superantigen DNA is transcribed into a functional superantigen polypeptide which is expressed in the tumor or secreted locally where it can exert its tumoricidal effects. All of the SEs, SPEs and SETs and non SE superantigens including but not limited to Yersinia pseudotuberculosis, Mycoplasma arthitides, rabies and Clostridia heat shock proteins may be used in this construct.

[0699] In an additional embodiment, nuceleic acids encoding superantigen-tumor specific antibody (Fab′)2, Fv, Fd immunoconjugates in which the superantigen is fused to the Fc region of the tumor specific antibody or antibody fragment are transfected directly into tumor cells. The superantigens produce the immunoconjugates which can then localize to surrounding tumor and induce a tumoricidal response. Methods for production of these immunoconjugates are given in Example 66.

[0700] Small synthetic peptide, [K]16RGD, is a receptor-mediated superantigen gene delivery vehicle. [K]16RGD is a bifunctional linear peptide that comprises an integrin-targeting RGD component and a superantigen DNA-binding moiety consisting of 16 lysine residues. The peptide binds to cell surface integrins, forms distinct, protective complexes with superantigen DNA, and can deliver superantigen DNA to cells for transgene expression. The level of superantigen gene expression obtained is dependent on the [K]16RGD-to-DNA ratio and is enhanced in the presence of the endosomal buffer chloroquine or lysosomal disrupting agents during gene delivery. Levels of reporter gene expression obtained under ideal conditions with [K]|6RGD approach or even exceed those obtained with DNA delivered by Lipofectamine. See Example 66.

[0701] These proteins and nucleic acids and their homologues are isolated and characterized as in Example 66 and Section 65. These proteins and their homologues are useful as preventative or therapeutic antitumor vaccines according to Examples 4, 15,16, 18-23 and in nucleic acid form as in Example 31. They are administered as given in Example 14 preferably parenterally by injection or infusion. They are also useful ex vivo for producing a population of tumor specific effector cells (T cells, &ggr;/&dgr;T cells, NKT cells, NK cells) for adoptive immunotherapy of cancer (Examples 2-5, 7,14, 15, 16, 18-23, 68).

[0702] In the present invention, these agents in protein or nucleic acid form are used to treat tumors. These agents may be administered intratumorally or parenterally by injection or infusion as given in section 14-16, 18-23, 66. Allelic forms, homologues or mutants of the native agents as given in section 65 are also useful in treatment. They are used to induce tumor killing as a vaccine or against established tumors under protocols given in Examples 14-16, 18-23, 66.

64. Functional Homologues & Derivatives of Proteins of Peptides

[0703] All of the protein and nucleic acid compositions given herein are intended to encompass functional derivatives. All of the functional derivatives of the fusion partners for superantigens described in this application are encompassed by this invention. Similarly, Staphylococcal enterotoxins or superantigens are intended to encompass functional derivatives of a particular superantigen or enterotoxin.

[0704] By “functional derivative” is meant a “fragment,” “variant,” “homologue,” “analogue,” “fusion protein,” or “chemical derivative”, which terms are defined below. A functional derivative retains at least a portion of the function of the native protein monomer which permits its utility in accordance with the present invention.

[0705] A “fragment” refers to any shorter peptide. A “variant” of refers to a molecule substantially similar to either the entire protein or a peptide fragment thereof. Variant peptides may be conveniently prepared by direct chemical synthesis of the variant peptide, using methods well-known in the art.

[0706] All or the compositions given herein or claimed as part of a new invention include the homologues of that composition. A homologue refers to a natural protein, encoded by a DNA molecule from the same or a protein. Homologues, as used herein, typically share about 50% sequence similarity at the DNA level or about 18% sequence similarity in the amino acid sequence. Homologues are more aptly quantitated in the statistical programs given below. An example a homologue of a native staphylococcal enterotoxin would be any structure including all substitution, deletion or addition mutants, derivatives, fusion proteins, chimeric proteins, fragments, conjugates, synthetic and naturally occurring structures with a Z value >10 in the Lipman-Pearson FASTA/FASTP program.

[0707] An “analogue” refers to a non-natural molecule substantially similar to either the entire molecule or a fragment thereof

[0708] A “chemical derivative” contains additional chemical moieties not normally a part of the peptide. Covalent modifications of the peptide are included within the scope of this invention. Such modifications may be introduced into the molecule by reacting targeted amino acid residues of the peptide with an organic derivatizing agent that is capable of reacting with selected side chains or terminal residues.

[0709] The recognition that the biologically active regions of the enterotoxins, for example, are substantially structurally homologous enables predicting the sequence of synthetic peptides which exhibit similar biological effects in accordance with this invention (Johnson, L. P. et al., Mol. Gen. Genet. 203:354-356 (1886).

[0710] A common method for evaluating sequence homology, and more importantly, for identifying statistically significant similarities of the proteins, peptides and nucleic acids given herein is by Monte Carlo analysis using an algorithm written by Lipman and Pearson to obtain a Z value (FASTA). According to this analysis, Z>6 indicates probable significance, and Z>10 is considered to be statistically significant (Pearson, W. R. et. al., Proc. Natl Acad Sci. USA, 85:2444-2448 (1988); Lipman, D. J. et al, Science 227:1435-1441 (1985)). Synthetic peptides corresponding to the compositions and enterotoxins and all other molecules described herein are characterized in that they are substantially homologous in amino acid sequence to an enterotoxin or other native molecule to which it is being compared with statistically significant (Z>6) sequence homology and similarity to include alignment of cysteine residues and similar hydropathy profiles.

[0711] The Lipman-Pearson FASTA program may be used to determine homology of a given protein using the BLOSUM 50 or PAM 250 scoring matrix, gap penalties of −12 and −2 and the PIR or SwissPROT database. The results are expressed as Z values or E ( ) values. For the present database (2001), the Z>13 indicates statistical significance.

[0712] Preferred Methods for Establishing Statistical Significance of Proteins or Nucleic Acids

[0713] The most widely used and preferred methodology determines the percent identity of two amino acid sequences or of two nucleic acid sequences. The sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in one or both of a first and a second amino acid or nucleic acid sequence for optimal alignment and non-homologous sequences can be disregarded for comparison purposes). In a preferred method of alignment, Cys residues are aligned. In a preferred embodiment, the length of a sequence being compared is at least 20%, preferably at least 40%, more preferably at least 50%, even more preferably at least 60%, and even more preferably at least 70%, 80%, or 90% of the length of the reference sequence. The amino acid residues (or nucleotides) at corresponding amino acid positions (or nucleotide) positions are then compared. When a position in the first sequence is occupied by the same amino acid residue (or nucleotide) as the corresponding position in the second sequence, then the molecules are identical at that position (as used herein amino acid or nucleic acid “identity” is equivalent to amino acid or nucleic acid “homology”). The percent identity between the two sequences is a function of the number of identical positions shared by the sequences, taking into account the number of gaps, and the length of each gap, which need to be introduced for optimal alignment of the two sequences.

[0714] The comparison of sequences and determination of percent identity between two sequences can be accomplished using a mathematical algorithm. In a preferred embodiment, the percent identity between two amino acid sequences is determined using the Needleman and Wunsch (J. Mol. Biol. 48:444-453 (1970) algorithm which has been incorporated into the GAP program in the GCG software package (available at http://www.gcg.com), using either a Blossom 62 matrix or a PAM250 matrix, and a gap weight of 16, 14, 12, 10, 8, 6, or 4 and a length weight of 1,2, 3, 4, 5, or 6. In yet another preferred embodiment, the percent identity between two nucleotide sequences is determined using the GAP program in the GCG software package (available at http://www.gcg.com), using a NWSgapdna.CMP matrix and a gap weight of 40, 50, 60, 70, or 80 and a length weight of 1, 2, 3, 4, 5, or 6. In another embodiment, the percent identity between two amino acid or nucleotide sequences is determined using the algorithm of E. Meyers and W. Miller (CABIOS, 4:11-17 (1989)) which has been incorporated into the ALIGN program (version 2.0), using a PAM120 weight residue table, a gap length penalty of 12 and a gap penalty of 4.

[0715] The nucleic acid and protein sequences of the present invention can further be used as a “query sequence” to perform a search against public databases, for example, to identify other family members or related sequences. Such searches can be performed using the NBLAST and XBLAST programs (version 2.0) of Altschul et al. (1990) J. Mol. Biol. 215:403-10. BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to human or murine nucleic acid molecules. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to human or murine protein molecules of the invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402. When utilizing BLAST and Gapped BLAST programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov.

[0716] Variants

[0717] One group of variants are those in which at least one amino acid residue in the peptide molecule, and preferably, only one, has been removed and a different residue inserted in its place. For a detailed description of protein chemistry and structure, see Schulz, G. E. Principles of Protein Structure Springer-Verlag, New York, 1978, and Creighton, T. E.,

[0718] Proteins: Structure and Molecular Properties, W. H. Freeman & Co., San Francisco, 1983, which are hereby incorporated by reference. The types of substitutions which may be made in the protein or peptide molecule of the present invention may be based on analysis of the frequencies of amino acid changes between a homologous protein of different species, such as those presented in Table 1-2 of Schulz et al (supra) and FIG. 3-9 of Creighton (supra). Based on such an analysis, conservative substitutions are defined herein as exchanges within one of the following five groups:

[0719] 1. Small aliphatic, nonpolar or slightly polar residues: Ala, Ser, Thr (Pro, Gly);

[0720] 2. Polar, negatively charged residues and their amides: Asp, Asn, Glu, Gln;

[0721] 3. Polar, positively charged residues: His, kg, Lys;

[0722] 4. Large aliphatic, nonpolar residues: Met, Leu, Val (Cys); and

[0723] 5. Large aromatic residues: Phe, Tyr, Trp.

[0724] The three amino acid residues in parentheses above have special roles in protein architecture. Gly is the only residue lacking any side chain and thus imparts flexibility to the chain. Pro, because of its unusual geometry, tightly constrains the chain. Cys can participate in disulfide bond formation which is important in protein folding. Tyr, because of its hydrogen bonding potential, has some kinship with Ser, Thr, etc.

[0725] Substantial changes in functional or immunological properties are made by selecting substitutions that are less conservative, such as between, rather than within, the above five groups, which will differ more significantly in their effect on maintaining (a) the structure of the peptide backbone in the area of the substitution, for example, as a sheet or helical conformation, (b) the charge or hydrophobicity of the molecule at the target site, or (c) the bulk of the side chain. Examples of such substitutions are (a) substitution of gly and/or pro by another amino acid or deletion or insertion of Gly or Pro; (b) substitution of a hydrophilic residue, e.g., Ser or Thr, for (or by) a hydrophobic residue, e.g., Leu, Phe, Val or Ala; (c) substitution of a Cys residue for (or by) any other residue; (d) substitution of a residue having an electropositive side chain, e.g., Lys, Arg or His, for (or by) a residue having an electronegative charge, e.g., Glu or Asp; or (e) substitution of a residue having a bulky side chain, e.g., Phe, for (or by) a residue not having such a side chain, e.g., Gly.

[0726] Most deletions and insertions, and substitutions according to the present invention are those which do not produce radical changes in the characteristics of the protein or peptide molecule. However, when it is difficult to predict the exact effect of the substitution, deletion, or insertion in advance of doing so, one skilled in the art will appreciate that the effect will be evaluated by routine screening assays, for example direct or competitive immunoassay or biological assay as described herein. Modifications of such proteins or peptide properties as redox or thermal stability, hydrophobicity, susceptibility to proteolytic degradation or the tendency to aggregate with carriers or into multimers are assayed by methods well known to the ordinarily skilled artisan.

[0727] In the present invention, functional derivatives or homologues of proteins, peptides, enterotoxins or other related toxins and nucleic acids including fusion proteins, mutants (deletion and addition types), variants, conjugates with other proteins including but not limited to antibodies, F(ab′)2, Fv or Fd fragments, receptors or receptor ligands, synthetic polypeptides and nucleic acids characterized by substantial structural homology to staphylococcal enterotoxin A, enterotoxin B, enterotoxin C, enterotoxin D, enterotoxin E, enterotoxin F (TSST-1) and Streptococcal pyrogenic exotoxins A-H as well as the newer enterotoxins (SEG, SEH, SEI, SEJ, SEK, SEL, SEM), SETs 1-5 and non-enterotoxin superantigens (e.g., Yersinia pseudotuberculosis superantigen, Mycoplasma arthitidis superantigen) with statistically significant sequence homology and similarity (e.g., Z>6 in the Lipman and Pearson algorithm in Monte Carlo analysis (FASTA program) or the preferred methodology for determining sequence similarity and identity of proteins and nucleic acid as given above in this section (e.g., ALIGN, NBLAST, XBLAST programs as described above) are included in the invention. All of the superantigen conjugates to other polypeptides, peptides (e.g., verotoxins, chemokine receptors, costimulants, invasins, viral antigens) given in this application are considered to be structural homologues are included in this invention as structural homologues if they show Z values >10 or additional statistical criteria for inclusion as given in this section.

[0728] Chemical Derivatives

[0729] Covalent modifications of the monomeric or polymeric forms of protein or peptide fragments thereof, of enterotoxins or peptide fragments thereof, or both are included herein. Such modifications may be introduced into the molecule by reacting targeted amino acid residues of the protein or peptide with an organic derivatizing agent that is capable of reacting with selected side chains or terminal residues. This may be accomplished before or after polymerization.

[0730] Cysteinyl residues most commonly are reacted with a-haloacetates (and corresponding amines), such as 2-chloroacetic acid or chloroacetamide, to give carboxymethyl or carboxyamidomethyl derivatives. Cysteinyl residues also are derivatized by reaction with bromotrifluoroacetone, a-bromo-(5-imidozoyl)propionic acid, chloroacetyl phosphate, Nalkylmaleimides, 3-nitro-2-pyridyl disulfide, methyl 2-pyridyl disulfide, p-chloromercuribenzoate, 2-chloromercuri-4-nitrophenol, or chloro-7-nitrobenzo-2-oxa-1,3-diazole.

[0731] Histidyl residues are derivatized by reaction with diethylprocarbonate at pH 5.5-7.0 because this agent is relatively specific for the histidyl side chain. Para-bromophenacyl bromide also is useful; the reaction is preferably performed in 0.1 M sodium cacodylate at pH 6.0.

[0732] Lysinyl and amino terminal residues are reacted with succinic or other carboxylic acid anhydrides. Derivatization with these agents has the effect of reversing the charge of the lysinyl residues. Other suitable reagents for derivatizing a-amino-containing residues include imidoesters such as methyl picolinimidate; pyridoxal phosphate; pyridoxal; chloroborohydride; trinitrobenzenesulfonic acid; 0-methylisourea; 2,4 pentanedione; and transaminase-catalyzed reaction with glyoxylate.

[0733] Arginyl residues are modified by reaction with one or several conventional reagents, among them phenylglyoxal, 2,3-butanedione, 1,2-cyclohexanedione, and ninhydrin. Derivatization of arginine residues requires that the reaction be performed in alkaline conditions because of the high pK of the guanidine functional group. Furthermore, these reagents may react with the groups of lysine as well as the arginine epsilon-amino group.

[0734] The specific modification of tyrosyl residues per se has been studied extensively, with particular interest in introducing spectral labels into tyrosyl residues by reaction with aromatic diazonium compounds or tetranitromethane. Most commonly, N-acetylimidizol and tetranitromethane are used to form 0-acetyl tyrosyl species and 3-nitro derivatives, respectively.

[0735] Carboxyl side groups (aspartyl or glutamyl) are selectively modified by reaction with carbodiimides as noted above. Aspartyl and glutamyl residues are converted to asparaginyl and glutaminyl residues by reaction with ammonium ions.

[0736] Glutaminyl and asparaginyl residues may be deamidated to the corresponding glutamyl and aspartyl residues. Alternatively, these residues are deamidated under mildly acidic conditions. Either form of these residues falls within the scope of this invention.

[0737] Other modifications include hydroxylation of proline and lysine, phosphorylation of hydroxyl groups of seryl or threonyl residues, methylation of the a-amino groups of lysine, arginine, and histidine side chains (T. E. Creighton, Proteins: Structure and Molecule Properties, W. H. Freeman & Co., San Francisco, pp. 79-86 (1983)), acetylation of the N-terminal amine, and, in some instances, amidation of the C-terminal carboxyl groups.

[0738] Such derivatized moieties may improve the solubility, absorption, biological half life, and the like. The moieties may alternatively eliminate or attenuate any undesirable side effect of the protein and the like. Moieties capable of mediating such effects are disclosed, for example, in Remington's Pharmaceutical Sciences, 16th ed., Mack Publishing Co., Easton, Pa. (1980).

65. Administration of Superantigens in Controlled Release Formulations

[0739] Superantigens compositions in form of polypeptides, peptides, homologues (defined in section 65), fusion proteins, conjugates, fragments, mutants, chimeric proteins, variants and/or nucleic acids or ribonucleic acid are administered via implantable controlled release formulations and matrices. These formulations include but are not limited to poly-(D-, L- or DL-lactic acid/polyglycolide) polymer, ethylene-vinyl acetate (EVAc) which is applicable to polypeptides in general—bioerodible polyanhydrides, polyimino carbonate, sodium alginate microspheres, hydrogels, D and poly DL (lactide/glycolide) copolymers, ethylene-vinyl acetate (EVAc: Elvax 40W, Dupont) among others which are given in great detail in the foregoing patents and publications which are hereby incorporated by reference (U.S. Pat. Nos. 4,891,225, 4,942,035, 4,877,606, 4,906474, 4,806,621, 4,789,516, 4,925,677, EP 92918B1, EP No. EPO166596B1; Jeyanthi, R et al., J. Controlled Release, 13:91-98 (1990); Greig, N et al. J. Controlled Release 11:61-78 (1990); Kaitsu, I. et al., J. Controlled Release 6: 249-263 (1987); Yang, M. B. et al., Cancer Res 49:5103-5107 (1989); Eckenhoff, B et al., Biomaterials 2:89 (1981)).

[0740] Preferably the controlled release preparations are administered in close proximity or actually into a administration. However tumor at other sites may also be treated in this way.

[0741] Superantigens and SETs of any kind including but not limited to staphylococcal enterotoxins A, B, C, D, E, F, G H, I, J, K, L, M, streptococcal pyrogenic exotoxins, Y. pseudotuberculosis superantigen, M. arthitidis, C. perfringens exotoxin are prepared as in U.S. Pat. No. 6,126,945, which is hereby incorporated by reference, Examples 62-65, 71. They are also administered in native form or as biologically active fragments peptides, homologues (defined in section 65), fusion proteins, mutants, chimeric proteins, variants and/or nucleic acids or ribonucleic acids are administered parenterally and intratumorally, intrathecally, intraperitoneally, intrapleurally directly into tumor or to a site in close proximity to the tumor using conventional soluble diluents and vehicles such as normal saline as given below in this section.

[0742] Dosages of superantigens, conjugates and homologues used for administration of these compositions range from 5 ng to 500 micrograms once every 7-10 or 30 days. They may be given as a single or multiple doses. For intraperitoneal and intrapleural administration, the sustained release superantigens are generally (but not always) administered after partial or complete removal of the ascites or pleural fluid from these cavities by thoracentesis or paracentesis.

66. Sickled Erythrocytes as Carriers of Tumoricidal Agents

[0743] Sickled erythrocytes are known to be more adherent to microvascular endothelium than normal erythrocytes and to adhere to a greater extent under conditions of local hypoxia and acidosis. The primary pathologic defect in sickle cell disease is the abnormal tendency of hemoglobin S to polymerize under hypoxic conditions. The polymerization of deoxygenated hemoglobin S results in a distortion of the shape of the red cell and marked decrease in its deformability. These rigid cells are responsible for the vaso-occlusive phenomena which are the hallmark of the disease.

[0744] Sickle red cells adhere to the microvascular endothelium for the following reasons: Sickled cells have abnormally increased expression of &agr;4&bgr;1 integrin and CD36. Activation of platelets releases thrombospondin, which act as a bridging molecule by binding to a surface molecule, CD36, on an endothelial cell and to CD36 or sulfated glycans on a sickle reticulocyte. Inflammatory cytokines induce the expression of vascular-cell adhesion molecule 1 (VCAM-1) on endothelial cells. This adhesive molecule binds directly to the &agr;4&bgr;1 integrin on the sickle reticulocyte.

[0745] In the oxygenated state, the extent of sickle cell adhesion is density-class dependent: reticulocytes and young discocytes (SS1) greater than discocytes (SS2) greater than irreversible sickle cells and unsicklable dense discocytes (SS4). Hypoxemic conditions have no effect on adherence of normal erythrocytes but sickle erythrocyte adherence to endothelial cells is increased significantly. The least dense sickle erythrocytes containing CD36 and VLA-4+ expressing reticulocytes are especially involved in hypoxia sensitive adherence. Selective secondary trapping of SS4 (dense cells) occurs in post capillary venules where deformable SS cells are preferentially adherent. Vaso-occlusion is induced by a combination of precapillarly obstruction, adhesion in post capillary venules, and secondary trapping of dense erythrocytes. This induces local hypoxia leading to increased polymerization of hemoglobin S and rigidity of SS erythrocytes. In this way the obstruction is multiplied and extended to nearby vessels.

[0746] In the present invention, sickled erythrocytes are used to carry tumoricidal agents into the microvasculature of tumors. Sickle cell trait cells are preferred since they are normal under physiologic conditions but sickle and become adhesive in the acidotic and/or hypoxemic tumor microvasculature. Tumoricidal agents introduced into and carried by sickled erythrocytes include oncolytic viruses including but not limited to herpes simplex, adenoviruses, vaccinia, Newcastle Disease virus, autonomous parvoviruses, In addition, the adenovirus encoding thymidine kinase is transfected into tumor cells that are then susceptible to lysis ganciclovir. Various oncolytic and tumor specific viruses with tumor specificity used to transfect sickle cells are described in Kirn, D. et al., Nat. Med. 7:781-7 (2001).

[0747] In addition the sickled erythrocyte carry nucleic acids encoding tumoricidal agents including but not limited to C. perfringens exotoxin, pertussis toxin, verotoxins, pseudomonas exotoxins and superantigens, perforin, granzyme B, complement components (membrane attack complex), oxidized LDL, tumor specific antibodies alone or fused to toxins including but not limited to superantigens, Pseudomonas exotoxins, ricin, clostridia toxin. The nucleic acid encodes a hemolysin such as but not limited to E. coli hemolysin or staphylococcal alpha hemolysin. The sickled cell can also contain anaerobic bacterial spores such as clostridia species which can grow selectively in hypoxemic tissues. The sickled erythrocyte also carries phage displays, exosomes, sickle cell vesicles, sec vesicles expressing tumor toxins or superantigens. The toxins may be fusion proteins of toxins with ligands: expressed on tumor vasculature or tumor such a EGF, inactivated factor VIII or antibodies specific for a wide variety of tumor antigens well known in the art.

[0748] The nucleic acids encoding these toxins and oncolytic and tumor specific viruses are placed under the promoter of the heat sensitive global operator (Example 69). When entering the hypoxic tumor, sickled erythrocyte adhere to the tumor vasculature. In the hypoxemic environment of the tumor, the hypoxia sensitive global promoter is activated and induces the production lytic viruses and toxins. Sickled cells are disrupted and lyse releasing lytic virus and toxin into the hypoxic tumor. As the tumor site becomes more hypoxic, VCAM-1 and p-selectin expression on tumor endothelium are upregulated trapping more circulating sickled cells in the tumor microcirculation to undergo lysis with release of tumoricidal products into the tumor area.

[0749] The sickled cell is transfected preferably with the oncolytic viruses and toxins given above at a stage preferably before it is enucleated (Examples 1, 60, 69). Nucleated sickle reticulocytes are the preferred cell for transfection although enucleated sickled cells will also work (Example 69) Anaerobic bacterial spores such clostridia are transfected into the sickled erythrocytes by endocytosis or electroporation (Schrier S. Methods in Enzymology 149: 261-271 (1987); Tsong T Y Methods in Enzymology 149-259 (1987)). They are also introduced into sickle erythrocytes that have been lysed under hypotonic conditions and the membranes annealed with encapsulation of the anaerobic spores(Example 69).

[0750] Erythrocytes from subjects with sickle trait are preferred because these red cells are functionally and structurally normal in the circulation but are activated to sickle in the hypoxic tumor vasculature. Here they assume the sickled configuration, adhere to the endothelium of the tumor microcirculation and obstruct microvasculature in a manner similar to the homozygous SS erythrocytes.

[0751] The sickled erythrocytes are administered parenterally by injection or infusion in a therapeutically effective amount of cells. This encompasses a volume of 1-25 cc of packed cells administered i.v. over a one hour period. These cells are used in protocols given in Example 14-16, 18-23, 66.

67. Transfection of Tumor Cells with Superantigen and Nucleic acids Encoding the OX-40 Ligand or 4-1BB1 Ligand or Antibody (F(ab′)2 or Fv Fragments) Specific for OX-40 Receptor or the 4-1BB1 Receptor

[0752] Two primary vaccine strategies have been used to boost T cell-specific tumor immunity in animal models as well as in human clinical trials. The first involves genetic modification of tumor cells in vitro (transfection of immune-enhancing genes) and immunization with the altered tumor cells in vivo. The second strategy involves expansion of tumor-reactive T cells either by using Abs to T cell surface markers or peptides specific for tumor antigens. Most studies conclude that the terminal effector cells responsible for T cell-specific tumor killing are CD8+ T cells. Therefore, prior strategies specifically augmented the CD8 arm of the immune system using MHC class I-specific tumor peptides. However, in certain animal tumor models that CD4+ T cells are responsible for recognition and elimination of tumors. Augmentation of tumor-specific responses to both CD4 and CD8 T cells is the most beneficial tumor vaccine strategy.

[0753] Increasing the long-term survival of memory T cells after immunization is desirable for a successful vaccine. The generation of large numbers of memory T cells in vivo is difficult because Ag-stimulated T cells are susceptible to activation-induced cell death. CD4 T cell arm of immunity is stimulated by the costimulatory receptor OX-40 (OX-40R) which is preferentially expressed by CD4+ T cells. OX40 engagement results in a 60-fold increase in the number of Ag-specific CD4+ memory T cells that persisted 60 days postimmunization. Thus, OX40 engagement early after immunization with soluble Ag enhances long-term T cell and humoral immunity in a manner distinct from that provided by blocking CTLA-4.

[0754] The presentation of a tumor Ag to T cells by MHC class I or II molecules is insufficient to prime an immune response in vivo. At least two signals are necessary to activate a CD8 or CD4 T cell response. The first signal is delivered through the T cell Ag receptor by Ag (peptide) bound to MHC class I or II. If only the first signal occurs, the T cell becomes tolerant or undergoes apoptosis. A second signal involving the ligation of a costimulatory molecule is required for optimal T cell activation. The best-characterized second signal is delivered to the T cell CD28 receptor by its ligand B7.1 or B7.2 (now known as CD80 and CD86, respectively). Both B7.1 and B7.2 bind to two determinants on T cells, CD28 and CTLA-4; the former is constitutively expressed on 95% of CD4+ and 50% of CD8+ T cells, and the latter is expressed only on activated T cells. The interaction of CD80 or CD86 with CD28 results in increased production of IL-2, which is necessary for the development of a beneficial T cell response. In contrast, the interaction of B7 with CTLA-4 delivers a negative signal to the T cell and could negate the activation signal of CD28.

[0755] The OX-40R is expressed on activated CD4+ T cells and when engaged causes a potent costimulatory signal to effector T cells that enhances long-term survival. Several other membrane-bound receptor-ligand pairs serve as costimulators for T-cell activation. In particular, members of the tumor necrosis factor receptor superfamily share the ability to enhance or costimulate the process of T-cell activation. This family consists of the CD30, CD40, CD27, Fas (CD95), DR3, 4-1BB, and OX-40. The 4-1BB receptor binds to a high-affinity ligand (4-1BBL) expressed on several APCs such as dendritic cells, macrophages, and activated B cells. Expression of 4-1BB is somewhat restricted to primed CD4, CD8 T cells, and natural killer cells. Of particular significance is that administration of 4-1BB mAb as a single agent eradicates well-established tumors in mice. Although both CD4 and CD8 participated in the antitumor immune responses, the stimulation of a CD8CTL response was particularly striking. The CTL activity generated from 4-1BB mAb-treated mice was increased up to approximately 65 times compared with that of spleen cells from control animals. Thus, ligation of costimulation receptors in vivo may augment natural immunity to the growing tumors sufficient to induce their regression.

[0756] The OX-40 receptor (OX-40R) is a transmembrane protein found on the surface of activated CD4(+) T cells. and not on normal resting peripheral blood lymphocytes. The OX-40 ligand (OX-40L) is a type II membrane protein of ˜34,000 m.w., which is expressed on activated B cells, activated endothelial cells, dendritic cells, and activated macrophages. It is not expressed on normal resting cells. The OX-40L delivers a potent costimulatory signal to OX-40R+T cells and an OX-40R/OX-40L interaction appears to be directly involved in an adhesion event between endothelial cells and T cells. When engaged by an agonist such as anti-OX-40 antibody or the OX-40 ligand (OX-40L) during antigen presentation to T cell lines, the OX-40R generates a costimulatory signal that is as potent as CD28 costimulation. Engagement of OX-40R enhances effector and memory-effector T cell function by up-regulating IL-2 production and increasing the life-span of effector T cells. The signal generated by the OX-40R inhibits activation-induced T cell death (AICD) and thereby increases the number of cells differentiating from the effector to memory T cell stage.

[0757] Previously, we showed that tumor cells transfected with superantigen SEB delivered with tumor cells transfected with the costimulant B7 and MHC class II are effective in reducing the number of lung metastases in a metastatic breast cancer model, Example 70. The present invention contemplates the transfection of tumor cells with OX-40 ligand gene (Godfrey W R et al., J. Exp. Med. 180: 757-762 (1994) or the high-affinity ligand (4-1BBL) or an Fv fragment that expresses anti-OX40R or anti-4-1BBL together with nucleic acids encoding a superantigen. The gene for OX-40 ligand has been cloned and is transfected into tumor cells as described in Examples 1 and 70. The superantigen gene is similarly transfected into the same tumor cells or alone into a equal number or the same tumor cells as given on pages 3-5 and Example. The tumor cells cotransfected with SAg and OX-40 ligand or the two populations of tumor cells transfected with superantigen and OX-40 ligand are injected into mice with known metastatic tumor as given in Example 70. The results show that the mice treated with the tumor cells transfected with superantigen and OX-40 ligand had statistically significant reduction in the number of metastases compared to mock transfected tumor cells or either superantigen or OX-40 transfected alone. The method of transfecting tumor cells with the costimulant genes and tumor models used are given in Examples 1 and 70. Similar results are obtained by cotransfecting high affinity 4-1BB1 ligand into tumor cells in place of OX-40 ligand. These transfectants used in the same tumor system also demonstrate a statistically significant reduction in the number of lung metastases in the metastatic breast cancer model as described in Example 70.

[0758] Superantigens Conjugated to OX40L or 4-1BBL and Tumor Specific Antibody, Fab or scFv Fragments

[0759] The present invention contemplates the use of the superantigens and SETs in any form including but not limited to Superantigens and SETs of any kind including but not limited to staphylococcal enterotoxins A, B, C1, C3, C3, D, E, F, G H, I, J, K, L, M, streptococcal pyrogenic exotoxins, Yersinia pseudotuberculosis superantigen, M. arthitidis superantigen, C. perfringens exotoxin A fused to a potent costimulant ligand (extracellular domain preferred) such as OX-40 ligand or 4-11B ligand. A preferred superantigen in this conjugate is one to which humans do not make or make only marginal amounts neutralizing antibody fused recombinantly or biochemically to a high affinity tumor specific antibody, Fab or single chain fv. Superantigens such as Yersinia pseudotuberculosis or clostridia perfringens toxin A to which humans do not have preexisting antibodies are preferred. One such superantigen, Yersinia pseudotuberculosis superantigen has, in addition, a natural RGD domain with tumor localizing properties. Hence, Yersinia pseudotuberculosis is one of the preferred-superantigens for use in the SE-OX-40 ligand/4-11B ligand conjugate.

[0760] SEC1, is also preferred for use in the SE-OX-40 ligand or 4-11B ligand conjugate. The latter superantigen has the highest affinity for TCR V&bgr; regions of all superantigens. This TCR binding may be strengthened in SEC mutants by amino acid substitutions in the V&bgr; binding areas of the molecule that will increase its TCR binding. Similarly, mutations in SEC MHC class II binding sequences may totally eliminate SEC binding to MHC without interfering with its TCR binding, and activating function.

[0761] Another preferred superantigen for the SE-OX-40 ligand, 4-11B ligand conjugate is one with the deleted epitopes recognized by endogenous (preexisting) specific antibodies. These epitopes may be replaced by amino acid substitutions producing sequences to which host antibodies do not react. For example, a dominant epitope on SEB recognized by anti-SEB antibodies is the sequence 225-234 (Nishi et al., J. Immunol. 158: 247-254 (1997) and an epitope on SEA recognized by anti-SEA antibodies is the sequence 121-149 (Hobieka et al., Biochem. Biophys. Res. Comm. 223: 565-571 (1996).

[0762] Preferentially, the tumor targeting structure in superantigen conjugate (e.g., tumor specific antibody, Fab or single chain fv fragments or tumor receptor ligand) has a greater affinity for the tumor than the SAg in the conjugate has for the MHC class II molecule thus favoring binding of the conjugate to the tumor over binding to all cells containing MHC class II receptors. Ideally the molecule has the following hierarchy of binding affinities: Tumor>TCR>MHC class II.

[0763] To further enhance the affinity of the tumor specific antibody in the conjugate for tumor cells in vivo, the tumor specific antibodies are used which are specific for more than one antigenic structures on the tumor, tumor stroma or tumor vasculature or any combination thereof. The tumor specific antibody or Fab′2, Fab or single chain Fv fragments are mono or divalent like IgG, polyvalent for maximal affinity like IgM or chimeric with multiple tumor (tumor stroma or tumor vasculature) specificities. Thus, when the SE or SPE-mAb conjugate is administered in vivo, it will preferentially bind to tumor cells rather than to endogenous SE antibodies or MHC class II receptors.

[0764] To reduce affinity of the SE-mAb conjugate for endogenous MHC class II binding sites, the high affinity Zn++ dependent MHC class II binding sites in SEA, SEC2, SEC3, SED, SPEA, SPEC, SPEG, SPEH, SMEZ, SMEZ2, mycoplasma arthritides are deleted or replaced by inert sequence(s) or amino acid(s). These structural alterations in SE or SPEA reduce the affinity for MHC class II receptors from a Kd of 10−7 or 10−8 to 10−5. SEB, SEC and SSA and other SEs or SPEs do not have a high affinity Zn++ dependent MHC class II binding site but have multiple low affinity MHC class II binding sites (Kd 10−5-10−7). In these cases, alteration of the MHC class II binding sites is not always necessary to further reduce affinity for MHC class II receptors; at the very least mutation of one or two of the low affinity MHC class II binding sites will suffice in most instances.

[0765] Most importantly, tumor specific antibodies, Fab, F(ab)′2 or single chain Fab or Fv fragments in the SAg-mAb conjugate have a higher affinity for tumor antigens (Kd 10−5-10−14 or lower) than for the superantigen has for MHC class II binding sites (Kd 10−5 to 10−7) and its dominant epitope has for superantigen specific antibodies (Kd 10−7 to 10−11). In this way, the conjugate will bind preferentially to the tumor target in vivo rather than preexisting antibodies or MHC class II receptors.

[0766] SAg-OX-40 ligand (OX-40L) or 4-1BB ligand (4-1BBL) fused to a tumor specific targeting structure is carried out using recombinant SAgs, the extracellular domains of OX-40L or 4-1BBL and the targeting structure (high affinity tumor specific fv fragments are preferred). The nucleic acids encoding the extracellular region of OX-40L (Godfrey et al., J. Exp. Med 180:757-762 (1994)) or 4-1BBL (Goodwin et al. Eur. J. Immunol. 23: 2631-2641 (1993); Melero I. et al., Eur. J. Immunol. 28: 1116-1121 (1998)) are fused in frame with nucleic acids encoding a SAg of any type (Example 5). SEA, SEB, SEC and Y. pseudotuberculosis are preferred. The SE may be modified to reduce antigenicity by modifying a dominant epitope (e.g., SEB 227-232) and to reduce toxicity by altering its MHC class II binding affinity (e.g., SEA D227A-high affinity Zn++ dependent binding site). The tumor targeting structure may include but is not limited to a receptor ligand or antibody. The antibody can take the form of F(ab)′2, Fab, Fd or single chain fv fragments. Preferably, the affinity of the tumor targeting structure is of higher affinity for its tumor target than the affinity of the modified SAg for MHC class II receptors. High affinity single chain fv constructs that are specific for the OX-40 receptor and 4-1BB receptor may be used in place of the OX40L and 4-1BBL in the SAg-tumor targeting construct.

[0767] The SE-OX-40L (or 4-1BB)-tumor specific Fv conjugate or SE-mAb Fab-tumor-specific Fv conjugates described above are administered parenterally, intratumorally, intrathecally, intraperitoneally, intrapleurally by infusion or injection in conventional or sustained release vehicles as given in Section 66 in dosages of 0.01 ng/kg to 100 &mgr;g/kg using protocols given in Examples 5, 7, 14, 15, 16, 18-23, 38.

[0768] Superantigens Conjugated to Anti-apoptotic Cytokines and Tumor Specific Antibody, Fab or Single Chain Fv Fragments

[0769] It is well established that superantigen stimulation of T cells can result in activation driven cell death in vivo and in vitro. Several cytokines and LPS are known to interdict this process. Cytokines IL-2, IL-4, IL-7 and IL-15 are known to prevent superantigen stimulated T cells from undergoing apoptosis in vivo and in vitro (Vella et al., Proc. Natl. Acad. Sci. 95: 3810-3815 (1998)). Accordingly, superantigen-mAb conjugate as described above is further fused to an T cell anti-apoptotic cytokine. The extracellular domain of at least one cytokine from a group consisting of IL-2, IL-4, IL-7 and IL-15 is fused recombinantly to the SAg by methods given in Example 5. Other anti-T cell apoptosis agents such as LPS preparations of low virulence or a lipid A component (modified to induce less toxicity) are also effective antiapoptotic agents when conjugated biochemically to the superantigen-mAb (or F(ab)′2, Fab, Fd or single chain fv fragments) conjugate or if administered concomitantly with the SAg.

[0770] The SE-antiapoptotic conjugates described above are administered parenterally, intratumorally, intrathecally, intraperitoneally, intrapleurally by infusion or injection in conventional or sustained release vehicles as given in Section 66 in dosages of 0.01 ng/kg to 100 &mgr;g/kg using protocols given in Examples 5, 7, 14, 15, 16, 18-23, 38.

68. Superantigens for Treatment of Malignant Masses, Malignant Ascites and Malignant Pleural Effusions

[0771] The present invention contemplates the use of the superantigens and SETs in any form including but not limited to Superantigens and SETs of any kind including but not limited to staphylococcal enterotoxins A, B, C, D, E, F, G H, I, J, K, L, M, streptococcal pyrogenic exotoxins, Y. pseudotuberculosis superantigen, M. arthitidis, C. perfringens exotoxin for direct administration into cavities or spaces, e.g., peritoneum, thecal space, pericardial and pleural space containing tumor.

[0772] The present invention contemplates the direct injection of any superantigen although SEA, SEB and SEC are preferred into fluid spaces containing tumor cells or adjacent to membranes such as pleural, peritoneal, pericardial and thecal spaces containing tumor. These sites display malignant ascites, pleural and pericardial effusions or meningeal carcinomatosis. The superantigen is preferably administered after partial or complete drainage of the fluid (e.g., ascites, pleural or pericardial effusion) but it may also be administered directly into the undrained space containing the effusion, ascites and/or carcinomatosis. In general, the SE dose is varied from 1 picogram to 10 &mgr;g and given every 3 to 10 days. It is continued until there is no reaccumulation of the ascites or effusion. Therapeutic responses are considered to be no further accumulation of four weeks after the last intrapleural administration.

[0773] In the US and Western Europe, there are 300,000 new cases of malignant pleural effusion annually. It is caused by lung cancer (35%), breast cancer (25%), lymphoma (10%), unknown primary malignancy (30%). It is the presenting manifestation in 10-50% of all cancers. Fifty percent of cancer patients develop pleural effusion at some point in their disease and up to 75% of MPEs are symptomatic on presentation. Its appearance signifies Stage IIIb or IV disease. The prognosis is 3-4 months.

[0774] Malignant ascites is associated with ovarian tumors (30-50%). Endometrial, breast, colonic, gastric and pancreatic carcinomas make up more than 80% or the tumors associated with intra-abdominal seeding and ascites formation. Ascites may be the presenting manifestation in 4-69% of cases.

[0775] The major therapies for malignant pleural effusion include talc poudrage, talc slurry, doxycycline and bleomycin instillation. These therapies require 3-12 days of hospitalization with EKG and oximetry monitoring. A chest tube is inserted and the medication is infused and allowed to distribute over the pleural membranes. The chest tube is then connected to closed negative pressure water seal drainage until pleural fluid volume is <10° C.c/24 hours. Respiratory therapy is usually given at least once daily.

[0776] Talc poudrage requires the use of operating room for thoracostomy and talc insufflation, general anesthesia and recovery room observation. Talc suffers from respiratory complications in up to 33% of patients and acute respiratory distress and hypoxemia in 10% of patients. Bleomycin and Doxycycline have response rates of 50% and 70% respectively and both require continuous chest tube drainage until the output is <100 cc/24 hours.

[0777] Intrapleurally administered chemotherapeutic agents Cisplatin, Cytarabine, fluorouracil, Etoposide, Mitomycin C, radiation and biologic agents IL-2, IFN-&agr; and &bgr;, Corynebacterium parvum have been ineffective against MPEs. Thoracentesis or chest tube drainage alone results in recurrence rates of 98% and 85% respectively within 30 days. Intraperitoneal cisplatin and etoposide has produced a complete response rate of 30% of malignant ascites. However the only randomized study has failed to show any benefit for intraperitoneal therapy over conventional intravenous chemotherapy in the initial management of stage II C to IV ovarian cancer. No definitive success of various biologic agents, e.g., IFN-&agr;, &bgr;, and &ggr;, TNF or IL-2. Systemic chemotherapy in ascites associated with ovarian carcinoma can achieve a 5 year survival of 50% in stage I and II.

[0778] In contrast to Bleomycin and Doxycycline, superantigen instillation into the pleural space has a response rate of near 100% and does not require continuous chest tube drainage until the 24 hour output is <10° C.c. The superantigen is administered immediately after removal of pleural fluid via thoracentesis. On an average, this procedure is repeated once weekly for three treatments after which there is generally no further fluid accumulation. It is carried out entirely in an outpatient setting and requires no hospitalization at a cost several hundred percent below that of existing therapy. Major costs of the other therapies originating from hospitalization, chest tube insertion, operating and recovery room expense, respiratory therapy and in-hospital chest tube drainage, are eliminated.

[0779] Patients with malignant pleural effusions confirmed by biopsy or pleural fluid cytology are entered. They have not been undergoing any other anticancer treatment for at least one month and have a clinical Karnofsky status of at least 60-70%. SEA in doses of 10-30 ng is administered intrapleurally once or twice weekly immediately after drainage of the effusion via conventional thoracentesis. This procedure is performed once or twice weekly in an outpatient or office setting. Treatment is continued once weekly until effusion does not recur.

[0780] An objective response is recognized as no reaccumulation of pleural fluid 30 days after treatment (DeCamp M M et al., Chest 112: 291S-295S (1997); Fenton K N et al., Am J. Surg. 170: 69-74 (1995)).

[0781] There are 90 evaluable patients with malignant pleural effusions treated with intrapleural SEA. All patients have stage IIIb or stage IV lung cancer. There are 50 evaluable patients with malignant ascites.

[0782] Eighty five patients with pleural effusions exhibit objective clinical responses for a response rate of 94.5%. Effusion reaccumulation (at weekly intervals) progressively diminished after each SEA treatment. An example of progressive reduction of effusion reaccumulation after each treatment is shown below. Patients required an average of three treatments before there was no significant reaccumulation. However, several patients require only one treatment to eliminate fluid reaccumulation. Forty five patients with malignant ascites show objective responses for a response rate of 90%.

[0783] Toxicity in both malignant pleural effusion and ascites consists of mild short-lived fever, fatigue and anorexia not requiring treatment. CBC, renal and liver functions tests did not change significantly after treatments.

[0784] The superantigen has better therapeutic efficacy for malignant pleural effusions and ascites without the discomfort and complications associated with an indwelling draining chest tube. In the case of pleural effusion, It is also 90% more cost-effective compared to existing therapy since it is carried out in an outpatient facility and does not involve the major costs associated with hospitalization, i.e., chest tube insertion, operating and recovery room, indwelling chest tube drainage and respiratory therapy.

69. Intratumorally Administered Superantigens

[0785] The present invention contemplates the use of the superantigens and SETs in any form including but not limited to Superantigens and SETs of any kind including but not limited to staphylococcal enterotoxins A, B, C, D, E, F, G H, I, J, K, L, M, streptococcal pyrogenic exotoxins, Y. pseudotuberculosis superantigen, M. arthitidis superantigen, C. perfringens exotoxin for direct intratumoral treatment of tumor masses. Tumor masses appearing in any organ, palpated or visualized on x-ray, CT scan or MRI ultrasound are injected directly with any of the superantigens.

[0786] The superantigen is administered by injection or infusion directly into the tumor mass and is carried out with fluoroscopic, CT guidance or ultrasound guidance. For intratumoral administration, SE is dissolved in a conventional fluid vehicle such as saline or it may be incorporated into a controlled release formulation (mixture or suspension) preferably biodegradable. All of the biocompatible and biodegradable and controlled release formulations given in section 66 are useful. These formulations also include but are not limited to, ethylene-vinyl acetate (EVAc: Elvax 40W, Dupont), bioerodible polyanhydrides, polyimino carbonate, sodium alginate microspheres and hydrogels. Dosages used range from 1 ng to 10 mg. The poly-(D-, L- or DL-lactic acid/polyglycolide) copolymers are preferred.

[0787] Use of Intratumoral Superantigen with Chemotherapy

[0788] The SE are used for intratumoral injection. This is done with fluoroscopic, CT or ultrasound guidance. For intratumoral administration, SE is dissolved in a conventional fluid vehicle such as or it may be incorporated into a controlled release formulation (mixture or suspension) preferably biodegradable. All of the biodegradable controlled release formulations given in section 64 are useful although the poly d-1 glycolides are preferred because of biocompatibility and biodegradability.

[0789] A variety of chemotherapeutic agents may be used in the combined treatment methods disclosed herein. Chemotherapeutic agents contemplated as exemplary include, e.g., cisplatin (CDDP), adriamycin, actinomycin, mitomycin, carminomycin, daunomycin, doxorubicin, tamoxifen, taxol, taxotere, vincristine, vinblastine, vinorelbine, etoposide (VP-16), 5-fluorouracil (5FU), cytosine arabinoside, cyclophosphamide, thiotepa, methotrexate, campothecin, actinomycin-D, mitomycin C, aminopterin, combretastatin(s) and derivatives and prodrugs thereof. Anti-cancer chemotherapeutic drugs useful in this invention include but are not limited to antimetabolites, anthracycline, vinca alkaloid, anti-tubulin drug, antibiotic, alkylating agent.

[0790] The chemotherapeutic agent(s) selected for use preferably shows the highest response rate against tumor to be treated. For example, in non-small cell lung cancer, the cisplatin-based trials showed a benefit of chemotherapy with a hazard ratio of 0.73 (p<0.0001), equivalent to an absolute improvement in survival of 10% (5-15%) at 1 year, or an increase in median survival of 1½ months (1-2½ months).Completed prospective randomized trials including quality-of-life analyses show that cisplatin-based therapeutic regimens also improve quality of life in these patients. Other agents in phase III trials in patients with advanced NSCLC include the taxanes (paclitaxel and docetaxel), vinca alkaloid (vinorelbine), antimetabolite (gemcitabine), and campothecin (irinotecan). These agents have shown promise in both phase I and II trials, both as single agents and in combination with a platinum agent.

[0791] Example 73 provides the chemotherapeutic agents preferred for use in various malignancies. These agents would be used as single agents or combined with other agents in full doses or in doses 10-95% below the recommended dose. They may be delivered intratumorally alone or together with SE in doses 5-50% (e.g., 5-10 mg weekly for 2-7 weeks) below the systemic dose of the drug per cycle. Cisplatin is preferentially delivered intratumorally in a small volume (2-5 ml) of saline which produces a highly viscous solution that has the benefit of being retained for sustain periods in the tumor. The SE can be administered together with the cisplatin in the same or separate syringe or in two separate syringes. Preferred tumors to treat are solitary nodules in organs located close to the skin surface including but not limited to hepatocellular carcinoma, lung tumors, brain tumors, head and neck tumors, unresectable breast tumors. The optimal chemotherapeutic agents and combined regimens for all the major human tumors are set forth in Bethesda Handbook of Clinical Oncology, Abraham J et al., Lippincott William & Wilkins, Philadelphia, Pa. (2001); Manual of Clinical Oncology, Fourth Edition, Casciato, D A, Lowitz, B B, Lippincott William & Wilkins, Philadelphia, Pa. (2000) which are herein incorporated in entirety by reference.

[0792] As will be understood by those of ordinary skill in the art, the appropriate doses of chemotherapeutic agents will be generally around those already employed in clinical therapies wherein the chemotherapeutics are administered alone or in combination with other chemotherapeutics. By way of example only, agents such as cisplatin, and other DNA alkylating may be used. Cisplatin has been widely used to treat cancer, with efficacious doses used in clinical applications of 20 mg/m2 for 5 days every three weeks for a total of three courses. Cisplatin is not absorbed orally and must therefore be delivered via injection intravenously, subcutaneously, intratumorally or intraperitoneally.

[0793] Further useful agents include compounds that interfere with DNA replication, mitosis and chromosomal segregation. Such chemotherapeutic compounds include adriamycin, also-known as doxorubicin, etoposide, verapamil, podophyllotoxin, and the like. Widely used in a clinical setting for the treatment of neoplasms, these compounds are administered through bolus injections intravenously at doses ranging from 25-75 mg/m2 at 21 day intervals for adriamycin, to 35-50 mg/m2 for etoposide intravenously or double the intravenous dose orally.

[0794] Agents that disrupt the synthesis and fidelity of polynucleotide precursors may also be used. Particularly useful are agents that have undergone extensive testing and are readily available. As such, agents such as 5-fluorouracil (5-FU) are preferentially used by neoplastic tissue, making this agent particularly useful for targeting to neoplastic cells. Although quite toxic, 5-FU, is applicable in a wide range of carriers, including topical, however intravenous administration with doses ranging from 3 to 15 mg/kg/day being commonly used

[0795] In non-small cell lung cancer, the cisplatin-based trials showed an absolute improvement in survival of 10% (5-15%) at 1 year, or an increase in median survival of 1½ months (1-2½ months). Cisplatin-based therapeutic regimens also improve quality of life in these patients. Other agents in phase III trials in patients with advanced NSCLC include the taxanes (paclitaxel and docetaxel), vinca alkaloid (vinorelbine), antimetabolite (gemcitabine), and camptothecin (irinotecan). These agents have shown promise in both phase I and II trials, both as single agents and in combination with a platinum agent. One-year survival rates of up to 40% have been commonly reported.

[0796] Suggested single and combination chemotherapy regimens for non-small cell lung cancer, breast cancer and hepatocellular cancer and chemotherapeutic agents commonly used for various malignancies are given in Example 73.

[0797] Other agents and therapies that are operable after intratumoral superantigen include, radiotherapeutic agents, antitumor antibodies with attached anti-tumor agents such as plant fungus or bacteria-derived toxin or coagulant, ricin A chain, deglycosylated ricin A chain, a ribosome inactivating protein, a-sarcin, gelonin, aspergillin, restricticin, a ribonuclease, a epipodophillotoxin, diphtheria toxin, or Pseudomonas exotoxin. Additional cytotoxic, cytostatic or anti-cellular agents capable of killing or suppressing the growth or cell division of the tumor being treated include anti-angiogenic agents, apoptosis-inducing agents, coagulants, prodrug or tumor targeted form, tyrosine kinase inhibitors (Siemeister et al., 1998), antisense strategies, RNA aptamers and ribozymes against VEGF or VEGF receptors (Saleh et al., 1996; Cheng et al, 1996; Ke et al., 1998; Parry et al., 1999; each incorporated herein by reference).

[0798] Numerous tyrosine kinase inhibitors useful. These include, for example, the 4-aminopyrrolo[2,3-d]pyrimidines of U.S. Pat. No. 5,639,757, specifically incorporated herein by reference, which may also be used in combination with the present invention. Further examples of organic molecules capable of modulating tyrosine kinase signal transduction via the VEGFR2 receptor are the quinazoline compounds and compositions of U.S. Pat. No. 5,792,771, which is specifically incorporated herein by reference for the purpose of describing further combinations for use with the present invention in the treatment of angiogenic diseases.

[0799] Other agents such as steroids including the angiostatic 4,9(11)-steroids and C21-oxygenated steroids, as described in U.S. Pat. No. 5,972,922, specifically incorporated herein by reference, may be employed in combined therapy. U.S. Pat. Nos. 5,712,291 and 5,593,990, each specifically incorporated herein by reference, describe thalidomide and related compounds, precursors, analogs, metabolites and hydrolysis products, which may also be used in combination with the present invention to inhibit angiogenesis. The compounds in U.S. Pat. Nos. 5,712,291 and 5,593,990 can be administered orally.

[0800] Certain anti-angiogenic therapies have already been shown to cause tumor regressions, including the bacterial polysaccharide CM101 and the antibody LM609. CM101 is a bacterial polysaccharide that has been well characterized in its ability to induce neovascular inflammation in tumors. CM101 binds to and cross-links receptors expressed on dedifferentiated endothelium that stimulates the activation of the complement system. It also initiates a cytokine-driven inflammatory response that selectively targets the tumor. It is a uniquely antipathoangiogenic agent that downregulates the expression VEGF and its receptors. CM101 is currently in clinical trials as an anti-cancer drug, and can be used in combination herewith.

[0801] Thrombospondin (TSP-1) and platelet factor 4 (PF4) may also be used in combination with the present invention. These are both angiogenesis inhibitors that associate with heparin and are found in platelet .alpha.-granules. TSP-1 is a large 450 kDa multi-domain glycoprotein that is constituent of the extracellular matrix. TSP-1 binds to many of the proteoglycan molecules found in the extracellular matrix including, HSPs, fibronectin, laminin, and different types of collagen. TSP-1 inhibits endothelial cell migration and proliferation in vitro and angiogenesis in vivo. TSP-1 can also suppress the malignant phenotype and tumorigenesis of transformed endothelial cells. The tumor suppressor gene p53 has been shown to directly regulate the expression of TSP-1 such that, loss of p53 activity causes a dramatic reduction in TSP-1 production and a concomitant increase in tumor initiated angiogenesis.

[0802] PF4 is a 70aa protein that is member of the CXC ELR-family of chemokines that is able to potently inhibit endothelial cell proliferation in vitro and angiogenesis in vivo. PF4 administered intratumorally or delivered by an adenoviral vector is able to cause an inhibition of tumor growth.

[0803] Interferons and metalloproteinase inhibitors are two other classes of naturally occurring angiogenic inhibitors that can be combined with the present invention. The anti-endothelial activity of the interferons has been known since the early 1980s, however, the mechanism of inhibition is still unclear. It is known that they can inhibit endothelial cell migration and that they do have some anti-angiogenic activity in vivo that is possibly mediated by an ability to inhibit the production of angiogenic promoters by tumor cells. Vascular tumors in particular are sensitive to interferon, for example, proliferating hemangiomas can be successfully treated with IFN&agr;.

[0804] Tissue inhibitors of metalloproteinases (TIMPs) are a family of naturally occurring inhibitors of matrix metalloproteases (MMPs) that can also inhibit angiogenesis and can be used in combined treatment protocols. MMPs play a key role in the angiogenic process as they degrade the matrix through which endothelial cells and fibroblasts migrate when extending or remodeling the vascular network. In fact, one member of the MMPs, MMP-2, has been shown to associate with activated endothelium through the integrin .alpha.v.beta.3 presumably for this purpose. If this interaction is disrupted by a fragment of MMP-2, then angiogenesis is downregulated and tumor growth is inhibited.

[0805] SEA-Chemotherapy Outcomes

[0806] Patients with malignant masses confirmed by biopsy or cytology are entered. They have not been undergoing any other anticancer treatment for at least one month and have a clinical Karnofsky status of at least 60-70%. SEA is used as the prototypical SAg but other SAgs and homologues as defined in Section 62 can be used as well in comparable doses. SEA is administered in doses of 0.01 ng-100 ug/kg ng intratumorally once every 2-7 days. The tumors are accessible percutaneously. Others may be visualized and treated via bronchoscopy or stereotactically in the case of brain tumors. The low dose chemotherapy is started preferably within 36 hours after the last treatment according to protocols in Example 73. Chemotherapy may be started at the same time as immunotherapy, however, it is preferable to start chemotherapy within 36 hours after the second to fourth dose of SEA. Chemotherapy is given preferably in subtherapeutic doses (10-95% below the FDA approved dosage per cycle) but full therapeutic doses are also useful. Responses are classified according to the WHO and RECIST criteria in Abraham et al., supra. Patients receive two and eight weeks of therapy.

[0807] There are 100 evaluable patients with malignant masses treated with intratumoral SEA. All patients have stage IIIb or stage IV lung cancer. Eighty five patients exhibit objective clinical responses for a response rate of 85%. Tumors generally start to diminish and objective remissions are evident after four weeks of combined SEA-chemotherapy. Responses endure for an average of 24 months.

[0808] Toxicity consists of mild short-lived fever, fatigue and anorexia not requiring treatment. CBC, renal and liver functions tests do not change significantly after treatments. The SAg—chemotherapy has better response rate and duration of remission than either agent alone with minimal toxicity.

69. Use of Superantigens as a Vaccine or against Established Infectious Disease

[0809] The present invention contemplates the use of superantigens in any form to combat or boost host immunity to infectious diseases. The superantigen is used as a vaccine and is delivered together with or within 12 days after the administration of the infectious agent or a component (antigenic structure) of the infectious agent, a homologue or fragment of the infectious agent or a surrogate or the infectious agent. The infectious agent is a virus, bacterium, fungus. Parasite or protozoan. The superantigen is also used to treat established infectious diseases. For example, a superantigen is administered directly into a tuberculosis pleural effusion or ascites or directly into a tuberculous granuloma or abscess. For use as a vaccine, the superantigen is administered parenterally by infusion or injection. It is also administered intrathecally, intrapleurally or intrapertioncally. It is dissolved in conventional diluents known in the art or in sustained release vehicles as given in section 66. For use in an established infection such as an empyema, pleural effusion or ascites of bacterial, fungal or tuberculous origin, superantigen is preferentially given intrapleurally or intraperitoneally respectively. Doses of the superantigen given in soluble form are 1 ng to 50 &mgr;g and in sustained release preparations, 1 ng to 50 mgs. The superantigen in soluble form is administered once every 3-10 days for 2-7 treatments until there are signs that the pleural effusion or ascites is not reaccumulating and a granuloma or abscess is regressing. When used in sustained release preparations against established infection, the superantigen is administered once weekly for 3-7 treatments of once monthly for 3-7 months.

[0810] In all of these situations, the costimulant ligands OX-40 and 4-11B are administered together with the superantigen and up to 5 days afterward by injection or infusion by intravenous, intramuscular, subcutaneous, intrapleural, intraperitoneal, intralesional or intrathecal routes in doses of 0.2 ng/kg to 20 m/kg for each treatment.

70. Amplification of the &agr;-1,4-Digalacosyl-Ceramide Binding Unit of SAg

[0811] Abbreviations. GaOse2 or galabiosylceramide, Gal(&agr;1-4)Gal/&bgr;1-ceramide: GbOse3, or globotriaosylceramide Gal(&agr;1-4)Gal(&bgr;1-4)Glc&bgr;-1 ceramide; GbOse4 or globotetraosyl ceramide. GalNac(&bgr;1-3)Gal(&agr;1-4)Gal(&bgr;1-4)Glc ceramide.

[0812] The structure of the amino-terminal domain of SEs closely resembles the oligosaccharide/oligonucleotide-binding fold (OB fold) characteristic of verotoxin-1, cholera toxin, pertussis toxin, AB5 toxins from E. coli and the active domain of metalloprotease-2. The superantigen SEB binds to the GaOse2 or galabiosylceramide receptor on cultured human proximal tubular epithelial cells (Chatterjee et al., Glycobiology 5:327-333 (1995)). GaOse2 and Globotriaosylceramide (GbOse3) are recognized by human verotoxins (verotoxin-1, verotoxin-2 and verotoxin 2c) (Boyd et al. Eur. J Biochem. 223:873-8 (1994)). It is essential that the Gal(&agr;1-4)Gal is terminal on the carbohydrate sequence to permit verotoxin binding since digestion of the glycolipids with &agr;-galactosidase resulted in loss of toxin binding. In TLC overlay experiments, the GaOse2 is the most effective verotoxin receptor. Verotoxin binds to astrocytoma cells, ovarian carcinoma and Burkitt's lymphoma cells (Farkas-IIimsley et at., Proc. Natl. Acad Sci. 92: 6996-7000 (1995); Arab et al., J. Neuro-Onc. 40: 137-150 (1998)) presumably via the GbOse3 and induces apoptosis. Several SEs are known to bind to several MHC class II negative tumors such as colon adenocarcinomas and squamous cell carcinoma cells and induce T cell mitogenesis or SDCC (Dohlsten et al., Eur. J. Immunol. 21:1229 (1991); Hermann et al., J. Immunol. 146:2504-2512 (1991); Lamphear et al. J. Immunol. 160:615 (1998)). In the present invention, SAgs bind to GaOse2 receptor moieties overexpressed on carcinoma cells and other malignant cells just as ovarian carcinoma cells express 1000 fold more GbOse3 than normal ovarian cells.

[0813] In the present invention, the OB fold of the verotoxin-1 (any other verotoxin) is fused to the native SE molecule. SEB, SEC1, SED and SEA are preferred superantigens for this purpose. The addition of this moiety confers the SE with enhanced recognition of the GaOse2 structures on target tumor cells. The fusion of the verotoxin OB fold to the SE is accomplished recombinantly fusing the verotoxin GaOse2 coding region (in its OB fold) to SEB preferably at its C terminus (away from the OB fold in the amino terminal domain). In an additional embodiment, the OB fold of the superantigen is duplicated to provide additional ligand for binding to tumor cells expressing the receptors for this ligand.

[0814] In an additional embodiment, the Shiga toxin A subunit is fused to the superantigen. The A subunit of the verotoxin is capable of binding to verotoxin receptors on tumor cells where it is internalized and cleaved to a product that interferes with post translational ADP ribosylation.

[0815] The SE-verotoxin conjugate is used to treat tumors or enhance antitumor immunity. For this purpose it is administered parenterally, intratumorally, intrathecally, intraperitoneally, intrapleurally by infusion or injection in conventional or sustained release vehicles as given in Section 66 in dosages of 0.01 ng/kg to 100 &mgr;g/kg using protocols given in Examples 5, 7, 14, 15, 16, 18-23, 38.

71. Coaguligands: SEs Fused to Coagulation Factors

[0816] Superantigens may be conjugated to, or operatively associated with, polypeptides that are capable of directly or indirectly stimulating coagulation, thus forming a “coaguligand” (Barinaga M et al., Science 275:482-4 (1997); Huang X et al., Science 275:547-50 (1997); Ran S et al., Cancer Res Oct. 15 1998;58(20):4646-53; Gottstein C et al., Biotechniques 30:190-4 (2001)).

[0817] In coaguligands, the antibody may be directly linked to a direct or indirect coagulation factor, or may be linked to a second binding region that binds and then releases a direct or indirect coagulation factor. The ‘second binding region’ approach generally uses a coagulant-binding antibody as a second binding region, thus resulting in a bispecific antibody construct. The preparation and use of bispecific antibodies in general is well known in the art, and is further disclosed herein.

[0818] Coaguligands are prepared by recombinant expression. The nucleic acid sequences encoding the SAg are linked, in-frame, to nucleic acid sequences encoding the chosen coagulant, to create an expression unit or vector. Recombinant expression results in translation of the new nucleic acid, to yield the desired protein product.

[0819] Where coagulation factors are used in connection with the present invention, any covalent linkage to the SAg should be made at a site distinct from the functional coagulating site. The compositions are thus “linked” in any operative manner that allows each region to perform its intended function without significant impairment. Thus, the SAg binds to and stimulates T cells, and the coagulation factor promotes blood clotting.

[0820] Preferred coagulation factors are Tissue Factor (“TF) compositions, such as truncated TF (tTF), dimeric, multimeric and mutant TF molecules. “Truncated TF” (tTF) refers to TF constructs that are rendered membrane-binding deficient by removal of sufficient amino acid sequences to effect this change in property. A “sufficient amount” in this context is an amount of transmembrane amino acid sequence originally sufficient to enter the TF molecule in the membrane, or otherwise mediate functional membrane binding of the TF protein. The removal of such a “sufficient amount of transmembrane spanning sequence” therefore creates a truncated TF protein or polypeptide deficient in phospholipid membrane binding capacity, such that the protein is substantially a soluble protein that does not significantly bind to phospholipid membranes. Truncated TF thus substantially fails to convert Factor VII to Factor VIIa in a standard TF assay, and yet retains so-called catalytic activity including activating Factor X in the presence of Factor VIIa.

[0821] U.S. Pat. No. 5,504,067 is specifically incorporated herein by reference describes truncated TF proteins. Preferably, the TFs for use herein will generally lack the transmembrane and cytosolic regions (amino acids 220-263) of the protein. However, there is no need for the truncated TF molecules to be limited to molecules of the exact length of 219 amino acids.

[0822] Any of the truncated, mutated or other TF constructs maybe prepared in a dimeric form. TF dimers are prepared by employing the standard techniques of molecular biology and recombinant expression, in which two coding regions are prepared in-frame and expressed from an expression vector. Equally, various chemical conjugation technologies may be employed to prepare TF dimers. The individual TF monomers may be derivatized prior to conjugation.

[0823] The tTF constructs may be multimeric or polymeric. A “polymeric construct” contains 3 or more Tissue Factor constructs. A “multimeric or polymeric TF construct” is a construct that comprises a first TF molecule or derivative operatively attached to at least a second and a third TF molecule or derivative. The multimers may comprise between about 3 and about 20 such TF molecules. The constructs may be readily made using either recombinant manipulation and expression or using standard synthetic chemistry.

[0824] TF mutants deficient in the ability to activate Factor VII are useful. Such “Factor VII activation mutants” are generally defined herein as TF mutants that bind functional Factor VII/VIIa, proteolytically activate Factor X, but are substantially free from the ability to proteolytically activate Factor VII. Accordingly, such constructs are TF mutants that lack Factor VII activation activity.

[0825] The ability of such Factor VII activation mutants to function in promoting tumor-specific coagulation is based upon their specific delivery to the tumor vasculature, and the presence of Factor VIIa at low levels in plasma. Upon administration of such a Factor VII activation mutant conjugate, the mutant will be localized within the vasculature of a vascularized tumor. Prior to localization, the TF mutant would be generally unable to promote coagulation in any other body sites, on the basis of its inability to convert Factor VII to Factor VIIa. However, upon localization and accumulation within the tumor region, the mutant will then encounter sufficient Factor VIIa from the plasma in order to initiate the extrinsic coagulation pathway, leading to tumor-specific thrombosis. Exogenous Factor VIIa could also be administered to the patient.

[0826] Any one or more of a variety of Factor VII activation mutants may be prepared and used in connection with the present invention. The Factor VII activation region generally lies between about amino acid 157 and about amino acid 167 of the TF molecule. Residues outside this region may also prove to be relevant to the Factor VII activating activity. Mutations are inserted into any one or more of the residues generally located between about amino acid 106 and about amino acid 209 of the TF sequence (WO 94/07515; WO 94/28017; each incorporated herein by reference).

[0827] A variety of other coagulation factors may be used in connection with the present invention, as exemplified by the agents set forth below. Thrombin, Factor V/Va and derivatives, Factor VIII/VIIIa and derivatives, Factor IX/IXa and derivatives, Factor X/Xa and derivatives, Factor XI/XIa and derivatives, Factor XII/XIIa and derivatives, Factor XIII/XIIIa and derivatives, Factor X activator and Factor V activator may be used in the present invention.

[0828] These conjugates are administered intrathecally by in dosages of 0.01 ng/kg to 100 &mgr;g/kg.

EXAMPLE 1 Preparation of Plasmids for making DNA Templates for any Gene of Interest and the Process of Transfection

[0829] Mammalian oncogenes, and genes for oncogenic transcription factors, angiogenic factors, growth factor receptors and amplicons as well as bacterial and SAg plasmids and DNA are prepared as described in the text references. When necessary, they are modified to forms suitable for transfection into mammalian tumor cells or accessory cells using methods well described in the art. (Old R W et al., Principles of Gene Manipulation, 5th Ed., Blackwell 1994).

[0830] As a representative SAg, enterotoxin B plasmid DNA is prepared by the method of Jones C L et al., J. Bacteriology 166 29-33 (1986) and Ranelli et al., Proc. Natl. Acad. Sci. USA 82:5850-5854 (1985) using the CsCl-ethidium bromide density gradient centrifugation of cleared lysates as described (Clewell, D B et al., Proc. Natl. Acad. Sci. USA 62-1159-1166 (1969)). S. aureus chromosomal DNA was isolated as described by Betley M et al., Proc. Natl. Acad. Sci. USA 81: 5179-5183 (1984). E. coli HB101 was transformed with plasmid DNA by the CaCl2 procedure of Morrison D A et al., Meth. Enzymol. 68:326-331 (1979). Restriction digests were analyzed by 1% agarose and 5% acrylamide gel electrophoresis using Tris/Borate/EDTA buffer as described in Greene P J et al., Methods Mol Biol. 7: 87-111 (1974). Additional methods for isolation and cloning of specific bacterial and mammalian plasmid DNA useful in tumor or accessory cell transfection are cited in references given previously in the text or in Snyder L et al., Molecular Genetics of Bacteria, ASM Press, Washington, D.C. (1997); Peters et al., supra; Franks et al., supra.

[0831] Suitable template DNA for production of mRNA encoding a desired polypeptide may be prepared using standard recombinant DNA methodology as described in Ausubel F et al. Short Protocols in Molecular Biology 3rd Ed. John Wiley, New York, N.Y. (1995). There are numerous available cloning vectors and any cDNA containing an initiation codon can be introduced into the selected plasmid and mRNA can be prepared from the resulting template DNA. The plasmid can be cut with an appropriate restriction enzyme to insert any desired cDNA coding for a polypeptide of interest. For example the readily available cloning vector pSP64T can be used after linearization and transcription with SP6 RNA polymerase. Smaller sequence may be inserted into the Hind III/EcoTI fragment with T4 ligase. Resulting plasmids are screened for orientation and transformed into E. coli. These plasmids are adapted to receive any gene of interest at a unique BglII restriction site which is placed between the two Xenopus &bgr;-globin sequences.

[0832] Subcloning of SEB into pH&bgr;-Apr-1-Neo Expression Vector

[0833] The Staphylococcal enterotoxin B (SEB) gene has been subcloned into pH&bgr;-Apr-1-neo expression vector. The final construct contained only the coding sequence of SEB: and conferred resistance to ampicillin and G-418.

[0834] Materials and Methods

[0835] PCR:

[0836] 1. The following two primers are designed and made at Life Technologies, Inc.: Primer SEB 1: total 24 bp 5′ to 3′ GGCGTCGACATGTATAAGAGATTA SalI site Primer SEB2: total 24 bp 5′ to 3′ GCCGGATCCTCACTTTTTCTTTGT BamHI site Both primers were dissolved in filter-sterilized ddH2O to a final concentration of 20 mM (stock solution).

[0837] 2.The volume (in ml) of reagents for each PCR reaction is listed below: 4 Exp. Exp. Exp. Exp. Exp. Reagent 1 2 3 4 5 ddH2O 76 72 67 49 59 10 × PCR buffer 10 10 10 10 10 10 × dNTP(2 mM stock) 10 10 10 10 10 Primer SEB1 (20 mM stock) 1 5 1 10 10 Primer SEB2 (20 mM stock) 1 1 1 10 10 SEE Template (50 mg stock) 1 1 10 10 0 Pfu Turbo Enz 1 1 1 1 1 Final Volume 100 100 100 100 100

[0838] 3. The following cycling parameters were applied:

[0839] 95° C. 1 minute 1 cycle initial denature

[0840] 95° C. 45 seconds denature

[0841] 52° C. 1 minute 20 cycles anneal

[0842] 72° C. 1 minute extension

[0843] 72° C. 1 minute 1 cycle final extension

[0844] 4° C. hold

[0845] 4. To verify that the PCR reactions yielded the correct size fragment, 10 ml of the reaction mixture was electrophoresed on a 1% agarose gel in 1×TAE buffer.

[0846] Vector

[0847] 1. The pH&bgr;-Apr-1-neo expression vector was spotted the vector on a filter paper. See FIG. 1

[0848] 2. To recover the DNA, the circle was cut out and added to 100 ml of H2O to allow rehydration for 5 minutes. After a brief centrifugation, the supernatant was used to transform E. coli XL 1Blue (Stratagene), and selected by ampicillin (final concentration 100 mg/ml).

[0849] 3. To verify that the vector is correct, 4 ampR clones were randomly selected and the clones were cultured in LB amp media. DNA was isolated and digested with SalI, BamHI (single digest) and EcoRI/HindIII (double digest). The digested products were electrophoresed on a 1% agarose gel in 1×TAE buffer. The profile of the restriction digest confirmed that the vector is correct.

[0850] Cloning and Verification

[0851] 1. The correct PCR fragments in experiments 2, 3, and 4 were pooled and gel-purified. A portion of the fragments was digested with restriction enzymes SalI and BamHI, and was ligated into the digested pH&bgr;-Apr-1-neo expression vector. The ligation products were transformed into E. coli XL1Blue (Stratagene). Insert containing clones were selected by ampicillin.

[0852] 2. Ten ampicillin resistant clones were randomly selected, cultured in 5 ml of LB amp media, and their plasmid DNA was isolated. Insert containing clones (SEB construct) were verified by digesting the DNA with SalI and BamHI restriction endonucleases and electrophoresis at 0.8% agarose gel. (See FIG. 2)

[0853] 3. One of the SEB constructs (clone #2) was verified by sequencing and aligned with the published SEB sequence in the “SEB and Clone #2 Coding Sequence Table” below, which shows alignment of the published SEB coding sequence and the newly constructed SEB gene in pH&bgr;-Apr1 neo vector (Clone #2). Clone #2 was sequenced with 4 primers: SEB1, 2, 3, and 4. SEB1 and 2 are the PCR primers that were used for the amplification of the SEB gene.

[0854] SEB 3 (TATGAAAGTTTTGTATGATGAT) and SEB 4 (AGTGACGAGTTAGGTAATCT) are internal primers. The final sequence was confirmed by the multiple overlapping of sequences and aligned with the published SEB sequence. It is a perfect match. The start codon (ATG) and the stop codon (TGA) are underlined. The upstream and the downstream sequences are the human &bgr;-actin promoter and the SV40 polyA sequences in the pH&bgr;-Apr1 neo vector with the addition of SalI and BamHI restriction enzyme sites. 5 SEB and Clone #2 Coding Sequence Table 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

[0855] Purified DNA templates from bacteria and human cells are prepared for introduction of plasmid into human and bacterial cells by additional methods given in Ausubel F et al., supra. The plasmid DNA is grown up in E. coli in ampicillin containing LB medium. The cells were then pelleted by spinning a 5000 rpm for 10 min. at 5000 rpm., resuspended in cold TE pH 8.0, centrifuged again for 10 minutes. at 5000 rpm., resuspended in a solution of 50 mM glucose, 25 mM Tris-Cl pH 8.0, 10 mM EDTA and 40 mg/ml lysozyme. After incubation for 5-10 min. with occasional inversion, 0.2 N NaOH containing 1% SDS was added, followed after 10 minutes at 0° C. with 3 M potassium acetate and 2 M acetic acid. After 10 more minutes, the material was again centrifuged a 6000 rpm, and the supernatant was removed with a pipet. The pellet was then mixed into 0.6 vol. isopropanol (−20° C.), mixed, and stored at −20° C. for 15 minutes. The material was then centrifuged again at 10,000 rpm for 20 min., this time in an HB4 singing bucket rotor apparatus after which the supernatant was removed and the pellet was washed in 70% EtOH and dried at room temperature. Next, the pellet was resuspended in 3.5 ml TE, followed by addition of 3.4 g CsCl and 350 l of 5 mg/ml EtBr. The resulting material was placed in a quick seal tube, filled to the top with mineral oil. The tube was spun for 3.5 hours at 80,000 rpm in a VTi80 centrifuge. The band was removed and the material was centrifuged again making up the volume with 0.95 g CsCl/ml and 0.1 ml or 5 mg/ml EtBr/ml in TE. The EtBr was then extracted with an equal volume of TE saturated N-Butanol after adding 3 volumes of TE to the band. Next, 2.5 vol. EtOH was added, and the material was precipitated at −20° C. for 2 hours. The resultant DNA precipitate is used as a DNA template.

[0856] Transfection of B16F10 Melanoma Cells

[0857] G418 sensitivity: B16F10 melanoma cells (B16s) were first tested for sensitivity to G418 which will be used as the selectable marker. At 400 &mgr;g/mL G418, B16s did not survive, while 200 and 300 &mgr;g/mL allowed some survival.

[0858] Lipofectamine was used to produce stably transfected B16 cells. The conditions for transfection were those described protocol provided by Life Technologies. B16s were plated at 4×105 cells/well in 6 well plates, using Murine Complete Medium (MCM) described in Report 2. Cells were cultured overnight. Optimal density is 50-80% confluent and is usually achieved by 18-24 after seeding at 1-3×105 cells/well. DNA sources consisted of SEB-G418 resistance containing vector, vector DNA with G418 resistance gene only, and control DNA from PSK401 (no G418 resistance marker). DNA concentrations were determined for the SEB containing and control vectors. 6 DNA source A260 DNA (&mgr;g/ml) SEB 0.09 0.45 Vector only 0.13 0.65 PSK 401 0.15 0.75

[0859] Lipofectamine solutions and DNA solutions were prepared in 12×75 mm tubes, using OPTI-MEM (Life Technologiies 31985). DNA solutions contained approximately 2 &mgr;g in 100 uL OPTI-MEM; the LIPOFECTAMINE Reagent was diluted by adding 6 or 12 uL to OPTI-MEM at a final volume of 100 uL. The solutions were mixed and held at room temperature for 30 minutes. Specific DNA and Lipofectamine conditions were as follows:

[0860] Plated cells were rinsed once with 2 ml/well OPTI-MEM. To the above tubes, 0.8 mL OPTI-MEM. This mixture was then overlayed onto the washed cell monolayers according to the above well designations. Cells were incubated for 5 hours at 37° C. in 5% CO2. Murine Complete Medium with 20% FBS but no antibiotics was then added at 1 ml/well. Cultures were refed with standard MCM, at 3 mL/well, after 24 hours. Three days after transfection, cells from each transfection condition were subcultured by splitting the total cell suspension 90:10 into 150 mm plates (one plate received 90% of the cell suspension, the other received the remaining 10%).

[0861] G418 Selection

[0862] All plates were refed at 6 days after transfection with medium containing 400 &mgr;g/mL G418. Plates were refed every 2 to 3 days with G418 containing medium until day 17 after transfection. No growth was observed in wells 1-4 as expected. Plates initiated with 90% of the cell suspension and showing growth were harvested, frozen, and stored at −80° C.

[0863] Primary Subcloning

[0864] Ten colonies were selected from each well for wells 5, 7, 9, and 11. Subcloning was accomplished by the use of cloning cylinders as follows: After seating the cylinder, medium was aspirated and the isolated colony was washed once with 100 uL of warmed trypsin-EDTA. This was aspirated and replaced with fresh tyrpsin-EDTA. After incubation at 37° C. for 2 minutes, the cells were recovered by trituration and transferred to a tube containing 1 ml MCM, then replated by addition of 20 uL of cell suspension to 15 mL MCM with G418 in 150 mm plates. The remaining cell suspension was plated into 24 well plates, 4 wells/clone and all plates were maintained at 37° C., 5% CO2. The 6 well plates were used to assess SEB expression on the cell surface as described under Detection of positive clones.

[0865] Secondary and Tertiary Subcloning and Preparation of Frozen Stocks

[0866] These and all subsequent procedures were performed by me. Secondary subcloning was performed as above at 7 days after initiation of primary subclones. One colony/plate was selected for further subcloning (a total of 40 colonies) The cell suspension was prepared in a total volume of 1 mL; 100 uL was replated into 100 mm plates containing 10 mL MCM with G418. The remaining cell suspension was plated in 96 well plates at 100/well, 2 replicates for assay. The 96 well plate was used for detection of intracellular expression of SEB described under Detection of positive clones.

[0867] Primary subcloning plates were cultured one additional day, then harvested, frozen, and stored at −80° C. These frozen stocks are designated primary subclones. Secondary subclones were refed after 4 days. Of 40 secondary clones, 36 regrew. Tertiary subcloning was performed after 8 days and frozen stocks of secondary clones were prepared after 9 days. Tertiary clones were refed after 3 days in culture and subcultured after 7 days in culture. Plates were harvested, cells were resuspended in a total of 1 mL, and replated by addition of 100 uL of the cell suspension to 100 mm plates with 15 mL MCM or 100 &mgr;l/well in a 96 well plate. Frozen stocks of tertiary clones were prepared.

[0868] Generation of Conditioned Medium for Assay of Supernatants

[0869] After 7 days, 100 mm plates of tertiary clones were again replated. This time, cell counts were performed and 4.5×105 cells were plated in 12 well plates, one well/clone. The remaining cell suspension was frozen and stored at −80° C. After 4 days in culture, supernatants were harvested, stored at 4° C., and the cells were replated into 100 mm plates. Supernatants were obtained from the 100 mm plates after 7 days in culture. See Detection of positive clones. Frozen stocks were also generated from these plates.

[0870] Development of ELISA with HRP Rabbit anti-SEB.

[0871] Final ELISA conditions were as follows:

[0872] Assay Plate ProBind (Falcon #3915)

[0873] Capture Antibody Rabbit anti-SEB (Toxin Technologies #LB1202), 10 &mgr;g/mL in PBS, 50 &mgr;l/well, 1 hr, RT

[0874] Wash 3× with 0.1% casein, 0.1% Tween 20 in PBS

[0875] Blocking 1% casein in PBS, 250 &mgr;l/well, overnight, 4° C.

[0876] Antigen Supernatant used neat or SEB diluted in PBS, 50 &mgr;l/well, 2 hr, RT

[0877] Wash As above

[0878] Primary Ab HRP Rabbit anti-SEB (Toxin Technologies #LBC202), 1/300 in block buffer, 50 &mgr;l/well, 2 hr, RT

[0879] Substrate OPD, 2.5 mg/mL in citrate buffer, pH 5.0, 0.03% H202, 100 &mgr;l/well, 15 min, RT

[0880] Stop 4M H2SO4, 100 &mgr;l/well

[0881] Read-out Absorbance at 490 nm (OD 490)

[0882] Results: SEB produced a dose response curve (linear range 60 fg-60 pg/mL) and the background was very low. Vector only clones produced only background signals. One SEB transfected clone produced a strong signal, three produced moderate signals, and one other produced a weak but definite signal. 7 Absorbance at 490 nm SEB+ Vector only 1 2 mean 1 2 mean 9.1 0.097 0.112 0.104 0.079 0.102 0.091 9.2 0.127 0.123 0.125 0.081 0.076 0.078 9.3 0.109 0.104 0.106 0.087 0.070 0.079 9.4 0.444 0.393 0.418 0.077 0.077 0.077 9.5 0.163 0.087 0.125 0.075 0.074 0.074 9.6 0.516 0.522 0.519 0.066 0.064 0.065 9.7 0.087 0.091 0.089 0.096 0.084 0.090 9.8 0.386 0.450 0.418 0.080 0.071 0.075 9.9 0.137 0.122 0.130 0.071 0.070 0.071 11.1 0.083 0.075 0.079 0.068 0.078 0.073 11.2 1.847 1.802 1.824 0.063 0.076 0.070 11.3 0.071 0.077 0.074 0.076 0.074 0.075 11.4 0.087 0.084 0.086 0.083 0.085 0.084 11.5 0.161 0.220 0.191 0.092 0.086 0.089 11.8 0.221 0.100 0.160 0.080 0.081 0.080 11.9 0.080 0.091 0.085 0.077 0.072 0.074 11.10 0.290 0.254 0.272 0.081 0.112 0.097 11.10 0.268 0.263 0.265 0.093 0.114 0.103

[0883] Based on the SEB standard curve, the following concentrations were derived. 8 Clone number(pg/ml) SEB 11.2 4.146 9.6 0.152 9.4 0.118 9.8 0.118 11.10 0.081

[0884] Cells are transfected ex vivo or in vivo and implanted in a cancer-bearing host. These transfected cells are also used to stimulate host lymphocytes ex vivo. Once activated, the lymphocytes are administered to the host. The ex vivo or in vitro introduction of DNA into cells is accomplished by methods that (1) form DNA precipitates which are internalized by the target cell; (2) create DNA-containing complexes with charge characteristics that are compatible with DNA uptake by a target cell; or (3) result in the transient formation of pores in the plasma membrane of a target cell exposed to an electric pulse (these pores are of sufficient size to allow DNA to enter the target cell).

[0885] Generally, two factors determine the method used: the duration of expression required (i.e., transient versus stable expression) and the type of cell to be transfected. The specific details of exemplary procedures are described herein. Transfections are carried out by well established methods including calcium phosphate precipitations, DEAE Dextran transfection, and electroporation.

[0886] Calcium Phosphate Precipitation

[0887] A commonly used ex vivo and in vitro method to transfer DNA into recipient cells involves the co-precipitation of the DNA of interest with calcium phosphate. With this technique, DNA enters the cell in sufficient quantities such that the treated cells are transformed with relatively high frequency. Using a variety of cell types, transfection efficiencies of up to 10-3 have been obtained. This is the method of choice for the generation of stable transfectants.

[0888] Variations of the basic technique have been developed. If the transfection involves the transfer of plasmid DNA, then high molecular weight genomic DNA isolated from a defined cell or tissue source can be included. The addition of such DNA, called carrier DNA, often increases the efficiency of transfection by the plasmid DNA. Upon arrival of the plasmid DNA/carrier DNA/calcium phosphate co-precipitate to the nucleus of the treated cell, the plasmid DNA integrates into the carrier DNA, often in the tandem array, and this assembly of plasmid and carrier DNA, called a transgenome, subsequently integrates into the chromosome of the host cell.

[0889] Another procedural option is the addition of a chemical shock step to the transfection protocol. Either dimethylsulfoxide or glycerol are appropriate. The optimal concentrations and lengths of treatment vary according to cell type. The use of these agents dramatically affect cell viability and can be optimized as described elsewhere [Chen and Okayama, Mol. Cell. Biol. 7:2745 (1987)]. Specifically, incubation of cells with the co-precipitate is optimal at 35° C. in 2-4% CO2 for 15-24 hours. In addition, circular DNA is more active than linear DNA and a finer precipitate is obtained when the DNA concentration is between 20-30 mg/ml in the precipitation mix.

[0890] It is noted that incubator temperature, CO2 concentration, and DNA concentration can be varied to obtain the desired result. In addition, the temperature and CO2 concentrations described below are not optimal for cell growth and should be maintained only temporarily.

[0891] Method

[0892] Day 1: 1.3×106 cells are seeded per 100-mm dish. Cells are about 75% confluent when used to seed the dishes.

[0893] Day 2: A large calcium phosphate cocktail mixture to transfect many plates simultaneously is prepared. This protocol is given for 1 ml (or 1×100-mm dish equivalent) of solution. These amounts are scaled up as necessary, allowing for an appropriate amount of sample-transfer errors. Adherence to sterile technique is critical. Sterile reagents, tips, and tubes are used.

[0894] 1. Add 1-20 g DNA (1 mg/ml in sterile TE, 10 mM Tris-HCl 1 mM EDTA pH 7.05) to 0.45 ml sterile H2O. Note: First “sterilize” DNA by ethanol precipitation with NaCl (0.1M final aqueous concentration) and 2× volume 200% ethanol.

[0895] 2. Add 0.5 ml 2× HEPES buffered saline. Mix well.

[0896] 3. Add 50 ml of 2.5 M CaCl2, vortex immediately.

[0897] 4. Allow the DNA mixture to sit undisturbed for 15-30 minutes at room temperature.

[0898] 5. Add 1 ml of the DNA transfection cocktail directly to the medium in the 100-mm dish (plated with cells on day 1).

[0899] 6. Incubate the dishes containing the DNA precipitate for 16 hours at 37° C. Remove the media containing the precipitate and add fresh complete growth media.

[0900] 7. Allow the cells to incubate for 24 hours. Post-incubation, the cultures can be split for subsequent selection. Split cultures 1:5; however, to isolate individual colonies for further analysis, split cultures 1:10 and 1:100.

[0901] DEAE Dextran Transfection

[0902] Typically, DEAE dextran transfection is used to transiently transfect cells in culture. This method is highly efficient and the DNA/DEAE dextran mixture used for transfection is relatively easy to prepare. For example, this method yields transfection efficiencies of as high as 80 percent. DNA introduced into cells with this method, however, appears to undergo mutations at a higher rate than that observed with calcium phosphate-mediated transfection.

[0903] Method

[0904] Briefly, a DEAE dextran mixture is prepared and the DNA sample of interest is added, mixed, and then transferred to the cells in culture.

[0905] Day 1: Cells are seeded at a concentration of 2×104 cells/cm2 in a total volume of 2 ml/well (1.92×105 cells/well of a six-well cluster dish). Cells should be about 75% confluent when used to seed the dishes.

[0906] Day 2: Resuspend 0.5 ml DEAE Dextran in Tris-buffered saline (TBS).

[0907] Final DEAE Dextran concentration should be about 0.04%. Observe cell monolayers microscopically. Cells should appear about 60-70% confluent and well distributed. Bring all reagents to room temperature. Aspirate off growth media and wash monolayer once with 3 ml of phosphate buffered saline (PBS), followed by one wash with 3 ml of TBS. Aspirate off TBS solution and add 100-125 ml of the appropriate DNA/DEAE-Dextran/TBS mixture to the wells. Incubate dishes at room temperature inside a laminar flow hood. Rock the dishes every 5 minutes for 1 hour, making sure the DNA solution covers the cells. After the 1-hour incubation period, aspirate off the DNA solution and wash once with 3 ml of TBS followed by 3 ml of PBS. Remove the PBS solution by aspiration and replace with 2 ml of complete growth media containing 100 M chloroquine. Incubate the dishes in an incubator set at 37° C. and 5% CO2 for 4 hours. Remove the media containing chloroquine and replace with 2-3 ml of complete growth media (no chloroquine). Incubate the transfected cells for 1-3 days, after which the cells will be ready for analysis. The exact incubation period depends on the intent of the transfection. Optimal expression typically occurs at 3days post-transfection.

[0908] Electroporation

[0909] Electroporation is a process whereby cells in suspension are mixed with the DNA to be transferred. This cell/DNA mixture is subsequently exposed to a high-voltage electric field. This creates pores in the membranes of treated cells that are large enough to allow the passage of macromolecules such as DNA into the cells. Such DNA molecules are ultimately transported to the nucleus and a subset of these molecules are integrated into the host genome. The reclosing of the membrane pores is both time and temperature dependent and thus is delayed by incubation at 0° C., thereby increasing the probability that the molecule of interest will enter the cell.

[0910] Electroporation appears to work on virtually every cell type. With this technique, the efficiency of nucleic acid transfer is high for both transient transfection and stable transfection. One important technical difference between electroporation and other competing technologies is that the number of input cells required for electroporation is considerably higher.

[0911] Method

[0912] 1. Harvest exponentially growing cells such as tumor cells or accessory cells by trypsinization, pellet, and wash twice with electroporation buffer (Kriegler, M. Gene Transfer and Expression, W. H. Freeman and Co., New York, N.Y. (1991)).

[0913] 2. Resuspend cells in electroporation buffer at a concentration of 2-20×106 cells/ml in an electroporation cuvette.

[0914] 3. Add 5-25 mg of DNA that has been linearized to the cell suspension

[0915] 4. Insert or connect the electroporation electrode according to the manufacturer's instructions and subject cell/DNA mixture to an electric field (pulse).

[0916] 5. Return cell/DNA mixture to ice and incubate for 5 minutes.

[0917] 6. Plate cells in non-selective medium. Biochemical selection may be carried out 24-48 hours later.

[0918] Lipofectamine

[0919] In vitro cell transfections can be done in 12-well plates, using 3.0 g plasmid DNA and Lipofectamine (GIBCO BRL), at 37° C. for 4 hours. After transfection, the cells are cultured in 2.0 ml complete medium for 48 hours and the cells are harvested. The cells are then washed in PBS. Stably transfected Chinese hamster ovary (CHO) and B16 lines are isolated by selection in 1.0 mg/ml G418 (GIBCO BRL). Cells are grown and passaged in medium containing G418 for 3-4 weeks Mock transfected cell lines (cells transfected with vector only) are used as controls.

[0920] Viral Vectors

[0921] Recombinant viral vectors containing the nucleic acid of interest can also be used to introduce nucleic acid into a cell ex vivo or in vitro. It is noted that viral vectors are also used to transfect cells in vivo. These viral vectors can be DNA viruses such as herpes viruses, adenoviruses, and vaccinia viruses or RNA viruses such as retroviruses. The method and materials required to produce and use these viral vectors ex vivo, in vitro, and in vivo are commonly known in the art and are used in the invention described herein (Sambrook, J. et al., supra).

[0922] Selection

[0923] Regardless of the method used to transfect a particular cell type, stably transfected cells are identified as follows. The DNA of interest contains a selectable marker. Typically, a selectable marker encodes a polypeptide that confers drug resistance and the DNA containing this resistance conferring nucleic acid is transfected into the recipient cell. Post transfection, the treated cells are allowed to grow for a period of time (24-48) hours to allow for efficient expression of the selectable marker. After an appropriate incubation time, transfected cells are treated with media containing the concentration of drug appropriate for the selective survival and expansion of the transfected and now drug resistant cells.

[0924] Many drug as well as non-drug selection methods are known in the art and can be used in the invention described herein. For example, a detailed description of currently available drug selection strategies is provided in Kriegler M., Gene Transfer and Expression, A Laboratory Manual, W. H. Freeman and Co. New York, N.Y. pp.103-107 (1991).

[0925] General Method

[0926] Sixteen hours after transfection, the transfected/infected cells are fed with fresh, non-selective media. Twenty-four to forty-eight hours later, the cultures are split to a 1:5 or greater dilution and plated in drug-containing media. It is noted that cells are not placed in drug-containing media immediately after transfection in order to allow a sufficient amount of time for the drug resistance nucleic acid to be expressed and thus confer the drug resistant phenotype. Cell cultures are re-fed with drug-containing media every three days, at which time cultures are examined under a microscope to determine the efficiency of drug selection.

[0927] Site-Directed Mutagenesis by Polymerase Chain Reaction: Introduction of Restriction Endonuclease Sites by PCR

[0928] PCR is the preferred method for introducing any desired sequence change into the DNA. The basic protocol is shown below. Material used are: 9 DNA sample to be mutagenized, Mineral oil pUC19 plasmid b vector or similar high-copy number plasmid having M13 flanking primer 500 ng/ml (100 pM/ml) flanking sequence primers incorporating the restriction enzyme site TE buffer Chloroform 10× amplification buffer Buffered phenol 2 mM 4dNTP mix 100% ethanol 500 ng/ml (100 pM/ml) M13 Appropriate restriction flanking sequence primers: endonucleases forward (NEB) and reverse (NEB) 5 U/ml Taq DNA polymerase 500 ml microcentrifuge tube

[0929] The process steps are as follows:

[0930] 1. Subclone DNA to be mutagenized into high-copy number vector using restriction sites flanking the area to be mutated.

[0931] 2. Prepare template DNA by plasmid miniprep. Resuspend 100 ng in TE buffer to 1 ng/ml final.

[0932] 3. Synthesize oligonucleotide primers and purify by denaturing polyacrylamide gel electrophoresis. Resuspend oligonucleotides in 500 l TE buffer. Determine absorbance at A260 and adjust to 500 ng/ml.

[0933] 4. Combine the following in each of two 500 1 microcentrifuge tubes, adding oligonucleotides 1 and 2 to separate tubes:

[0934] 10 ml (10 ng) template DNA

[0935] 10 ml 10× amplification buffer

[0936] 10 ml 2 mM 4dNTP mix

[0937] 1 ml (500 ng) oligonucleotide 1 or 2 (100 pM final)

[0938] 1 ml (500 ng) appropriate M 13 flanking sequence primer, forward or reverse (100 pM final).

[0939] H2O to 99.5 ml

[0940] 0.5 ml Taq DNA polymerase (5 U/ml)

[0941] Overlay reaction with 100 ml mineral oil.

[0942] 5. Carry out PCR in an automated thermal cycler for 20 to 25 cycles under the following conditions: 45 sec—93° C.; 2 min—50° C.; 2 min—72° C. After last cycle, extend for an additional 10 min at 72° C.

[0943] 6. Analyze 4 l by nondenaturing agarose or occurrence gel electrophoresis to verify that the amplification has yielded the predicted product.

[0944] 7. Remove mineral oil and extract once with chloroform to remove remaining oil. Extract with buffered phenol and concentrate by precipitation with 100% ethanol.

[0945] 8. Digest half the amplified DNA with the restriction endonucleases for the flanking and introduced sites. Purify digested fragments on a low gelling/melting agarose gel.

[0946] 9. Ligate and subclone both fragments into an appropriately digested vector to obtain a recombinant plasmid containing a single DNA fragment incorporating the new restriction site.

[0947] 10. Transform plasmid into E. coli. Prepare DNA by plasmid miniprep.

[0948] 11. Analyze amplified fragment portion of plasmid by DNA sequencing to confirm the addition of the mutation.

[0949] Introduction of Point Mutation by PCR

[0950] Materials

[0951] DNA sample to be mutagenized

[0952] Oligonucleotide primers incorporating the point mutation

[0953] Klenow fragment of E. coli DNA polymerase I

[0954] Appropriate restriction endonuclease

[0955] Procedural Steps:

[0956] 1. Prepare template DNA (steps 1 and 2 of Basic Protocol).

[0957] 2. Synthesize and purify oligonucleotide primers (3 and 4).

[0958] 3. Amplify template DNA (steps 4 and 5 of Basic Protocol 1). After final extension step, add 5 U Klenow fragment and incubate 15 min at 30° C.).

[0959] 4. Analyze and process reaction (steps 6 and 7 of Basic Protocol).

[0960] 5. Digest half the amplified fragments with the restriction endonucleases for the flanking sequences. Purify digested fragments on a low gelling/melting agarose gel.

[0961] 6. Subclone the two amplified fragments into an appropriately digested vector by blunt-end ligation.

[0962] 7. Carry out steps 10 and 11 of Basic Protocol.

[0963] Introduction of a Point Mutation by Sequential PCR

[0964] Procedural Steps:

[0965] 1. Prepare the template DNA (steps 1 and 2 of Basic Protocol 1).

[0966] 2. Synthesize and purify the oligosaccharide primers (5 and 6).

[0967] 3. Amplify the template and generate blunt-end fragments (step 3 of Basic Protocol).

[0968] 4. Purify fragments by nondenaturing agarose gel electrophoresis. Resuspend in TE buffer at 1 ng/ml.

[0969] 5. Combine the following in 500 ml microcentrifuge tube and overlay with 100 ml mineral oil:

[0970] 10 ml (10 ng) each amplified fragment

[0971] 1 ml (500 ng) each flanking sequence primer (each 100 pM final)

[0972] 10 ml 10× amplification buffer

[0973] 10 ml 2 mM 4dNTP mix

[0974] 0.5 ml Taq DNA polymerase (5 U/ml)

[0975] 6. Carry out PCR for 20 to 25 cycles (step 5 of Basic Protocol 1). Analyze and process the reaction mix (steps 6 and 7 of Basic Protocol 1).

[0976] 7. Digest cDNA fragment with appropriate restriction endonuclease for the flanking sites. Purify fragment on a low gelling/melting agarose gel. Subclone into an appropriately digested vector.

[0977] 8. Carry out steps 10 and 11, Basic Protocol 1.

[0978] Genomic Targeting and Genetic Conversion in Cancer Therapy

[0979] A number of cellular transformations are due, in large part, to a single base mutation that alters the function of the expressed protein. Alterations in the DNA sequence of a gene involved in cell proliferation can have a significant effect on the viability of particular cells. Thus, the capacity to modulate the base sequence of such a gene would be a useful tool for cancer therapeutics. An experimental strategy that centers around site-specific DNA base mutation or correction using a unique chimeric oligonucleotide has been developed. This chimeric molecule has demonstrated higher recombinogenic activities than identical oligonucleotides containing only DNA residues, both in vitro and in vivo. The chimeric molecule is designed to hybridize to a target site within the genome and induce a single base mismatch at the residue targeted for mutation. The DNA structure created at this site is recognized by the host cell's repair system which mediates the correction reaction. For example, the bcr-abl fusion gene, the product of a translocation between human chromosomes 9 and 22, and the cause of chronic myelogenous leukemia (CML) can be targeted for gene correction. Fusion genes or mutations which abound in cancer cells are excellent targets for correction especially if (1) they are unique and are recognized by the immune system as dominant or subdominant epitopes, (2) they are a single copy target; (3) the DNA sequence of the fusion gene or mutation is unique. The goal of such experiments is to knock-out the fusion gene by changing an amino acid codon into a stop codon through a chimeric directed DNA repair system.

[0980] Targeted Gene Correction of Episomal DNA in Mammalian Cells Mediated by a Chimeric RNA/DNA Oligonucleotide

[0981] An experimental strategy to facilitate correction of single-base mutations of episomal targets in mammalian cells has been developed. The method utilizes a chimeric oligonucleotide composed of a contiguous stretch of RNA and DNA residues in a duplex conformation with double hairpin caps on the ends. The RNA/DNA sequence is designed to align with the sequence of the mutant locus and to contain the desired nucleotide change. Activity of the chimeric molecule in targeted correction is used in a with the aim of correcting a point mutation in the gene encoding the human liver/bone/kidney alkaline phosphatase. When the chimeric molecule is introduced into cells containing the mutant gene on an extrachromosomal plasmid, correction of the point mutation is accomplished with a frequency approaching 30%. These results extend the usefulness of the oligonucleotide-based gene targeting approaches by increasing specific targeting frequency.

[0982] The site directed mutagenesis is used to carry out using the chimeric DNA/RNA structure which enables the construct to target tumor cells in vivo and in vitro. Such targeting structures include target seeking moieties and can in principle be any structure that is able to bind to a cell surface structure or that binds via biospecific affinity. The target seeking moiety is primarily a disease specific structure selected among hormones, antibodies, growth factors. The biospecific affinity counterpart may include interleukins (especially interleukin-2) antibodies (full length antibody, Fab, F(ab)′2, Fv, single chain antibody and any other antigen binding antibody fragments (such as Fab) directed to a cells surface epitope or more preferably towards the binding epitope for the a specific antibody. They may also include polypeptides binding to the constant domains of immunoglobulins (e.g., protein A and G and L), lectins, streptavidin, biotin etc.

[0983] The term antibodies comprises monoclonal as well as polyclonal preparations. The targeting moiety may also be directed toward unique structures on more or less healthy cells that regulate or control the development of a disease or ligands for specific receptors on tumor cells). The targeting structure may be a nucleic acid, lipid or carbohydrate and variations thereof which target receptors on the diseased cell. The targeting is not confined to diseased cells but may include additional normal cells as well.

[0984] Synthesis and Purification of Oligonucleotides.

[0985] The chimeric oligonucleotides are synthesized on a 0.2-mol scale by using the 1000 Å-wide-pore CPG on the ABI 394 DNA/RNA synthesizer. The exocyclic amine groups of DNA phosphoramidites (Applied Biosystems) are protected with benzoyl for adenosine and cytidine and isobutyryl for guanosine. The 2′-O-methyl RNA phosphoramidites (Glen Research, Sterling, Va.) are protected with a phenoxyacetyl group for adenosine, dimethylformamide for guanosine and an isobutyryl group for cytidine. After the synthesis is complete, the base-protecting groups are removed by heating in ethanol/concentrated ammonium hydroxide, 1:3 (vol/vol), for 20 h at 55° C. The crude oligonucleotides are purified by polyacrylamide gel electrophoresis. The entire oligonucleotide sample is mixed with 7 M urea/10% (vol/vol) glycerol. heated to 70° C., and loaded on a 10% polyacrylamide gel containing 7 M urea. After gel electrophoresis, DNA is visualized by UV shadowing, dissected from the gel, crushed, and eluted overnight in TE buffer (10 mM Tris-HCl/1 mM EDTA, pH 7.5) with shaking. The eluent containing gel pieces are centrifuged through 0.45-um (pore size) spin filter (Millipore) and precipitated with ethanol. Samples are further desalted with a G-25 spin column (Boerhinger Mannheim) and greater than 95% of the purified oligonucleotides are found to be full length.

[0986] Transient Transfection and Measurements of Activity

[0987] CHO cells were maintained in Dulbecco's modified Eagle's medium (DMEM) (BRL) containing 10% (vol/vol) fetal bovine serum (FBS; BRL). Transient transfection is carried out by addition of 10 g of the plasmid with 10 g of Lipofectin in 1 ml of Optimem (BRL) to 2×105CHO cells in a 6-well plate. After 6 h. various amounts of oligonucleotide is mixed with 10 g of Lipofectin in 1 ml of Optimem and added to each well. After 18 h, the medium is aspirated and 2 ml of DMEM containing 10% FBS was added to each well. Histochemical staining was carried out (19), 24 h after transfection of the oligonucleotide. Spectrophotometric measurements are carried out by the ELISA amplification system (BRL). Transfection is carried out in triplicate in a 96-well plate. The amounts of reagents and cells are 10% of that used for the 6-well plate. Cells were washed three times with 0.15M NaCl and lysed in 100 ml of buffer containing 10 mM NaCl, 0.5 Nonidet P-40, 3 mM MgCl2, and 10 mM Tris-HCl (pH 7.5), 24 h after transfection with chimeric oligonucleotides. A fraction of cell lysates (20 ml) incubated with 50 l of ELISA substrate and 50 ml of ELISA amplifier (BRL), the reaction is stopped by addition of 50 ml of 0.3 M H2S04 after 5 min of incubation with amplifier. The extent of reaction is carried out within the linear range of the detection method. The absorbance is read by an ELISA plate reader (BRL) at a wavelength of 490 nm.

[0988] Hirt DNA Isolation, Colony Hybridization, and Direct DNA Sequencing of PCR Fragments

[0989] The cells are harvested for vector DNA isolation by a modified alkaline lysis procedure, 24 h after transfection with the chimeric oligonucleotide. Hirt DNA is transformed into Escherichia coli DH5a cells (BRL). Colonies from Hirt DNA are screened for specific hybridization for each probe designed to distinguish the point mutation. Colonies were grown on ampicillin plates, lifted onto nitrocellulose filter paper in duplicates, and processed for colony hybridization. The blots were hybridized to 32P-end-labeled oligonucleotide probes at 37° C. in a solution containing 5× Denhardt's solution, 1% SDS, 2×SSC, and denatured salmon sperm DNA (100 mg/ml). Blots were washed at 52° C. in TMAC solution (3.0 M teramethylammonium chloride/50 mM Tris-HCl, pH 8.0/2 mM EDTA/0.1% SDS). Plasmid DNA was made from 20 colonies shown to hybridize to either of the probes by using the Qiagen miniprep kit (Chatsworth. Calif.). Several hundred bases flanking key positions of each plasmid are sequenced in both directions by automatic sequencing (ABI 373A, Applied Biosystems). A 192-bp PCR-amplified fragment are generated by Vent polymerase (New England Biolabs. Mass.), utilizing primers corresponding to positions of the known cDNA flanking position. The fragment is gel-purified and subjected to automatic DNA sequencing (ABI 373A, Applied Biosystems).

[0990] Oligonucleotide Synthesis

[0991] Chimeric RNA/DNA oligonucleotides for both transcribed and nontranscribed factor IX were synthesized by Applied Biosystems, Inc. (Foster City, Calif.) as previously described. The oligonucleotides are prepared with DNA and 2-O-methyl RNA phosphoramidite nucleoside monomers on an ABI 394 DNA/RNA synthesizer, purified by HPLC and quantified by UV absorbance. More than 95% of the purified oligonucleotides are determined to be full length.

[0992] Cell Isolation and Transfections

[0993] Cells are isolated, by a two-step collagenase perfusion as previously described. The purified cells are plated on Primaria plates (Becton Dickinson, Franklin Lakes, N.J.) at a density of 4×106 cells per 35-mm dish and maintained in supplemented William's E medium. Eighteen hours after plating, the cells are washed and transfected with the chimeric molecules complexed to polyethylenimine (PEI). A pH 7.0, 10 mM stock solution of PEI (800 kDa) (Fluka Chemical Corp., Ronkonkoma, N.Y.) is prepared. Briefly, the chimeric oligonucleotides are complexed with 10 mM PEI at 9 equivalents of PEI nitrogen per chimeric phosphate in 100 l of 0.15 M NaCl and transfected in 1 ml of medium at final concentrations of 150, 300 or 450 nM. PEI is lactosylated by coupling lactose to 30% of the nitrogen amines using sodium cyanoborohydride (Sigma Chemical Company, St. Louis, Mo.). Cells are also transfected 1 with 100 l of 0.15 M NaCl containing the lactosylated 800-kDa and 25-kDa PEI chimeric complexes (Sigma) at final concentrations of 90, 180 or 270 nM. After 18 h, an additional 2 ml of medium is added to the transfected cultures for the remaining 6 or 30 h of incubation. Vehicle control transfections utilize the same amount of PEI, but substituted an equal volume of 10 mM Tris-HCl, pH 7.6, for the oligonucleotides.

[0994] DNA/RNA Isolation and Cloning

[0995] The cells were harvested by scraping 48 h after transfection. Genomic DNA larger than 100-150 base pairs was isolated using the highly pure PCR template preparation kit (Boehringer Mannheim, Indianapolis, Ind.). RNA was isolated using RNAzoI 8 (Tel-Test, Inc., Friendswood, Tex.), according to the manufacturer's protocol. PCR amplification of a fragment of the gene in question gene is performed with 300 ng of the isolated DNA from either the primary cell culture.

[0996] The primers were designed (Oligos Etc., Wilsonville, Oreg.) corresponding to nucleotides to cDNA to be corrected. Primer annealing is carried out at 59° C., and the samples are amplified for 30 cycles using Expand Hi-fidelity polymerase (Boehringer Mannheim). To rule out PCR artifacts, 300 ng of control DNA is incubated with 0.5, 1.0 and 1.5 g of the oligonucleotide before the PCR-amplification reaction. Additionally, 1.0 g of the chimeric alone is used as the “template” for the PCR amplification.

[0997] RT-PCR amplification is done utilizing the Titian one tube RT-PCR system (Boehringer Mannheim) according to the manufacturer's protocol and by using the same primers as those used for the DNA PCR amplification. To rule out DNA contamination, the RNA samples are treated with RQ1 DNase-free RNase (Promega Corp., Madison, Wis.) and RT-PCR negative controls of RNased RNA samples were performed in parallel with the RT-PCR reaction. Each of the PCR reactions is ligated into the TA cloning vector pCR 2.1 (Invitrogen, San Diego, Calif.) and transformed into frozen competent E. coli.

[0998] Nuclear Uptake of the Chimeric Molecules

[0999] Nuclear localization of fluorescently labeled chimeric oligonucleotides was determined in the isolated cells. For in vivo studies, 250 l saline containing 75 g of fluorescently labeled chimeric oligonucleotides complexed to PEI is injected directly into the exposed caudate lobe. The animals are killed 24 h post injection, the tumor targeted is removed, bisected longitudinally, embedded using OCT and frozen cryosections were cut ˜10 pm thick, fixed, processed and examined using a MRC1000 confocal microscope (Bio-Rad, Inc., Hercules, Calif.).

[1000] In vivo Delivery of the Chimeric Oligonucleotides

[1001] Vehicle controls and lactosylated 25-kDa PEI at a ratio of 6 equivalents of PEI nitrogen per chimeric phosphate are prepared in 300 l of 5% dextrose. The aliquots are administered either as a single dose of 100 g or divided doses of 150 g and 200 g on consecutive days. Five days post injection, tumor tissue is removed for DNA and RNA isolation. DNA is isolated. RNA is isolated for RT-PCR amplification of the same region as the genomic DNA using RNAexol and RNAmate (Intermountain Scientific Corp., Kaysville, Utah) according to the manufacturer's protocol.

[1002] Colony Hybridization and Sequencing

[1003] Eighteen to 20 h after plating, the colonies were lifted onto MSI MagnaGraph nylon filters (Micron Separations, Inc., Westboro, Mass.), replicated and processed for hybridization according to the manufacturer's recommendation. The filters were hybridized for 24 h with 32P-end-labeled oligonucleotide probes (Life Technologies, Inc., Gaithersburg, Md.), where the underlined nucleotide is the target of mutagenesis. Hybridizations are performed at 37° C., and the filters are processed following hybridization for autoradiography. Plasmid DNA isolated from colonies identified as hybridizing with the 32P-labeled probes is subjected to automatic sequencing using the forward and reverse primers, as well as gene specific primer corresponding to nucleotides of the normal gene.

EXAMPLE 2 Cells Transfected with Nucleic Acids Encoding SAgs

[1004] Cultured VX-2 carcinoma cells were shown to retain their tumorigenic activity after implantation into New Zealand white rabbits. Progressive tumor outgrowth was observed over a 3 week period. Nucleic acid encoding SEB isolated and characterized by Gaskill et al, J. Biol. Chem. 263:6276 (1988) and Ranelli et al., Proc. Natl Acad. Sci. USA 82:5850 (1985) were used to transfect tissue cultured VX-2 carcinoma cells using transfection methodology described in Example 1. Transfectants were selected using Q418 and the survival of SEB-transfected VX-2 carcinoma cells was observed. In additional experiments, attempts were made to transfect murine 205 and 207 tumor cells with nucleic acid encoding SEB(the kind gift from Dr. Saleem Khan) and Streptococcal pyrogenic exotoxin A (the kind gift of Dr. Joseph Ferretti). Successful transfection of murine MCA 205 and B16 cells by nucleic acids encoding SEA and SEC2 was achieved shortly thereafter by integrating the SAg DNA into several retroviral vectors (MFG NEO) containing a growth hormone leader sequence under the control of a chick &bgr;-actin promoter (Krause J C et al., J. Hematotherapy 6: 41-51 (1997)). In addition, murine tumors MCA 205 fibrosarcoma cells and a spontaneous mammary carcinoma cells were successfully transfected with nucleic acids encoding SEB (provided by Dr. Saleem Khan) using the &bgr;-actin promoter. Transfected mammary carcinoma cells induced T cell proliferation in vitro. To demonstrate the anti-tumor capacity of tumor cells transfected with nucleic acid encoding a SAg, these transfectants were injected i.p. into syngeneic hosts with established mammary carcinomas. These transfectants demonstrated a capacity to reduce micrometastases of wild type mammary tumor in vivo assessed in a clonogenic lung metastases assay. The anti-tumor effect produced by the SEB transfectants was enhanced significantly by the co-administration of tumor cells transfected with nucleic acids encoding the costimulating molecule B7-1.

EXAMPLE 3 Naked SAg DNA and Cells Co-transfected with SAg DNA and with Additional Nucleic Acid Encoding Anti-Tumor Motifs or Products

[1005] Nucleic acids encoding a SAg are injected in naked or plasmid form into a host with cancer as a means of activating T cells and initiating an anti-tumor response. They may also be used as a vaccine to prevent the occurrence or recurrence of tumor in a host. Under circumstances where it is desirable to activate CD4 cells to produce a TH-1 cytokine response the nucleic acid construct used to transfect cells contains immunostimulatory sequences such as unmethylated CpG sequences. Nucleic acids encoding SAgs may be co transfected into tumor cells together with nucleic acid encoding other constituents capable of promoting an anti-tumor response. A list of possible components of nucleic acid constructs for direct administration and/or transfection of tumor cells which are administered to the host is presented in Table 2.

[1006] The nucleic acid construct or constructs are administered to a host intramuscularly, intradermally, systemically, parenterally, intratumorally, orally or locally (in the vicinity of the tumor). Alternatively, the construct is administered via a catheter or other devices known in the art into the tumor vasculature supplying all or part of a tumor. When the construct is injected systemically, the nucleic acid construct is directed to the tumor using an anti-tumor antibody or ligand specific for a tumor receptor or receptor on the tumor neovasculature or stroma. The antibody or ligand or other targeting structures are conjugated to the SAg nucleic acid construct in order to facilitate the introduction of the construct into tumor cells. Nucleic acid/polypeptide complexes or nucleic acid/viral complexes are used to target a specific receptor on the tumor vasculature or stroma.

[1007] Chemical Conjugation of SAg Nucleic Acids to VTs, Apolipoproteins, HPV Epitopes or Other Polypeptides/Proteins Listed in Tables I and II.

[1008] The following section describes actual physical conjugates between poly- or oligonucleotides and peptides or proteins. SAg nucleic acid conjugates are prepared by chemical modification of nucleic acids at specific sites within individual nucleotides or within oligonucleotides such that a protein can be bound to a DNA or RNA polymer.

[1009] Derivatization may be accomplished through discrete sites on the available bases, sugars, or phosphate groups to create primary amines, sulfhydryls, carboxylates or phenolates. The chemical modification of nucleic acids can encompass several strategies. The initial derivatization may be the addition of a spacer arm to a particular reactive group on the nucleotide structure. Such a spacer typically contains a terminal functional group, such as an amine, that can be used to couple another molecule. The spacer may be used to react with a cross-linking agent, such as a heterobifunctional compound that can facilitate the conjugation of a protein or another molecule to the modified nucleotide. 10 TABLE II NUCLEIC ACID CONSTRUCTS AND CELLS SAg-encoding DNA is used alone or together with DNA encoding other cell surface moieties useful in generating antitumor immunity. Genes or their products are shown in column 1, source information is shown in column 3, preferred cells to be transformed, transfected or transduced with the DNA are shown in column 2. All of references are incorporated by reference in their entirety. Gene or Gene Product Cells transformed Reference or Source 1. SAg Tumor [See Text] 2. Enterotoxin Tumor [See Text] 3. SAg receptor Tumor [See Text] 4. Enterotoxin receptor Tumor [See Text] 5. CD1 receptor(s) Tumor Martin L H et al., Proc Natl. Acad. Sci. 83: 9154-9158 (1986) 6. CD14 receptor Tumor Ferrero, E et al., J. Immunol. 145: 331-336 (1990) 7. CD44 encoding nucleic acids T or NKT Nottenburg, C et al. Proc. Natl. Acad. Sci. 66: 8521-8525 (1992) 8. Carbohydrate modifying enzymes Tumor, T or NKT Sheng, Y et al. Int. J. Cancer 73: 850-858 (1997) 9. TCR V chain Tumor Tillinghast, JP et al., Science 233: 879-883 (1986) 10. Staph/Strep hyaluronidase Tumor Hynes W L et al., Infect. Immun., 63: 3015- 3020 (1995) 11. Staph/Strep erythrogenic toxin Tumor McShan W M, et al., Adv. Exp. Med. Biol. 418: 971-973 (1997) 12. Staphylococcal &bgr; -hemolysin Tumor Projan S J et al., Nucleic Acid Res. 3305- 3309 (1989) 13. Strep capsular polysaccharide Tumor Lin, WS et al., J. Bacteriol. 176: 7005-7016 (1994) 14. Staph staphylocoagulase Tumor Kaida S. et al., J. Biochemistry 102: 1177- 1186 (1987) 15. Staph Protein A Tumor Shuttleworth, H L et al., Gene 58: 283-295 (1987) 16. Staph Protein A domain D Tumor Roben, P W et al., J. Immunol. 154: 6347- 6445 (1995) 17. Staph Protein A Domain B Tumor Gouda, H et al., Biochemistry, 31: 9665- 9672 (1992) 18. Immunostimulatory protein Tumor, T or NKT Tokunaga, T et al., Microbiol. Immunol. 36: 55-66, (1992) 19. Costimulatory protein Tumor Entage, PC et al., J. Immunol. 160: 2531- 2538 (1998) 20. SAg-mimicking nucleic acid T or NKT 21. Glycophorin Tumor Siebert, P D. et al., Proc. Natl. Acad. Sci. USA 83 1665-1669 (1986) 22. Mannose receptor Tumor Kim S J. et al., Genomics 14: 721-727 (1992) 23. Angiostatin Tumor Cao, Y. et al., J. Clin. Invest 101: 1055-1063 (1998) 24. Chemoattractant Tumor Ames, R S. et al., J. Biol. Chem. 271: 20231- 20234 (1996) 25. Chemokine Tumor Nagira, M et al., J. Biol. Chem. 272: 19518- 19524 (1997) 26. Transcription factor Tumor, T or NKT Schwab M et al., Mol. Cell Biol. 6: 2752-2758 (1986) 27. Transcription factor-binding Tumor, T or NKT nucleic acid 28. SAg/peptide conjugate Tumor 29. Glyco-SAg Tumor 30. Staph. Global regulator gene agr Tumor Balaban, N. et al., Proc. Natl. Acad. Sci. USA 92: 1619-1623 (1995) 31. Lipid A biosynthetic genes IpxA- Tumor Schnaitman C A et al., Microbiological D Reviews 57: 655-682 (1993) 32. Mycobacterial mycolic acid Tumor Fernandes N D et al., Gene 170: 95-99 (1996); Mathur M et al., J. Biol. Chem. 267: 19388-19395 (1992) 33. c-abl oncogene amplified in Tumor Scherle P A et al., Proc. Natl. Acad. Sci. USA chronic myel. Leukemia 87: 1908 (1990); Heisterkamp N et. al., Nature 344: 251-253 (1990) 34. erbB2 (HER2/neu) oncogene Tumor Schechter A L et al., Science 229: 976 (1985); Bargmann C L Nature 319: 22 (1986); Hung M C et al., Proc. Natl. Acad Sci. 83: 261 (1986); Yamamoto T et al., Nature 319: 230 (1986) 35. IGF-1 receptor gene Tumor Abbott A M et al., J. Biol. Chem. 267: 10759- 10763 (1992); Scott J et al., Nature 317: 260-262 (1985); Liu J et al., Cell 75: 59-63 (1993) 36. VEGF Tumor Tischer E et al., J. Biol. Chem. 266: 11947- 11954 (1991) 37. Strep emm-like gene family Tumor Kehoe M A, In: Cell-Wall Associated Proteins in Gram-Positive Bacteria in Bacterial Cell Wall, Ghuysen J M et al., eds, Elsevier, Amsterdam, 1994 38. iNOS Tumor Xie Q W et al., Science 256: 225-228 (1992) 39. Apolipoproteins (e.g., Lp(a), Tumor [See Text] apoB-100, apoB-48, apoE) 40. LDL & oxyLDL receptors (e.g., Tumor [See Text] LDL oxyLDL, acetyl-LDL, VLDL, LRP, CD36, SREC, LOX-1 macrophage scavenger receptors) 41. Chemokine receptor Tumor/Accessory cells [See Text]

[1010] If enzymatic methods are used to incorporate a small spacer into an oligonucleotide, subsequent chemical conjugation steps still are needed to add the protein moiety. In some cases, if an oligonucleotide contains the appropriate functional group, a protein may be directly coupled using chemical methods. Many of the chemical derivatization methods employed in these strategies involve the use of an activation step that produces a reactive intermediary. The activated species then can be used to couple a molecule containing a nucleophile, typically a primary amine.

[1011] A preferred method is to amidate the 5′ PO4 of the oligonucleotide with EDC and then couple cystamine to the 5′ amidated oligonucleotide. EDC will add an amide to the oligonucleotide to form a phosphoramidate linkage. After the addition of cystamine the disulfide is reduced with an agent such as dithiothreitol (DTT) to produce a free 5′ sulfhydryl. The derivatized oligonucleotide is then coupled to a protein chain (e.g., a verotoxin A or B chain) that has been activated with a heterobifunctional cross-linker such as succinimidyl 4(N-maleimidomethyl)cyclohexane 1-carboxylate (SMCC) which reacts with the amines on the protein which then react with the sulfhydryls on the derivatized oligonucleotide. N-succinimidyl S-actylthioacetate (SATA) is useful for adding a free thiol or sulfhydryl group to a molecule lacking this moiety. With this modification, “protected” sulfhydryl is formed which may be stored indefinitely in this protected state.

[1012] When needed, the acetyl group on the protected sulfhydryl is removed to reveal the sulfhydryl for conjugation to another molecule. A heterobifunctional agent such as SMCC or N-Succinimidyl 3-(2-pyridylthio)propionate (SPDP) may be directly added to the amidated oligonucleotide phosphate group to produce a free sulfhydryl unit for reactivity with the protein or peptide.

[1013] Chemical Conjugation of Polypeptides/Proteins to SAg DNA via Carbodiimide Reaction with the 5′-Phosphates (Phosphoramidate Formation)

[1014] The water-soluble carbodiimide EDC, rapidly reacts with a carboxylate or phosphate to form an active complex able to couple with a primary amine-containing compound. The carbodiimide activates an alkyl phosphate group to a highly reactive phosphodiester intermediate. Diamine spacer molecules or amine-containing peptides then may react with this active species to form a stable phosphoramidate bond. Alternatively, bis-hydrazide compounds may be coupled to DNA using this protocol to yield a terminal hydrazide functional group able to react with aldehyde-containing molecules (Ghosh et. al., 1989). These methods permit specific labeling of SAg DNA only at the 5′ end.

[1015] The following protocol describes the modification of SAg DNA or RNA oligonucleotides at their 5′-phosphate ends with a bis-hydrazide compound, such as adipic acid dihydrazide or carbohydrazide. A similar procedure for coupling the diamine compound cystamine is described below.

[1016] Protocol

[1017] 1. Weigh out 1.25 mg of the carbodiimide 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide hydrochloride (EDC) into a microfuge tube.

[1018] 2. Add 7.5 ml of SAg RNA or DNA that has 5′ phosphate groups. The concentration of the oligonucleotide should be 7.5-15 nmol or a total of about 57-115.5 mg. Also immediately add 5 ml of 0.25 M bis-hydrazide compound dissolved in 0.1 M imidazole, pH 6.

[1019] 3. Mix (e.g., by vortexing) and centrifuge in a microfuge for 5 min at maximal rpm.

[1020] 4. Add an additional 20 ml of 0.1 M imidazole, pH 6. Mix and allow to react for 30 mm at room temperature.

[1021] 5. Purify the hydrazide-labeled oligonucleotide by gel filtration on Sephadex G-25 using 10 mM sodium phosphate, 0.15 M NaCl, 10 mM EDTA, pH 7.2. The oligonucleotide now may be conjugated with an aldehyde-containing molecule.

[1022] Sulfhydryl Modification of SAg DNA

[1023] Creating a sulfhydryl group on SAg DNA allows conjugation reactions to be done with sulfhydryl-reactive heterobifunctional cross-linkers providing increased control over the derivatization process. Proteins are activated with a cross-linking agent containing an amine-reactive and a sulfhydryl-reactive end, such as SPDP, leaving the sulfhydryl-reactive portion free to couple with the modified DNA molecule. Having a sulfhydryl group on the SAg DNA directs the coupling reaction to discrete sites on the nucleotide strand, thus better preserving hybridization ability in the final conjugate. In addition, heterobifunctional cross-linkers of this type allow two- or three-step conjugation procedures which result in better yield of the desired conjugate than do homobifunctional reagents.

[1024] Cystamine Modification of 5′ Phosphate Groups on Superantigen Nucleotides Using EDC

[1025] SAg DNA or RNA is modified with cystamine at the 5′ phosphate groups using the carbodiimide reaction described above. In some procedures, the reaction is carried out in a two-step process by first forming a reactive phosphorylimidazolide by EDC conjugation in an imidazole buffer. Next, cystamine is reacted with the activated oligonucleotide, causing the imidazole to be replaced by the amine and creating a phosphoramidate linkage. Reduction of the cystamine-labeled oligonucleotide using a disulfide reducing agent releases 2-mercaptoethylamine and creates a thiol group.

[1026] Protocol

[1027] 1. Weigh out 1.25 mg of the carbodiimide 1-ethyl-3-(3-dimethylamino-propyl)carbodiimide hydrochloride (EDC) into a microfuge tube.

[1028] 2. Add 7.5 ml of SAg RNA or DNA that has 5′ phosphate groups. The concentration of the oligonucleotide should be 7.5-15 nmol or a total of about 57-115.5 mg. Also immediately add 5 ml of 0.25 M cystamine in 0.1 M imidazole, pH 6.

[1029] 3. Mix (e.g., by vortexing) and centrifuge in a microfuge for 5 min at maximal rpm.

[1030] 4. Add an additional 20 ml of 0.1 M imidazole, pH 6. Mix and allow to react for 30 mm at room temperature.

[1031] 5. For reduction of the cystamine disulfides, add 20 ml of 1 M DTT and incubate at room temperature for 15 mm. This will release 2-mercaptoethylamine from the cystamine modification site and create the free sulfhydryl on the 5′ terminus of the oligonucleotide.

[1032] 6. Purify the SH-labeled oligo by gel filtration on Sephadex G-25 using 10 mM sodium phosphate, 0.15 M NaCl, 10 mM EDTA, pH 7.2. The oligonucleotide now may be used to conjugate with an activated protein containing a sulfhydryl-reactive group.

[1033] SPDP Modification of Amines on Superantigen Nucleotides

[1034] SAg DNA that has been modified with an amine-terminal spacer arm may be thiolated to contain a sulfhydryl residue. Theoretically, any amine-reactive thiolation reagent may be used to convert an amino group on a SAg DNA molecule into a thiol. A preferred reagent both for cross-linking and for thiolation reactions is the heterobifunctional reagent SPDP. The NHS ester end of SPDP reacts with primary amine groups to produce stable amide bonds. The other end of the cross-linker contains a thiol-reactive pyridyldisulfide group that also can be reduced with DTT to create a free sulfhydryl. The reaction of a 5′-diamine-modified SAg DNA oligonucleotide with SPDP proceeds under mildly alkaline conditions (optimal pH 7-9) yields the pyridyldisulfide-activated intermediate. This derivative can be used to couple directly with sulfhydryl-containing compounds, or it may be converted into a free sulfhydryl for coupling to thiol-reactive compounds. In an alternative approach, 2,2′-dipyridyldisulfide is used to create reactive pyridyldisulfide groups on a reduced 5′-cystamine-labeled SAg oligonucleotide. This derivative then can be used to couple with sulfhydryl-containing molecules, forming a disulfide bond. Reduction of the pyridyldisulfide end after SPDP modification releases the pyridine-2-thione leaving group and generates a terminal-SH group.

[1035] Protocol

[1036] 1. Dissolve the amine-modified SAg oligonucleotide to be thiolated in 250 ml of 50 mM sodium phosphate, pH 7.5.

[1037] 2. Dissolve SPDP at a concentration of 6.2 mg/ml in DMSO to make a 20 mM stock solution. Alternatively, LC-SPDP may be used and dissolved at a concentration of 8.5 mg/ml in DMSO (also makes a 20 mM solution). If the water-soluble Sulfo-LC-SPDP is used, a stock solution in water may be prepared just prior to addition of an aliquot to the thiolation reaction. In this case, prepare a 10 mM solution of Sulfo-LC-SPDP by dissolving 5.2 mg/ml in water. Since an aqueous solution of the cross-linker will degrade by hydrolysis of the sulfo-NHS ester, it should be used quickly.

[1038] 3. Add 50 ml of the SPDP (or LC-SPDP) solution to the SAg oligonucleotide solution. Add 100 ml of the Sulfo-LC-SPDP solution, if the water-soluble cross-linker is used. Mix.

[1039] 4. Allow to react for 1 h at room temperature.

[1040] 5. Remove excess reagents from the modified SAg oligonucleotide by gel filtration. The modified oligonucleotide now may be used to conjugate with a sulfhydryl-containing molecule, or it may be reduced to create a thiol for conjugation with sulfhydryl-reactive molecules.

[1041] 6. To release the pyridine-2-thione leaving group and form the free sulfhydryl, add 20 ml of 1M DTT and incubate at room temperature for 15 mm. If present in sufficient quantity, the release of pyridine-2-thione is followed by its characteristic absorbance at 343 nm (e=8.08×103 M−1 cm−1). For many oligonucleotide modification applications, however, the leaving group will be present in too low a concentration to be detectable.

[1042] 7. Purify the thiolated oligonucleotide from excess DTT by dialysis or gel filtration using 50 mM sodium phosphate, 1 mM EDTA, pH 7.2. The modified oligonucleotide should be used immediately in a conjugation reaction to prevent sulfhydryl oxidation and formation of disulfide cross-links.

[1043] N-succinimidyl S-actylthioacetate (SATA ) Modification of Amines on Superantigen DNA Nucleotides

[1044] SAg oligonucleotides containing amine groups introduced by enzymatic or chemical means may be modified with SATA to produce protected sulfhydryl derivatives. The NHS (N-hydroxylsuccinimide) ester end of SATA reacts with a primary amine to form a stable amide bond. After modification, the acetyl protecting group can be removed as needed by treatment with hydroxylamine under mildly alkaline conditions. The result is terminal sulfhydryl groups that can be used for subsequent labeling with thiol-reactive probes or activated-protein derivatives.

[1045] Protocol

[1046] 1. Dissolve the amine-modified SAg oligonucleotide to be thiolated in 250 ml of 50 mM sodium phosphate, pH 8.

[1047] 2. Dissolve SATA in DMF at a concentration of 8 mg/ml.

[1048] 3. Add 250 ml of the SATA solution to the oligo solution. Mix.

[1049] 4. React for 3 h at 37° C.

[1050] 5. Remove excess reagents by gel filtration.

[1051] 6. To deprotect the thioacetyl group, add 100 ml of 50 mM hydroxylamine hydrochloride, 2.5 mM EDTA, pH 7.5, and react for 2 h.

[1052] 7. The sulfhydryl-containing oligonucleotide may be used immediately to conjugate with a sulfhydryl-reactive label, or it can be purified from excess hydroxylamine by gel filtration.

[1053] Conjugation of a Polypeptide to SAg DNA

[1054] As indicated, the DNA molecule must be modified to contain one or more suitable reactive groups, such as nucleophiles like amines or sulfhydryls. The modifications that employ enzymatic or chemical methods can result in random incorporation of modification sites or can be directed exclusively to one end of the DNA molecule, e.g., 5′ phosphate coupling.

[1055] Some of the more common procedures for preparing DNA-polypeptide conjugates are given below.

[1056] Polypeptide (e.g., VT) Conjugation to Cystamine-Modified SAg DNA using Amine- and Sulfhydryl-Reactive Heterobifunctional Cross-linkers

[1057] Cystamine groups are added to the 5′ phosphate of SAg DNA as described above. Once a sulfhydryl-modified DNA has been prepared, the following protocol may be used. The protein is activated with SPDP. Reacting the SAgic DNA probe in excess allows easy separation of uncoupled SAg oligonucleotide from conjugated molecules.

[1058] Protocol

[1059] 1. Dissolve a 5′-sulfhydryl-modified SAg oligonucleotide in water or 10 mM EDTA at a concentration of 0.05-25 mg/ml. Calculate the total nanomoles of oligonucleotide present based on its molecular weight.

[1060] 2. Add 0. 15M NaCl, 10 mM EDTA, pH 7.2. Add the oligonucleotide solution to the activated protein in a 10-fold molar excess.

[1061] 3. React at room temperature for 30 mm with gentle mixing.

[1062] 4. The protein-DNA conjugate is purified away from excess SAg oligonucleotide by dialysis or gel filtration, or through the use of centrifugal concentrators. Centricon-30 concentrators (Amicon) that have a molecular weight cutoff of 30,000 are also used to remove unreacted oligonucleotides. Since the polypeptide molecular weight is approximately 140,000 and the conjugate is even higher, a relatively small DNA oligomer will pass through the membranes of these units while the conjugate will not. To purify the prepared conjugate using Centricon-30s, add 2 ml of the phosphate buffer from step 2 to one concentrator unit, then add the reaction mixture to the buffer and mix. Centrifuge at 1000 g for 15 mm or until the retentate volume is about 50 ml. Add another 2 ml of buffer and centrifuge again until the retentate is 50 ml. Invert the Centricon-30 unit and centrifuge to collect the retentate in the collection tube provided by the manufacturer.

[1063] Administration of Peptide-DNA (pDNA), Naked DNA, or Protein or Peptide Conjugates

[1064] Naked DNA, pDNA, nucleic acid-peptide or -polypeptide conjugates or genetic fusion products are administered parenterally (for example, iv, ip, im, subcutaneously, intrathecally, intratumoral, rectally, transcutaneously) or orally. Administration may also be by a gene gun using a 1 ml syringe and a 28 gauge needle. The nucleic acid is administered intradermally or intramuscularly in a total volume of 100 ml. A Tyne applicator is used to deliver doses of 1-1000 mg of DNA at 3× weekly intervals. SAg-encoding nucleic acid is injected directly into the tumor. The nucleic acid either contains or does not contain immunostimulatory sequences that induce activation of T cells and skew the response toward production of TH1 cytokines. For example, if nucleic acids encoding a tumor associated antigen are used then the nucleic acids are engineered to incorporate ISS sequences in order to fully activate a TH1 response. Likewise, if nucleic acid encoding a tumor associated antigen is cotransfected with nucleic acid encoding a SAg, then one of the nucleic acid constructs is engineered to contain an ISS.

[1065] Viral DNA, nucleic acid expression cassettes or plasmids or bacteriophages encoding the constructs given in Table II may be used for in vivo immunization in place of naked DNA. Viruses may also acquire the &agr;Gal epitope after transfection into tumor cells which contain the &agr;-galactosyltransferase enzyme either naturally or via transfection. The virus must possess the intact N-acetyllactosamine substrate for the galactosyl-transferase in order to express the &agr;Gal. The viruses shedding from these cells will express the &agr;Gal epitope. The virus also contains peptide sequences for SAg and tumor associated antigen acquired from the tumor cells which were previously transfected with nucleic acids encoding SAg and tumor antigen. The shed virus may also express staphylococcal or streptococcal hyaluronidase and capsular polysaccharide sequences obtained from host tumor cell or accessory cells previously transfected with nucleic acids encoding these genes. The shed virus expressing &agr;Gal, SAg, hyaluronidase and capsular polysaccharide is capable of initiating a potent tumoricidal response when administered to hosts with established tumors or when used as a tumor vaccine against potential tumors.

[1066] These constructs are also used as vaccines. Further, the nucleic acid construct is pre-processed ex vivo in muscle cells before selective delivery into host tumor tissue. Cationic liposomes or other liposomes or drug carriers well known in the art are used as vehicles to deliver the nucleic acids in vivo.

[1067] The transfection process is also carried out ex vivo. Nucleic acids encoding SAgs together with the nucleic acid constructs given in Table II are transfected into tumor cells of all types and antigen presenting cells such as MHC class I and class II as well as APCs expressing CD1 and mannose receptors. These include but are not limited to DCs, immunocytes, monocytes, macrophages, and fibroblasts. SAg is transfected alone or together with one or more of the above constructs given in Table II. The transfected cell expresses/secretes preferentially a SAg plus an immunogenic oncogene product, anti-angiogenesis factor, glycosylceramide, LPS or Gal. The transfectants present their gene products on cell surface receptors such as conventional MHC molecules for SAgs or in the case of the glycosylceramides or LPS on a CD-1 or mannose receptor. (APC). Glycosylated SAgs show preference for presentation on mannose receptors.

EXAMPLE 4 SAgs, Tumor Antigens, Glycosylceramides, LPS's, Binary and Ternary Complexes Applied to MHC Class I, Class II, CD1 or Mannose Receptors

[1068] The above molecules and all of the conjugates given in section 55 are applied to antigen presenting receptors as given below. CD1 represents a family of non-polymorphic antigen presenting molecules unlinked to the MHC molecules expressed by most professional APCs. The NKT cells that recognize CD1 presented antigens express NKR-P1, Ly49 receptors, an invariant chain and a V8.2 variable region. With respect to these receptors, they share identity and their natural ligands with NK cells. Specifically, CD1 binds peptides with extended NH2 and COOH termini flanking the core binding motif Long peptides (greater than 8 to 10 amino acids) with amino acid residues at their hydrophobic binding sites and greatly restricted anchors are preferred. This recognition of CD1-presented antigens depends on the type and distribution of sugar residues. Mycobacterial cell wall antigens namely mycolic acids and lipoarabinomannan also bind to CD1. Recently several glycosylceramides, in particular, monogalactosyl ceramides GalCer) were shown to bind to CD1 and to activate NKT cells Specifically, CD1 molecules are capable of presenting mannosides with 1,2 linkages and a phosphatidylinositol unit. CD1 bound antigens are recognized by NKT cells (/TCR positive; CD4 and CD8 negative). For instance, NKT cells are activated by a lipoarabimannan (LAM) presented on CD1 receptors and become cytolytic while producing abundant INF.

[1069] In the present invention, a SAg bound to a monogalactosylceramide such as GalCer is loaded onto CD1 or MHC class I or II receptors expressed by APCs. The CD1 or MHC receptors are in soluble or immobilized form produced by methods well described in the art. According to this invention, CD1 receptors present SAg polypeptides complexed with GalCer lipids or oligosaccharides to T cell and/or NKT cell population which recognize the conjugates and commence differentiation to tumor specific effector cells. These ligands are be loaded on the CD1 receptor sequentially, simultaneously or as a preformed conjugates. Alternatively, they are positioned on the CD1 receptor after internal processing of their nucleic acid counterparts in the antigen presenting cells. These cells are then harvested and used for adoptive immunotherapy (Examples 7, 15, 16. 18-23).

[1070] These complexes are also useful in vivo as a preventative or therapeutic antitumor vaccine (Example 14, 15, 16, 18-23).

[1071] SAgs and tumor associated antigen (TAA) are loaded sequentially on to class II receptors of antigen presenting cells. Alternatively, preformed complexes of tumor associated antigen and SAg are loaded onto MHC class II receptors. The SAg may be in the native or glycosylated form. The tumor associated antigen is also fused genetically to the b chain of the MHC class II receptor. A SAg is added once the TAA is expressed bound to the MHC class II. The sequence may also be reversed so that a SAg is genetically processed and bound to the b chain after which the TAA is added. Consensus or repeating nucleic acid sequences shared by a tumor associated antigen and a SAg are cloned into a single sequence and transfected into APCs which display the consensus peptide in the context of the class II receptor. Methodology for production of the fusion genes is well described in the art. (See Ausubel. F M et al., supra; Sambrook, J et al., supra) T cells or NKT cells are activated after exposure to SAg and TAA producing an expanded tumor specific T cell effector population which is useful in adoptive immunotherapy of cancer (Examples 7, 15. 16, 18-23).

[1072] Antigen presenting cells in this system are chosen from a group consisting of DCs, fibroblasts, macrophages, and lymphocytes, but other professional APCs or any other cell transfectants, phage displays or liposomes expressing the class I or class II receptors are also used. Alternatively, a tumor associated antigen is bound to an APC that is pharmacologically or genetically inhibited from antigen processing. SAg is added and the complex of SAg and protein bound to class II is then presented to a T cell population to produce a tumor specific effector cell population for use in adoptive immunotherapy of cancer as in Example 15, 16, 18-23). These complexes are also useful in vivo as a preventative or therapeutic antitumor vaccine (Example 14, 15, 16, 18-23).

[1073] Soluble SAg MHC class II proteins with covalently bound single peptides are produced using a baculovirus system to express in insect cells two murine class II molecules with peptides attached by a linker to the N terminus of their &bgr;-chains (Kozono H. et al., Nature 369: 151-154 (1994)). The resulting peptide is engaged by the peptide binding groove of the secreted MHC molecule and this complex is recognized by T cells bearing receptors specific for the combination. In this method, the approximately 100 bp fragment encoding the SAg and a flexible linker with an embedded thrombin cleavage site is introduced in frame by the PCR just after the third codon of the b1 domain. This assures a recognizable leader peptide cleavage site and flexible link between the C-terminus of the foreign peptide bound in the cleft of the MHC molecule and the N terminus of the b1 domain of SAg amino acids. Soluble complexes consisting of receptors and various SAg are prepared in this way and are used to activate T cells for use in adoptive immunotherapy. Similarly, preparations consisting of MHC class I receptors, CD1 or mannose receptors complexed with SAgs, glycosylceramides or LPS's are produced which are useful in activating T cells or NKT cells for adoptive immunotherapy of cancer in protocols given in Examples 7, 15, 16, 18-23). These complexes are also useful in vivo as a preventative or therapeutic antitumor vaccine (Example 14, 15, 16, 18-23).

[1074] To produce complexes composed of SAgs with class I or II MHC or soluble DR a or b (lacking the transmembrane domain) and TCR heterodimer, a soluble human TCR heterodimer which has specificity for various tumor associated antigens bound to the human class I or II MHC molecules or human soluble CD1 molecules is used. A typical system for preparing ternary SAg-tumor peptide-MHC or ternary CD1-glycosylceramide (preferably GalCer)-SAg complexes capable of triggering T cells or NKT cells is as follows. CD1, DR-1 or HLA-A2 restricted tumor antigen specific T cell or NKT cell clones are used although primary unsensitized T or NKT cells may be used as well. The DR-1 and HLA-A2 homozygous Epstein-Barr virus-transformed B cell line LG-2 or DCs expressing CD1 receptors are used as APCs either live or fixed in 0.5% paraformaldehyde for 20 minutes. LG-2 and DCs (2.67×105 per ml) in RPMI 1640 with 1% fetal bovine serum are pulsed with tumor antigen and glycosylceramide respectively for 2 hours at 37° C. and then washed in RPMI 1640/1% fetal bovine serum to remove unbound antigen. SAg is added for 2 hours at 37° C. Pulsed APCs (4×104 per well) are co cultured with resting T cells or NKT cells (2×104 per well) in round-bottom microtiter plates in RPMI 1640/5% human serum. Twenty four hours later, the cells are harvested. The APCs are separated and the T cells or NKT cells may be optionally expanded further with IL.-2 Optionally, complexes comprising soluble recombinant DR&agr; or &bgr; chain with bound superantigen are presented to the T cell or NKT cells which are then expanded with IL-2. These cells are then harvested and used for adoptive immunotherapy (Examples 7, 15, 16. 18-23). The APC containing the complexes are also useful in vivo as a preventative or therapeutic antitumor vaccine (Example 14, 15, 16, 18-23).

[1075] Also useful for tumor therapy are the complexes LIP+ GPI-SAg (from Section 38), either free or in the form of vesicles or exosomes comprising SAg-GalCer complexes or SAg-tumor peptide (including but not limited to normal mutated structures). The ternary complexes of SAg-GalCer-heat shock protein and tumor peptide-heat shock protein are also useful, These complexes may be in or soluble or immobilized form, attached to a CD1 or MHC or as part of a vesicle or exosome. the complexes are also useful in vivo as a preventative or therapeutic antitumor vaccine (Example 14, 15, 16, 18-23).

[1076] The tumor associated antigen or SAg-tumor associated antigen complex is conjugated to oxidized mannan (polymannose) by methods described by Apostolopoulos, V et al., Proc. Natl. Acad. Sci. USA 92: 10128-10132 (1995) which is then loaded onto mannose receptors of antigen presenting cells for stimulation of a T cell anti-tumor response. Alternatively, the SAg (optionally conjugated to tumor peptides)-mannan conjugate is administered to tumor bearing hosts by methods in Example 15, 16, 18-23).

[1077] The SAg alone or conjugated to a tumor associated antigen is recognized by the mannose receptor on macrophages. This requires a glycosylated SAg which is recognized by the mannose receptor on macrophages. A native or glycosylated tumor associated antigen-SAg conjugate or a consensus peptide of both polypeptides is presented to mannose receptors expressed on antigen presenting cells which are exposed to a T cell or NKT cell population to produce a tumor specific effector cells by methods in Example 15, 16, 18-23). These complexes are also useful in vivo as a preventative or therapeutic antitumor vaccine (Example 14, 15, 16, 18-23). They are also used ex vivo to produce a population of tumor specific effector T or NKT cells for the adoptive immunotherapy cancer by methods and protocols given in Examples 7, 15, 16, 18-23 and 36.

[1078] The mannose receptor delivers the complex to the late endosomal and lysosomal vesicles and the MHC class II loading compartment where the antigen is loaded onto CD1b molecules. The C1b molecule is endocytosed at the plasma membrane in coated pits and vesicle structures, transits to early endosomes and is then delivered to the MHC class II antigen loading compartment. The endosomal localization motif on the tail of the CD1b molecule is essential for antigen trafficking of CD1b through the lysosomal compartment required for loading of antigen into CD1b and its ultimate transport to the membrane. The antigen binding groove of CD1 is deeper and narrower than the MHC class I molecule groove containing a hydrophobic binding site which accommodates the lipid portion of the molecules such as lipoarabinomannan or GalCer and the SAg-LPS constructs given herein. APCs expressing the above constructs are exposed to NKT cell populations which recognize the antigens in the context of the CD1 receptor. If carried out ex vivo this results in the formation of tumor specific effector NKT cells which are used for adoptive immunotherapy by protocols given in Examples 7, 15, 16, 18-23).

EXAMPLE 5 SAg Conjugation to Glycosylceramides, Gangliosides, LPS's, Glycans, Peptidoglycans Phytosphingolipids, Lipoproteins, oxyLDL and Lipoarabinomannans

[1079] All of the SAg-lipid conjugates given above and in section 55 are prepared as follows. Selection of the SAg peptide to be used for coupling is governed by several criteria. In practice, a 10-15 residue peptide is selected. For SAgs, the sites chosen for coupling are those presumed not to be vitally involved in T cell binding and activation. In most SAgs, these sites are broadly distributed throughout the molecule. They are available at flexible regions of the protein and on reverse turns or loop structures. C termini are more mobile than the rest of the molecule and frequently exposed on the protein surface. This region is accessible to be coupled to another ligand especially using m-maleimidobenzoyl-N-hydroxysuccinimide ester (MBS) via a Cys residue that has been added to the N terminus of the peptide. By coupling the peptide via its N-terminal end, the peptide is exposed in a fashion similar to that found in the native antigen.

[1080] Additional criteria for selection of the coupling site such as exposed hydrophilic regions, secondary structure, hydropathicity profiles, and probability of helix formation may not be useful. However, care is take not to disrupt predicted polysaccharide attachment sites, most notably the sequence Asn-X-Ser or Asn-X-Thr, which predicts the presence of Asn-linked polysaccharide moieties. In addition to location of transmembrane regions, Asn-linked glycosylation sites and sites of signal sequence cleavage are all important. After due consideration, the C using 7-15 residues terminus is preferred and is modified to accommodate MBS. This procedure requires a free sulfhydryl group on the synthetic peptide and free amino groups on the ligand. Therefore, to use this method, it is necessary to add a Cys residue to the C or N terminus of the peptide.

[1081] Biochemical Conjugation Methods: SAgs are conjugated to polysaccharide containing structures using several methods well described in the art (Hermanson, G T, Bioconjugate Techniques, Academic Press, San Diego, Calif. 1996). Two methods are given here one utilizing the isolated complex carbohydrate obtained from the purified ganglioside which is then chemically conjugated to SAg and in another method wherein the ganglioside and SAg are both incorporated into a liposomal membrane. Either method is used to produce complexes which are included within the scope of this invention. However they are by no means exhaustive of all the techniques which could be employed to conjugate human tumor antigens to SAg molecules. Other conjugation strategies may be utilized to produce an immunologically active complex as described by this invention. (See Offord, R E., in Protein Engineering, A R Rees, ed., Oxford, 1992)

[1082] Direct Conjugation of Ganglioside, LPS or Peptidoglycan to SAg Molecules

[1083] 1. Ganglioside or LPS antigens are purified and are then dissolved in aqueous solution at pH 6.0 at a concentration of 1.0 mM/ml

[1084] 2. Endoglycoceramidase from Rhodococcus (Genzyme) is added to the ganglioside solution to a level of 5 milliunits. The solution is incubated overnight at 37° C. with gentle agitation. The endoglycoceramidase specifically cleaves at the ceramide-polysaccharide bond liberating ceramide and clipping off the complex carbohydrate making up the ganglioside

[1085] 3. The polysaccharide is isolated by HPLC size exclusion chromatography or by ultrafiltration

[1086] 4. SAg is dissolved in IM sodium phosphate, 0.15 M NaCl, pH 7.5, at a concentration of 1 mg/ml. The purified polysaccharide antigen is added to this solution to a concentration of at least 1 mM/ml.

[1087] 5. In a fume hood, 20 microliters of 5M sodium cyanoborohydride solution in 1M NaOH (Aldrich) is added to each ml of the SAg solution.

[1088] 6. The reaction is mixed gently and incubated at room temperature for 72 hours or 4° C. for 1 week. This reaction reductively aminates the reducing end of the polysaccharide (at the point it was cleaved by the endoglycoceramidase) to the amine groups on the SAg protein creating stable conjugate coupled through a secondary amine linkage. The degree of polysaccharide coupling can be controlled by limiting the time of reaction.

[1089] 7. Remove unreacted carbohydrate and cyanoborohydride by gel filtration on Sephadex G-25 or by dialysis.

[1090] In a second method, SAg-GalCer, SAg-GalCer-CD1, SAg-glycosphingolipid, or SAg-glycosphingolipid-CD1 complexes or SAg conjugates given in section 55 are produced which have the added benefit of presenting the glycosylceramide in a polyvalent array which is important for high affinity binding to complementary receptors. They retain nearly all of their original structure including most of the ceramide moiety and the entire oligosaccharide chain. The principle of preparation derived from Mahoney, J A et al., Meth. Enzymol 242: 17-27 (1994) is as follows. The fatty acid amide is hydrolyzed from the intact ganglioside converting it to its lyso form which has a unique primary amine at the 2-position of sphingosine. The lysoganglioside is treated with a bifunctional cross-linking reagent, succinimidyl 4(N-maleimidomethyl)cyclohexane 1-carboxylate (SMCC), which forms an amide bond to the 2-position of sphingosine and results in a sulfhydryl-reactive maleimidyl moiety attached through a linker arm, to the original position of the fatty acid amide on the ceramide portion of the ganglioside. The SAg protein is treated with a reagent, N-succinimidyl S-acetylthioacetate (SATA), which converts the lysine e-amino groups to acetylated sulfhydryls. Subsequent treatment with hydroxylamine reveals the desired free sulfhydryls. Treatment of sulfhydryl-derivatized SAg with maleimidyl derivatized ganglioside results in a stable thioester linkage between the ganglioside and the protein. The final product is chromatographically purified and characterized by protein and carbohydrate analysis. The SAg-GalCer or SAg-glycosphingolipid complex is then loaded onto a soluble CD1 receptor.

[1091] LPS's and peptidoglycans are conjugated to SAg by methods well described in the art. The most convenient and preferred method to target specifically the polysaccharides on the protein is through mild sodium periodate oxidation. Periodate cleaves adjacent hydroxyl groups in sugar residues to create highly reactive aldehyde functional groups. The generated aldehydes are used to in coupling reactions with amine or hydrazide containing molecules to form covalent linkages. Amines react with formyl groups under reductive amination conditions using a suitable reducing agent such as sodium cyanoborohydride. The result of the reaction is a stable secondary amine linkage. Hydrazides spontaneously react with aldehydes to form hydrazone linkages, although the addition of a reducing agent greatly increases the efficiency of the reaction and the stability of the bond. (See Hermanson, G T. Bioconjugate Techniques, Academic Press, San Diego Calif. 1996).

[1092] Production of Liposomes Displaying Glycolipid or Apolipoprotein or oxyLDL-SAg Complexes

[1093] Liposomes composed of the highly immunogenic constructs described herein are prepared. They may include lipoproteins such as SAgs coupled to Gal, GalCer, SAg-glycosphingolipid, SAg-glycosylceramides, SAg-phytosphingolipids, SAg-mycosphingolipid and SAg-lipid conjugates given in section 55. Liposomes comprising SAgs conjugated to apolipoproteins or oxyLDL receptors are useful for targeting endothelial or macrophage oxyLDL receptors in tumor microvasculature. Other SAg conjugates e.g., SAg-glycosphingolipid, SAg-glycosylceramides, SAg-phytosphingolipids, SAg-mycosphingolipid are useful in immunizing T cells, NK cells and NKT cells. Cationic liposomes are also useful as a means of transferring the nucleic acid constructs of this invention to tumor tissue. GalCer (a monogalactosylceramide) comprises the major portion of the liposome. The most effective lengths of fatty acyl chain and sphingosine (or ceramide) base are C26 and C18 respectively and a phytosphingosine backbone. Sphingolipids lend structural advantages to the integrity of liposomal membranes and have prolonged duration in vivo. The Gal carbohydrate epitope is linked to liposomes via the amphipathic properties of the surface sphingolipids. The Gal is converted to a glycolipid with a sphingosine backbone possessing a hydrophobic fatty acid tail that embeds them into membrane bilayers. The hydrophilic carbohydrate ends of these amphipathic molecules can interact with molecules dissolved in the surrounding environment. Sphingosine glycolipids consisting of lactosylceramide, GalGal(1-3)Gal(1-4)GlcNAc-R) or glycosphingolipids with terminal Gal(&agr;1-4)Gal are prepared in a manner similar to that of sphingolipids.

[1094] All methods of preparation of liposomes have several steps in common: (1) dissolution of the lipid mixture in an organic solvent, (2) dispersion in an aqueous phase, and (3) fractionation to isolate the correct liposomal population.

[1095] In the first stage, the desired mix of lipid components is dissolved in organic solvent (usually chloroform:methanol (2:1 by volume) to create a homogenous mixture. This mixture includes any phospholipid derivatized to contain reactive groups as well as other lipids used to form and stabilize the bulk of the liposomal structure. The correct ratio of lipid constituents to form stable liposomes is important A reliable liposomal composition for encapsulating aqueous substances contains molar ratios of lecithin:cholesterol:negatively charged phospholipid (e.g., phosphatidyl glycerol) of 0.9:1:0.1. Apolipoproteins (e.g., LP(a)) or oxyLDL (e.g., 7&bgr;-hydroperoxycholesterol or 7&bgr;-hydroperoxy-choles-5-en-3&bgr;-ol) can substitute for cholesterol in the preparation of the liposomes. In general, to maintain membrane stability, the PE derivative should not exceed a concentration ratio of about 1-10 mol PE per 100 mol of total lipid. Once the desired mixture of lipid components is dissolved and homogenized in organic solvent, several techniques are used to disperse the liposomes in aqueous solution. These methods are broadly classified as (1) mechanical dispersion, (2) detergent-assisted solubilization, and (3) solvent-mediated dispersion. With mechanical dispersion to form vesicles, the lipid solution is dried to remove all traces of organic solvent prior to dispersion in aqueous media. The dispersion process is key to producing liposomal membranes of the correct morphology. Methods utilized include simple shaking, high pressure emulsification, sonication, extrusion through small-pores membranes and various freeze-thaw techniques. Detergent-assisted solubilization is also used to bring the lipid more effectively into the aqueous phase for dispersion. Triton X, alkyl glycosides or bile salts such as sodium deoxycholate are employed. Other modalities or dispersion include the steps of dissolving phospholipids and other lipid to be part of the liposomal membrane in ethanol. This ethanolic solution is then rapidly injected into an aqueous solution of 0.16 M KCl using a Hamilton syringe resulting in a maximum concentration of no more than 7.5% ethanol. Using this method, single bilayer liposomes of about 25-nm diameter are produced. To remove the excess aqueous components that are not encapsulated during the vesicle formation, gel filtration using Sephadex G-50 or dialysis is employed. To fractionate the liposome population according to size, gel filtration is carried out using a column of Sepharose 2B or 4B

[1096] SAgs are conjugated to the GalCer or glycosphingolipids with terminal Gal(a1-4)Gal, apolipoproteins, LDL or oxyLDL or LDL receptors before incorporation into the liposomal membrane or they may be incorporated into the membrane during the preparation of the liposomal membrane. Likewise, the SAg is conjugated to GalCer or glycosphingolipids with terminal Gal(a1-4)Gal at the glycolipid's polar head region by methods well known in the art including using heterobifunctional crosslinkers or periodate oxidation techniques. Alternatively, after the GalCer or glycosphingolipids with terminal Gal(a1-4)Gal is incorporated into the membrane, the liposomes are derivatized for further binding to the SAg proteins using the sodium periodate which oxidizes the ceramide's free hydroxyl to an aldehyde which is further modified by reductive amination. Using the phosphatidylethanolamine of the lipid in the liposome, SAgs are coupled to the liposome using various bifunctional agents including carbodiimide, glutaraldehyde, dimethyl suberimidate, periodate oxidation followed by reductive amination, N-succinimidyl 3-(2-pyridyldithio)propionate (SPDP), succinmidyl-4-(p-maleimidophenyl)butyrate (SMPB), iodoacetate, succinimidyl-4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC).

[1097] Two general methods are used to prepare immunogenic (i) SAg-GalCer, (ii) GalCerGal, (iii) GalCerGal-SAg and (iv) SAg-glycosphingolipid complexes: The molecules (1) are dissolved in solution and encapsulated within the vesicle construction, or (2) covalently coupled to phospholipid constituents in the lipids using standard cross-linking chemical reactions. Covalent coupling of SAg to liposomes is done through the head groups using various phospholipid derivatives and cross-linking chemical reactions. These are done via the PE molecules. Simple encapsulation is also a viable technique as described in Hermanson (supra).

[1098] A sample method using periodate oxidation and reductive amination is given below.

[1099] 1. A 5 mg/ml liposome suspension is prepared in 20 mM sodium phosphate 0.15 M NaCl, pH 7.4. containing, on a molar ratio basis as mixture of phosphatidyl choline: cholesterol:phosphatidyl glycerol of 8:10:1. Other liposome compositions may be used, for example methods without cholesterol, as long as a periodate-oxidizable component containing vicinal hydroxyls (e.g., phosphatidyl glycerol) is present. Any method of liposome formation may be used that is common to those skilled in the art including mechanical dispersion.

[1100] 2. Sodium periodate is dissolved to a concentration of 0.6 M by adding 128 mg/ml of water. 200 ml of this stock periodate solution is added to each mol of the liposome suspension with stirring.

[1101] 3. React for 30 min. at room temperature in the dark.

[1102] 4. The oxidized liposomes are dialyzed against 20 mM sodium borate, 0.15 M NaCl, pH 8.4, to remove unreacted periodate. This buffer is ideal for the subsequent coupling reaction. Chromatographic purification using a column of Sephadex G50 is also done. The periodate-oxidized liposomes are used immediately to couple with SAg molecules or they may be stored in a lyophilized state in the presence of sorbitol for later use.

[1103] 5. SAg is added to the periodate oxidized liposome solution to obtain a 1 mg/ml concentration.

[1104] 6. In a fume hood, add 20 ml of 5 M sodium cyanoborohydride solution in 1 M NaOH (Aldrich) to each ml of the SAg solution.

[1105] 7. The reaction is mixed gently and incubated at room temperature for 6 hours.

[1106] 8. Excess SAg and cyanoborohydride are removed by size exclusion chromatography on a column of Sephadex G-50 or by dialysis using a membrane with a molecular weight cutoff of 100,000 daltons.

[1107] 9. Ganglioside antigens isolated by the method described previously are incorporated into SAg-containing liposomes by detergent dialysis. An amount of ganglioside is added representing twice the amount of phosphatidyl glycerol (on a molar basis) originally added to form the liposome (prior to periodate oxidation). To this solution, concentrated sodium deoxycholate is added to obtain a final concentration of 0.7% (w/w) and mixed thoroughly using a Vortex mixer. Finally, the liposome suspension is dialyzed against PBS, pH 7.5. A sample of the encapsulation technique is given in Hermanson, supra.

[1108] An additional method for preparation of liposomes containing GalCer or glycosphingolipids with terminal Gal(a1-4)Gal is as follows: The donor liposomes consist of liver phosphatidylcholine, dicetyl phosphate, cholesterol, 3-(Man1-3Man-sn-1,2diacylglycerol) and galactosylceramide. These are mixed in various percentages to permit optimal expression of the galactosylceramide. Constituent lipids in chloroform-methanol are mixed and dried under a stream of nitrogen. Buffer consisting of 0.15M NaCl, 10 MM sodium Phosphate, pH 7.4, 1 mM dithiothreitol, 0.02% NaN3 is added to the dried lipids at a volume of 1 ml per 0.9 mmol of lipid phosphorus in the donor liposomes. After a 30-min incubation at 25° C., the lipids are dispersed into the buffer by sonication with a Bransom sonifier for 30 min under nitrogen at 0° C. The liposome suspension is used the same day after centrifugation at 1500 g for 30 min to remove any undispersed lipid and titanium fragments released from the sonication probe.

[1109] Liposomes used for transfer of nucleic acid constructs given herein have unique structures as described below. A cationic liposome composed of dimyristyloxypropyl-3-dimethyl-hydroxyl ammonium (DMRIE) with DOPE has allowed up to 100 fold higher concentrations of lipid and DNA to be administered in vivo with minimal toxicity. Improved transfection techniques have been observed with the DMRIE/DOPE of two to seven fold. The prototype cationic lipid for gene transfer is DOTMA (N[1-(2,3-dioleyloxy)propyl]-N,N,N-tri-methylammonium chloride) which is mixed with a equimolar amount of DOPE (dioleoyl phosphatidylethanolamine). The lipid DOTMA/DOPE comprise the cationic liposome known a Lipofectin. For human studies, two different cationic liposomes formulations are used. The first includes DC-cholesterol(3b[N-(N′N′-dimethylaminoethane)-carbamoyl] cholesterol) mixed with DOPE. DC-cholesterol/DOPE is low concentrations has proven to reduce toxicity to cells in vitro, is metabolized in vivo, and has provided successful gene transfer into malignant tumors in humans (See Example 17 for use in humans).

[1110] Genetic Fusion of SAgs to LPS's

[1111] N-linked glycosylation occurs exclusively in the ER, where Glc3Man9GlcNAc2 is added to Asn residues present in the sequence Asn X Ser/Thr (X, any residue except Pro). To produce a glycosylation site on a SAg capable of binding a LPS, recombinant vaccinia virus expressing SAg is produced with Gln149 or Asn149 directed to the ER by appendage of NH2-terminal ER insertion, The SAg is directed to the secretory pathway using signal sequence from IFN. Recombinant vaccinia viruses(rVVs) expressing TAP and SAg nucleoprotein are used. The full length SAg gene modified by standard molecular genetic methods to encode glycosylation sites is inserted into the thymidine kinase locus of vaccinia viruses (VVs) by homologous recombination as described using the pSX11 plasmid to express foreign proteins under the control of the VV p7.5 early/late promoter. SAg nucleoprotein is directed to the secretory pathway using the signal sequence from IFN-&bgr;. The SAg coding sequences of all of the rVVs are verified by sequencing PCR-amplified copies of full-length NP genes isolated from the rVV. The resulting SAg-LPS or SAg-lipoprotein complexes are used to immunize a population of T or NKT effector cells for use in the adoptive immunotherapy of cancer (Examples 2, 5, 7 15, 16, 18-23). They may be preloaded onto CD1 or MHC Class I or II receptors on APCs as described below in the course of ex vivo immunization. These complexes may also be used in vivo as a preventative or therapeutic antitumor vaccine as in Example 14, 15, 16, 18-23).

[1112] Preparation of Fusion Proteins

[1113] Preferred fusion proteins comprise SAgs linked to other proteins or peptides such as VTs or their A and B subunits, IFN&agr; receptors, CD19 peptides or carbohydrate recognition units which are designed to target the SAg to glycosphingolipid receptors on tumor cells or &agr;v&bgr;3 ligand Arg-Gly-Asp or av&bgr;5 ligand Asn-Gly-Arg in vivo or in vitro. These fusion proteins induce apoptosis of the tumor cells. The fusion proteins are produced by conventional methods in a variety of cells using a variety of vectors such as phage 1 regulatory sequences. Techniques are well established for producing fusion proteins that include the lacZ protein(&bgr;-galactosidase), trpE protein, glutathione-S-transferase, and thioredoxin. Expression in E. coli is most conventional but baculoviral expression systems are also useful. Fusion proteins are produced in bacteria by placing a strong, regulated promoter and an efficient ribosome-binding site upstream of the cloned gene. Exemplified below is a procedure using a representative lacZ vector. However, it should be recognized that other vectors well known in the art would be useful. Plasmids encoding the above proteins are prepared as previously described.

[1114] Construction of Expression Plasmids and Detection of Fusion Proteins

[1115] 1. The appropriate pUR (or pEX or pMR100) vector is ligated in-frame to cDNA fragments to be expressed as fusion partners using the above plasmids to create an in-frame fusion. cDNA encoding the verotoxins may be obtained from Dr. G. Lingwood, University of Toronto; murine p31 Ii are from Dr. R. Germain, National Institutes of Health and J. Miller, University of Chicago.

[1116] 2. Bacteria of the following strains are transformed: E. coli K12 71/18 or JM1O3 with pUR vectors, M5219 with pEX vectors or LG9O for pMR100 vectors. The cells are plated on LB medium containing ampicillin (100 mg/ml) and incubated overnight at 37° C. (or 30° C. in the case of the pEX vector). MacConkey lactose indicator plates should be used for pMR100.

[1117] 3. Individual colonies are tested for the presence of the desired insert by plasmid minipreps. If most of the colonies can be assumed to contain a cDNA (because directional cloning or a dephosphorylated vector was used in step 1), they can be screened for protein production in parallel (see step 4b). If not, clones that contain a cDNA, as determined by plasmid minipreps, can be screened for protein expression later. cDNA inserts into a pMR100 plasmid can be detected readily as red colonies on the MacConkey lactose indicator plates.

[1118] 4. Colonies are screened as follows for expression of the fusion protein.

[1119] a. Grow small cultures from 5-10 colonies in LB medium containing ampicillin (100 mg/ml). Incubate overnight at 37° C. (or at 30° C. for pEX).

[1120] b. Inoculate 5 ml of LB medium containing ampicillin (100 mg/ml) with 50 ml of each overnight culture. Incubate for 2 hours at 37° C. (or at 30° C. for pEX) with aeration. Remove 1 ml of uninduced culture, place it in a microfuge tube, and process as described in steps d and e. If screening for protein production is being done in parallel, prepare plasmid minipreps from 1-ml aliquots of the overnight cultures.

[1121] c. Induce each culture as follows: For pUR or pMR100 vectors, add isopropylthio-&bgr;-D-galactoside (IPTG) to a final concentration of 1 nM and continue incubation at 37° C. with aeration. For pEX vectors, transfer the culture to 40° C. and continue incubating with aeration.

[1122] d. At various time points during the incubation (i.e., 1, 2, 3, and 4 hours), transfer 1 ml of each culture to a microfuge tube, and centrifuge at 12,000 g for 1 minute at room temperature in a microfuge. Remove the supernatant by aspiration. The kinetics of induction varies with different proteins, so it is necessary to determine the time at which the maximum amount of product is produced.

[1123] e. Resuspend each pellet in 100 ml of 1×SDS gel-loading buffer, heat to 100° C. for 3 minutes, and then centrifuge at 12,000 g for 1 minute at room temperature. Load 15 ml of each suspension on a 6% SDS polyacrylamide gel. Use suspensions of cells containing the vector alone as a control. (For pEX and ORF vectors, also use &bgr;-galactosidase as a control.) The fusion protein should appear as a novel band migrating more slowly than the intense &bgr;-galactosidase band in the control. It is not uncommon for a protein the size of &bgr;-galactosidase to be present along with the fusion protein.

[1124] Composition of 1×SDS Gel-Loading Buffer

[1125] 50 mM Tris Cl (pH 6.8)

[1126] 100 mM dithiothreitol (DTT)

[1127] 2% SDS (electrophoresis grade)

[1128] 0.1% bromophenol blue

[1129] 10% glycerol

[1130] 1×SDS gel-loading buffer lacking dithiothreitol can be stored at room temperature.

[1131] Dithiothreitol should then be added, just before the buffer is used, from a 1 M stock.

[1132] Loading of SAg-LPS, SAg-Lipoprotein, SAg-Lipid, SAg-Glycolipid or SAg-Phytolipid Conjugates onto CD1 or MHC Receptors

[1133] For loading of SAg LPS or SAg-lipoprotein SAg-lipid, SAg-glycolipid SAg-phytolipid conjugates or SAg-lipid complexes from section 55 onto CD1 receptors, recombinant soluble CD1-2M complexes in Drosophila melanogaster cells are used to screen a random peptide phage display library(RPPDL). The absence of peptide-loading machinery in D. melanogaster cells results in the expression of class 1 molecules that are properly folded and functionally competent but essentially devoid of bound peptide. This approach has been shown to be useful in defining peptide binding motifs for classical and nonclassical MHC Class I and Class II molecules. (Jackson et al., Proc. Natl. Acad. Sci. 89:1217-1224, 1992; Hammer et al., J. Exp. Med 175,1007-1012, 1992; Hammer et al., Cell 74, 197-201, 1993). Each clone of SAg-lipoprotein contains a random 22-amino acid sequence at the mature NH2 terminus of the gene VIII (filamentous coat protein of the M13 bacteriophage). Recombinant soluble mCD1 is engineered with a C-terminal hemagglutinin (HA) tag, an epitope derived from the influenza HA protein. In this way, the mCD 1-phage complexes are identified with a HA tag specific antibody. For immunizing usage, isolated receptor or antigen presenting cells of various types which express CD1 or MHC class II molecule pretreated with formaldehyde may be used for loading the SAg-LPS or SAg-lipoprotein complexes. These APCs with bound complexes are then used to immunize T cells or NKT cells for use in adoptive immunotherapy of cancer (Examples 2, 7, 15, 16 18-23).

[1134] Incorporation of Exogenous Lipid e.g. Glycolipid, Phytosphingosine, Apolipoprotein or oxyLDL into Cells by Fusion with Liposomes

[1135] Liposomes. To prepare glycolipid, phytosphingosine, apolipoprotein, oxyLDL or receptor containing liposomes, 400 mg of galabiosylceramide (Gb2) globotriosylceramide (Gb3), globotetraosylceramide (Gb4), galactosylceramide (GalCer), glucosylceramide (GlcCer), phytoshpingosine, oxyLDL or apolipoprotein are dried with 200 mg of phosphatidylethanolamine (PE) and 200 mg of phosphatidylserine (PS) under a stream of nitrogen gas. 400 ml of sterile isotonic PBS, pH 7.4, is added to the lipid, and the mixture is sonicated using a water bath sonicator for 30 minutes. Liposome preparations are used immediately.

[1136] To incorporate exogenous glycolipid into cells, tumor cells in late logarithmic growth phase, sickled erythrocytes or vesicles (1.6×107 cells) are washed twice with PBS to remove serum proteins and then suspended in serum-free RPMI 1640 medium at 4×106 cells/ml. The cells are incubated in the presence of the liposomes (or PBS for controls) prepared as above with rotary shaking (100 rpm) at 37° C. for 1 hr., washed twice (5 min. 800×g) with PBS. and incubated for 18-24 hr at 37° C. in the presence of medium supplemented with 10% fetal calf serum prior to use.

[1137] Membrane & Vesicle Transfers. Exogenous lipids e.g., galactosylceramides from proximal tubular epithelial cells, MDCK canine renal cells or phytosphinosine from amphibian cells are incorporated into dendritic cells or tumor cells or dendritic cell (accessory cell)/tumor cell fusions as follows:

[1138] Preparation of Plasma Membrane Plasma membrane fractions are prepared and analyzed as described (Monneron A et al., J Cell Biol. 77: 211-231 (1978)). Only the lightest fractions (band 1 at the interface between buffer and 22.5% sucrose and band 2 at the interface between 22.5% and 35% sucrose), containing pure plasma membrane vesicles, are collected and pooled. From 1010 cells, 0.8-1.0 mg of protein is recovered in the combined fraction. The plasma membrane enzyme markers 5′-nucleotidase (EC 3.1.3.5) and alkaline phosphatase (EC 3.1.3.1) are enriched 30-fold and 70-fold, respectively, over the homogenate; no activity of the cytoplasmic enzyme lactate dehydrogenase are found. No traces of RNA or DNA contamination are found. The membranes obtained are either immediately frozen in aliquots at −70° C. or used at once.

[1139] Reconstituted Vesicles. Three types of vesicles are prepared as follows: (i) reconstitution of solubilized Sendai virus envelopes (V vesicles), (ii) reconstitution of solubilized plasma membranes (PM vesicles), and (iii) core constitution of solubilized Sendai virus envelope and plasma membranes (VPM vesicles). Sendai virus (20 mg of protein), solubilized in 2 ml of resolution buffer containing 2% Triton X-100 for 1 hr at room temperature, is centrifuged (1 hr. 100,000×g) to yield a clear supernatant (1.5 mg of protein per ml) containing mainly the two envelope glycoproteins, neuraminidase/hemagglutinin glycoprotein (NH) and fusion glycoprotein (F). For preparation of VPM vesicles, freshly solubilized plasma membranes (1 mg of protein per 0.3 ml of resolution buffer containing 1% Triton X-100, 20 min, 4° C.) are mixed with the solubilized viral envelopes (1 mg of protein per 0.7 ml of resolution buffer) and dialyzed in Spectrapor membrane-2 against 1000-fold excess of reconstitution buffer containing 1.5 g of wet Bio-beads SM-2 per liter [for efficient removal of the detergent]. PM and V vesicles are prepared by the same procedure except that one of the components was omitted and replaced by resolution buffer alone. Dialysis is continued for 96 hr at 4° C. until the Triton X-100 concentration dropped below 0.02%. The dialyzed solutions are centrifuged at 100.000×g for 3 hr at 4° C. to obtain reconstituted vesicles. The pellet is suspended in 0.3-0.5 ml of resolution buffer, divided into small aliquots, and frozen at −70° C. Each aliquot is thawed only once for fusion experiments.

[1140] Fusion of Reconstituted Vesicles with Tumor Cells: Tumor cells (106 cells) are incubated with 5-30 mg of protein of reconstituted vesicles in 1 ml of fusion solution. After 60 mm at 4° C. with occasional shaking, during which the Sendai virus bound to the cells, the cells are collected by centrifugation, resuspended in 1 ml of fusion solution containing 5 mM Ca2+, and incubated at 37° C. for 30 mm for the fusion process. The cells are then washed with phosphate-buffered saline (pH 7.4) and suspended in RPMI-1640 medium containing 5% (vol/vol) heat-inactivated fetal calf serum.

[1141] Assessment of Incorporation: Tumor cells are analyzed for uptake of the various glycolipids, apolipoproteins, oxyLDL, phytosphingosine, glycosylceramides by use of direct staining with specific antisera, binding by lectin receptors and they are tested in vitro for activation of T cells, NK cells, NKT cells using proliferative assays and induction of cytokines IL-2, IL-4, IL-12 and IFN-g by methods well established in the art.

EXAMPLE 6 Targeting SAg Nucleic Acids, Phase Display Systems and Polypeptides to Tumor Sites

[1142] Parenterally administered nucleic acid is targeted to a particular cell population as follows. Nucleic acid is attached to a desialylated galactose moiety that targets asialo-orosomucoid receptors in liver cells. Nucleic acid is attached to other ligands such as transferrin and TAP-1 as well as antibodies to surface structures such as the Lev receptor. These ligands and antibodies bind to surface structures and are internalized. Thus, the attached nucleic acid is delivered to a cell of choice.

[1143] Sickled Erythrocytes as Gene Carriers

[1144] Erythrocytes from patients with sickle cell anemia contain a high percentage of SS hemoglobin which under conditions of deoxygenation aggregate followed by the growth and alignment of fibers transforming the cell into a classic sickle shape. Retardation of the transit time of sickled erythrocytes results in vaso-occlusion. SS red blood cells have an adherent surface and attach more readily than normal cells to monolayers of cultured tumor endothelial cells. Reticulocytes from patients with SS disease have on their surface the integrin complex a4b1 which binds to both fibronectin and VCAM-1, a molecule expressed on the surface of tumor endothelial cells particularly after activation by inflammatory cytokines such as TNF, interleukins and lipid-mediated agonists (prostacyclins). Activated tumor endothelial cells are typically procoagulant. Similar molecules are upregulated on the neovasculature of tumors. In addition, upregulation of the adhesive and hemostatic properties of tumor endothelial cells are induced by viruses, such as herpes virus and Sendai virus. Sickled erythrocytes lack structural malleability and aggregate in the small tortuous microvasculature and sinusoids of tumors. In addition, the relative hypoxemia of the interior of tumors induces aggregation of sickled erythrocytes in tumor microvasculature. Hence, sickled erythrocytes with their proclivity to aggregate and bind to the tumor endothelium are ideal carriers of therapeutic genes to tumor cells.

[1145] Red blood cell mediated transfection is used to introduce various nucleic acids into the sickled erythrocytes. The extremely plastic structure of the erythrocyte and the ability to remove its cytoplasmic contents and reseal the plasma membranes enable the entrapment of different macromolecules within the so-called hemoglobin free “ghost.” Combining these ghosts and a fusogen such as polyethylene glycol has permitted the introduction of a variety of macromolecules into mammalian cells (Wiberg, F C et al., Nucleic Acid Res. 11: 7287-7289 (1983); Wiberg, F C et al., Mol. Cell. Biol. 6: 653-658 (1986); Wiberg, F C et al., Exp. Cell. Res. 173: 218-227 (1987). Both transient and stable expression of introduced DNA are achieved by this method. Sickled cells can also be transfected with a nucleic acid of choice e.g., apolipoproteins, RGD in the nucleated prereticulocyte phase (e.g. proerythroblast or normoblast stage) by methods given in Example 1. Sickled erythrocytes transfected with nucleic acids encoding a SAg and/or carbohydrate modifying enzyme to induce expression of the &agr;-Gal epitope, apolipoproteins, RGD and/or any construct described herein. Nucleic acids encoding additional polypeptides alone or together with SAg as described in Tables I and II to including but not limited to angiostatin, apolipoproteins, RGD, streptococcal or staphylococcal hyaluronidase, chemokines, chemoattractants and Staphylococcal protein A are transfected into and expressed by sickled erythrocytes. These sickled cell transfectants are administered parenterally and localize to tumor neovascular endothelial sites where they induce a anti-tumor response. The methods of in vivo transfection of tumor cells are given in the Examples 17. Protocols for use of these transfectants in the induction of anti-tumor immune response are described in Examples 14, 15, 16, 18-23, 31.

[1146] Vesicles from Sickled Erythrocytes

[1147] Vesicles from sickled erythrocytes are shed from the parent cells. The contain membrane phospholipids which are similar to the parent cells but are depleted of spectrin. They also demonstrate that a shortened Russell's viper venom clotting time by 55% to 70% of control values and become more rigid under acid pH conditions. Rigid sickle cell vesicles induce hypercoagulability, are unable to pass through the splenic circulation from which they are rapidly removed. Sickled erythrocytes are transfected in the nucleated prereticulocyte phase with superantigen and apolipoprotein nucleic acids as well as RGD nucleic acids. Nucleic acids encoding additional polypeptides alone or together with SAg as described in Tables I and II are transfected into and expressed by sickled erythrocytes. Any of the immature or mature sickled erythrocytes and their shed vesicles expressing the molecules given in Tables I and II are capable of localizing to tumor microvascular sites where they bind to apolipoprotein receptors and induce an anti-tumor effect. Because of their adhesive and hypercoagulable properties as well as their rigid structure, these sickled cell vesicles expressing superantigen and apolipoproteins are especially useful for targeting the tumor microvascular endothelium and producing a prothrombotic, inflammatory anti tumor effect. Sickled erythrocytes and their vesicles are capable of acquiring oxyLDL via fusion with oxyLDL containing liposomes as in Example 5. The resulting sickle cell or liposome expresses oxyLDL alone or together with SAg. Binding of oxyLDL to the SREC receptor on tumor microvascular endothelial cells induces apoptosis and simultaneous superantigen deposition produces a potent T cell anti-tumor effect.

[1148] Vesicles are prepared and isolated as follows: Blood is obtained from patients with homozygous sickle cell anaemia. The PCV range is 20-30%, reticulocyte range is 8-27%, fetal hemoglobin range is 25-13% and endogenous level of ISCs is 2-8%. Blood is collected in heparin and the red cells are separated by centrifugation and washed three times with 09% saline. Cells are incubated at 37° C. and 10% PCV in Krebs-Ringer solutions in which the normal bicarbonate buffer is replaced by 20 mM Hepes-NaOH buffer and which contains either 1 mM CaCl2 or 1 mM EGTA. All solutions contain penicillin (200 u/ml) and streptomycin sulphate (100 &mgr;g/ml). Control samples of normal erythrocytes are incubated in parallel with the sickle cells. Incubations of 10 ml aliquots are conducted in either 100% N2 or in room air for various periods in a shaking water bath (100 oscillations per mm). N2 overlaying is obtained by allowing specimens to equilibrate for 45 mm in a sealed glove box (Gallenkamp) which was flushed with 100% N2. Residual oxygen tension in the sealed box was less than 1 mmHg. The percentage of irreversibly sickled cells is determined by counting. 1000 cells-after oxygenation in room air for 30 mm and fixation in buffered saline (130 mM Cl, 20 mM sodium phosphate, pH 74) containing 2% glutaraldehyde. Cells whose length is greater than twice the width and which possessed one or more pointed extremities under oxygenated conditions are considered to be irreversibly sickled.

[1149] After various periods of incubation, cells are sedimented at 500 g for 5 mm and microvesicles) are isolated from the supernatant solution by centrifugation at 15,000 g for 15 mm. The microvesicles form a firm bright red pellet sometimes overlain by a pink, flocculent pellet of ghosts (in those cases where lysis was evident) which is removed by aspiration. Quantitation of microvesicles is achieved by resuspension of the red pellet in 1 ml of 05% Triton X100 followed by measurement of the optical density of the clear solution at 550 nm. Optical density measurements at 550 nm give results that are relatively the same as measurements of phospholipid and cholesterol content in the microvesicles. Cell lysis is determined by measurement of the optical density at 550 nm of the clear supernatant solution remaining after sedimentation of the microvesicles. Larger samples of microvesicles for biochemical and morphological analysis are prepared from both sickle and normal cells following incubation of up to 100 ml of cell suspension at 37° C. for 24 h in the absence or presence of Ca2+. Ghosts are prepared from sickle cells after various periods of incubation. The cells are lysed and the ghosts washed in 10 mM Tris HCl buffer, pH 73, containing 02 mM EGTA.

[1150] These vesicles are useful as a preventative or therapeutic vaccine as in Examples 15, 16, 18-23, 36.

[1151] Phage Displayed SAgs

[1152] Phages displaying or free tumor homing peptides ligands such as the tripeptides Arg-Gly-Asp and Asn-Gly-Arg which tripeptides bind to the integrins av&bgr;3 and av&bgr;5, respectively, that are located on tumor microvasculature, are conjugated to (1) a SAg peptide, (2) naked DNA encoding a SAg peptide or (3) phage displaying a SAg peptide. These constructs are prepared as in Examples 3 and 5 and are further described in Jackson R H. et al, In: Protein Engineering: A Practical Approach, A. R. Rees et al (eds), pp. 277-301, Oxford Press, London, 1992. Similarly tumor cells or sickled cells transfected with and expressing SAgs and other molecules given in Tables I and II are also transfected with nucleic acids encoding RGD which facilitates their localization to tumor microvasculature. These conjugates or transfectants are administered i.v. and localize to the tripeptides' integrin receptors situated on the tumor microvasculature. Neovascular endothelial cells to which these constructs have been targeted are transfected by SAg-encoding DNA so that they express or secrete SAgs locally. This induces potent local T cell activation and engender a tumoricidal immune response. Protocols for use of such conjugates, i.e., (1) naked SAg DNA conjugated to the integrin-binding peptides or (2) naked SAg DNA conjugated to phage that display the integrin-binding peptides, and transfectants in the induction of anti-tumor immune response are described in Examples 7, 15, 16, 18-23, 31

[1153] Nucleic Acid and Nucleoprotein SAg Mimics

[1154] SAgs are often incapable of homing to tumor cells expressing SAg receptors in vivo because of the existence of naturally occurring SAg-specific antibodies and the affinity of SAgs for class II receptors on a wide variety of cells. To solve this problem, DNA chromatography is used to identify oligonucleotides instead of SAg peptides that bind to SAg receptors which are naturally expressed on tumor cells. The SAg receptor-specific oligonucleotides are conjugated to a SAg peptide with a functional TCR or NKT cell binding site. Oligonucleotides are also substituted for peptides in the SAg molecule which bind to MHC class receptors and naturally occurring SAg-specific antibodies. These conjugates are used to target SAgs to tumor cells in vivo that either endogenously express a SAg receptor or are pre-transfected with nucleic acid encoding a SAg receptor.

[1155] These peptide-oligonucleotide complexes are prepared by chemical conjugation methods well known in the art. Such receptor specific oligonucleotides may have several fold greater affinity for the SAg receptor compared to the native SAg. While these peptide-oligonucleotide complexes are used predominantly in vivo to target tumor cells bearing SAg receptors, they are also used ex vivo to stimulate T cells to become tumor specific effector cell which are useful for adoptive immunotherapy of cancer (Example 7, 15, 16, 18-23).

[1156] In appropriate recombinant bacteria, nucleic acids encoding the SAg receptor binding site expressed on tumor cells are fused to nucleic acids encoding SAgs. The resultant SAg polypeptide construct consists of the amino acid sequence of a SAg and its SAg receptor binding site (which is overexpressed if desired). The SAg with its expressed or overexpressed SAg binding site is useful in targeting tumor cells expressing SAg receptors after administration to a tumor-bearing host.

[1157] In a related construct, the nucleic acid encoding a SAg with an overexpressed SAg receptor specific binding site is fused to the nucleic acid encoding a native or chimeric SAg with its binding site for naturally occurring antibodies and its MHC class II binding site removed, mutated or replaced by peptides from another SAg against which there are no known naturally occurring antibodies. The TCR binding and activating region of this molecule is conserved. This resulting SAg polypeptide molecule binds to SAg receptors on tumor cells but also retains its capacity to activate the TCR. It is administered parenterally or orally to a tumor bearing host (orally to a colon carcinoma patient) and will effectively target tumor cells with SAg receptors (such as colon carcinoma cells) without being diverted by naturally occurring antibodies or class II receptor bearing cells present in whole blood. As such, this construct is useful in producing an anti-tumor effect when administered to a tumor bearing host as in Example 18-23).

[1158] Using DNA chromatography techniques, nucleic acid specific for SAg receptors on tumor cells are identified. These nucleotides are conjugated to SAg polypeptides which are optionally devoid of class II binding sites and naturally occurring antibody binding sites but with conserved TCR binding and activating sites. These constructs are useful in targeting tumor cells bearing SAg receptors in vivo while retaining SAg amino acid sequences specific for the TCR which are capable of producing a tumor specific T cell population effective in adoptive immunotherapy of cancer. The selected amino acid sequences are deleted, replaced or added to the SAg molecules using molecular cloning and site directed mutagenesis techniques well established in the art.

EXAMPLE 7 General Ex vivo Immunization Methods to Produce Tumor Specific Effector Cells for Adoptive Immunotherapy of Cancer

[1159] Several days (3 to 60 days) after intratumoral immunization with a nucleic acid construct described herein, tumor draining lymph nodes are removed and placed in tissue culture. These cells are further expanded in vitro with SAg polypeptide for 2-4 days and/or IL-2 in vitro for a total of 3-15 days. These T cells are then harvested and reinfused into the host. T effector cells produced after in vivo immunization with nucleic acid encoding a SAg are expected to display potent anti-tumor activity.

[1160] Cells transfected ex vivo, are administered to the host wherein they activate lymphocytes in a number of ways. In one embodiment, the initial step involves in vivo immunization of hosts using various transfectants and constructs as described in Table II. The transfected cells are introduced into the host tumor, a nearby region, subcutaneously in close proximity to regional lymph nodes, or the lymph nodes draining the tumor. Transfected cells types, constructs and agents used in this step are given in Table II. Tumor cells are irradiated or treated with mitomycin C after transfection with nucleic acid encoding a SAg and/or another polypeptide so that polypeptides are expressed and fixed on the cell surface and the tumor cells do not proliferate when administered to the host.

[1161] In another embodiment, the initial step involves in vivo immunization of the tumor bearing host with transfectants, constructs and cells as described in Table III. These agents are administered in close proximity to the regional lymph nodes with or without a bacterial adjuvant such as bacillus Calmette-Guerin (BCG) or Corynebacterium parvum. The lymph node cells are harvested 10 days later and tissue cultured for further in vitro immunization/stimulation with SAg or SAg expressing cells that, optionally, coexpress a tumor associated antigen, costimulatory molecule or antigen presenting molecule.

[1162] Cryopreserved autologous tumor cells for subsequent tumor vaccination and culture are obtained from patients. Fresh resected tumors are dissociated under sterile conditions into single cell suspensions by mechanically mincing tumor into 5-mm3 pieces followed by enzymatic digestion. Generally, 1 gm of tumor is digested in a minimum volume of 40 ml of an enzyme mixture consisting of Hank's balanced salt solution (HBSS) containing 2.5 units/ml of hyaluronidase type V, 0.5 mg/ml of collagenase type IV, and 0.05 mg/ml of deoxyribonuclease type I (all commercially available from Sigma Chemical Co.; St. Louis, Mo.). The digestion is performed at room temperature with constant stirring in a trypsinizing flask for 2 to 6 hours.

[1163] The resulting cell suspension is filtered through a layer of No. 100 nylon mesh (Nytek: TETKO, Inc.; Briarcliff Manor, N.Y.) and cryopreserved in 90% human AB serum (GIBCO; Grand Island, N.Y.) plus 10% dimethyl sulfoxide (Sigma) at −178° C. in liquid nitrogen for subsequent immunization and culture.

[1164] Tumor cells are used in native form, with dinitrophenyl (DNP) or other haptens conjugated to them and then irradiated or treated with cytostatic drugs prior to use. Optionally, the tumor cells are transfected with nucleic acid encoding a SAg, and/or tumor associated antigen, and/or antigen presenting molecule, and/or costimulatory molecule, and/or adhesion molecule, and/or xenogeneic antigen, and/or carbohydrate modifying enzyme. The nucleic acid is introduced by methods given previously. The cells are then irradiated to a dose of 25 Gy or treated or with cytostatic drugs, viable cells counted by trypan blue exclusion and the cells resuspended so that a volume of 0.2 to 0.4 ml contains 1-2×107 with or without 7 colony forming units of fresh frozen TICE BCG.

[1165] Patients are vaccinated intradermally (i.d.) at two sites approximately 10 cm from superficial inguinal lymph nodes. If necessary, axillary lymph nodes are used. Lymph node regions with previous dissections or clinical evidence of tumor are avoided.

[1166] Accessory cells including DCs, fibroblasts, endothelial cells, monocytes, and macrophages are used after transfection with nucleic acid encoding a tumor associated antigen, and/or SAg, and/or xenogeneic antigen, and/or carbohydrate modifying enzyme. If desired, these accessory cells or APCs are transfected with recombinant viral vectors containing nucleic acid the encode a SAg, and/or tumor associated antigen, and/or costimulatory molecule, and/or antigen presenting molecule, and/or costimulatory molecule, and/or adhesion molecule, and/or xenogeneic antigen. These cells need not be irradiated prior to administration. These cells are administered using the same cell numbers given above with or without BCG.

[1167] Alternatively, patients are vaccinated with various tumor associated antigens and other agents as described in Table II. The agents are bound to MHC class I, class II or CD1 receptors or to cells expressing these receptors. They are also given alone in doses ranging from 0.1 to 10 mg emulsified in various adjuvants well described in the art. A vaccination course includes up to 6 inoculations of the above agents at 1-3 week intervals. 11 TABLE III Single Step In Vivo Immunization of Tumor Bearing Hosts with SAg Nucleic Acids Alone, Combined with Nucleic Acid Encoding Other Peptides and SAg Nucleic acids Conjugated to Polypeptides or Liposomes I. Intratumoral injection of nucleic acid 1. Direct injection of SAg nucleic acids into tumor. 2. Direct i.v. or intra-arterial injection of SAg nucleic acids into tumor microvasculature. a. SAg nucleic acids conjugated to a polypeptide ligand specific for a tumor cell, tumor stromal cell, tumor microvascular or neovascular cell receptors b. Nucleic acid within liposomes containing a monoclonal antibody. 3. Recombinant viruses containing nucleic acid. a. Inactivate the virus in the host with gancyclovir II. After in vivo immunization (3-14 days), harvest regional lymph nodes and place in tissue culture. III. Activate and expand lymphocytes. 1. Treat with SAg for 2 days. 2. Treat with IL-2 for 3 days. IV. Inject tumor specific effector T cells into host.

[1168] Regional lymph node cells draining tumor sites, lymphoid cells obtained after the above priming, peripheral blood T cells, and tumor infiltrating lymphocytes (TILs) are suitable sources of T cells that are activated to function as effector cells (T cells activated against the cancer cells). T cells are obtained from tumor infiltrating lymphocytes either before or after tumor vaccine immunization in vivo by the methods described herein.

[1169] Approximately 10 days after in vivo immunization, an enlarged draining lymph node is removed and cultured. An immunized lymph node used herein is exemplary. A single cell suspension of lymph node cells is obtained by mechanical dissociation. Briefly, lymph nodes are minced into 2 mm3 pieces in cold HBSS with a scalpel. The fragments are then pressed through a stainless steel mesh with a glass syringe plunger. The resultant cell suspension is filtered through nylon mesh and washed in HBSS. Cultures are established in 300-ml culture bags (Livecell Flasks; Fenwal, Deerfield, Ill.) with 200 to 250 ml of culture medium (CM: RPMI 1640 with 10% human AB serum, 2 mM fresh L-glutamine, 1 mM sodium pyruvate, 100 mg/ml of streptomycin, and 50 mg/ml of gentamicin all from GIBCO; Grand Island, N.Y.), containing 1-2×105 lymph node cells/ml and 1-4×105 irradiated (60 Gy) tumor cells/ml. Optionally, the lymph node cells are further separated into populations CD4+CD8+ T cells, NKT cells and/+T cells. Some SAg complexes are presented bound to MHC class II receptors and some such as SAg-LPS complexes or SAg-glycosylceramide complexes are presented bound to CD1 receptors either free or on APC cell surfaces.

[1170] After 24 hours, various SAgs or SAg transfected cell types (STCT) given in Table III are added in doses of 105 to 107 cells for 8-72 hours. The cells are harvested and used for in vivo administration at this point. Specific cell populations are selected such as those having a particular TCR V profile or expressing CD44 using magnetic beads or other separation techniques well known in the art. Optionally, the SAg activated T cells are expanded. Recombinant IL-2 (Cetus, Emeryville, Calif.: provided by Cancer Treatment Evaluation Program, National Cancer Institute) is added at the initiation of the cultures at a concentration of 600IU/ml (1 Cetus unit=6 IU of IL-2). Culture bags are incubated at 37° C. in humidified 5% CO2. Cell counts from aliquots obtained from random bags are followed to observe lymphoid cell proliferation. Lymph node cells are harvested when cells reached maximal density, usually after a total of 5-7 days in culture followed by IL-2 at 24 IU/ml for 3 days. These intervals are shortened depending on the cell viability, CD44 expression, or V expression or other conditions that adversely affect survival, viability, or therapeutic success.

[1171] Antibodies or Fab fragments having specificity for CTLA-4 are added with or without IL-2 at any point to expand the T cell population and avert apoptosis. The cells are washed once at the end of STCT incubation and before the addition of IL-2 and/or anti-CTLA-4 antibodies. 12 TABLE IV Two Step In Vivo/in Vitro Methods and Agents for Producing Tumor Specific Effector T cells A. In vivo immunization with SAg transfected tumor cells, accessory cells, or virus. 1. Tumor cells transfected with: a. Nucleic acid encoding a SAg b. Nucleic acid encoding a tumor associated antigen c. Nucleic acid encoding a carbohydrate modifying enzyme 2. Accessory cells transfected with: a. Nucleic acid encoding a SAg b. Nucleic acid encoding a tumor associated antigen c. Nucleic acid encoding a carbohydrate modifying enzyme d. Nucleic acid encoding an MHC molecule 3. Recombinant viruses containing: a. Nucleic acid encoding a SAg b. Nucleic acid encoding a tumor associated antigen c. Nucleic acid encoding a carbohydrate modifying enzyme d. Nucleic acid encoding an MHC molecule B. *In vivo immunization with: 1. Irradiated tumor cells. 2. Tumor associated antigens. 3. Irradiated tumor cells conjugated with DNP. 4. Tumor associated antigen/SAg conjugate or fusion polypeptides. 5. Naked nucleic or plasmid or phage displayed nucleic acid encoding a SAg or attached to liposomes or albumin microspheres. 6. Naked or plasmid or phage displayed nucleic acid encoding a SAg/tumor associated antigen polypeptide conjugate. 7. Tumor cells or accessory cells transfected with nucleic acids encoding structures given in Table I Group IA, (pages 5 and 6) GM-CSF, IL-2 and other cytokines. (Berns, A J M. et al., Human Gene Therapy 6: 347-368 (1995). 8. Tumor cells transfected with nucleic acids encoding chemokines (T and NKT cell chemoattractants) and granulocyte chemoattractants (C3a, C5a, MAP). 9. SAg naked DNA fused or in mixture with DNA or structures non-transfected given in Table 1 IA B and C (pages 5 and 6) C. Lymphoid cells from draining lymph nodes are harvested 3-21 days later and placed in tissue culture for further stimulation. They are divided into T cell, NKT cell and/T cell populations. Alternatively, T cells, NKT cells and/T cells are obtained from the peripheral blood and also placed in tissue culture for further stimulation. D. In vitro stimulation of T or NKT cell populations to produce tumor specific effector cells as described in “C” is carried out with STCT (“SAg transfected cell types”) or with constructs alone or applied to appropriate receptors on APCs. MHC class II APCs are used for presentation of SAg constructs. APCs expressing mannose, or CD1 or CD14 receptors are used for presentation of glycosylated SAg, SAg-LPS complexes, SAg-peptidoglycan complexes or SAg-glycosylceramide complexes. Isolated MHC class I, class II, mannose, CD1 or CD14 receptors immobilized on solid supports such as polystyrene plates may be used in place of APCs methods well known in the art. In this form they bind corresponding ligands in the constructs given above for presentation to T cells or NKT cells. STCT include tumor cells, accessory cells, antigen presenting cells, prokaryotic cells, autologous, allogeneic or xenogeneic cells lines and viruses. Accessory cells include the following: DCs, monocytes, macrophages, endothelial cells, fibroblasts and NK cells. These cells are transfected with nucleic acids encoding SAgs in combination with the nucleic acids given below. These nucleic acids may include the ISS sequence; SAg genes may be used with or without the ISS sequence. *In vivo immunization may be by various routes, e.g.,, i.d., i.m., or as organoids or in adjuvants proximate to regional lymph nodes e.g., inguinal lymph nodes. For tumor peptide genes an ISS is useful as is cotransfection of MHC class I genes. For SAg and tumor associated antigen genes, the ISS is useful.

[1172] 13 TABLE V Ex vivo Modes of Antigen Presentation to T Cells or NKT Cells to Produce Tumor Specific Effector Cells A. Tumor Cells, Accessory Cells, Accessory Cell/Tumor Cell Hybrids, e.g., DC/Tumor Cell) Transfected with:              1. SAg-encoding nucleic acid 2. SAg-encoding nucleic acid and tumor associated antigen nucleic acids (to include arrays of tumor associated epitopes) 3. SAg nucleic acid and MHC class I or II nucleic acids. 4. SAg-encoding nucleic acid and co-stimulatory nucleic acids. 5. SAg-encoding nucleic acid and adhesion molecule nucleic acids. 6. SAg-encoding nucleic acid and &agr;-galactosyltransferase synthetic nucleic acids or xenogeneic species specific nucleic acids. 7. SAg-encoding nucleic acid and chemoattractant nucleic acids 8. SAg-encoding nucleic acid and glycosylceramide synthesis nucleic acids 9. SAg nucleic acid and lipopolysaccharide synthesis nucleic acids 10.  SAg-encoding nucleic acid and microbial lipoprotein or polysaccharide or peptidoglycan membrane or capsular synthesis nucleic acids 11.  SAg-encoding nucleic acid and SAg receptor nucleic acids 12.  SAg-encoding nucleic acid and CD1 receptor synthesis nucleic acids 13.  SAg-encoding nucleic acid and CD14 receptor synthesis nucleic acids 14.  SAg-encoding nucleic acid and SAg promoter and/or global regulator nucleic acids 15.  SAg-encoding nucleic acid and oncogene and/or transcription factor nucleic acids 16.  SAg-encoding nucleic acid and angiogenesis factor or receptor nucleic acids 17.  SAg-encoding nucleic acid and growth factor receptor nucleic acids 18.  SAg-encoding nucleic acid and cell cycle protein nucleic acids 19.  SAg-encoding nucleic acid and heat shock protein nucleic acids 20.  SAg-encoding nucleic acid and chemokine nucleic acids 21.  SAg-encoding nucleic acid and cytokine nucleic acids 22.  SAg-encoding nucleic acid and tumor suppressor nucleic acids 23.  SAg-encoding nucleic acid and antigen processing and trafficking nucleic acids B. Additional in vitro Stimulatory Agents (preferred receptor) 1. Tumor peptides (Class I or Class II) 2. Tumor peptide-SAg conjugates or fusion proteins (Class I or Class II). 3. Lipopolysaccharide-SAg conjugate (Class II or CD14) a. arabinose b. mycolic acid c. teichoic acid d. muramic acid (Staphylococcal cell wall glycoprotein) e. mannan proteoglycans f. chondroitin-sulfate 4. Glycosylated SAgs. (Class II or mannose) 5. SAg-glycosylceramide conjugates (class II or CD1) a. GalCer conjugate b. Gal conjugate 6. SAg-proteosome conjugates 7. SAg or glycosylated SAg or SAg-glycosylceramide conjugates or SAg-lipopolysaccharide or SAg- peptidoglycan conjugates coupled to proteosomes 8. SAg or glycosylated SAg or SAg-glycosylceramide conjugates or SAg-lipopolysaccharide conjugates or SAg-peptidoglycan conjugates expressed on or coupled to liposomes 9. Conjugates having a Superantigen component (polypeptide or nucleic acid) and a partner that is either a single component or a conjugate of 2 or more components (protein, carbohydrate, lipid DNA) as indicated below. Superantigen (Protein or DNA) Partner (Single Component or Conjugate) 1. DNA coding sequence 2. Polypeptide 3. Nucleic acid 4. Tumor associated Peptide 5. Tumor Antigen-MHC protein 6. LPS 7. Lipoarabinomannan 8. Ganglioside 9. Glycosphingolipid 10. Ganglioside-CD1 receptor 11. Glycosphingolipid-CD1 receptor 12. Glycosylceramide (e.g., Gal-Cer) 13. GalCer-CD1 receptor 14. Gal 15. Arg-Gly-Asp or Asn-Gly-Arg 16. iNOS 17. Gb2 or Gb3 or Gb4 18. (Gb2 or Gb3 or Gb4)-CD1 receptor 19. -GPI-(Gb2 or Gb3 or Gb4) 20. -GPI-(Gb2 or Gb3 or Gb4)-CD1 receptor 21. Vero toxin 22. Vero toxin A or B Subunit 23. IFN&agr; receptor peptide homologous to VT 24. CD 19 peptide homologous to VT 25. LDL, VLDL, HDL, IDL 26. Apolipoproteins (e.g., Lp(a), apoB-100, apoB-48, apoE) 27. OxyLDL, oxyLDL mimics, (e.g., 7&bgr;-hydroperoxycholesterol, 7&bgr;-hydroxycholesterol, 7- ketocholesterol, 5&agr;-6&agr;-epoxycholesterol, 7&bgr;-hydroperoxy-choles-5-en-3 &bgr;-ol, 4-hydroxynonenal (4-HNE), 9-HODE, 13-HODE and cholesterol-9-HODE) 28. OxyLDL by products (e.g. lysolecithin, lysophosphatidylcholine, malondialdehyde, 4- hydroxynonenal) 29. LDL & oxyLDL receptors (e.g., LDL oxyLDL, acetyl-LDL, VLDL, LRP, CD36, SREC, LOX-1, macrophage scavenger receptors) 30. phytosphingosine, -GPI-phytosphinosine 31. tumor associated lipid antigens 32. glycolipid, proteolipid, glycosphingolipid, sphingolipid with inositolphosphate-containing head groups, phytoglycolipids, mycoglycolipids, -GPI-sphingosines or GPI-lipids 33. sphingolipids with inositolphosphate-containing head groups having the general structure: ceramide-P-myoinositol-X with X referring to polar substituents comprising ceramide-p-inositol- mannose, inositol-1-P-(6)mannose(&agr;l,2inositol-1P-(1)ceramide, (inositol-P)2-ceramide, inositol-P- inositol-P-ceramide, inositol-P-inositol-P-ceramide. 34. tumor associated glycan antigens consisting of peptidoglycans or glycan phosphotidyinositol (GPI) structures C. STCT or SAg-tumor peptide conjugates are incubated with in vivo immunized T cells or NKT cells for 2-4 days and then with IL-2 for 2-5 days. D. The tumor specific effector cells are then harvested and injected in doses of 1010-1012 every 3-7 days for 1-6 treatments. E. Viruses are transfected into tumor cells, accessory cells, antigen presenting cells, allogeneic or xenogeneic cells. They are pre-programmed with DNA for SAgs alone or in combination with genes given in D. They may also utilize the host genome to produce a new gene product as for example the host -galactosyltransferase. Viruses may include the following: 1. Adenoviruses. 2. Vaccinia virus. 3. Equine encephalitis virus. 4. Influenza virus. F. In an additional method, tumor associated antigens are bound to MHC class I positive cells and used to activate T cells. SAg-lipopolysaccharide complexes and SAg-glycosylceramide complexes are bound to CD1 or class II receptors on APCs. In addition, SAg-lipopolysaccharide complexes or SAg-glycosylceramide complexes are presented bound to class II positive APCs. Alternatively, unbound tumor associated antigen/SAg. conjugates or fusion products are added at a 0.1 to 200 mg/ml dose for 2 days. This is followed by STCT incubation or by native or mutant SAg treatment for 2 days.

[1173] For comparative analysis, peripheral blood lymphocytes (PBL) are obtained from patients the same day as the lymph node harvest. PBL are isolated by Ficoll-Hypaque gradients from 60-ml of heparinized blood samples. The PBL are placed in culture utilizing 24-well tissue culture plates at the same cell density as lymph node cells. PBL are harvested at maximal cell density and characterized by phenotype analysis and cytotoxicity. T cells, NKT cells, and NK cells are isolated by well known methods described in the art (Colligan, J E et al., eds, Current Protocols in Immunology, John Wiley, New York, 1996).

[1174] PBL are separated by Ficoll/hypaque sedimentation. Cells are recovered from the interface, washed in PBS, and pelleted. Peripheral blood mononuclear cells enriched for MHC class I molecules or MHC class II molecules are used to bind tumor associated antigens or tumor associated antigen/SAg conjugates for in vitro or in vivo immunization.

[1175] Cryopreserved groups of autologous PBMCs are thawed, washed twice in PBS, resuspended at 5 to 8×106 cells/ml in CM and pulsed with 1 mg/ml peptide in 15 ml conical tubes (5 ml/tube) for 3 hours at 37° C. These PBMC stimulators are then irradiated at 3000 rads, washed once in PBS, and added to the responder cells at responder stimulator ratios ranging between 1:3 and 1:19.

[1176] Tumor infiltrating lymphocytes are isolated from fresh surgical biopsies. Briefly, tumor tissues are minced into 1-mm3 pieces that are then dissociated into single cell suspensions in Dulbecco's modified minimum essential medium (Gibco; Grand Island, N.Y.) supplemented with 10% heat-inactivated human AB serum (NABI, Miami, Fla.), 0.05% collagenase (type 4; Sigma Chemical Co., St. Louis, Mo.), and 0.002% DNase (type 1; Sigma) on a magnetic stirrer for 1 hour. Subsequently, the tissue digests are washed and passed through a nylon mesh and tumor infiltrating lymphocytes and tumor cells are separated on discontinuous (75%/100%) Ficoll/Hypaque gradients.

[1177] Lymph node lymphocytes are obtained by mechanical dissociation of tissues, followed by washing in medium and centrifugation on Ficoll/Hypaque gradient [Newell K A, et al., Proc. Natl. Acad. Sci. USA, 88:1074 (1991)]. Cryopreserved suspensions of tumor cells/tumor infiltrating lymphocytes are defrosted, washed, and separated by allowing tumor cells to adhere to the surface of plastic wells. The recovered non-adherent tumor infiltrating lymphocytes are transferred to 6-well plates and cultured in serum-free AJM-V medium (Gibco) supplemented with 6,000 U/ml of IL-2 (Cetus-Chiron, Emeryville, Calif.) for 8 days. Tumor cells are cultured as adherent monolayers in Dulbecco's modified Eagle's medium (DMEM, Gibco) supplemented with 10% (v/v) of fetal calf serum. Any activated lymphocytes can be used in the method given above. In a preferred embodiment, lymphocytes expressing a predominant TCR V phenotype in tumor tissue or peripheral blood before or after treatment are isolated and expanded by standard procedures.

[1178] Antibodies to various TCR V&bgr; subsets are immobilized on inert solid supports and incubated with blood cells and/or tissue cells to include bone marrow and peripheral blood or lymphoid tissue cells and tumor infiltrating lymphocytes.

[1179] The bound T cells are eluted with various buffers. Suitable biocompatible inert supports include polystyrene, polyacrylamide, nylon, silica, and charcoal as well as others known in the art. The supports are derivatized for covalent binding of antibodies with agents well known in the art including heterobifunctional compounds, carbodiimide, and glutaraldehyde. The enriched population of V-bearing T cells is then used for in vitro immunization with a SAg in native or mutant form capable of activating the dominant TCR V&bgr; bearing lymphocytes. IL-2 is used to further expand the cell population as described above.

[1180] Effector lymphocytes obtained after in vivo sensitization are stimulated in vitro with tumor associated antigens bound to irradiated PBMC (which act as stimulator cells) for 8-72 hours. DCs, macrophages, or other class I-bearing cells are used to present the tumor associated antigens. The T cells are then analyzed for TCR V&bgr; and/or CD44 expression. An STCT expressing a SAg is then added to the culture (1 picogram to 10 microgram). If a given V predominance is noted after antigen stimulation, then an STCT or SAg known for its ability to specifically stimulate that V&bgr; subset is selected for use in activation. Culture proceeds for 18-72 hours. The TCR V&bgr; and CD44 profile of stimulated T cells are then rechecked. IL-2 (12-25 IU) and/or anti-CTLA-4 antibodies are added for an additional 8-72 hours after which the cells are harvested for use. The optimal timing of STCT introduction after tumor antigen stimulation is between 3 and 14 days.

[1181] Antigen-presenting cells (APCs) of all kinds such as DCs, B cells or macrophages with appropriate MHC class II molecule binding sites for soluble SAgs are used or the SAgs are presented alone or in immobilized form without APCs. Optionally, STCTs are used without APCs. Before IL-2 administration, effector cells are re-stimulated weekly by washing and replating in 24 well plates at a concentration of 2.5×105 cells/ml in CM. This is continued for 3-10 cycles until enough cells are available for IL-2 expansion. T cells are cloned 7 days after the several cycles of stimulation in 96-well round bottom plates at 0.3 cells/well with 5×104 stimulator tumor antigen-PBMC, SAg, or STCT and 25-50U recombinant IL-2 in a volume of 200 ml.

[1182] For long term growth, clones are transferred to 24 well plates and 106 cells/well and stimulated weekly with SAg or STCT plus optimally 5×105 tumor associated antigen-PBMC and 25-50U/ml of IL-2. After clones grow to greater than 2×106 cells, the clones are maintained by culturing with STCT only for 48 hours, washing to remove STCT, and replating in fresh media for 5-7 days with 25-50 U/ml IL-2.

[1183] The initial incubation is with the selected tumor associated antigen such as MART-1 for 1-3 days with the latter reagents followed by V profiling and re-stimulation with SAg by methods given above. The MART-1 is presented attached to HLA-A1+ cells of PBMC. Cytotoxic activity is tested after the first and/or second rounds of sequential stimulation with tumor associated antigen and SAg given below.

[1184] The tumor-specific effector T cell population is immortalized as tumor specific T cell hybridomas. These hybridomas are generated by immunization in vitro of human T cells as described herein. The expanded T cells are then fused to a thymoma and cloned by limiting dilution or other methods well known in the art. Cells are cultured in complete tumor medium composed of Eagle's minimal essential medium supplemented with 10 mM 2-mercaptoethanol, 10% fetal calf serum, 10% Mishell-Dutton Nutrient cocktail, 100 U/ml penicillin G, and 200 mg/ml streptomycin sulfate. Other well known culture media can also be used.

[1185] For SAg immunization in vitro, various antigen presenting cells are used including MHC class II-positive T cells as well as those expressing CD1. Purified MHC class II or CD1 molecules alone or immobilized are substituted for APCs in some cases. Moreover, T cells are activated by some SAgs without APCs when presented to T cells in immobilized form or in the presence of various cytokines such as IL-1, IL-2, IL-4, or IL-6 or xenogeneic antigens. Various costimulants such as B7-1 and B7-2, adhesion molecules such as ICAM-1 and VCAM-1, or GalCer are used together with SAgs and MHC class II positive APCs or immobilized MHC class II peptides to augment the T cell or NKT cell response.

[1186] Tumor associated antigen immunization is also involved in the binding of peptides to MHC class I bearing APCs of multiple origins. Various cytokines including, but not limited to, IL-1, IL-2, IL-4, IL-12, or LPS are used in vitro or in vivo to expand the antigen specific clone of T cells and avert the development of T cell anergy.

[1187] Specialized Forms of Tumor Specific Effector Cells and Hybridomas

[1188] Tumor specific T or NKT cells with TCR V and/or CD44 selectivity are produced by transfecting uncommitted stem cells with nucleic acids encoding particular TCR V chains. Likewise, a T cell clone overexpressing CD44 is produced by transfecting T cells with nucleic acids encoding CD44. A hybridoma expressing a tumor associated antigen with a dominant TCR V phenotype or CD44 expression is produced in this way. Such a T cell hybridoma or cell line is stimulated exogenously by a SAg or a SAg mutant with a TCR V or CD44 selectivity corresponding to that expressed predominantly by the T cell hybridoma. The result is a clone of tumor specific T cells capable of being expanded by exposure to SAg in vitro or in vivo.

[1189] CD44 expression is induced in a T cell, NKT cell or TCR/T cell population after activation in vitro or in vivo with SAgs alone or together with any of the T or NKT cell stimulating constructs and methods described herein. The in vivo and in vitro activation steps and immunization protocols are given in Examples 7, 15, 16. 18-23. The CD44 positive T cell population exhibits upregulated primary adhesion properties and is capable of effectively trafficking and homing to tumor cells in vivo and particularly to sites of SAg (in native or nucleic acid form) injection i.e. tumor Nucleic acids encoding CD44 or a carbohydrate modifying agent will induce CD44 expression on the T cell surface. A preferred in vivo method of use involves intratumoral injection of SAg DNA into tumor sites which induces expression of CD44 on T cells resulting in enhanced T cell trafficking to the site of SAg administration.

[1190] T cells are genetically engineered to overexpress CD44 after SAg stimulation. This is accomplished by transfection of T cells or NKT cells with nucleic acid encoding CD44 as well as nucleic acids encoding glycosyltransferases. This results in the overexpression of CD44 upregulation of the adhesive properties of CD44. Such CD44 enriched clones are harvested after SAg stimulation, enriched, and administered for adoptive immunotherapy of cancer (Examples 6, 7, 15, 16, 18-23).

[1191] Additionally, T or NKT cell clones or hybridomas are produced which express a chimeric TCR consisting of an invariant chain with specificity for GalCer or and a chain that binds a SAg. The V region which is specific for the SAg is overexpressed on the TCR permitting greater responsiveness to exogenous SAg. This chimeric TCR recognizes and is stimulated by an exogenous SAg with a TCR V selectivity corresponding to the predominant TCR V phenotype of the T or NKT cell. Such T or NKT cell lines are cloned and hybridomas produced by methods well known in the art.(Current Protocols in Immunology, pp. 7.21.-7.21.9 John Wiley, New York, 1991) The expanded clone of tumor specific T cells produced in this way is useful for adoptive immunotherapy of cancer by methods given in Examples 7. 15, 16, 18-23.

[1192] T cell clones are produced due to asynchronous TCR V locus rearrangements at low but significant frequency in which both TCR V segments are part of two functional TCRs. Such clones are produced from uncommitted stem cells in which nucleic acid encoding two chains are transfected, one having specificity for a tumor associated antigen and another having SAg specificity. Hence, a clone of T cells with dual V TCR expression is produced which is capable of reacting with a tumor specific and a SAg. This clone is expanded by binding either or both ligands. These expanded clones consisting of tumor specific effector T cells are used for adoptive immunotherapy of cancer by protocols given in Examples 7, 15, 16, 18-23).

[1193] T cells or NKT cells clones or hybridomas expressing TCR V&agr; and V&bgr; chains with specificity for GalCer and SAg, respectively, are produced by fusion of NKT cell DNA encoding the GalCer and SAg receptors with DNA from an appropriate thymoma. This GalCer receptor and SAg receptors are expressed on the &agr; and &bgr; chains of the TCR, respectively. Upon exposure to GalCer or SAg, these cells are further activated to express CD44 which enhances their homing and adhesive properties. NKT or T cells expressing high levels of IFN, GM-CSF, and IL-10 are selected and cloned. The clone of T cells producing IFN and expressing GalCer, SAg and CD44 is then expanded and immortalized. With its properties of tumor recognition, SAg and glycosylceramide activation, IFN production and effective in vivo trafficking, this T or NKT effector cell population is preferred for adoptive immunotherapy of cancer by methods given in Examples 7, 15, 16, 18-23).

[1194] Additional measures to avert apoptosis and augment proliferation capacity in SAg activated T cells include the use of anti-CD28 antibodies and inhibition of CTLA-4 on T cells. CTLA-4 on T cells is blocked by specific antibodies or fragments.

[1195] Alternatively, a T cell clone is used in which CTLA-4 is genetically deleted. When stimulated by

[1196] SAg, these cells proliferate to a greater extent compared to SAg alone. Cell populations in which CTLA-4 is deleted or blocked are selected to have a predominant V bearing lymphocyte population that is activated after in vivo or ex vivo tumor associated antigen stimulation. After CTLA-4 deletion or blockade, the appropriate SAg with V&bgr; selectivity is chosen to expand this population. To avert uncontrolled proliferation in vivo, the thymidine kinase gene of the HSV is co-transfected to enable elimination of these cells in vivo if desired.

[1197] Measures to produce an effector T cell population with an overexpressed TCR V and/or V chains specific for a given SAg involve the transfection of nucleic acids encoding the desired V or V regions into T cells as in Example 1. To lower the activation threshold of the T cell or NKT cells to SAg or SAg-tumor peptide-MHC or CD1, the T cell or NKT cells are transfected with nucleic acid encoding a tyrosine kinase or other signal transduction initiating molecules which can dimerize in the membrane with the TCR tyrosine kinases thereby lowering the threshold for activating the signal transduction pathway. The deletion of the signal transduction inhibitory region of the TCR to produce sustained signal transduction is done by site directed mutagenesis as in Example 24.

[1198] The T cell population used for adoptive immunotherapy after stimulation with SAg are enriched for interferon production using an IFN-gamma capture assay as described by Becker et. al. Nature Med. 7: 1159-1162 (2001). Such enriched IFN gamma secreting T cells have been shown to be cytolytic and optimal for adoptive transfer. (See Example 66 for methods of production and use of the IFN gamma secreting T cell in adoptive immunotherapy of cancer).

[1199] In an additional embodiment, to avert apoptosis of T cells after ex vivo superantigen induced stimulation, they are coincubated with cytokines IL-2, IL-4, IL-7 and IL-15 on in vitro. IL-4 and IL-15 appears to exceed IL-2 and IL-7 in their T cell sparing effects. The T cell-cytokine cultlure conditions are given in Vella A T et al., Proc Natl Acad Sci 95:3810-5 (1998).

[1200] In an additional embodiment. CD25 positive T cells are also activated by SEs in vitro and in vivo (Rosendahl A et al., Infect Immun 5:5118-24 (1997) and inhibit the activity of the tumor cytotoxic T cells. Depletion of CD25+ T cells with a single injection of 0.4 mg of anti-CD25-depleting antibody resulted in an anti-tumor effect (Sutmuller R P M et al., J. Exp. Med. 194: 823-832 (2001). Accordingly, T cells for use in adoptive therapy are depleted of CD25+ T cells in vitro using anti-CD25 antibodies in quantity sufficient to reduce the CD25 population to undetectable levels. These antibodies are introduced 5 to 72 hours after stimulation to the T cells with superantigen. The CD25 depeted T cell population is then expanded in IL-2 (and/or other cytokines shown to be optimal for sparing T cells from apoptosis as given in Vella A T et al., supra and previous patents and patent application in this line), collected and administered to the patient.

EXAMPLE 8 Prevention of Anergy in T or NKT Tumor Specific Effector Cells

[1201] The SAg stimulated tumor specific effector T cells used for adoptive immunotherapy of cancer may not function when infused unless measures are taken to prevent T cell anergy or activation-induced cell death (AICD) by interdicting the Fas mediated pathway. The Fas ligand (FasL) has been identified as a type II transmembrane polypeptide of the TNF family. These two related receptor-ligand systems signal apoptosis through closely related but distinct pathways. T cell phenotypes that have diminished expression of Fas or FasL show delayed anergy induction and shortened periods of non-reactivity compared to Fas-expressing cells. Activation-induced cell death (AICD) induced by SAgs in vitro or in vivo is averted using Fas-deficient T cells, including those with down-regulated Fas or FasL receptors as well as those with masked or blocked Fas receptors. A Fas-IgG fusion protein is added during the SAg activation phase to prevent AICD or anergy induction. Measures such as those above (or by treating with anti-CTLA-4 antibodies or activation of CD28 before, during, or after STCT stimulation) protect T cells from anergy or AICD. In this way, these manipulations prolong T cell survival in vitro and enhance tumoricidal activity in vivo after the T cells are activated by tumor associated antigen plus SAg or tumor associated antigen-SAg conjugates in vitro.

[1202] SAg nucleotide alone or fused to tumor peptide nucleotide may be further fused with an antisense nucleotide capable of inhibiting the apoptosis pathway.

[1203] When expressed in T cells, this combination of genes would promote the generation of tumor specific effector T cells which would be resistant to AICD. Oligonucleotide antisense molecules that inhibit key steps leading to apoptosis may be fused to SAg DNA in order to prevent the T cells from undergoing AICD. SAg DNA may also be fused with the multi-drug resistance (MDR) gene to make the T cells refractory to chemotherapeutic agents and sensitive to anti-apoptosis drugs. Certain drugs or radiation may be used together with SAg DNA for additive or synergistic inhibition of the apoptosis pathway in the doubly or multiply transfected T cells.

[1204] SAg DNA may also be linked operatively to promoter genes such as those inducible by corticosteroids or heavy metals (e.g., the metallothionein promoter) and regulatory DNA sequences that act as T cell on/off sensors responsive to exogenous cytokines, inflammatory stimuli and changing external conditions such as oxygen tension and pH. A particular advantage of SAg DNA is that its expression will promote V receptor downregulation and internalization so that these receptors are unavailable to exogenous SAg. SAg DNA is modified in several ways to introduce protein binding sites for key transcriptional elements which may inhibit apoptosis. Insertion of such sites at the bending domains of SAg oligonucleotides renders them capable of inducing key TH-1 cytokines and cell proliferation while averting AICD.

[1205] SAg DNA is also capable of reversing the T cell anergy and signaling defect which may be localized to the chain in cancer patients. This is accomplished by providing transcriptional binding sites on the SAg DNA which bypass the conventional chain activating signals and the pathway to IFN and IL-2 production. In the same way, SAg DNA also bypasses the defective signal by activating a complex that contains STAT-1 which binds a GAS-like palindromic sequence located in the IFN response region of the FCRI gene. Such anergy in T cells may also be reversed by alternate cytoplasmic tails that are activated by SAg binding to the TCR V&agr; and V&bgr; chains. Moreover, nucleic acid encoding Protein A and especially domain D (that binds to the Ig VH3 region) may be fused to SAg DNA in order to bring about activation of the IL-2 and IFN genes that resulting in T cell proliferation and IFN production coupled with up-regulated surface receptors for the Ig VH3 domain.

[1206] Anergy in SAg-activated tumor-specific T or NKT effector cells (or hybridomas) is known to be averted by in vitro or in vivo co-administration of IL-2, IL-1, LPS and tumor specific peptides specifically interfere with SAg driven anergy.

[1207] Methods and doses for use of these agents with SAg activated T or NKT cells are given in Examples 7, 15, 16, 18-23.

[1208] Tumor specific T or NKT effector cells or hybridomas prepared by various methods described above are administered according to the adoptive therapy protocol of Examples 7, 15, 16, 18-23 (the preferred method). The experimental tumor models and human cancers for which the anti-cancer efficacy of these cells can be demonstrated are provided in Example 16.

EXAMPLE 9 Reactivation of Anergized Tumor-Specific T or NKT Cells by SAg and SAg Receptors

[1209] Preferred tumor-specific effector cells for adoptive immunotherapy of cancer are autologous T cells. However, in the course of tumor growth, T cells become anergized to the host's own tumor and are incapable of an adequate immune response to the tumor. Dampened TCR-triggered responses are caused by suppression of effector molecules that couple cell surface receptors to early and late intracellular signaling events. For example, basal and induced tyrosine phosphorylation of many signaling proteins is reduced due to deficits at multiple points, including the inositol phosphatase pathway. This down-regulates cytokine production and decreases nuclear transcription factors of TH1 helper cells.

[1210] Two functionally distinct signal transduction pathways are coupled to the TCR. Native or mutant SAgs activate anergic T cells via an alternate pathway without the conventional increases in Ca++ mobilization or detectable phosphatidylinositol hydrolysis that follow ligation of the TCR by peptide/MHC complexes. Native, mutant or derivatized SAgs are administered to stimulate anergized T and/or NKT cells to become tumor-specific effector cells now fully reactive against tumors. Such cells are-used also in adoptive immunotherapy of cancer as described in Examples 7, 15, 16, 18-23. Nucleic acid constructs comprising DNA encoding SAg and SAg receptor are provided to reverse T cell anergy in cancer patients.

[1211] Anergic T (or NKT) cells transfected with DNA encoding a SAg receptor express the receptor on the cell surface. Binding of exogenous SAg to this receptor generates T cell activating signals, so that the activated T cells can be used for adoptive immunotherapy.

[1212] DNA encoding a SAg peptide is transfected into cancer patients' anergized T and/or NKT cells. These DNA constructs also contain the ISS (described above). The T and/or NKT cell transfectants have revitalized proliferative activity when stimulated by tumor-specific antigen and exogenous SAg. The cells are used for adoptive immunotherapy of cancer (Examples 7, 15,16, 18-23).

[1213] Anergic T cells from cancer patients are transfected in vivo or in vitro, resulting in a population of tumor reactive effector T cells in vivo or ex vivo. The ex vivo transfected T cells are used for adoptive immune therapy as described in Example 15, 16, 18-23. In the case where SAg receptor is expressed by transfected T cells, these cells are activated by locally or systemically by SAgs to result in tumor-specific effector cells.

[1214] Additional manipulations that assist in restoring responsiveness to anergic T cells include removal of the (T or NKT) cells from the immunosuppressive microenvironment and transfer into tissue culture for a short period before stimulation with SAg. Furthermore, defective signaling in patient T or NKT cells may be reconstituted by transfection with DNA encoding CD3-2 or fyn that is either in a single construct with, or cotransfected with, DNA encoding SAg and/or SAg receptor. Now, surface activation of the SAg receptor triggers CD3− signaling and T cell proliferation.

[1215] SAg activation of a T cell surface ganglioside (such as GD3) is also used to reverse T cell anergy in cancer patients. SAg coupled to GalCer, lipopolysaccharides or proteosomes are even more effective in activating such anergized T cells. Coordinate activation of CD69 with phorbol esters in combination with SAg stimulation also reverses T cell anergy.

EXAMPLE 10 Tumor Specific Effector T or NKT Cells as Lymphoid Organoids

[1216] Tumor specific T and/or NKT effector cells (or hybridomas with such cells) are prepared ex vivo in the form of a lymphoid organoid and implanted into tumor-bearing hosts. The organoid consists of the tumor specific lymphocytes either activated by SAgs, transfected to express SAg alone or in combination with the other proteins or anti-tumor moieties described herein. The cells are encased in semi-permeable membranes that allow for their progressive entry into the blood and lymphatics after implantation into the host. Such organoids are implanted preferentially at sites adjacent to lymphatics or blood vessels that drain organs or regions of known tumor involvement. However, they may also be implanted subcutaneously, intraperitoneally in addition to intra-tumorally or adjacent to a tumor site. The advantage of the organoid is that it continuously provides proliferating tumor-specific effector cells that recognize traffic to tumor sites in a physiological manner. This approach avoids negative selection, functional deficiencies and storage problems associated with long term cultured cells.

[1217] Organoids are encased in macrocapsules, sheaths, rods, discs, or spherical dispersions or microcapsules. Microcapsules are made of hydrogels such as polysaccharide alginate that are optionally coated with polyanions and again with alginate. Macrocapsule and vascular devices consists of acrylonitrile-vinyl chloride copolymers or cellulose nitrate membranes. In one approach, scaffolds composed of synthetic polymers serve as cell transplant devices. The polymers are degradable or non-degradable materials that disappear from the body after they perform their function to obviate concerns about long-term biocompatibility.

[1218] These devices serve as structural and functional tissue units by the transplanted cells. The open system implants are designed so that the polymer scaffold guides cell organization and growth and allows diffusion of nutrients and cells. The cell polymer matrix is pre-vascularized or becomes vascularized as the cell mass expands after implantation. Vascularization is induced naturally by the host or artificially by secretion of angiogenic factors from host cells. Optionally, the angiogenic proteins are genetically engineered into the host T cells in vitro before implantation or in vivo before or after implantation.

[1219] To maintain or facilitate targeting of the cells to tumors or involved organs, the lymphocytes are transfected with DNA encoding polypeptides that enhance homing and trafficking ability to the sites of tumor burden (e.g., brain, liver, lung). The organoid lymphocytes express no CTLA so that they may proliferate (in vitro and in vivo) without the need for exogenous IL2. Alternatively, cells are transformed to express herpes simplex virus thymidine kinase, making them susceptible to killing by gancyclovir. This curtails uncontrolled proliferation caused by the CTLA-4 deletion (or inhibition). Exogenous control of antitumor activity is achieved through the use of inducible promoters, such as those responsive corticosteroids or metals.

EXAMPLE 11 Tumor Specific Effector Cells or Tumor Cells Expressing Protein A, Protein A Domains and/or Angiostatin

[1220] It is desirable to express Fc receptors (FcR) or Ig VH3 domains on tumor cells to promote binding by immunoglobulins and enhance damage by antibody dependent cellular cytotoxicity. By introducing Staphylococcal Protein A, or its domains A-D into tumor cells which overexpress FcR and VH3 the tumor cells bind immunoglobulins (including those with &agr;-gal specificity). Signaling of T cells occurs via high affinity binding to FcR (FcRI) of protein A-IgG complexes; such binding bypasses the CD3− blockade in tumor bearing patients. These transfected tumor cells are useful as a vaccine. Likewise, nucleic acids encoding protein A and its domains A-D are transfected into partially or fully anergized T or NKT cells of cancer patients. Exogenous immunoglobulins stimulate the generation of tumor-specific effector T or NKT cells which are used in adoptive immunotherapy (Examples 7, 15, 16, 18-23).

[1221] DNA encoding Staphylococcal protein A and its domain D are co-transfected into these tumor cells resulting in the joint surface expression of: (1) protein A and FcR to which it binds and/or (2) domain D and Ig VH3 to which it binds.

[1222] When DNA encoding protein A or domain D, fused to a signal sequences that route and anchor the protein A peptide to the tumor cell surface, is introduced into tumor cells, such tumor cells are excellent targets for parenterally administered SAg polypeptides (particularly those for which no natural antibodies exist). Tumor cells expressing protein A and domain D and also expressing FcRs on the cell surface, have heightened sensitivity to complement mediated lysis.

[1223] Tumor cells cotransfected to express protein A and Gal (by introduction of the appropriate glycosyltransferase) are capable of reacting with natural anti-Gal antibodies, Ig Fc fragments and Ig VH3 domains, which stimulate an enhanced tumoricidal response.

[1224] Angiostatin is a circulating angiogenesis inhibitor which is 38-kDa internal fragment of (mouse) plasminogen that contains the first four disulfide-linked kringle domains. In vivo, angiostatin suppresses neovascularization in several traditional assays (chick chorioallantoic membrane assay and mouse corneal assay). Proteases released by tumor cells cleave circulating plasminogen to generate angiostatin. Metalloelastase produced by tumor infiltrating macrophages generated angiostatin production by murine Lewis lung carcinoma. In the present invention, nucleic acid encoding angiostatin (Cao Y et al., J. Clin. Invest. 101: 1055-1063, (1998)) are cotransfected into tumor cells with nucleic acid encoding SAg (as in Example 1). The tumor cell cotransfectants express and secrete SAg and angiostatin. Such cells are used directly as a preventative vaccine (Example 8) or as a therapeutic vaccine to treat established tumor including micrometastases. Methods for using these cells in vivo are in Examples 7, 12, 16, 18-23.

[1225] In addition, tumor cells are cotransfected to express angiostatin and protein A (and/or its domains). Any nucleic acid construct shown in Table I may also be used in combination to transfect tumor cells together with protein A, its domains and angiostatin.

EXAMPLE 12 SAg Receptor

[1226] Colon carcinoma is used as the tissue source for the SEB receptor. Mixtures of different detergents at low concentrations are used. The protocol for screening detergents for solubilization of MAChRs is readily adaptable to other receptor types. The membranes are suspended for 5-10 min at pH 7.5, 20 mM Tris-HCl, pH 7.5, or 20 mM sodium phosphate, pH 7.0-7.5. For screening purposes it is unnecessary to add complex proteolysis inhibitor cocktails. The presence of EDTA (1 mM) to inhibit calcium-activated proteases and of PMSF or benzamidine (0.1 mM) to inhibit serine proteases is sufficient. Mg2++ (2 mM) is added. The membranes are prelabelled with a radioligand in the presence and absence of a suitable unlabelled ligand to determine the total and non-specific binding. Non-specific binding is subtracted from total binding to obtain the specific binding. A high enough concentration of labeled ligand to saturate the binding site (10×Kd) is used, so that the binding capacity is measured. The unlabelled ligand is used at a concentration of 1000×Kd. The normal criteria for specific binding must be fulfilled. The incubation is sufficient to reach equilibrium. Prelabelled membrane suspension (0.5 ml) is added to a series of centrifuge tubes a 4° C. An equal volume of detergent solution in the same buffer is added to obtain a series of different final detergent concentrations, e.g., 0, 0.1, 0.2, 0.5, 1.0, 2.0% w/v.

[1227] The tubes are mixed and incubated for 60 min. at 4° C. Solubilization is assisted by stirring or mixing, e.g., with a rotating-wheel end-over-end mixer. The tubes are centrifuged for 30-60 min at 100,000×g for 60 min. For screening, a lower speed spin, e.g., 10,000×g for 5 min (such as in a microfuge) is acceptable. Supernatant, 0.2 ml, is applied to a 2 ml column of Sephadex G50 equilibrated with the selected detergent at 0.1%. When the sample has run in, 2 x 0.2 ml of detergent-buffer is applied and then the void volume fraction is eluted with 0.5 ml of detergent buffer. This procedure is carried out, the remaining material is removed, and 10 ml of aqueous scintillation cocktail is added and the radioactivity counted. Sephadex G50 is substituted for G50F for hydrophilic ligands, which do not partition into detergent micelles. This gives a more rapid separation. The recovery of specifically bound ligand is calculated in absolute terms:

bound ligand=(dpm (total)−dpm (non-spec.)×5/(2220×spec. act) pmol/ml

[1228] An aliquot of the pellets is resuspended and counted to calculate recovery of unsolubilized receptors. The concentration of protein in the solubilized supernatant is measured, for example, by measuring UV absorbance at 280 nm against a detergent-buffer blank. (If necessary, the supernatant is diluted to get the absorbance on scale.) Protein concentration in the solution is approximately equal to the absorbance at 280 nm.

[1229] Alternatively, the Lowry method is used. The above steps are repeated without first prelabeling the receptors in the membrane. Instead, the solubilized supernatantis incubated in the absence and presence of labeled ligand. Again, concentration of the labeled ligand is used that saturates the binding sites. Incubation is carried out for 2 h at 4° C., and the binding is assayed by gel filtration as above. The pellet is resuspended and assayed for residual binding to check overall recovery. The molecular size of the receptors in solubilized preparations is estimated by a combination of gel filtration chromatography and sucrose density gradient centrifugation in H2O and D2O. Affinity chromatography is the principal method use for purification of all of the receptors, combined with gel permeation HPLC, and ion exchange. SDS PAGE is carried out on the final product. Affinity chromatography is carried out using immobilized SEB, and the column is eluted with acid buffer or different concentrations and ionic strengths of eluting buffer.

[1230] Determination of amino-acid and oligonucleotide sequences of SAg receptors

[1231] Receptor material is eluted from the SDS-PAGE, and the N-terminal amino acid sequence is determined. When free amino termini are not available, the purified receptor material must be subjected to partial hydrolysis. The specific cleavage of peptide bonds is performed with endoproteases, such as V8 protease or trypsin, or with chemicals such as cyanogen bromide(CNBR). The resulting peptides are separated by SDS-PAGE when they are over residues or by reverse phase HPLC. The peptides thus analyzed are subjected to amino-acid sequence analysis with a gas phase or solid phase sequencer.

[1232] Antibodies are raised against the peptides, and the resultant antibodies used to confirm that the peptide is a part of the receptor by immunoprecipitation or Western blot.

[1233] To determine the full sequence of the receptor gene, oligodeoxynucleotide probes synthesized on the basis of peptide sequences are used to screen an appropriate cDNA library. Either a mixture of relatively short oligonucleotides with all possible sequences or a relatively short oligonucleotides with a sequence based on codon usage frequency is used. Genomic libraries as well as cDNA libraries are screened to obtain genes for receptors and to deduce their amino acid sequence. The amino acid sequence deduced from the nucleotide sequence is compared to the known sequences of other receptors. Among the useful structural information derived from the sequence analysis is the hydropathy profile. The presence of hydrophobic domains with a length of approximately 20 amino acids residues suggests that the regions are transmembrane segments. Genomic or cDNA clones ligated into expression vectors are used to transform suitable cell lines.

[1234] Alternatively, mRNA transcribed from these clones is injected into recipient cells such as Xenopus oocytes. The expression of receptors in these cells is confirmed by measuring ligand binding, reactivity of cell homogenates or membrane preparations with antibodies or the responses induced by receptor agonists in recipient cells. The direct function of the receptors is elucidated by reconstituting purified receptors in phospholipid vesicles with or without other components.

[1235] An additional method is based on the isolation of cDNA or genomic clones for receptors without using purified receptors. The structure of receptors and cellular responses to them is examined using these clones. Substantial amounts of receptor material is produced from these clones. Monoclonal antibodies to the SAg receptors are used to screen clones for receptors derived from cDNA libraries constructed with expression vectors.

[1236] Transfection of SAg receptor involves the ligation of the receptor gene into an appropriate expression vector, transformation of a suitable bacterial host, and isolation of an individual bacterial colony containing the plasmid vector. The plasmid DNA is harvested from the lysed bacteria. The preferred method of purification of plasmid DNA for use in transfections involves Triton-lysozyme equilibrium gradient. The cells to be used in transfection are maintained in the log phase of growth at all times. The calcium phosphate method is useful and efficient means for introduction of cloned genes in plasmid vectors into mammalian cells as described earlier in this document is preferred. However, the other methods given are useful as well. A partial list of plasmid vectors and promoters suitable for transfection of cultured mammalian cell is given in Fraser, C. M., Expression of Receptor Genes in Cultured Cells in Receptor Biochemistry, A Practical Approach, Hulme, E. C., ed., Oxford University Press, pp. 263-275, 1993.

EXAMPLE 13 Avoiding Interference with SAg-Specific Antibodies

[1237] Naturally antibodies are found in mammals that are specific for the SAg molecule (e.g., a Staph enterotoxin). Such antibodies bind and interfere with the SAg expressed and secreted by transfected cells. Such antibodies also hinder therapeutic action of SAg infused directly (as native protein, peptide or fusion protein).

[1238] It is desirable to neutralize or otherwise remove such before the cells of this invention are administered to a subject. One way to achieve this is to pre-treat the subject with antiidiotypic antibodies specific for the variable region of SAg-specific antibodies. Another way is to infuse SAg peptides that represent the major immunogenic portions of the overall protein. Alternatively, SAg is immobilized to a solid support by covalent bonding and the blood or plasma is perfused extracorporeally through a device containing the immobilized protein, thereby removing the antibodies by immunoadsorption. In another approach, SAg-expressing cells (prokaryotic or eukaryotic) preferably of host origin, or phage displays, are encapsulated and used as immunoadsorbents to binds circulating SAg-specific antibodies. An organoid containing these adsorbing cells is positioned subcutaneously or placed into the circulation via catheter and then removed once the adsorption process is complete. Alginate encapsulated cells expressing SAg are preferred but other known modes of cell encapsulation may be used. Liposomes with surface-bound SAg are another form of immunoabsorbent that are employed either as an organoid or by direct injection.

[1239] Induction of Immunological Tolerance

[1240] The induction of tolerance to epitopes of the SAg molecule which induce a humoral antibody response would be desirable. The portion of the SEA molecule which binds to natural antibodies is the linear sequence of residues 232-262. Immune tolerance is induced using this sequence by the method of Dintzis et al., Proc. Natl. Acad. Sci. 89: 1113-1117 (1992). in which low molecular weight peptide arrays are administered to patients with circulating antibodies to enterotoxins. The peptides are delivered parenterally or orally once weekly in doses of 1-500 mg/kg for three to six weeks after which there is a reduction and disappearance of circulating antibody specific for the tolerogen.

[1241] After one or more of the foregoing treatments, native SAg or SAg conjugated to a monoclonal tumor-specific antibody and administered to the host can now localize to tumor sites without diversion by circulating SAg-specific antibodies.

[1242] Phage Displayed SAgs

[1243] Phage display technology may also be used neutralize circulating anti-enterotoxin antibodies. The SAg and/or SAg receptor is expressed at the surface of bacteriophage as a fusion protein with the gene VIII protein (gVIIIp). This phage-displayed SAg fusion protein retains the properties of the natural protein. For this invention, the filamentous phage vector f88-4 which forms a fusion protein between the C terminus of the inserted gene product and the N terminus of gVIIIp is used. The phage expressing SEA is injected intravenously into patients that have natural antibodies to SEA. The amount of phage (transducing units) required to neutralize the circulating pool of antibodies is predetermined by antigen binding inhibition assay. The number of transducing units required to neutralize the pool of circulating SEA specific antibodies is administered intravenously. Shortly after this injection, the host is ready for treatment with active SEA which is no longer hindered from finding its “target,” i.e., enterotoxin receptors expressed by tumor cells or T cells.

[1244] SEA clone pKH-X35 is employed. PCR with Vent Polymerase 9NEB is used to mutate the 5′- and 3′-ends of the SEA gene for cloning into f88-4. The construct is as follows. The 5′ oligonucleotide used is 5′-CTCCAAGCTTTGVCCAGCGAGAAAAGCGAAG-3′. Two 3′ oligonucleotide primers are used. For the construct with the five amino acid linker between SEA and gVIIIp (SEA L), the primer 5′-GCCTCCTGCAGATCCACCGCCTCCGGATGT-ATATAAATATATATC-3′ and for the non-linker version (SEA-P); 5′-GCCTCCTGCAGATGTATATAAATATATATC-3′ are used. The two SEA PCR products are cut with HindIII and PstI and cloned into f88-4. They are transformed by electroporation into E. coli strain DH5a and sequenced. Phage are produced by growing the transformed bacteria overnight in 0.5 L of broth with 20 mg/ml tetracycline. The culture is pelleted twice (800×g for 15 min) and the phage precipitated out of the cleared supernatant by the addition of 0.15 vols. of PEG/NaCl solution (17% PEG 8000, 19% NaCl in water). After incubation at 4° C. for 2 hours, the phage are resuspended in TBS and sterile-filtered through a 0.22-m membrane. Phage are selected by the micropanning technique and by cell binding. Binding to antibody is assessed by attaching mAb to the surface of 96-well ELISA plates, blocking with 1% BSA, incubating with 100 mg/ml of SEA or PBS as a control and then incubating with the various phage preparations for >2 hours at 4° C. The phage is then eluted with 0.1 M HCl pH 2 (adjusted with glycine) for 10 minutes, neutralized and used to infect starved E. coli MC0161 F′ Kan. The infected bacteria are then spread on tetracycline (20 mg/ml) LB agar plates. After overnight culture tetracycline resistant colonies are counted representing the number of transducing units (TU) recovered. To determine the number of SEA-bearing phage among the tetracycline-resistant colonies, colony blotting is performed by standard techniques probing with a 32P-labeled SEA probe. An antibody based variant of this technique is involves probing with a rabbit anti-SEA serum as for Western blots.

[1245] Chimeric Enterotoxins

[1246] Likewise, hybrid or chimeric SAgs that are non-immunogenic are used to stimulate cells. When these molecules are injected into hosts that have natural antibodies, they are not rapidly eliminated from the circulation. Such chimeric molecules lacking the binding site for natural antibodies preserve the T cell mitogenic and cytokine-inducing properties of the native SAg. A peptide sequence from another SAg to which antibodies do not exist is substituted using genetic or biochemical methods well known in the art. This is particularly useful in the case of enterotoxins such as SEB or SEA to which a large percentage of humans have naturally occurring circulating antibodies. The antibody binding region of these molecules near the C terminal regions is delineated. The substitution of the antibody binding sequences in SEA or SEB for sequences from SEE or SED to which a very small number of humans have circulating antibodies markedly enhances the tumor killing efficacy of the injected chimeric enterotoxins.

[1247] A hybrid molecule consisting of a 26 amino acid peptide corresponding to the N-terminal portion of SEA, the loop structure of SEA, a conserved mid-molecular sequence of SEA and SEB, and a C terminal sequence of SEB was synthesized in collaboration with Multi-Peptide Systems, La Jolla, Calif. Peptides were prepared using a variation of Merrifield's original solid phase procedure in conjunction with simultaneous multiple peptide synthesis using t-Boc chemistries. Peptides were cleaved from the resins using simultaneous liquid HF cleavage. The cleared peptides were then extracted with acetic acid and ethyl ether and lyophilized. Reverse phase HPLC analysis and mass spectral analysis revealed a single major peak with the molecular weight corresponding closely to theoretical.

[1248] Synthetic SAgs

[1249] Amino acid sequences of SEA and SEB known to be involved in the interaction with the TCR and MHC class II molecules are retained. The loop structure of SEA is retained because it is devoid of histidine moieties that are associated with the emetic response. Residues 1-10 of the N-terminal region of SEA are retained because they have MHC class II binding activity. The loop structure of SEA is retained because it and associated disulfide linkages are considered to be important for T lymphocyte mitogenicity, stabilization of the molecule, and resistance to in vivo degradation. A conservd sequence in the central portion of SEA and SEB adjacent to the disulfide loop (amino acids 107-114) was retained. Histidine moieties are deleted from the molecule because of their association with the emetic response.

[1250] Synthesis Procedure

[1251] The preparation of all pptides was carried out using a variation of Merrifield's original solid phase procedures in conjunctio with the method of Simultaneous Multiple Peptide Synthesis using t-Boc chemistries (Merrifield R B I, J. Amer. Chem. Soc. 85:2149-2154 (1963)); Houghten R A, Proc. Natl. Acad. Sci. USA 82:5131-5135 (1985); and Houghten R A et al., Intact. J. Peptide Protein Res. 27:673-678 (1985)).

[1252] 4-methylbenzhydrylamine (mBHA) and phenylacetamidomethyl (PAM) resins were purchased from Advanced Chemtech (Louisville, Ky.) and Bachem (Torrance, Calif.), respectively. All of the amino acids contained the t-butyloxycarbonyl (t-Boc)-amino protecting group and were purchased from Bachem. The side chain protecting groups included benzyl (threonine, serine and glutamic acid), chlorobenzyloxycarbonyl (lysine), bromobenzyloxycarbonyl (tyrosine), cyclohexyl (aspartic acid), p-toluene sulfonyl (arginine), formyl (tryptophan), methyl benzyl (cysteine), and dinitrophenyl or benzyloxycarbonyl (histidine). Cysteine with the HF stable acetamidomethyl (ACM) protecting group was used, upon request, for internal cysteines. Each lot of amino acid derivative was tested by melting point analysis. Reagent grade methylene chloride (CH2C12), isopropanol (IPA), and dimethylformamide (DMF) were obtained from Fisher Scientific (Tustin, Calif.). diisopropylcarbodiimide (DIPCDI) and diisopropylethylamine (DIEA) were purchased from Chem Impex (Wood Dale, Ill.). Trifluoroacetic acid was purchased from Halocarbon (Hackensack, N.J.).

[1253] The appropriate resin, mBHA for C-terminal amides and PAM for C-terminal acids, was weighed with a Mettler AE 240 balance (Highstown, N.J.) into separate polypropylene mesh (74 mm) packets which had been pre-sealed on 3 of 4 sides using a TSW TISH-300 Impulse Sealer (San Diego Bag and Supply; San Diego, Calif.). Each packet was also pre-labeled with a reference code using a KOH I NOOR Rapidograph pen with graphite based ink to allow them to be easily identified during resin addition and during the synthesis process. Each packet was then carefully sealed completely to make sure there would be no resin leakage. All the resin containing packets (up to 150) were then placed in a common Nalgene bottle. Enough CH2C12 to cover all the packets was then added to the bottle, which was then capped and vigorously shaken for 30 seconds on an Eberbach Shaker (Fisher Scientific; Tustin, Calif.) to wash and swell the resin. The CH2C12 solution was then removed. All subsequent steps involved the addition of enough solvent to cover all the packets and vigorous shaking to ensure adequate solvent transfer. The N—t-Boc was removed by acidolysis using a solution of 55% TFA in CH2C12 for 30 minutes, leaving the TFA salt of the a-amino group. The TFA wash solution was then removed. The packets were then washed for 1 min with CH2C12 (2×), IPA (2×) and CH2C12 (2×) to squeeze out excess TFA and to prepare for neutralization. The TFA salt was neutralized by washing the packets three times with 5% DIEA in CH2C12 for two minutes each. This was followed by two washes with CH2C12 to remove excess base.

[1254] The resin packets were then removed from the common Nalgene bottle and sorted according to computer generated checklists in preparation for coupling. This was double checked to ensure the packets were added to the correct amino acid solution. The packets were then added to bottles containing the appropriate 0.2 M amino acid in CH2C12 and/or DMF depending on solubility. These solutions were also prepared using computer generated information. An equal volume of 0.2 M DIPCDI was then added to activate the coupling reaction. The bottles were then shaken for one hour to ensure complete coupling. At completion, the reaction solution was discarded and the packets were washed. with DMF for 1 min to remove excess amino acid and the by-product, diisopropylurea. A final CH2C12 wash as then used to remove DMF. The packets were then removed from their individual coupling bottles and placed back into the common Nalgene bottle.

[1255] The peptides were then completed by repeating the same procedure while substituting for the appropriate amino acid at the coupling juncture. The packets were then taken through a final acidolysis along with subsequent CH2C12, IPA and CH2C12 washes to leave the peptides in the TFA salt form. The packets were then dried in preparation for the next process.

[1256] Final side chain deprotection and cleavage of the anchored peptide from the resin was achieved through simultaneous liquid HF cleavage (Houghten R A et al., supra.

[1257] Gaseous N2, HF, and argon were acquired from Air Products (San Diego, Calif.). Anisole was purchased from Aldrich Chemical Co. (Milwaukee, Wis.). Acetic acid (HOAc) and ethyl ether were purchased from Fisher Scientific (Tustin, Calif.). Each packet along with a Teflon coated stir bar was placed into an individual reaction vessel of a multi-vessel hydrogen fluoride apparatus (Multiple Peptide Systems; San Diego, Calif.). An amount of anisole equaling 7.5% of the expected volume of HF was then added to act as a carbonium ion scavenger. The reaction tubes were lubricated with vacuum grease at the point where each contacts the apparatus and sealed onto the HF system. The system was then purged with N2 while cooling the reaction vessels to −70° C. using an acetone/dry ice bath. HF (g) was condensed to the desired level and temperature elevated to −10° C. using ice and water. The reaction was allowed to proceed for 90 minutes with the temperature slowly rising from −10° C. to 0° C. HF was removed using a strong flow of N2 for 90 minutes followed by the use of aspirator vacuum for 60 minutes while maintaining the temperature at 0° C. The reaction vessels were then removed from the apparatus and capped. The residual anisole was removed with two ethyl ether washes. The peptide was then extracted with two 10% HOAc washes. A 50 ml sample of the crude peptide was taken and run on an analytical Beckman 338 Gradient HPLC System (Palo Alto, Calif.) using a Vydac C18 column to profile the initial purity of the compound. The crude peptide was then lyophilized twice on a Virtis Freezemobile 24 Lyophilizer, weighed and stored under argon.

[1258] Analytical RP-HPLC was used to determine the homogeneity and approximate elution conditions of the peptides produced. HPLC grade acetonitrile (ACN) was purchased from Fisher Scientific (Tustin, Calif.). HPLC grade TFA was obtained from Pierce Chemicals (Rockford, Ill.). RP-HPLC analysis was carried out on a Beckman 338 Gradient HPLC system (Palo Alto, Calif.) equipped with a BioRad AS-100 autosampler and a Shimadzu CR4A integrator. The column used for all analyses this quarter was a Vydac C-18 column (4.6×250 mm). The solvent system used was 0.05% aqueous TFA (A) and 0.05% TFA in ACN (B) with a flow rate of 1 ml/min. Absorbance was measured at 215 nm. Most peptides were analyzed using the following special gradient; 5.60% (B) in 28 minutes. Hydrophobic peptides were analyzed using the following special gradient: 5-40% (B) in 9 minutes, 40-90% (B) for 10 additional minutes, 95% (B) for the last 9 minutes.

[1259] Analytical data was reviewed. The product peak was identified and marked based upon knowledge of common impurities and the use of predicted HPLC retention times.

[1260] Peptides that did not meet normal purity requirements for crude material were purified using preparative RP-HPLC techniques. HPLC grade acetonitrile (CAN) was purchased from Fisher Scientific (Tustin, Calif.). HPLC grade TFA was obtained from Pierce Chemicals (Rockford, Ill.). Purification was carried out on a Waters Delta Prep 3000 with a Preparative Waters Prep Pak Module Radial Compression C18 column (5 cm×25 cm, 10-20 m). The solvent system used was 0.05% aqueous TFA (A) and 0.05% TFA in ACN (B). The crude peptides were solubilized in an HOAc/H20 mixture and injected onto the column with 0.25% to 0.50% ACN per minute linear gradient. The absorbance was measured at 230 nm and 40 ml fractions were collected upon elution with an ISO Fraction Collector (Lincoln, Nebr.). The preparative profile was reviewed and selected fractions were analyzed by analytical RP-HPLC. The analytical data was reviewed and fractions were combined and lyophilized. The lyophilized material was weighed, sampled for a final analytical RP-HPLC analysis and stored under argon in powder form. This process was repeated if the purity level attained was not sufficient.

[1261] Mass spectral analysis was used to determine the molecular weight of the peptides produced. 95% ethanol was purchased from Fisher Scientific (Tustin, Calif.). HPLC grade TFA was obtained from Pierce Chemicals (Rockford, Ill.). Nitrocellulose matrices (targets) were purchased from Applied Biosystems (Foster City, Calif.).

[1262] The samples were solubilized in a 1:1 solution of 95% ethanol and 0.1% TFA (aqueous). The samples were applied to a nitrocellulose matrix (Target). The mass spectra were obtained using an ABI Bio-Ion 20 Mass Spectrometer (Foster City, Calif.). The apparatus makes use of plasma; desorption ionization via a Cf252 source. The ionized molecules are then analyzed via time-of flight. An accelerating voltage of 15,000 V is used to accelerate the particles.

[1263] The Protocol for Intramolecular Disulfide Bridge:

[1264] Dissolve crude peptide (300-500 mg) in 200 ml of deoxygenated water and adjust the pH to 8.5 using NH4OH 28%=Solution A. Note: If the peptide is not very soluble in water, some MeOH can be added.

[1265] Dissolve 0.5 g K3Fe(CN)6 in 200 ml of deoxygenated water and adjust the pH to 8.5 using NH4OH 28%=Solution B. Note: 0.5 g K3Fe(CN)6 is an average value for 500 mg of a 10 mer peptide. The excess of K3Fe(CN)6 should be approximately 3×. It can be adjusted.

[1266] Solution A is then dropped slowly into solution B over a 2 hour period. The mixture is then allowed to react, for an additional 1 hour with stirring. The pH is then adjusted to 4.0-4.5 with 10% ACTH. This solution is injected directly into a preparative RP-HPLC. The major peak is then collected. This “pseudo dilution” technique favors the intramolecular disulfide. Therefore, the major peak is the cyclic product.

[1267] The chimeric enterotoxin molecule was tested in normal rabbits and rabbits with established VX2 carcinoma. It was administered intravenously and peripherally with adjuvant. The chimeric molecule (1 mg/ml) was diluted initially in 1 ml of sterile H20. When the solution was clear, 9 ml of normal saline was added. The solution was filtered through a 0.45 m filter and stored in 0.5-1 ml aliquots. Dosage ranged from 2.6-5.0 mg/kg and was described over 3 minutes via the lateral ear vein in a volume of 0.05 ml diluted further in 1.0 ml of 0.15 M NaCl:

[1268] The i.v. line was then washed with 3 ml of 0.15M NaCl.

[1269] In two animals, the temperature rose only 0.3 F over the ensuing 24 hours and there was no discernible toxicity over the ensuing 14 days of observation. One animal was described a second dose of the chimeric molecule in pluronic acid triblock adjuvant. This was described in a dose of 8.5 mg subcutaneously in each thigh with a total dose 5 mg/kg. The pluronic acid triblock preparation was prepared as follows: 4.23 cc PBS; 0.017 cc Tween; 0.05 cc Squalene; and 0.25 cc Pluronic. The PBS and Tween were mixed first then squalene was added followed by pluronic acid. The total mixture was vortexed for 3-4 minutes. Two ml of above plus 0.34 ml of the chimeric protein (34 mg) plus 1.66 cc PBS were added to the mixture. The mixture was vortexed vigorously for 1-2 minutes. One ml was injected into each thigh (total vol. injected was 0.17 ml or 17 mg protein or 5 mg/kg).

[1270] For nearly 5 weeks after injection, no adverse effects were noted. The tumor showed slow, but progressive growth over this period of time. To date, the chimeric enterotoxin molecule appears to be safe in animals and no untoward side effects were demonstrated. The adjuvant used for these studies was the pluronic acid triblock copolymer which has been used to boost the immune response to various antigens in animal models and which is under testing at this point in humans with hepatitis and herpes simplex infections. Other adjuvants including those prepared in water and oil emulsion and aluminum hydroxide to administer various SAgs in vivo to tumor bearing rabbits were also used.

[1271] Additionally, enterotoxins such as SEE, SED, SEC, and TSST-1 are used to prepare hybrid molecules containing amino acid sequences and homologous to the enterotoxin: family of molecules. To this extent, mammary tumor virus sequences, heat shock proteins, stress peptides. Mycoplasma and mycobacterial antigens, and minor lymphocyte stimulating loci bearing tumoricidal structural homology to the enterotoxin family are useful as anti-tumor agents. Hybrid enterotoxins and other sequences homologous to the native enterotoxins are immobilized or polymerized genetically or biochemically to produce the repeating units and stoichiometry required for (a) binding of accessory cells to T lymphocytes and (b) activation of T lymphocytes.

EXAMPLE 14 Pharmaceutical Compositions and their Manufacture

[1272] The pharmaceutical compositions may be in the form of a lyophilized particulate material, a sterile or aseptically produced solution, a tablet, an ampoule, etc. Vehicles such as water (preferably buffered to a physiological pH such as PBS or other inert solid or liquid material may be present. In general, the compositions are prepared by being mixed with or dissolved in, bound to or otherwise combined with one of more water-insoluble or water-soluble aqueous or non aqueous vehicles, if necessary together with suitable additives and adjuvants. It is imperative that the vehicles and conditions shall not adversely affect the activity of the conjugate. Water as such is comprised within the expression vehicles.

[1273] A suitable therapeutic composition is used in the treatment of cancer of any kind including but not limited to carcinomas, sarcomas, lymphomas, leukemias and comprises a combination of:

[1274] (1) a recombinant DNA molecule encoding SAg in combination with, preferably fused with, another recombinant DNA sequence encoding another protein;

[1275] (2) a recombinant DNA molecule encoding SAg-in combination with another peptide or polypeptide; or

[1276] (3) a recombinant DNA molecule encoding a protein other than a SAg in combination with a SAg peptide or polypeptide.

[1277] These compositions that may comprise more than one components are administered together or sequentially and they may be combined (separately or together) with a delivery vehicle, preferably liposomes as disclosed herein.

[1278] Upon entering its intended or targeted cells, the therapeutic composition leads to the production of SAg and a second protein that may result in (a) apoptosis of the cancer cell and (b) with or without such apoptosis, the activation of effector cells of the immune system, including any or all of the following: cytotoxic T cells, NKT cells, NK cells, T helper cells and macrophages. The present therapeutic compositions are useful for the treatment of cancers, both primary tumors and tumor metastases.

[1279] Use of the present therapeutic composition overcomes the disadvantages of traditional treatments for metastatic cancer. For example. compositions of the present invention can target dispersed metastatic cancer cells that cannot be treated using surgery. In addition, administration of such compositions is not accompanied by the harmful side effects of conventional chemotherapy and radiotherapy.

[1280] A therapeutic composition also comprises a pharmaceutically acceptable carrier defined as any substance suitable as a vehicle for delivering a nucleic acid molecule (alone or in some combination with a protein) to a suitable in vivo or in vitro site. Preferred carriers are capable of maintaining DNA in a form that is capable of entering the target cell and being expressed by the cell.

[1281] Preferred carriers include: (1) those that transport, but do not specifically target a nucleic acid molecule to a cell (referred to herein as “non-targeting carriers”); and (2) those that deliver a nucleic acid molecule to a specific site in an animal or a specific cell (“targeting carriers”). Examples of non-targeting carriers are water, phosphate buffered saline (PBS), Ringer's solution, dextrose solution, serum-containing solutions, Hank's balanced salt solution, other aqueous, physiologically balanced solutions, oils, esters and glycols. Aqueous carriers can contain suitable additional substances which enhance chemical stability and isotonicity, such as sodium acetate, sodium chloride, sodium lactate, potassium chloride, calcium chloride, and other substances used to produce phosphate buffer, Tris buffer, and bicarbonate buffer and preservatives, such as thimerosal, m- and o-cresol, formalin and benzyl alcohol.

[1282] Preferred substances for aerosol delivery include surfactant substances such as esters or partial esters of fatty acids containing from about 6-22 carbon atoms. Examples are esters of caproic, octanoic, lauric, palmitic, stearic, linoleic, linolenic, olesteric, and oleic acids.

[1283] Other carriers can include metal particles (e.g., colloidal gold particles) for use with, for example, a biolistic gun through the skin.

[1284] Therapeutic compositions of the present invention can be sterilized by conventional methods and may be lyophilized.

[1285] The compositions of the present invention are delivered using a delivery vehicle that can be modified to target a particular site in a subject. Suitable targeting agents include ligands capable of selectively (i.e., specifically) binding to another molecule at a particular site. Examples are antibodies, antigens, receptors and receptor ligands. For example, an antibody specific for an antigen on the surface of a cancer cell can be placed on the outer surface of a liposome delivery vehicle to target the liposome to the cancer cell. By manipulating the chemical formulation of the lipid portion of a liposome preparation, it is possible to modulate its extracellular or intracellular targeting. For example, the charge of the lipid bilayer of a liposome surface can be varied chemically to promote fusion with cells having particular charge characteristics. Preferred liposomes comprise a compound that targets the liposome to a tumor cell, such as a ligand on the outer surface of the liposome that binds a molecule on the tumor cell surface.

[1286] Although the DNA constructs of the present invention can be administered in naked form, a liposome is a preferred vehicle for delivery in vivo. A liposome can remain stable in an animal for a sufficient amount of time, at least about 30 minutes, more preferably for at least about 1 hour and even more preferably for at least about 24 hours, to deliver a nucleic acid molecule to a desired site.

[1287] A liposome of the present invention comprises a lipid composition that can fuse with the plasma membrane of the targeted cell to deliver the encapsulated nucleic acid molecule into a cell. Preferably, the liposomes' transfection efficiency is about 0.5 mg DNA per 16 nmol of liposome delivered to about 106 cells, more preferably about 1.0 mg DNA per 16 nmol of liposome delivered to about 106 cells, and even more preferably about 2.0 mg DNA per 16 nmol of liposome delivered to about 106 cells.

[1288] For use in the present invention, any liposome that is used in art-recognized gene delivery methods is appropriate. Preferred liposomes have a polycationic lipid composition and/or a cholesterol backbone conjugated to polyethylene glycol.

[1289] Complexing a liposome with nucleic acids for uses described herein is achieved using conventional methods. A suitable concentration of DNA to be added to a liposome preparation a concentration that is effective for delivering a sufficient amount of DNA molecules to a cell so that the cell can produce sufficient SAg and/or a other transduced protein to induce tumoricidal activity or to stimulate or regulate effector cells in a desired manner. Preferably, between about 0.1 mg and 10 mg of DNA is combined with about 8 nmol liposomes; more preferably, between about 0.5mg and 5 mg of DNA is used even more preferably, about 1.0 mg of DNA is combined with about 8 nmol liposomes.

[1290] Another preferred delivery system is the sickled erythrocyte containing the nucleic acids of choice a given in Example 6. The sickled erythorcytes undergo ABO and RH phenotyping to select compatible cells for delivery. The cells are delivered intravenously or intrarterially in a blood vessel perfusing a specific tumor site or organ e.g. carotid artery, portal vein, femoral artery etc. over the same amount of time required for the infusion of a conventional blood transfusion. The quantity of cells to be administered in any one treatment would range from one tenth to one half of a full unit of blood. The treatments are generally given every three days for a total of twelve treaments. However, the treatment schedule is flexible and may be given for a longer of shorter duration depending upon the patients response.

[1291] Another preferred delivery vehicle is a recombinant virus particle, for example, in the form of a vaccine. A recombinant virus vaccine of the present invention includes: the DNA encoding the therapeutic composition packaged in a viral coat that allows entrance of the transducing DNA into a cell and its expression. A number of recombinant virus particles can be used, for example, alphaviruses, poxviruses, adenoviruses, herpesviruses, arena virus and retroviruses.

[1292] Also useful as a delivery vehicle is a “recombinant cell vaccine,” preferably tumor vaccines, in which allogeneic (though histocompatible) or autologous tumor cells are transfected with a DNA preparation encoding the therapeutic proteins or peptides to be expressed. The cells are preferably irradiated and then administered to a patient by any of a number of known injection routes.

[1293] The therapeutic compositions that are administered by “tumor cell vaccine,” includes the recombinant molecules without carrier. Treatment with tumor cell vaccines is useful for primary or localized tumors as well as metastases. When used to treat metastatic cancer, which includes prevention of further metastatic disease, as well as, the cure existing metastatic disease.

[1294] As used herein, the term “treating” a disease includes alleviating the disease or any of its symptoms and/or preventing the development of a secondary disease resulting from the occurrence of the initial disease.

[1295] An “effective treatment protocol” includes a suitable and effective dose of an agent being administered to a subject, given by a suitable route and mode of administration to achieve its intended effect in treating a disease.

[1296] Effective doses and modes of administration for a given disease can be determined by conventional methods and include, for example, determining survival rates, side effects (i.e., toxicity) and qualitative or quantitative, objective or subjective, evaluation of disease progression or regression. In particular, the effectiveness of a dose regimen and mode of administration of a therapeutic composition of the present invention to treat cancer can be determined by assessing response rates. A “response rate” is defined as the percentage of treated subjects that responds with either partial or complete remission. Remission can be determined by, for example, measuring tumor size or by microscopic examination of a tissue sample for the presence of cancer cells.

[1297] In the treatment of cancer, a suitable single dose can vary depending upon the specific type of cancer and whether the cancer is a primary tumor or a metastatic form. One of skill in the art can test doses of a therapeutic composition suitable for direct injection to determine appropriate single doses for systemic administration, taking into account the usual subject parameters such as size and weight. An effective anti-tumor single dose of a therapeutic recombinant DNA molecule or combination thereof is an amount sufficient amount to result in reduction, and preferably elimination, of the tumor after the DNA molecule or combination has transfected cells at or near the tumor site.

[1298] A preferred single dose of SAg-encoding DNA molecule or fusion product thereof is an amount that, when transfected into a target cell population, leads to the production of SAg in an amount, per transfected cell, ranging from about 250 fentograms (fg) to about 1 mg, preferably from about 500 fg to about 500 pg and more preferably from about 1 pg to about 100 pg.

[1299] When the SAg-encoding DNA is combined with a second DNA molecule encoding a second protein product, an effective single dose of a the second DNA molecule is an amount that when transfected into a target cell population leads to the production of the second protein product in an amount, per transfected cell, ranging from about 10 fg to about 1 ng, more preferably from about 100 fg to about 750 pg.

[1300] An effective cancer-treating single dose of SAg-encoding DNA and a second DNA molecule encoding a second protein when administered to a subject using a non-targeting carrier, is an amount capable of reducing, and preferably eliminating, the primary or metastatic tumor following transfection by the recombinant molecules of cells at or near the tumor site. A preferred single dose of such a therapeutic composition is from about 100 mg to about 4 mg of total recombinant DNA, more preferably from about 200 mg to about 2 mg, most preferably from about 200 mg to about 800 mg of total recombinant molecules.

[1301] A preferred single dose of liposome-complexed, SAg-encoding DNA, is from about 100 mg of total DNA per 800 nmol of liposome to about 4 mg of total DNA molecules per 32 mmol of liposome, more preferably from about 200 mg per 1.6 mmol of liposome to about 3 mg of total recombinant DNA per 24 mmol of liposome, and even more preferably from about 400 mg per 3.2 mmol of liposome to about 2 mg per 16 mmol of liposome.

[1302] One of skill in the art recognizes that the number of doses required depends upon the extent of disease and the response of an individual to treatment. Thus, according to this invention, an effective number of doses includes any number required to cause regression of primary or metastatic disease.

[1303] A preferred treatment protocol comprises monthly administrations of single doses (as described above) for up to about 1 year. An effective number of doses (per individual) of a SAg-encoding DNA molecule and a second DNA molecule encoding a second protein, when administered in a non-targeting carrier or when complexed with liposomes, is from about 1 to about: 10 dosings, preferably from about 2 to about 8 dosings, and even more preferably from about 3 to about 5 dosings. Preferably, such dosings are administered about once every 2 weeks until signs of remission appear, followed by about once a month until the disease is gone.

[1304] The therapeutic compositions can be administered by any of a variety of modes and routes, including but not limited to, local administration into a site in the subject animal, which site contains abnormal cells to be destroyed. An example is the local injection within the area of a tumor or a lesion. Another example is systemic administration.

[1305] Therapeutic compositions that are best delivered by local administration include recombinant DNA molecules

[1306] (a) in a non-targeting carrier (e.g., “naked” DNA molecules as taught in Wolff K et al., 1990, Science 247, 1465-1468); and

[1307] (b) complexed to a delivery vehicle.

[1308] Suitable delivery vehicles for local administration include liposomes, and may further comprise ligands that target the vehicle to a particular site.

[1309] A preferred mode of local administration is by direct injection. Direct injection techniques are particularly useful for injecting the composition into a cellular or tissue mass such as a tumor mass or a granuloma mass that has been induced by a pathogen. Thus, the present recombinant DNA molecule complexed with a delivery vehicle is preferably injected directly into, or locally in the area of, a tumor mass or a single cancer cell.

[1310] The present composition may also be administered in or around a surgical wound. For example, a patient undergoes surgery to remove a tumor. Upon removal of the tumor, the therapeutic composition is coated on the surface of tissue inside the wound or injected into areas of tissue inside the wound. Such local administration will treat cancer cells that were not successfully removed by the surgical procedure, as well as prevent recurrence of the primary tumor or development of a secondary tumor in the surgical area.

[1311] Therapeutic compositions that are best delivered by systemic administration include recombinant DNA molecules complexed to a tumor binding ligand or a ligand that binds to the tumor vasculature or stroma. Examples are antibodies, antigens, receptor, receptor ligand or a targeted delivery vehicle as disclosed herein. These delivery vehicles may be liposomes into which are incorporated targeting ligands, preferably ligands that targeting the vehicle to the site of tumor cells or another type of lesion. For cancer treatment, ligands that selectively bind to cancer cells, or to cells within the area of a cancer cell, are preferred. Systemic administration is used to treat primary or localized tumors and, in particular, tumor metastases wherein the cancer cells are dispersed. Systemic administration is advantageous when targeting cancer in organs, especially those difficult to reach for direct injection, (e.g., heart, spleen, lung or liver).

[1312] Preferred modes and routes of systemic administration include intravenous injection and aerosol, oral and percutaneous (topical) delivery. Intravenous injection methods and aerosol delivery are performed conventionally. Oral delivery is achieved preferably by complexing the therapeutic composition to a carrier capable of withstanding degradation by digestive enzymes in the subject's digestive system. Examples of such carriers, includes plastic capsules or tablets as are known in the art. For topical delivery, the therapeutic composition is mixed with a lipophilic reagent (e.g., DMSO) that can pass into the skin.

[1313] The therapeutic compositions and methods of the present invention are intended for animals, preferably mammals and birds, in particular house pets, farm animals and zoo animals as these terms are generally understood. By “farm animals” are intended animals that are eaten or those that produce useful products (e.g., wool-producing sheep). Examples of preferred animal subjects to be treated are dogs, cats, sheep, cattle, horses and pigs. The present compositions and methods are effective in inbred and outbred animal species. Most preferably, the animal is a human.

[1314] Another component useful in combination with the therapeutic nucleic acids of this invention is an adjuvant suited for use with a nucleic acid-based vaccine. Examples of adjuvant-containing compositions include

[1315] 1) SAg-encoding DNA and a second DNA encoding a recombinant protein; or

[1316] 2) SAg-encoding DNA combined with another peptide or polypeptide; or

[1317] 3) DNA encoding a second recombinant protein and a SAg peptide or polypeptide.

[1318] As indicated above, effective doses of a SAg-encoding DNA combined with a second DNA molecule, or a vaccine nucleic acid molecule are determined conventionally by those skilled in the art. One measure of an effective dose is that produces a sufficient amount of SAg and second protein to stimulate effector cell immunity in a manner that enhances the effectiveness of the vaccine. Adjuvants of the present invention are particularly suited for use in humans because many traditional adjuvants (e.g., Freund's adjuvant and other bacterial cell wall components) are toxic whereas others are relatively ineffective (e.g., aluminum-based salts and calcium-based salts).

EXAMPLE 15 General Procedures for In Vivo and Ex Vivo Sensitization to Produce Tumor Specific Effector Cells for Adoptive Immunotherapy

[1319] After 9-12 days of tumor growth (approximately 8 mm in diameter), tumor-draining inguinal LN are removed sterilely. Lymphocyte suspensions are prepared by teasing LN with needles followed by pressing with the blunt end of a 10-ml plastic syringe in HBSS. Tumor draining LN cells are stimulated in vitro in a two-step procedure. Briefly, 4×106 LN cells in 2 ml of complete medium (CM) containing the SAg constructs are incubated in a well of 24-well plates at 37° C. in a 5% CO2 atmosphere for 2 days. CM consisted of RPMI 1640 medium supplemented with 10% heat-inactivated FCS, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 2 mM freshly prepared L-glutamine. 100 mg/ml streptomycin, 100 U/ml penicillin, a 50 mg/ml gentamycin, 0.55 mg/ml fungizone (all from GIBCO, Grand Island, N.Y.) and 5×10−5M 2-mercaptoethanol (Sigma). The cells were harvested, then washed and further cultured a 3×105/well in 2 ml of CM with IL-2. After 3-day incubation in IL-2, the cells are collected and counted to determine the degree of proliferation. Finally, the cells are suspended in appropriate media for flow cytometric analysis, evaluation of cytotoxicity and lymphokine secretion, or for adoptive immunotherapy.

EXAMPLE 16 General Adoptive Immunotherapy Protocol

[1320] Mice are injected with 2 to 3×105 syngeneic tumor cells suspended in 1 ml of HBSS to initiate pulmonary metastases. On day 3, activated cells are given i.v. at numbers indicated generally 106-107. In some instances, mice are also treated with 15,000 U IL2 in 0.5 ml HBSS twice daily for 4 consecutive days to promote the in vivo function and survival of the activated cells. On day 20 or 21, all mice are randomized, killed and metastatic tumor nodules on the surface of the lungs enumerated as previously described. If pulmonary metastases exceeded 250, this number is arbitrarily assigned for statistical analysis. The significance of differences in metastases numbers between-experimental group is determined by the Wilcoxon rank sum test. Two sided p values of <0.1 are considered significant. Each experimental group consists of at least five mice and no animal was excluded from the statistical evaluation.

[1321] For testing SAg-glycosylceramide complexes and SAg lipopolysaccharide complexes, additional models are used to assess the dependence of the antitumor effect on NKT cells. Natural killer T cells (NKT) lymphocytes express an invariant TCR encoded by the V14 and Ja281 gene segments. Mice with a deletion of Ja281 exclusively lack V14. The V14 NKT cell-deficient mice no longer mediate IL-12 induced rejection of tumors.

[1322] Also generated are transgenic mice lacking recombination activating gene(RAG) which preferentially generate V14 NKT cells but block the development of other lymphocyte lineages, including NK, B, and T cells. These mice are termed V14 NKT mice. J281+/+(wild type), J281−/− (deleted of V14) and RAG−/−V14tgV8.2tg (deleted of NK, T and B cells but preferentially generate V14 NKT cells) mice are injected

[1323] (a) with 2×106 B16 or FBL-3 (erythroleukemia) cells in the spleen to induce liver metastasis,

[1324] (b) intravenously with 3×105 B16 or 2×106 LLC (Lewis lung carcinoma) cells for pulmonary metastases or

[1325] (c) subcutaneously with 2×106 B16 cells (melanoma) for subcutaneous tumor growth on day 0.

[1326] SAg conjugates or fusion proteins are injected in doses of 0.1 to 50 mg on days 3, 5,7, and 9 after the day of tumor implantation. Control animals are injected with PBS on the same schedule. On day 14, the mice are killed and either metastatic nodules counted or GM3 melanoma antigens measured by radioimmunoassay as previously described. For subcutaneous tumor growth, injection of IL-12 or PBS is initiated on day 5, and the mice are treated five times per week. The diameters of tumors are measured daily with calipers. The sizes of the tumor are expressed as the products of the longest diameter times the shortest diameter (in mm2).

EXAMPLE 17 Preparation and Administration of DNA Liposome Complexes

[1327] A representative protocol for administration of DNA-liposome complexes is as follows: DNA liposome complexes are mixed immediately prior to injection by adding 0.1 ml of lactated Ringer's solution into a sterile vial of plasmid DNA (20 mg/ml; 0.1 ml). An aliquot of this solution (0.1 ml) is added at room temperature to 0.1 ml of 150 mM (dioleoyl phosphatidylethanolamine/3&bgr;[N-(N′,N′-dimethylaminoethane)-carbamoyl] cholesterol) liposome in lactated Ringer's solution in a separate sterile vial. The DNA and liposome vials are prepared in accordance with FDA guidelines and quality control procedures. After incubation for 15 minutes at room temperature, an additional 0.5 ml of sterile lactated Ringer's solution is added to the vial and mixed. The DNA liposome solution (0.2 ml) is injected into the patient's tumor nodule under sterile conditions at the bedside after administration of local anesthesia (1% lidocaine) using a 22-gauge needle. For catheter delivery, the DNA liposome solution (0.6 ml) is delivered into the artery using percutaneous delivery. Additional protocols for administration of DNA liposomal constructs are given in Nabel, G J, Methods for Liposome-Mediated Gene Transfer to Tumor Cells in vivo, in: Methods in Molecular Medicine, Gene Therapy Protocols, Robbins P ed. Humana Press, Totowa N.J. (1996). Cationic liposomes for delivery of DNA construct to the tumor endothelium are prepared by the method of Thurston et al., J. Clin Invest., 101: 1401-1413, (1998).

EXAMPLE 18 General Procedures for Administering Constructs in Human Tumor Models and Human Patients

[1328] The constructs described herein are tested for therapeutic efficacy in several well established rodent models which are considered to be highly representative as described in “Protocols for Screening Chemical Agents and Natural Products Against Animal Tumors and Other Biological Systems (Third Edition)”, Cancer Chemother. Reports, Part 3, 3: 1-112, which is hereby incorporated by reference in its entirety. Additional tumor models of carcinoma and sarcoma originating from primary sites and prepared as established tumors at primary and/or metastatic sites are utilized to test further the efficacy of the constructs.

EXAMPLE 19 General Procedures for Administering 1) siRNA(s) to T Cells, APCs & Tumor Cells, 2) Tumor Cells or Sickled Erythrocytes Transduced with SAgs, 3) SAg-Activated T or NKT Cells in Human Tumor Models and Human Patients

[1329] A. Tumor Cells Transduced with SAg Nucleic Acids alone or Cotransfected with Oncogenes or Nucleic Acids Encoding Potent Immunogens and Bacterial Products

[1330] In a representative protocol, using the B16 melanoma or A20 lymphoma or other models given above, 105-107 transfected tumor cells are implanted subcutaneously and 1-6 months later 105-107 untransfected tumor cells, are implanted. In the case of tumor cells cotransfected with several therapeutic nucleic acids, controls are established consisting of groups transfected with only one of the nucleic acids. These single transfectants are administered on the same schedule as the cotransfectants and assessed for capacity to prevent or reverse tumor growth compared to positive controls receiving tumor alone. The animals receiving the siRNA or SAg transfected tumor cells show no-evidence or minimal of growth of the wild type tumor and prolonged survival compared to the controls in which there is 100% appearance of the tumors. The differences are statistically significant.

[1331] siRNA or SAg transfected tumor cells are also used to prevent tumor outgrowth or treat established tumors as follows. Transfected tumor cells, 105-107 are given at the time of tumor implantation or 3-10 days after the appearance of established tumors. Results show statistically significant arrest of tumor outgrown, tumor growth and prolongation of survival in treated animals compared to untreated controls.

[1332] B. SAg Activated Effector T or NKT Cells & siRNA transfected APCs & T Cells

[1333] Effector T or NKT cells are generated as described elsewhere and are infused intravenously in doses of 106-108 into syngeneic hosts that have pulmonary metastatic lesions established by injecting tumor cells intravenously 3 to 12 days earlier. Twenty days later, the animals are sacrificed and pulmonary metastases measured in treated animals compared to untreated controls. Results show statistically significant reduction in total number of pulmonary nodules and prolonged survival in the treated group compared to untreated control.

EXAMPLE 20 General Test Evaluation Procedures for Constructs and SAg Activated Effector T or NKT Cells

[1334] Various SAg compositions described herein are tested for therapeutic efficacy in several well established rodent models which are considered to be highly representative of a broad spectrum of human tumors. These approaches are described in detail in Geran, R. I. et al., “Protocols for Screening Chemical Agents and Natural Products Against Animal Tumors and Other Biological Systems (Third Edition)”, Canc. Chemother. Reports, Pt 3, 3:1-112, which is hereby incorporated by reference in its entirety.

[1335] A. Calculation of Mean Survival Time (MST) 1 MST ⁢   ⁢ ( days ) ⁢   ⁢ is ⁢   ⁢ calculated ⁢   ⁢ according ⁢   ⁢ to ⁢   ⁢ the ⁢   ⁢ formula ⁢ : S + AS ( A - 1 ) - ( B + 1 ) ⁢ NT S ( A - 1 ) - NT

[1336] Day: Day on which deaths are no longer considered due to drug toxicity. For example, with treatment starting on Day 1 for survival systems (such as L1210, P388, B16, 3LL, and W256): Day A=Day 6; Day B=Day beyond which control group survivors are considered “no-takes.”

[1337] S: If there are “no-takes” in the treated group, S is the sum from Day A through Day B. If there are no “no-takes” in the treated group, S is the sum of daily survivors from Day A onward.

[1338] S(A-1): Number of survivors at the end of Day (A-1).

[1339] Example: for 3LE21, S(A-1)=number of survivors on Day 5.

[1340] NT: Number of “no-takes” according to the criteria given in Protocols 7.300 and 11.103.

[1341] B. T/C Computed for all Treated Groups

T/C=MST of treated group/MST of control group×100

[1342] Treated group animals surviving beyond Day Bare eliminated from calculations (as follows): 14 No. of survivors in treated Percent of “no-takes” group beyond Day B in control group Conclusion 1 Any percent “no-take” 2 <10 drug inhibition 310 “no-takes” 33 <15 drug inhibitions 315 “no-takes”

[1343] Positive control compounds are not considered to have “no-takes” regardless of the number of “no-takes” in the control group. Thus, all survivors on Day B are used in the calculation of T/C for the positive control. Surviving animals are evaluated and recorded on the day of evaluation as “cures” or “no-takes.”

[1344] Calculation of Median Survival Time (MedST)

[1345] MedST is the median day of death for a test or control group. If deaths are arranged in chronological order of occurrence (assigning to survivors, on the final day of observation, a “day of death” equal to that day), the median day of death is a day selected so that one half of the animals died earlier and the other half died later or survived. If the total number of animals is odd, the median day of death is the day that the middle animal in the chronological arrangement died. If the total number of animals is even, the median is the arithmetical mean of the two middle values. Median survival time is computed on the basis of the entire population and there are no deletion of early deaths or survivors, with the following exception:

[1346] C. Computation of MedST from Survivors

[1347] If the total number of animals including survivors (N) is even, the MedST (days) (X+Y)/2, where X is the earlier day when the number of survivors is N/2, and Y is the earliest day when the number of survivors (N/2)−1. If N is odd, the MedST (days) is X.

[1348] D. Computation of MedST from Mortality Distribution

[1349] If the total number of animals including survivors (N) is even, the MedST (days) (X+Y)/2, where X is the earliest day when the cumulative number of deaths is N/2, and Y is the earliest day when the cumulative number of deaths is (N/2)+1. If N is odd, the MedST (days) is X. “Cures” and “no-takes” in systems evaluated by MedST are based upon the day of evaluation. On the day of evaluation any survivor not considered a “no-take” is recorded as a “cure.” Survivors on day of evaluation are recorded as “cures” or “no-takes,” but not eliminated from the calculation.

[1350] E. Calculation of Approximate Tumor Weight from Measurement of Tumor Diameters with Vernier Calipers

[1351] The use of diameter measurements (with Vernier calipers) for estimating treatment effectiveness on local tumor size permits retention of the animals for lifespan observations. When the tumor is implanted sc, tumor weight is estimated from tumor diameter measurements as follows. The resultant local tumor is considered a prolate ellipsoid with one long axis and two short axes. The two short axes are assumed to be equal. The longest diameter (length) and the shortest diameter (width) are measured with Vernier calipers. Assuming specific gravity is approximately 1.0, and Pi is about 3, the mass (in mg) is calculated by multiplying the length of the tumor by the width squared and dividing the product by two. Thus, 2 Tumor ⁢   ⁢ weight ⁢   ⁢ ( mg ) = length ⁢   ⁢ ( mm ) × ( width ⁢   [ mm ] ) 2 2 ⁢   ⁢ or ⁢   ⁢ L × ( W ) 2 2

[1352] The reporting of tumor weights calculated in this way is acceptable inasmuch as the assumptions result in as much accuracy as the experimental method warrants.

[1353] F. Calculation of Tumor Diameters

[1354] The effects of a drug on the local tumor diameter may be reported directly as tumor diameters without conversion to tumor weight. To assess tumor inhibition by comparing the tumor diameters of treated animals with the tumor diameters of control animals, the three diameters of a tumor are averaged (the long axis and the two short axes). A tumor diameter T/C of 75% or less indicates activity and a T/C of 75% is approximately equivalent to a tumor weight T/C of 42%.

[1355] G. Calculation of Mean Tumor Weight from Individual Excised Tumors

[1356] The mean tumor weight is defined as the sum of the weights of individual excised tumors divided by the number of tumors. This calculation is modified according to the rules listed below regarding “no-takes.” Small tumors weighing 39 mg or less in control mice or 99 mg or less in control rats, are regarded as “no-takes” and eliminated from the computations. In treated groups, such tumors are defined as “no-takes” or as true drug inhibitions according to the following rules: 15 Percent of Percent of small tumors in “no-takes” in treated group control group Action ≦17 Any percent no-take; not used in calculations 18-39 <10 drug inhibition; use in calculations ≧10 no-takes; not used in calculations ≧40 <15 drug inhibition; use in calculations ≧15 Code all nontoxic tests “33”

[1357] Positive control compounds are not considered to have “no-takes” regardless of the number of “no-takes” in the control group. Thus, the tumor weights of all surviving animals are used in the calculation of T/C for the positive control (T/C defined above) SDs of the mean control tumor weight are computed the factors in a table designed to estimate SD using the estimating factor for SD given the range (difference between highest and lowest observation). Biometrik Tables for Statisticians (Pearson E S, and Hartley H G, eds.) Cambridge Press, vol. 1, table 22, p. 165.

[1358] II. Specific Tumor Models

[1359] A. Lymphoid Leukemia L1210

[1360] Summary: Ascitic fluid from donor mouse is transferred into recipient BDF1 or CDF1 mice. Treatment begins 24 hours after implant. Results are expressed as a percentage of control survival time. Under normal conditions, the inoculum site for primary screening is i.p., the composition being tested is administered i.p., and the parameter is mean survival time. Origin of tumor line: induced in 1948 in spleen and lymph nodes of mice by painting skin with MCA. J Natl Cancer Inst. 13:1328, 1953. 16 Animals One sex used for all test and control animals in one experiment. Tumor Transfer Inject ip, 0.1 ml of diluted ascitic fluid containing 105 cells Propagation DBA/2 mice (or BDF1 or CDF1 for one generation). Time of Transfer Day 6 or 7 Testing BDF1 (C57BL/6 × DBA/2) or CDF1 (BALB/c × DBA/2) Time of Transfer Day 6 or 7 Weight Within a 3-g range, minimum weight of 18 g for males and 17 g for females. Exp Size (n) 6/group; No. of control groups varies according to number of test groups. Testing Schedule DAY PROCEDURE 0 Implant tumor. Prepare materials. Run positive control in every odd-numbered experiment. Record survivors daily. 1 Weigh and randomize animals. Begin treatment with therapeutic composition. Typically, mice receive 1 &mgr;g of the test composition in 0.5 ml saline. Controls receive saline alone. Treatment is one dose/week. Any surviving mice are sacrificed after 4 wks of therapy. 5 Weigh animals and record. 20 If there are no survivors except those treated with positive control compound, evaluate 30 Kill all survivors and evaluate experiment.

[1361] Quality Control: Acceptable control survival time is 8-10 days. Positive control compound is 5-fluorouracil; single dose is 200 mg/kg/injection, intermittent dose is 60 mg/kg/injection, and chronic dose is 20 mg/kg/injection. Ratio of tumor to control (T/C) lower limit for positive control compound is 135%.

[1362] Evaluation: Compute mean animal weight on Days 1 and 5, and at the completion of testing compute T/C for all test groups with >65% survivors on Day 5. A T/C value 85% indicates a toxic test. An initial T/C 125% is considered necessary to demonstrate activity. A reproduced T/C 125% is considered worthy of further study. For confirmed activity a composition should have two multi-dose assays that produce a T/C 125%.

[1363] B. Lymphocytic Leukemia P388

[1364] Summary: Ascitic fluid from donor mouse is implanted in recipient BDF1 or CDF1 mice. Treatment begins 24 hours after implant. Results are expressed as a percentage of control survival time. Under normal conditions, the inoculum site for primary screening is ip, the composition being tested is administered ip daily for 9 days, and the parameter is MedST. Origin of tumor line: induced in 1955 in a DBA/2 mouse by painting with MCA. Scientific Proceedings, Pathologists and Bacteriologists 33:603, 1957. 17 Animals One sex used for all test and control animals in one experiment. Tumor Transfer Inject ip, 0.1 ml of diluted ascitic fluid containing 106 cells Propagation DBA/2 mice (or BDF1 or CDF1 for one generation). Time of Transfer Day 7 Testing BDF1 (C57BL/6 × DBA/2) or CDF1 (BALB/c × DBA/2) Time of Transfer Day 6 or 7 Weight Within a 3-g range, minimum weight of 18 g for males and 17 g for females. Exp Size (n) 6/group; No. of control groups varies according to number of test groups. Testing Schedule DAY PROCEDURE 0 Implant tumor. Prepare materials. Run positive control in every odd-numbered experiment. Record survivors daily. 1 Weigh and randomize animals. Begin treatment with therapeutic composition. Typically, mice receive 1 ng of the test composition in 0.5 ml saline. Controls receive saline alone. Treatment is one dose/week. Any surviving mice are sacrificed after 4 wks of therapy. 5 Weigh animals and record. 20 If there are no survivors except those treated with positive control compound, evaluate 30 Kill all survivors and evaluate experiment.

[1365] Acceptable MedST is 9-14 days. Positive control compound is 5-fluorouracil: single dose is 200 mg/kg/injection, intermittent dose is 60 mg/kg/injection, and chronic dose is 20.mg/kg/injection. T/C lower limit for positive control compound is 135% Check control deaths, no takes, etc.

[1366] Quality Control: Acceptable MedST is 9-14 days. Positive control compound is 5-fluorouracil: single dose is 200 mg/kg/injection, intermittent dose is 60 mg/kg/injection, and chronic dose is 20 mg/kg/injection. T/C lower limit for positive control compound is 135%. Check control deaths, no takes, etc.

[1367] Evaluation: Compute mean animal weight on Days 1 and 5, and at the completion of testing compute T/C for all test groups with >65% survivors on Day 5. A T/C value of 85% indicates a toxic test. An initial T/C of 125% is considered necessary to demonstrate activity. A reproduced T/C 125% is considered worthy of further study. For confirmed activity a composition should have two multi-dose assays that produce a T/C 125%.

[1368] C. Melanotic Melanoma B16

[1369] Summary: Tumor homogenate is implanted ip or sc in BDF1 mice. Treatment begins 24 hours after either ip or sc implant or is delayed until an sc tumor of specified size (usually approximately 400 mg) can be palpated. Results expressed as a percentage of control survival time. The composition being tested is administered ip, and the parameter is mean survival time. Origin of tumor line: arose spontaneously in 1954 on the skin at the base of the ear in a C57BL/6 mouse. Handbook on Genetically Standardized Jax Mice. Jackson Memorial Laboratory, Bar Harbor, Me., 1962. See also Ann NY Acad Sci 100, Parts 1 and 2, 1963. 18 Animals One sex used for all test and control animals in one experiment. Propagation Strain C57BL/6 mice Tumor Transfer Implant fragment sc by trochar or 12-g needle or tumor homogenate* every 10-14 days into axillary region with puncture in inguinal region. Testing Strain BDF1 (C57BL/6 × DBA/2) Time of Transfer Excise sc tumor on Day 10-14 from donor mice and implant as above Weight Within a 3-g range, minimum weight of 18 g for males and 17 g for females. Exp Size (n) 10/group; No. of control groups varies according to number of test groups. *Tumor homogenate: Mix 1 g or tumor with 10 ml of cold balanced salt solution, homogenize, and implant 0.5 ml of tumor homogenate ip or sc. Fragment: A 25-mg fragment may be implanted sc. Testing Schedule DAY PROCEDURE 0 Implant tumor. Prepare materials. Run positive control in every odd-numbered experiment. Record survivors daily. 1 Weigh and randomize animals. Begin treatment with therapeutic composition. Typically, mice receive 1 &mgr;g of the test composition in 0.5 ml saline. Controls receive saline alone. Treatment is one dose/week. Any surviving mice are sacrificed after 8 wks of therapy. 5 Weigh animals and record. 60 Kill all survivors and evaluate experiment.

[1370] Quality Control: Acceptable control survival time is 14-22 days. Positive control compound is 5-fluorouracil: single dose is 200 mg/kg/injection, intermittent dose is 60 mg/kg/injection, and chronic dose is 20 mg/kg/injection. T/C lower limit for positive control compound is 135% Check control deaths, no takes, etc.

[1371] Evaluation: Compute mean animal weight on Days 1 and 5, and at the completion of testing compute T/C for all test groups with >65% survivors on Day 5. A T/C value of 85% indicates a toxic test. An initial T/C of 125% is considered necessary to demonstrate activity. A reproduced T/C 125% is considered worthy of further study. For confirmed activity a composition should have two multi-dose assays that produce a T/C 125%.

[1372] Metastasis after IV Injection of Tumor Cells

[1373] 105 B16 melanoma cells in 0.3 ml saline are injected intravenously in C57BL/6 mice. The mice are treated intravenously with Ig of the composition being tested in 0.5 ml saline. Controls receive saline alone. The treatment is given as one dose per week. Mice sacrificed after 4 weeks of therapy, the lungs are removed and metastases are enumerated.

[1374] C. 3LL Lewis Lung Carcinoma

[1375] Summary: Tumor may be implanted sc as a 2-4 mm fragment, or im as a 2×106-cell inoculum. Treatment begins 24 hours after implant or is delayed until a tumor of specified size (usually approximately 400 mg) can be palpated. The composition being tested is administered ip daily for 11 days and the results are expressed as a percentage of the control. Origin of tumor line: arose spontaneously in 1951 as carcinoma of the lung in a C57BL/6 mouse. Cancer Res 15:39, 1955. See, also Malave, I. et al., J. Nat'l. Canc. Inst. 62:83-88 (1979). 19 Animals One sex used for all test and control animals in one experiment. Propagation Strain C57BL/6 mice Tumor Transfer Inject cells im in hind leg or implant fragment sc in axillary region with puncture in inguinal region. Transfer on day 12-14 Testing Strain BDF1 (C57BL/6 × DBA/2) or C3H mice Time of Transfer Same as above Weight Within a 3-g range, minimum weight of 18 g for males and 17 g for females. Exp Size (n) 6/group for sc implant, or 10/group for im implant.; No. of control groups varies according to number of test groups. Testing Schedule DAY PROCEDURE 0 Implant tumor. Prepare materials. Run positive control in every odd-numbered experiment. Record survivors daily. 1 Weigh and randomize animals. Begin treatment with therapeutic composition. Typically, mice receive 1 &mgr;g of the test composition in 0.5 ml saline/Controls receive saline alone. Treatment is one dose/week. Any surviving mice are sacrificed after 4 wks of therapy. 5 Weigh animals and record. Final day Kill all survivors and evaluate experiment.

[1376] Quality Control: Acceptable im tumor weight on Day 12 is 500-2500 mg. Acceptable im tumor MedST is 18-28 days. Positive control compound is cyclophosphamide: 20 mg/kg/injection, qd, Days 1-11. Check control deaths, no takes, etc.

[1377] Evaluation: Compute mean animal weight when appropriate, and at the completion of testing compute T/C for all test groups. When the parameter is tumor weight, a reproducible T/C of 42% is considered necessary to demonstrate activity. When the parameter is survival time, a reproducible T/C of 125% is considered necessary to demonstrate activity. For confirmed activity a composition must have two multi-dose assays

[1378] D. 3LL Lewis Lung Carcinoma Metastasis Model

[1379] This model has been utilized by a number of investigators. See, for example, Gorelik, E. et al., J. Nat'l. Canc. Inst. 65:1257-1264 (1980); Gorelik, E. et al., Rec. Results Canc. Res. 75:20-28 (1980); Isakov, N. et al., Invasion Metas. 2:12-32 (1982) Talmadge J. E. et al., J. Nat'l. Canc. Inst. 69:975-980 (1982); Hilgard, P. et al., Br. J. Cancer 35:78-86(1977)).

[1380] Mice: male C57BL/6 mice, 2-3 months old. Tumor: The 3LL Lewis Lung Carcinoma was maintained by sc transfers in C57BL/6 mice. Following sc, im or intra-footpad transplantation, this tumor produces metastases, preferentially in the lungs. Single-cell suspensions are prepared from solid tumors by treating minced tumor tissue with a solution of 0.3% trypsin. Cells are washed 3 times with PBS (pH 7.4) and suspended in PBS. Viability of the 3LL cells prepared in this way is generally about 95-99% (by trypan blue dye exclusion). Viable tumor cells (3×104-5×106) suspended in 0.05 ml PBS are injected into the right hind foot pads of C57BL/6 mice. The day of tumor appearance and the diameters of established tumors are measured by caliper every two days. Typically, mice receive 1 &mgr;g of the composition being tested in 0.5 ml saline. Controls receive saline alone. The treatment is given as one or two doses per week.

[1381] In experiments involving tumor excision, mice with tumors 8-10 mm in diameter are divided into two groups. In one group, legs with tumors are amputated after ligation above the knee joints. Mice in the second group are left intact as nonamputated tumor-bearing controls. Amputation of a tumor-free leg in a tumor-bearing mouse has no known effect on subsequent metastasis, ruling out possible effects of anesthesia, stress or surgery. Surgery is performed under Nembutal anesthesia (60 mg veterinary Nembutal per kg body weight).

[1382] Determination of Metastasis Spread and Growth

[1383] Mice are killed 10-14 days after amputation. Lungs are removed and weighed. Lungs are fixed in Bouin's solution and the number of visible metastases is recorded. The diameters of the metastases are also measured using a binocular stereoscope equipped with a micrometer-containing ocular under 8× magnification. On the basis of the recorded diameters, it is possible to calculate the volume of each metastasis. To determine the total volume of metastases per lung, the mean number of visible metastases is multiplied by the mean volume of metastases. To further determine metastatic growth, it is possible to measure incorporation of 125IdUrd into lung cells (Thakur, M. L. et al., J. Lab. Clin. Med. 89:217-228 (1977). Ten days following tumor amputation, 25 mg of FdUrd is inoculated into the peritoneums of tumor-bearing (and, if used, tumor-resected mice. After 30 min, mice are given 1 mCi of 125IdUrd. One day later, lungs and spleens are removed and weighed, and a degree of 125IdUrd incorporation is measured using a gamma counter.

[1384] Statistics: Values representing the incidence of metastases and their growth in the lungs of tumor-bearing mice are not normally distributed. Therefore, non-parametric statistics such as the Mann-Whitney U-Test may be used for analysis.

[1385] Study of this model by Gorelik et al. (1980, supra) showed that the size of the tumor cell inoculum determined the extent of metastatic growth. The rate of metastasis in the lungs of operated mice was different from primary tumor-bearing mice. Thus in the lungs of mice in which the primary tumor had been induced by inoculation of large doses of 3LL cells (1-5×106) followed by surgical removal, the number of metastases was lower than that in nonoperated tumor-bearing mice, though the volume of metastases was higher than in the nonoperated controls. Using 125IdUrd incorporation as a measure of lung metastasis, no significant differences were found between the lungs of tumor-excised mice and tumor-bearing mice originally inoculated with 106 3LL cells. Amputation of tumors produced following inoculation of 105 tumor cells dramatically accelerated metastatic growth. These results were in accord with the survival of mice after excision of local tumors. The phenomenon of acceleration of metastatic growth following excision of local tumors had been observed by other investigators. The growth rate and incidence of pulmonary metastasis were highest in mice inoculated with the lowest doses (3×104-105 of tumor cells) and characterized also by the longest latency periods before local tumor appearance. Immunosuppression accelerated metastatic growth, though nonimmunologic mechanisms participate in the control exerted by the local tumor on lung metastasis development. These observations have implications for the prognosis of patients who undergo cancer surgery.

[1386] E. Walker Carcinosarcoma 256

[1387] Summary: Tumor may be implanted sc in the axillary region as a 2-6 mm fragment, im in the thigh as a 0.2-ml inoculum of tumor homogenate containing 106 viable cells, or ip as a 0.1-ml suspension containing 106 viable cells. Treatment of the composition being tested is usually ip. Origin of tumor line: arose spontaneously in 1928 in the region of the mammary gland of a pregnant albino rat. J Natl Cancer Inst 13:1356, 1953. 20 Animals One sex used for all test and control animals in one experiment. Propagation Strain Random-bred albino Sprague-Dawley rats Tumor Transfer S.C. fragment implant is by trochar or 12-g needle into axillary region with puncture in inguinal area. I.m. implant is with 0.2 ml of tumor homogenate (containing 106 viable cells) into the thigh. I.p. implant is with 0.1 ml suspension (containing 106 viable cells) Day 7 for im or ip implant; Days 11-13 for sc implant Testing Strain Fischer 344 rats or random-bred albino rats Time of Transfer Same as above Weight 50-70 g (maximum of 10-g weight range within each experiment) Exp Size (n) 6/group; No. of control groups varies according to number of test groups. Prepare drug Administer Weigh animals Evaluate on Test system on day: drug on days: on days days 5WA16 2 3-6 3 and 7 7 5WA12 0 1-5 1 and 5 10-14 5WA31 0 1-9 1 and 5 30

[1388] In addition the following general schedule is followed 21 DAY PROCEDURE 0 Implant tumor. Prepare materials. Run positive control in every odd-numbered experiment. Record survivors daily. 1 Weigh and randomize animals. Begin treatment with therapeutic composition. Typically, mice receive 1 &mgr;g of the test composition in 0.5 ml saline. Controls receive saline alone. Treatment is one dose/week. Any surviving mice are sacrificed after 4 wks of therapy. Final day Kill all survivors and evaluate experiment.

[1389] Quality Control: Acceptable i.m. tumor weight or survival time for the above three test systems are: 5WA16: 3-12 g.; 5WA12: 3-12 g.; 5WA31 or 5WA21: 5-9 days.

[1390] Evaluation: Compute mean animal weight when appropriate, and at the completion of testing compute T/C for all test groups. When the parameter is tumor weight, a reproducible. T/C 42% is considered necessary to demonstrate activity. When the parameter is survival time, a reproducible T/C 125% is considered necessary to demonstrate activity. For confirmed activity.

[1391] F. A20 lymphoma

[1392] 106 murine A20 lymphoma cells in 0.3 ml saline are injected subcutaneously in Balb/c mice. The mice are treated intravenously with Ig of the composition being tested in 0.5 ml saline. Controls receive saline alone. The treatment is given as one dose per week. Tumor growth is monitored daily by physical measurement of tumor size and calculation of total tumor volume. After 4 weeks of therapy the mice are sacrificed.

[1393] Treatment Regimens and Results (Constructs)

[1394] For determining efficacy in the tumor models described above the general categories of therapeutic constructs used are given below. For all of the classes of conjugates listed below, the SAg component can be prepared as either a DNA encoding SAg or as the SAg polypeptide itself In either form the SAg DNA or protein may be conjugated to additional molecules, either nucleic acid or polypeptides. Operationally, for therapeutic use in vivo or ex vivo, these conjugates may be prepared by chemical coupling or by recombinant means (whichever is appropriate) and conjugated to a tumor-targeting structure or incorporated into a vehicle (e.g., liposomes) that themselves comprise a tumor targeting structure(s). Again, examples of such targeting structures include, but are not limited to, an antibody, antigen, receptor or receptor ligand. Methods are disclosed in Examples 1, 3, 4, 5, 6, 7, 14, 17, 18, 30-32.

[1395] 1. SAg Nucleic Acid Constructs including Phage Displays and SAg Transfected Bacterial Cells

[1396] 2. Glycosylated SAgs

[1397] 3. Chimeric SAgs

[1398] Conjugates having a Superantigen component (polypeptide or nucleic acid) and a partner that is either a single component or a conjugate of 2 or more components (protein, carbohydrate, lipid or DNA) as indicated below: 22 Superantigen (Protein or DNA) Partner (Single Component or Coniuqate)  4. DNA coding sequence  5. Polypeptide  6. Nucleic acid  7. Tumor associated Peptide  8. Tumor Antigen-MHC protein  9. LPS 10. Lipoarabinomannan 11. Ganglioside 12. Glycosphingolipid 13. Ganglioside-CD1 receptor 14. Glycosphingolipid-CD1 receptor 15. Glycosylceramide (e.g., Gal-Cer) 16. GalCer-CD1 receptor 17. Gal 18. Arg-Gly-Asp or Asn-Gly-Arg 19 iNOS 20. Gb2 or Gb3 or Gb4 21. (Gb2 or Gb3 or Gb4)-CD1 receptor 22. -GPI-(Gb2 or Gb3 or Gb4) 23. -GPI-(Gb2 or Gb3 or Gb4)-CD1 receptor 24. Verotoxin 25. Verotoxin A or B Subunit 26. IFN□ receptor peptide homologous to VT 27. CD19 peptide homologous to VT 28. LDL, VLDL, HDL, IDL 29. Apolipoproteins (e.g., Lp(a), apoB-100, apoB-48, apoE) 30. OxyLDL, oxyLDL mimics, (e.g., 7&bgr;-hydroperoxycholesterol, 7□-hydroxycholesterol, 7- ketocholesterol, 5□-6□-epoxycholesterol, 7□-hydroperoxy-choles-5-en-3&bgr;-ol, 4- hydroxynonenal (4-HNE), 9-HODE, 13-HODE and cholesterol-9-HODE) 31. OxyLDL by products (e.g. lysolecithin, lysophosphatidylcholine, malondialdehyde, 4- hydroxynonenal) 32. LDL & oxyLDL receptors (e.g., LDL oxyLDL, acetyl-LDL, VLDL, LRP, CD36, SREC, LOX-1, macrophage scavenger receptors) 33. phytosphingosine, -GPI-phytosphingosine 34. tumor associated lipid antigens 35. glycolipid, proteolipid, glycosphingolipid, sphingolipid with inositolphosphate -containing head groups, phytoglycolipids, mycoglycolipids, -GPI-sphingosines, -GPI-lipids 36. sphingolipids with inositolphosphate-containing head groups having the general structure: ceramide-P-myoinositol-X with X referring to polar substituents comprising ceramide-p-inositol-mannose, inositol-1-P-(6)mannose(a1,2 inositol-1P-(1)ceramide, (inositol-P)2-ceramide, inositol-P-inositol-P-ceramide, inositol-P-inositol-P-ceramide. 37. tumor associated glycan antigens consisting of peptidoglycans or glycan phosphotidyinositol (GPI) structures

[1399] Vaccine Use

[1400] For use as a vaccine, the constructs are administered subcutaneously, intramuscularly intradermally or intraperitoneally in doses ranging from 50 to 500 ng in various vehicles such as Freund's adjuvant, aluminum hydroxide, pluruonic acid triblock and liposomes as described in the art. Doses may be repeated every 10 days. Tumors are implanted after the last dose. A control group does not receive the vaccine.

[1401] Use in Established Tumors

[1402] For proteins or nucleic acid constructs, treatment consists of injecting animals iv or ip with 50, 500 1000 or 5,000 ng of in 0.1-0.5 ml of normal saline. Unless indicated otherwise above, treatments are given one to three times per week for two to five weeks. Phage displays, yeast displays and vesilcle, SAg-bacterial or viral constructs or SAg vesicles are administered as 109 transducing units (TU) and irradiated bacterial cells, yeast cells as 105-106 cells iv into the tail vein one to three times per week for two to five weeks or directly into tumor in 30-75% or the iv doses on the same schedule. Exosomes or vesicles, harvested from transfected, transformed or fusion tumor cells or sickled cells or mutant yeast are given i.v. into the tail vein in a dose of 0.25-1 g per animal one to three times per week for two to five weeks. The results shown in Table VI are for each composition and dose tested. The results are statistically significant by the Wilcoxon rank sum test.

[1403] Treatment regimens for SAg activated effector T or NKT cells are in Example 16, 18, 19. The preferred animal model for evaluation of the adoptively transferred T or NKT effector cells is the MCA 205/207 fibrosarcoma with pulmonary metastases (Shu S. et al., J. Immunol. 152: 1277-1288 (1994)). The other models given in Example 20 are also suitable for evaluation of the therapeutic effectiveness of the effector T cells. 23 TABLE VI Tumor Model Parameter % of Control Response L1210 MST >130%  P388 MST >130%  B16 MST >130%  B16 metastasis Median number of metastases <70% 3LL MST >130%  Mean tumor weight <40% 3LL metastasis MST >130%  Mean lung weight <60 Median number of metastases <60% Median volume of metastases <60% Medial volume of metastases <60% Median uptake of IdUrd <60% Walker carcinoma MedST >130%  Mean tumor weight <40% A20 MST >130%  Mean tumor volume <40%

EXAMPLE 22 Antitumor Effects of Therapeutic Constructs and Effector T, NKT Cells or Sickled Erythrocytes in Human Patients

[1404] All patients treated have histologically confirmed malignant disease including carcinomas, sarcomas, melanomas, lymphomas and leukemia and have failed conventional therapy. Patients may be diagnosed as having any stage of metastatic disease involving any organ system. Staging describes both tumor and host, including organ of origin of the tumor, histologic type and histologic grade, extent of tumor size, site of metastases and functional status of the patient. A general classification includes the known ranges of Stage I (localized disease) to Stage 4(widespread metastases). Patient history is obtained and physical examination performed along with conventional tests of cardiovascular and pulmonary function and appropriate radiologic procedures. Histopathology is obtained to verify malignant disease.

EXAMPLE 23 Treatment Procedures

[1405] Constructs (or Preparations)

[1406] Doses of the constructs are determined as described above using, inter alia, appropriate animal models of tumors. Two classes of therapeutic compositions are administered namely SAg proteins or SAg conjugates (nucleic acids or peptides-polypeptides), SAg phage displays, SAg yeast displays, SAg bacterial cell displays, as described above for animal models.

[1407] A treatment consists of injecting the patient with 0.5-500 mg of Construct intravenously in 200 ml of normal saline over a one hour period. Treatments are given 3×/week for a total of 12 treatments. Patients with stable or regressing disease are treated beyond the 12th treatment. Treatment is given on either an outpatient or inpatient basis as needed.

[1408] Effector T or NKT Cells

[1409] Eligible patients are treated with tumor antigens such as irradiated tumor cells or GM-CSF transduced tumor cells injected approximately 10 centimeters from a draining lymph node site. Ten days post injection, draining lymph nodes are obtained in a limited surgical procedure at the site draining the injection. The lymph nodes are converted to a single cell suspension of lymphocytes and these are incubated with various SAg preparations for two days followed by Il-2 for an additional 72 hours. These lymphocytes now called effector T cells or NKT cell are used for adoptive immunotherapy.

[1410] Effector T or NKT cells harvested by centrifugation at 500×g for 15 min and the cell pellets are pooled. After washing the cells in HBSS, the cell are resuspended in 200 ml of normal saline containing 5% human serum albumin and 450,000 IU of IL-2 for transfer. Each recipient will receive four escalating doses or 33 million, 100 million, 330 million and 1 billion cells per square meter of body surface area each given one week apart. Cells are infused through a subclavian central venous catheter over a 30- minute interval. IL-2 administration i.v. is commenced immediately after completion of cell infusion at a dose and schedule of 180,000 IU/ml every 8 h. for 5 days. All patients receive indomethacin (50 mg P.O.) every 8 h, acetaminophen (650 mg P.O.) every 6 h. and ranitidine (150 mg P.O.) every 12 h while receiving IL-2 in order to reduce febrile and gastric side effects. As controls, a cohort of patients is treated with the in vivo tumor vaccination step and IL-2 without the tumor effector cells. Patients will be followed for clinical response every 4 weeks for 2 months with repeat radiological examinations.

[1411] Abbreviated Exemplary Human Protocol: Sequential Administration of GM-CSF Transduced Tumor Cells In Vivo and SAg Activated NKT and T Cells Ex Vivo in Patients with Metastatic Renal Cell Carcinoma and Melanoma

[1412] In vivo Phase: Immunization with GM-CSF Transduced Tumor Cells

[1413] Day 1: GM CSF transfected tumor cells (renal carcinoma/melanoma) are injected as given in Phase I GM-CSF Gene Transduction Protocol [Human Gene Therapy 6: 347-368, (1995)]

[1414] Day 7-10: Lymph Nodes draining the GM-CSF transfected tumor cell sites are removed and placed in tissue culture OR patients are pheresed and their peripheral blood T cells and NKT cells collected for further treatment in tissue culture as described below.

[1415] Ex Vivo Phase: Immunization with SAg

[1416] 1. The T cells are obtained from either lymph nodes draining GM-CSF transduced tumor cell immunization or peripheral blood and subdivided into CD4+CD8+ (T cell) and CD4-CD8− (NKT cell) populations.

[1417] 2. SAg enterotoxin B is added to cultures of the NKT and T cell populations for 48 hours.

[1418] 3. The NKT cells and T cells are further expanded for an additional 72 hours (optional).

[1419] SAg Activated NKT and/or T Cell Administration

[1420] 1. The CD4+CD8+ (T cell) and CD4-CD8− (NKT) populations are harvested for injection into patients.

[1421] 2. T cells or NKT cells are administered with a mean 1011 cells per patient.

[1422] Assessment:

[1423] 1. T cells phenotypes for NKT cell markers, V expression, CD44, CD62 are carried out on lymph node and peripheral blood T cells or NKT cells immediately after their removal and at various intervals after ex vivo SAg stimulation and expansion.

[1424] 2. Tumor and DTH assessment are as described in the Phase I Protocol on GM-CSF Transduction [Human Gene Therapy 6: 347-368 (1995)].

[1425] Patient Evaluation

[1426] Assessment of response of the tumor to the therapy is made once per week during therapy and 30 days thereafter. Depending on the response to treatment, side effects, and the health status of the patient, treatment is terminated or prolonged from the standard protocol given above. Tumor response criteria are those established by the International Union Against Cancer and are listed in Table VII. 24 TABLE VII RESPONSE DEFINITION Complete remission (CR) Disappearance of all evidence of disease Partial remission (PR) >50% decrease in the product of the two greatest perpendicular tumor diameters; no new lesions Less than partial remission 25-50% decrease in tumor size, (<PR) stable for at least 1 month Stable disease <25% reduction in tumor size; no progression or new lesions Progression >25% increase in size of any one measured lesion or appearance of new lesions despite stabilization or remission of disease in other measured sites

[1427] The efficacy of the therapy in a population is evaluated using conventional statistical methods including, for example, the Chi Square test or Fisher's exact test. Long-term changes in and short term changes in measurements can be evaluated separately.

[1428] Results: One hundred and fifty patients are treated. The results are summarized in Table VIII. Positive tumor responses are observed in 80% of the patients as follows: 25 TABLE VIII All Patients Response No. % PR 20 66% <PR 10 33% Tumor Types Response % of Patients Breast Adenocarcinoma PR +< PR 80% Gastrointestinal Carcinoma PR +< PR 75% Lung Carcinoma PR +< PR 75% Prostate Carcinoma PR +< PR 75% Lymphoma/Leukemia PR +< PR 75% Head and Neck Cancer PR +< PR 75% Renal and Bladder Cancer PR +< PR 75% Melanoma PR +< PR 75%

EXAMPLE 24 Preparation of DCs

[1429] Splenocytes obtained from naive C57BL/6 females are treated with ammonium chloride Tris buffer for 3 min at 37° C. to deplete red blood cells. Splenocytes (3 ml) at 2×107 cells/ml are layered over 2 ml metrizamide gradient column (Nycomed Pharma AS, Oslo, Norway; analytical grade, 14.5 g added to 100 ml PBS, pH 7.0) and centrifuged at 600 g for 10 mm. The DC-enriched fraction from the interface is further enriched by adherence for 90 mm. Adherent cells (mostly DC and a few contaminating macrophages) are retrieved by gentle scraping and subjected to a second round of adherence at 37° C. for 90 min to deplete the contaminating macrophages. Non-adherent cells are pooled as splenic DC, and by FACS® analysis are ˜80-85% DC (stainwith mAb 33D1), 1-2% macrophages (stain with mAb F4/80), 10% T cells, and <5% B cells. The pellet is resuspended and enriched for macrophages by two rounds of adherence at 37° C. for 90 mm each. More than 80% of the adherent population is identified as macrophages by FACS® analysis with 5% lymphocytes and <5% DC. B cells are separated from the non-adherent population (B and T cells) by panning on anti-Ig-coated plates. The separated cell population which is comprised of >80% T lymphocytes by FACS analysis is used as responder T cells.

[1430] Generation of Bone Marrow-Derived DCs

[1431] Erythrocyte depleted mouse bone marrow cells from flushed marrow cavities are cultured in CM with 10 ng/ml GM-CSF and 10 ng/ml IL-4 at 106 cells/ml. On day 7, DCs are harvested by gentle pipetting and are enriched by 14.5% (by weight) metrizamide (Sigma) CM gradients. The low density interface containing the DC is collected by gentle pipette aspiration. The floating DCs express CD11b, CD11c, CD86, DEC205, MHC class I and II and CD40. They are negative or low for CD3 and B220 expression.

[1432] DC Cultures

[1433] Mouse BM-DCs are prepared in CM with IL-4 and GM-CSF (1000 IU/ml each). The DC are washed twice with CM, enumerated purity >90% by positive coexpression of MHC class II, CD40, CD80, CD86, and CD11c by fluorescence-activated cell sorter (ACS)], and cultured in CM with added cytokines for further studies. Human-monocyte-derived DCs are obtained from the adherent fraction of mononuclear cells of healthy volunteers and are incubated 7-8 days in AIMV containing L-Glu, antibiotics and rhIL-4 and rhGM-CSF (1000 IU/ml each, Schering Plough, Kenilworth, N.J., USA). After 8 days in culture, the loosely adherent or floating cells show typical dendritic morphology, express high levels of MHC class I and II molecules, CD40 and CD86; most are positive for CD1a and CD11c but low or negative for CD2, CD3, CD14, CD19 and CD83.

EXAMPLE 25 Preparation of DC/Tumor Cells Hybrids (DC/tc)

[1434] DCs derived from BM culture are fused with tumor cells at a 3:1 (DC:tumor cell) ratio using polyethylene glycol (PEG; MW=1450)/DMSO solution (Sigma). In brief, tumor cells are cultured in CM supplemented with 20% FCS and 1×OPI solution (oxaloacetate, pyruvate, and insulin; Sigma) for 4-6 h before fusion. Tumor cells and DCs are then mixed and washed with serum-free medium. After removing the medium, 1 ml of PEG is added to the cell pellet while resuspending the cells by stirring for 2 min. An additional 10 ml of serum-free medium is added to the cell suspension over the next 3 min. with continued stirring. The cells are centrifuged at 400×g for 5 mm. The cells are resuspended with 20% FCS CM and cultured for 24 h before staining or being used as targets or vaccines. Fusion preparations of DCs with B16 or RMA-S are termed B16/DC and RMA-S/DC, respectively.

[1435] Phenotype Staining of Fused Hybrid Cells

[1436] B16, RMA-S, DCs, and their fused hybrids are analyzed by staining with FITC- or PE-conjugated mAbs (PharMingen) against MHC antigens (Db, Kb, IAb) adhesion and costimulatory molecules (B7.1, ICAM-1) and lymphocyte antigens (Thy-1.2, SmIg) at 4° C. for 45 min. DCs were identified by labeling with mAb against CD11c (N418). B16, B16/DC or B16/B16 fused cells are stained with mAb against AKV Env gp85 protein (M562, provided by Dr. Masaru Taniguchi, Chiba University, Tokyo, Japan) as a B16 tumor-specific marker. RMA-S and RMA-S/DC fused cells are stained with Thy-1.2 or mAb against the R-MuLV-encoded Gag p12 protein (584, provided by Dr. Bruce Chesebro, National Institute of Allergy and Infectious Diseases, Hamilton, Mo.) as RMA-S tumor-derived markers. The method for labeling cells with TRITC (rhodamine) is described. Briefly, cells are resuspended in RPMI 1640 at 106 cells/ml and incubated with TR1TC (0.5g/ml) in 37° C. for 45 mm. The labeled cells are washed three times and used for fusion studies. The phenotypes of fresh and cultured LN T cells is determined by FACS analysis following staining with FITC- or PE-conjugated mAbs against Thy-1.2, Lyt-2, and L3T4 (PharMingen). All cells are washed twice with HBSS and fixed with 0.2% paraformaldehyde. Fluorescence intensity and positive cell percentage were measured on a FACScan flow microfluorometer (Becton Dickinson, Sunnyvale, Calif.).

[1437] Additional Fusion Methods

[1438] Murine (CS 7BL16) MC38 adenocarcinoma cells are stably transfected with the DF3/MUCI cDNA (MC38/MUC1). MC38, MC38/MUC1 and the syngeneic MB49 bladder cancer cells are maintained in DMEM supplemented with 10% heat-inactivated fetal calf serum (FCS), 2 mM glutamine, 100 U/ml penicillin and 100 mg/ml streptomycin. DCs are obtained as described from bone marrow culture with certain modifications. Briefly, bone marrow is flushed from long bones, and red cells are lysed with ammonium chloride. Lymphocytes, granulocytes and Ia+ cells are depleted from the bone marrow cells by incubation with the following mAbs: (1) 2.43, anti-CD8 (TIB 210; American Type Culture Collection, Rockville, Md.); (2) GK1.5, anti-CD4 (TIB 207); (3) RA3-3A1/6.1, anti B220/CD45R (TIB 146); (4) B21-2, anti-Ia (TIB 229); and (5) RB6-8C5, anti-Gr-1 (PharMingen, San Diego, Calif.) and then rabbit complement. The cells are plated in six-well culture plates in RPMI 1640 medium supplemented with 5% heat-inactivated FCS, 50 M 2-mercaptoethanol, 1 mM HEPES (pH 7.4), 2 mM glutamine, 10 U/ml penicillin, 100 mg/ml streptomycin and 500 U/ml recombinant murine GM-CSF (Boehringer Mannheim, Indianapolis, Ind.). At day 7 of culture, nonadherent and loosely adherent cells are collected and replated in 100-mm petri dishes (106 cells/ml; 8 ml/dish). The nonadherent cells are washed away after 30 mm of incubation, and GM-CSF in RPMI medium is added to the adherent cells. After 18 h, the nonadherent cell population is removed for fusion with MC38/MUC1 or MC38. Fusion is carried out with 50% PEG in Dulbecco's PBS without Ca2+ or Mg2+ at pH 7.4. The fused cells are plated in 24-well culture plates in the presence of HAT medium (Sigma) for 10-14 days. HAT slows proliferation of MC38/MUC1 and MC38, but not the fused cells. MC38/MUC1 and MC38 cells grow firmly attached to the tissue culture flask, while the fused cells are dislodged by gentle pipetting.

[1439] Flow Cytometry

[1440] Cells are washed with PBS and incubated with mAb DF3 (anti-MUCI), mAb M1/42/3.9.8 (anti-MHC class I), mAb M5/114 (anti-MHC class II), mAb 16-IOA1 (anti-B7-1), mAb GL1 (anti-B7-2) or mAb 3E, (anti-ICAM-1) for 30 mm on ice. After washing with PBS, the appropriate fluorescein isothiocyanate (FITC)-conjugated anti-hamster, -rat and -mouse IgG is added for another 30 mm on ice. Samples are then washed, fixed and analyzed in a FACScan (Becton Dickinson, Mountain View, Calif.).

[1441] Fusion of SAg Transfected Tumor Cells with Dendritic Cells Preparation of Dendritic Cells

[1442] Dendritic cells were generated from mouse bone marrow cultures of B6 mouse origin, following the protocol provided by W. Storkus, et al. Bone marrow cells were prepared from the femurs of four 8 week old normal C576L/6 (denoted B6, H 2b) mice.

[1443] 1. For all steps, a complete medium consisting of RPMI 1640 media supplemented with 10% heat-inactivated FCS 0.1 mM NEAA 1 mM sodium pyruvate, 50 mM 2-mercaptoethanol, 50 mM HEPES, 2 mM glutamine, 100 U/ml penicillin, and 100 U/ml streptomycin was used.

[1444] 2. Following removal of both femurs from each of four mice, cells were extruded by use of a 3 cc syringe filled with complete medium and 25 G needle. Clumps were removed by passing the cell suspension through a Cell Strainer (Falcon 2350). The cell suspension was then centrifuged at 600×g for 5 minutes at room temperature (all further centrifugations were performed in this manner unless otherwise indicated).

[1445] 3. Red blood cells were lysed by resuspending the cells in 4 ml of Red Blood Cell Lysing Solution (Sigma R7757) and incubating the tube on ice for 2 minutes. After neutralizing the ammonium chloride action with complete medium, the cells were centrifuged to pellet them.

[1446] 4. Granulocytes and leukocytes were depleted from the bone marrow cells by incubation in 2 ml of a cocktail of monoclonal antibodies from Pharmingen, formulated to contain no azide and have low endotoxin levels. The cocktail consisted of 5 mg/ml of the following monoclonal antibodies (1) 2.43, anti-CDS, Pharmingen 01050D (2) GK 15, anti-CD4, Pharmingen 094200 (3) RA3-3A1/6. 1, anti-B220/CD45R, Pharmingen 01120D (4) anti GRI, Pharmingen 01210D. Antibodies were diluted in complete medium, cells were then resuspended in the cocktail and incubated for one hour on ice. After diluting the cell suspension to 30 ml with complete medium, the cells were centrifuged to pellet them.

[1447] 5. Cells were then resuspended in 12 ml of a 1:8 dilution of low endotoxin rabbit complement (Accurate Chemicals, ACL-3051) which had first been reconstituted in sterile water. The cell suspension was incubated in complement for 30 minutes in a 37° C. water bath. Cells were diluted in complete medium and washed twice by centrifugation before resuspending them in 5 ml of complete medium for counting.

[1448] 6. The cell concentration was adjusted to 3.3×105 cells/ml in complete medium containing 10 ng/ml IL-4 (Sigma) and 10 ng/ml recombinant murine GM-CSF (Boehringer Mannhaim) and plated at 3 ml/well in 6 well culture plates.

[1449] 7. Cultures were refed on day 5 by removal and replacement of half the medium. This step was repeated as needed.

[1450] 8. At day 6 of culture, an aliquot of non-adherent and loosely adherent cells was collected and stained with antibody for N418 antigen (CD11c), a dendritic cell marker, using phycoerythrin (PE) labeled antibody. PE labeled antibody to an irrelevant antigen (TNP) served as the negative control.

[1451] 9. Cultures were maintained until they were used for fusion with tumor cells.

[1452] 10. Staining and FACs analysis revealed approximately 75% of the population to be CD11c positive.

[1453] Fusion of Dendritic cells with SEB Transfected B16 F10 Melanoma Cells

[1454] One SEB positive clone (clone 11.2) and one vector containing clone (clone 7.5) were maintained in complete medium supplemented with 50 mg/ml G418 and 0.5 mg/ml fungizone.

[1455] 1. Fusion of dendritic cells with the transtected B16F10 tumor cells, were carried out using preparations from seven and fourteen day cultures of dendritic cells.

[1456] 2. Fusion of the dendritic cells and tumor cells (either SEB transfected or control vector) was carried out at a 3:1 ratio with PEG (1450 mwt) DMSO (Sigma P7306). Mock fusion consisted of mixing dendritic cells with SEB-transfected cells in the same ratio as used for fusion without PEG-DMSO. In a secpmd experiment, fusion of the dendritic cells and the tumor cells was carried out at a 5:1 ratio.

[1457] 3. Four to 6 hours before fusion, tumor cells were cultured in complete medium (see dendritic cell preparation) supplemented with 20% FCS and 1×OPI solution (oxaloacetate, pyruvate, and insulin, Sigma). Tumor cells and dendritic cells were mixed and washed three times with serum-free medium, After removing the medium, 1 ml of PEG was added to the cell pellet while resuspending the cells by stirring for 2 min. An additional 10 ml of serum-free medium was added to the cell suspension over the next three minutes with continued stirring. The cells were centrifuged at 400×g for 5 min. and resuspended with complete medium 20% FCS. Cell suspensions were cultured in bulk cultures.

[1458] 4. In order to eliminate the melanoma cells remaining in the bulk culture, differential adherence subculturing was performed. Cultures were “fractionated” into nonadherent (transfer of the upper half the culture medium with floating cells), loosely adherent (transfer of cells resuspended by gentle pipeting), and adherent (cells requiring trypsinization to recover). Cells transferred to fresh cultures were refed with complete medium containing 20% FCS. Subculturing was performed every 2-3 days or as needed for approximately two weeks.

[1459] 5. Analysis of dendritic cell-melanoma cell fusions to detect CD11c positive cells was performed on cultures approximately 2 weeks after fusion. Cells were plated at 2×104cells/well in four well slide cultures. After three days in cultures, cells were stained with either antibody to N418 antigen (CD11c), a dendritic cell marker, using phycoerythrin (PE) labeled antibody or PE labeled antibody to an irrelevant antigen (TNP) as the negative control. After washing with PBS, the cells were incubated for 30 minutes on ice in PBS with 10%FBS and Fc-Block (Pharmingen 01241D). Five &mgr;l/well of the appropriate antibody was added to the wells and the staining was carried out by incubating the slides for 30 minutes on ice. After three washes in PBS, cells were fixed with 2% paraformaldehyde. The remaining cells were frozen for permanent storage.

EXAMPLE 26 Transfection of Hybrid DC/tc's with SAg DNA or RNA In Vivo and In Vitro

[1460] The methods for transfecting SAg-encoding nucleic acid into tumor cells disclosed in Examples 1 and 32 are used for transfection of DCs or DC/tc hybrids.

EXAMPLE 27

[1461] Preparation of DCs which have Phagocytosed SAg-Transfected Tumor Cell Lysates or Apoptotic Tumor Cells

[1462] PBMCs, DCs, macrophages, and T cells are prepared as follows. In brief, peripheral blood is obtained from normal donors in heparinized syringes and PBMCs are isolated by sedimentation over Ficoll-Hypaque (Amersham Pharmacia Biotech, Piscataway, N.J.). T cell-enriched and T cell-depleted fractions are prepared by rosetting with neuraminidase-treated sheep red blood cells. Immature DCs are prepared from the T cell-depleted fraction by culturing cells in the presence of GM-CSF and IL-4 for 7 d. 1,000 U/ml of GM-CSF (Immunex Corp., Seattle, Wash.) and 500-1,000 U/ml of IL-4 (Schering-Plough Corp., Kenilworth, N.J.) are added to the cultures on days 0, 2, and 4. To generate mature DCs, the cultures are transferred to fresh wells on day 7 and MCM is added for an additional 3-4 d. At day 7, >95% of the cells are CD14−,CD83−, HLA-DRlo DCs. On days 10-11, 80-100% of the cells are of the mature CD14−, CD83+, HLA-DRhi phenotype. FACSort® (Becton Dickinson, San Jose, Calif.) is used to generate highly pure populations of immature and mature DCs, based on their CD83− and CD83+ phenotypes, respectively. Macrophages are isolated from T cell-depleted fractions by plastic adherence for 1 h. After 24 h, cells are removed from the plates and placed in Teflon beakers for 3-9 d. T cells are further purified from the T cell-enriched fraction by removing contaminating monocytes, NK cells, and B cells.

EXAMPLE 28 Induction of Apoptotic Death and Phagocytosis of Apoptotic Tumor Cells or SAg-Transfected Tumor Cells by DCs

[1463] Monocytes are infected with influenza virus in serum-free RPMI. These cells undergo viral-induced apoptotic death within 6-8 h. Cell death is confirmed using the Early Apoptosis Detection kit (Kayima Biomedical Co., Seattle, Wash.). As previously described, cells are stained with Annexin V-FITC (Ann V) and propidium iodide (PI). Early apoptosis is defined by Ann V+/PI staining as determined by FACScan® (Becton Dickinson). Five to eight h after infection, monocytes first externalize PS on the outer leaflet of their cell membrane, as detected with Ann V. By 8-10 h, these cells are TUNEL (Tdt-mediated dUTP-biotin nick-end labeling) positive. It is not until 24-36 h that the majority of the monocyte population included trypan blue into the cytoplasm, an indicator of secondary necrosis. HeLa cells are triggered to undergo apoptosis using a 60 UV lamp (Derma Control Inc.), calibrated to provide 2 mJ/cm2/s.

[1464] Induction and Detection of Apoptosis

[1465] Monocytes are infected with influenza virus in serum-free RPMI. Cell death is assayed using the Early Apoptosis Detection kit (Kayima Biomedical). Briefly, cells are stained with Annexin V-FITC (Ann V) and propidium iodide (P1). Early apoptosis is 14 defined by Ann V+/PI− staining as determined by FACScan (Becton Dickinson). Cells from the 293 cell line are triggered to undergo apoptosis using a 60 UVB amp (Derma Control Inc.), calibrated to provide 2 mJcm−2s−1.

[1466] Phagocytosis of Apoptotic Cells

[1467] Monocytes and HeLa cells are dyed red using PKH26-GL (Sigma Biosciences, St. Louis, Mo.), and induced to undergo apoptosis by influenza infection and UV irradiation, respectively. After 6-8 h, allowing time for the cells to undergo apoptosis, they are cocultured with phagocytic cells that were dyed green using PKH67-GL (Sigma Biosciences), at a ratio of 1:1. Macrophages are used 3-6 d after isolation from peripheral blood; immature DCs are used on days 6-7 of culture; and mature DCs are used on days 10-11. Where direct comparison of cells is needed, cells are prepared from the same donor on different days. In blocking experiments, the immature DCs are preincubated in the presence of 50 mg/ml of various mAbs for 30 mm before the establishment of cocultures. After 451 20 mm, FACScan® analysis is performed and double positive cells were enumerated.

[1468] Coculture of DCs with Apoptotic Cells

[1469] Monocytes from HLA-A2.1-donors are infected with live or heat-inactivated influenza virus. Live influenza virus (Spafas Inc.) is added at a final concentration of 250 HAU ml-1 (MOI of 0.5) for 1 h at 37° C. Virus is heat-inactivated by treatment for 30 min at 56° C. before use. After washing, cells are added to 24-well plates in varying doses. After 1 h, contaminating non-adherent cells are removed and fresh media is added. Following a 10 h incubation at 37° C., 3.3×103 uninfected DCs and 106 T cells are added to the wells.

[1470] Antigen Pulsing of DC

[1471] Day 7 DC are incubated with freeze-thawed tumor lysates at a ratio of three tumor cell equivalent to one DC (i.e., 3:1) in CM. After 18 hr of incubation, DC are harvested, irradiated with rad (Gamma Cell 1000; Nordion, Kanata, Canada), washed twice in Hank's balanced salt solution (GIBCO), and in Hank's balanced salt solution.

EXAMPLE 29

[1472] Treatment of Tumor Bearing Animals with SAg-Transfected or SAg-Expressing DCs, Accessory Cells or S/D/t Cells: Vaccination Protocols and Treatment of Established Tumor

[1473] Immunotherapy

[1474] C57BL/6 mice are immunized once with irradiated, S/D/t cells (2×106 cells/mouse) 10-14 d post-immunization mice are challenged with 2×107 live tumor cell subcutaneously in the scapular region. Mice are monitored on a regular basis for tumor growth and size. Mice with tumor sizes >3.5 cm were killed. All survivors were killed 40 d post-challenge.

[1475] P10.9-B 16 Melanoma Model

[1476] Mice are injected intra-footpad with 2×105 F10.9 cells. Legs are amputated when the local tumor in the footpad is 7-8 mm in diameter. Post-amputation mortality is less than 5%. 2 d post-amputation mice are immunized intraperitoneally with S/D/t cells followed by weekly vaccinations twice, for a total of three vaccinations. Mice are killed based on the metastatic death in the non-immunized or control groups (28-32 d post-amputation). Metastatic loads are assayed by weighing the lungs.

[1477] S/D/t cells: In Vivo Immunization and Tumor Challenge

[1478] B6 or BALB/c mice are immunized s.c. in the right flank with 106 MCA-207 or 106 S/D/t cells, respectively, twice at 7-day intervals. Mice then are rechallenged 7 days after the last immunization with a lethal dose of 105 MCA-207 (for B6 mice) or 3×105 MT-901 (for BALB/c mice) viable tumor cells by s.c. injections into the left flank. The size of the tumors is assessed in a blinded, coded fashion twice weekly and recorded as tumor area (in square mm) by measuring the largest perpendicular diameters with calipers. Data are reported as the average tumor area SEM (five or more mice per group).

[1479] Vaccination Protocol

[1480] B6 mice are s.c. immunized twice in a 2-wk interval with 106 irradiated (15,000 rad) B16, B16 mixed with DCs (1/1: unfractionated cells from overnight culture), or S/D/t cells or recombinant formalin fixed bacteria (106-108). Ten days following the final immunization, each group of mice is injected s.c. with varying doses (104, 105, or 106 cells/mouse) of viable B16. Tumor growth and survival time of each group of mice are recorded. The size of the tumor in each mouse is measured in two perpendicular dimensions with a Vernier caliper twice weekly after tumor challenge. Tumor incidence is considered positive when the average diameters of the tumor exceeded 3 mm.

[1481] In Vivo Immunization for Treatment of Pulmonary Metastases

[1482] B6 or BALB/c mice receive 1.5×105 MCA-207 or 2×105 MT-901 viable tumor cells, respectively, i.v. in the lateral tail vein to establish pulmonary metastases, as described. The mice then are immunized s.c. with, respectively, 106 MCA-207 tumor lysate-pulsed S/D/t cells three times on days 3, 7, and 11 or 106 MT-901 tumor lysate-pulsed S/D/t cells twice on days 3 and 7 after tumor injection and are killed on days 14 and 17, respectively. Pulmonary metastases are enumerated on day 15 (MCA-207) or 14 (MT-901). Data are reported as the mean number of metastases±SEM (five or more mice per group).

[1483] In Vitro Activation of LN T Cells

[1484] B6 mice are immunized s.c. twice in a 2-wk interval on the flanks with 2×106 (106/side) irradiated (15,000 rad) tumor, S/D/t cell preparation, or tumor mixed with DCs (1/1) suspended in 0.1 ml of HBSS. One week after the final immunization, inguinal LNs from each group of mice are harvested. LN cells from each group of mice are activated and expended in culture using anti-CD3 plus IL-2. In brief, LN cells (3-4×106 cells/well) are activated on 24-well plates coated with anti-CD3 mAb (145-2C11) and incubated at 37° C. for 2 days. Alternatively, S/D/t cells (104-105/well 5 g) or recombinant bacteria (106-108/well) are incubated with the LN cells for 2 days and optionally with low dose IL-2 for an additional 2 days. The activated cells are suspended at 1-2×105 cells/ml in CM containing IL-2 (4 U/ml) and incubated in gas-permeable culture bags (Baxter Healthcare, Deerfield, Ill.) for an additional 3 days. The derived LN T cells are harvested and used as effector cells for adoptive immunotherapy.

[1485] Adoptive Immunotherapy Models

[1486] For therapy of B 16 pulmonary metastases. B6 mice are injected i.v. with 105 live B16 tumor cells in 1 ml of PBS to initiate pulmonary metastases. Three days after tumor inoculation, mice are randomly divided into several groups to receive treatments by i.v. injection of 5×107 cultured LN T cells suspended in 1 ml of PBS. On day 21 after tumor inoculation, mice from each group are killed, and lungs are insufflated with Fekete's solution. Lung metastases are counted. In some experiments. tumor-bearing mice are i.p. administered IL-2 (15,000 U. twice/day for 5 days) following the adoptive transfer of cultured LN T cells. For therapy of FBL-3 tumor. B6 mice are inoculated i.p. with 5×106 viable FBL-3 tumor cells on day 0. By day 5, the tumor is disseminated, and mice are treated with cyclophosphamide (CY) at a dose of 180 mg/kg followed in 6 h by i.p. injection of cultured LN T cells (5×107 cells/mouse) suspended in 0.5 ml of PBS. The tumor growth and the survival time of each group of mice are monitored and recorded on a regular basis.

[1487] Induction of Anti-Tumor Activity by FC/MUC1.

[1488] Groups of 1 mice are immunized twice at 14-day intervals by subcutaneous injection of 3×105 DCs (0) or S/D/t cells represented by FC/MUC1cells. PBS is injected as a control (0). After 14 days, mice are challenged subcutaneously with 2.5×105 MC38/MUC1 cells. Tumors of 3 mm in diameter are scored as positive.

[1489] Immunization with FC/MUC1 for Prevention and Treatment of Pulmonary Metastases

[1490] Groups of 10 mice are injected twice with S/D/t cells represented by FC/MUC1cells or PBS and then challenged after 14 days with intravenous administration of 106 MC38/MUC1 cells. The mice are killed 28 days after challenge. Pulmonary metastases are enumerated after staining the lungs with India ink. Groups of 10 mice are injected intravenously with 106 MC38/MUC1 or MC38 cells. The mice are immunized with 106 S/D/t cells representing FC/MUC1 cells or FC/MC38 at 4 and 18 days after tumor challenge and then killed after an additional 10 days. Pulmonary metastases are enumerated for each mouse.

[1491] Protection Assays

[1492] C57BL/6 mice are immunized with the indicated antigen-gene construct. Animals are challenged with tumors and evaluated for tumor survival as described. Briefly, 7 days after the final immunization (day 0), immunized animals are challenged by intradermal injection in the mid-flanks bilaterally with melanoma cells (2×104) at two times the dose lethal to 50% of the animals tested (LD50). Survival is recorded as the percentage of surviving animals. Melanoma cells for injection are washed three times in PBS. Injected cells were greater than 95% viable by trypan blue exclusion. All experiments include five mice per group and were repeated at least three times. Mice that became moribund were killed according to animal care guidelines.

EXAMPLE 30 DNA or RNA from SAg Transfected Tumor Cells, SAg Transfected DCs and SAg Transfected DC/tc Hybrids for In Vivo Vaccination and Transfection of Naive DCs to Produce a DC Expressing SAgs and Tumor Associated Antigens

[1493] Plasmid DNA Vector

[1494] 1. Genes from SAg Transfected Tumor Cells, SAg transfected DCs and S/D/t cells are cloned by PCR to contain a partial or entire coding region. In most cases, it is desirable to not include any sequence 5′ to the ATG or 3′ to the termination codon. PCR primers are designed to contain a restriction site, such as BgIII or BamHI.

[1495] 2. The PCR fragments are separated from unreacted oligomers and template and then the fragment is cut with an excess of BgIII for at least 5 h. The DNA is Phenol extracted and ethanol-precipitated. The purified cut fragment is resuspended in TE, pH 8.0 and ligated. to BgIII-digested V1J, which has been gel-purified and dephosphorylated with calf intestinal alkaline phosphatase (CLAP), phenol-extracted, ethanol-precipitated, and resuspended in TB, pH 8.0. A 6:1 molar ratio of insert:vector in the ligation reaction is used.

[1496] 3. Competent E. coli cells (e.g., DH5, DH5a) are transformed with the ligation reaction, plated on L-ampicillin plates and grown overnight at 37° C. Colonies are screened by hybridization of plate lifts to kinase-labeled PCR primer. Several hybridization-positive colonies are selected and grown in overnight cultures for miniprep purification.

[1497] 4. Miniprep DNAs, are prepared and cut with the appropriate restriction enzymes to determine correct orientation of the gene in the vector. At least three DNAs with the gene in the correct orientation are selected to confirm by sequencing across the ligation junctions. Sequencing primers are designed from the vector sequence. Each primer is 30-50 bp from. the restriction site (BgIII in the example), so that 10-20 bases within the vector can be read as well as 150-200 bases within the gene. This amount of sequence verifies orientation and give a reasonable estimate of the quality of the PCR-generated gene.

[1498] 5. DNA preparations that have been sequence-verified 1/1000 in TB, pH 8.0, are diluted and use to retransform competent E. coli. Three isolated colonies from the transformation plates are grown overnight at 37° C., and used to make a −70° C. cell stock by adding 0.8 ml fresh overnight growth to 0.2 ml sterile 80% (v/v) glycerol, mixing well, and freezing on dry ice. The −70° C. stocks are used to isolate plasmid DNA from remaining cells by miniprep procedures. Miniprep DNA is cut again with the appropriate restriction enzymes, and visualized on a gel to verify the construct. All subsequent growth of cells for plasmid production are made from the −70° C. frozen stock.

[1499] All constructs are tested in vitro to validate their ability to express the desired gene product. Plasmids purified by column (Wizard preps, Promega, Madison, Wis.) or by cesium chloride banding are used to transfect tissue-culture cells transiently. Protein expression is detected by immunoblot. This check not only verifies expression but can validate the size and immunoreactivity of the gene product.

[1500] Characterization of Plasmid DNA Vectors

[1501] All constructs are tested in vitro to validate their ability to express the desired gene product. Plasmids purified by column (Wizard preps, Promega, Madison, Wis.) or by cesium chloride banding are used to transfect tissue-culture cells transiently. Protein expression is detected by immunoblot. This check not only verifies expression but can validate the size and immunoreactivity of the gene product.

[1502] Cell Growth and Transfection

[1503] 1. DC /tumor cell hybrids, at 0.8-1.5×106 cells/100 mm plate in Dulbecco's Modified Eagle's Medium (DMEM) supplemented with 10% heat-inactivated fetal bovine serum, 20 mM HEPES, 4 mM L-glutamine, and 100 mg/ml each of penicillin and streptomycin, and incubate at 37° C. in 5% CO2 for 18 h.

[1504] 2. The construct to be tested is cotransfected with 10 mg/plate and 10 g of V1J-CAT using a calcium phosphate procedure or other methods given in Example 1.

[1505] 3. Five hours after transfection, the cells are shocked in 15% (v/v) glycerol in PBS, pH 7.2, for 2.5 mm.

[1506] 4. Cultures are harvested 72 h after transfection by washing the plates twice with 10 ml of cold PBS, pH 7.2, then adding 5 ml of cold TEN buffer and scraping.

[1507] 5. Pellet cells and use immediately or store at −70° C. for subsequent analysis.

[1508] Immunoblot Analysis

[1509] 1. Cell pellets are lysed in Single Detergent Lysis Buffer, and sonicate on ice (2-15 s bursts) to reduce viscosity.

[1510] 2. Cell debris is removed by sedimentation and determine soluble protein concentrations of the supernatants by the Bradford method.

[1511] 3. Equal loadings of soluble cell protein per lane are run on SDS-polyacrylamide gel and transfer the proteins to Immobilon P (Millipore, Bedford, Mass.) membrane.

[1512] 4. Western blots are incubated overnight with an appropriate dilution of the antibody to the gene product being tested, followed by a 1.5-h reaction with a 1:1000 dilution of peroxidase-conjugated secondary antibody. Develop blots using the ECL kit (Amersham, Arlington Heights, Ill.).

[1513] Large-Scale DNA Preparations

[1514] 1. Expression vectors are grown in E. coli strain DH5 with vigorous aeration in 500 ml growth medium/1-L shake flask. V1J constructs are grown overnight to saturation.

[1515] 2. Cells are harvested and lysed by a modification of the alkaline SDS procedure. The modification consists of increasing the volumes threefold for cell lysis and DNA extraction.

[1516] 3. DNA is purified by double banding on CsC1/ethidium bromide gradients.

[1517] 4. The ethidium bromide is removed by 1-butanol extraction, and the resulting DNA is extracted with phenol/chloroform and precipitated with ethanol.

[1518] 5. DNA in TE for transfections is resuspended and in 0.9% NaCl for injection into mice.

[1519] 6. The concentration and purity of each DNA preparation is determined by A 260/280 readings. The 260/280 ratios are >1.8.

[1520] 7. DNA is stored in small aliquots at −20° C.

EXAMPLE 31 DNA Immunization In Vivo

[1521] 1. Animals are housed in an American Association for the Accreditation of Laboratory Animal Care (AAALAC) accredited facility or other national facility and cared for in accordance with the Guide for the Care and Use of Laboratory Animals. Prior to bleeding, or administration of anesthetic or inoculation, animals are in good physical condition and free from stress.

[1522] 2. For administration of DNA vaccines, animals are anesthetized by ip injection of a solution containing ketamine and xylazine (50 and 20 mg/g body wt, respectively) in a total volume of 0.3 ml of saline. Alternatively, transiently immobilize mice for a sufficient period of time to administer an im injection by allowing inhalation of metophane. Larger animals, such as ferrets or nonhuman primates, are anesthetized using ketamine (30 mg/kg)/xylazine (2 mg/kg)/atropine (1 mg/kg) or ketamine (10 mg/kg), respectively.

[1523] 3. Fully anesthetized animals are prepared for injection by flooding and swabbing the injection site with ethanol (70%). This provides sterilization and, for small animals, such as mice, facilitates visualization of the muscle groups. To visualize small muscles further, fur around the injection site is shaved followed by ethanol swabbing, or a short incision can be made to permit direct observation of the muscle. In the latter case, the incision is sutured after inoculation.

[1524] 4. DNA vaccines are administered in saline solution alone or together with a facilitator that induces muscle generation or regeneration. Facilitators are used in animals that may not necessarily be used in humans. For mice, volumes of up to about 50 mL are injected into each quadriceps muscle using a disposable insulin syringe equipped with a 27-gauge needle and having a capacity of 0.3 ml.

[1525] 5. DNA vaccines are also administered using particle bombardment technology. Plasmid DNA is coated onto gold beads and propelled directly into tissue. Genetic immunization is accomplished by biolistic bombardment using methods similar to those recently described. Briefly, DNA-coated gold particles are prepared by combining 50 mg of 0.95 um gold beads and 100 l of 0.1 M spermidine and sonicating for 5 s. Plasmid DNA (100 mg) and CaCl (200 ml) are added sequentially to the beads spinning in a vortex; mixer. This mixture is allowed to precipitate at room temperature for 5-10 mm. The bead preparation is then centrifuged (10,000 r.p.m. for 30 s) and washed 3 times in cold ethanol before resuspension in 7 ml of ethanol to give a final concentration of 7 mg gold per milliliter. The solution is then loaded into Tefzel tubing (Agracetus, Middleton, Wis.) and allowed to settle for 5 mm. The ethanol is removed and the beads are attached to the side of the tubing by rotation at 20 r.p.m. for 30 s and N2 dried. The dried tubing lined with beads is then cut into 0.5-inch sections and stored for use with desiccant in parafilm-sealed vials. Animals are vaccinated by delivery of two shots (each shot consisted of 0.5 m4j gold beads in 0.5 inch of tubing) to the shaved abdominal region using the Accell gene delivery device (Agracetus) at a discharge pressure of 400 p.s:i. This delivers approximately 1.00 mg/DNA per shot. Animals are immunized with various plasmids In some instances, particles,are coated with the pGREEN LANTERN-1 plasmid (Gibco BRL, Gaithersburg, Md.), which contains the “humanized” reporter gene encoding GFP from the Aequorecia victoria jellyfish. This gene encodes a naturally fluorescent protein requiring no substrates for visualization.

[1526] Formulation of DNA Vaccine

[1527] Saline is the preferred solvent. However, plasmid DNA may also be administered in various other buffer formulations and cationic lipid formulations. Facilitators include anesthetics, such as bupivacaine, and toxins, which are used in conjunction with DNA vaccines. Conventional delivery vehicles are used which facilitate internalization of DNA by cells, protect DNA from digestion by extracellular nucleases, or effect a slow release of DNA; adjuvants are coadministered to provide an additional stimulus for the immune system.

[1528] Dosage and Injection Regimen

[1529] DNA vaccines are effective across a broad dosage range. Protective efficacy is achieved with submicrogram amounts of DNA. With respect to humoral immune responses against HA, there is a direct correlation between magnitude of antibody responses and dose of DNA between 10 ng and at least 100 g. However, perhaps owing to viscosity of the solution and/or distribution of the inoculum in the muscle, administration of DNA at concentrations in excess of 2-4 mg/ml results in decreased immunogenicity with some antigens. Therefore, in mice, doses in excess of 200 g are not practical by im injection. The number of injections also directly correlates with magnitude of immune responses (up to at least three). For the influenza model in mice, we have found that three injections given at 3-wk intervals yield optimal protection. It is likely, however, that dosing and regimen will need to be optimized for each gene and challenge model.

[1530] Site of Injection

[1531] Injection of plasmid DNA into muscle cells is far superior to other cell types in their capacity to internalize DNA and/or express reporter proteins in vivo. However, immune responses also have been generated after id and iv routes of DNA injection. In addition, particle bombardment of DNA results in the transfection of dermal and epidermal cells leading to the generation of immune responses. The relative effectiveness of these different routes of delivery has yet to be tested rigorously. However, direct im injection generates a protective immune responses at doses (100 ng to 1 g) and is preferred in the range used by particle bombardment.

EXAMPLE 32 Pulsing DCs with RNA from SAg Producing Bacteria or S/D/t Cells

[1532] Total RNA is isolated from SAg producing bacteria or S/D/t cells by standard methods. Pulsing DCs with RNA from SAg producing bacteria, S/D/t cells or SAg transfected tumor cells is performed in serum-free Opti-MEM medium (GIBCO BRL) for tumor extracts with the following modification RNA (25 gin 250 l Opti-MEM medium) and DOTAP (50 g in 250 l Opti-MEM medium) are mixed in 12×75 mm polystyrene tubes at room temperature for 20 mm. The complex is added to the DCs (25×106 cells/ml) and incubated 37° C. in a water bath with occasional agitation for 25 mm. The cells are washed twice and resuspended in PBS (105 RNA pulsed DCs in 500 l PBS/mouse) for intraperitoneal immunizations. PBS, B16 extract from 105 cells in PBS, or DCs prepared as described above are injected intraperitoneally in a volume of 500 l.

EXAMPLE 33 PolyA-Cellular RNA from S/D/t Cells or DCs Transfected with SAg

[1533] Preparation and Immunization Protocols

[1534] Total RNA is isolated from actively S/D/t cells given above as follows. Briefly, 107 cells are lysed in 1 ml of guanidinium isothiocyanate (CT) buffer (4 M guanidinium isothiocyanate, 25 mM sodium citrate, pH 7.0; 0.5% sarcosyl, 20 mM EDTA, 0.1M 2-mercaptoethanol). Samples are vortexed followed by sequential addition of 100 l 3M sodium acetate, 1 ml water saturated phenol and 200 l chloroform/isoamyl alcohol (49:1). Suspensions are vortexed and placed on ice for 15 mm. The tubes are centrifuged at 10,000 g, 4° C. for 20 min and the supernatant is carefully transferred to a fresh tube. An equal volume of isopropanol is added and the samples are placed at −20° C. for at least 1 h. RNA is pelleted by centrifugation as above. The pellet is resuspended in 300 l GT buffer which is then transferred to a microcentrifuge tube. RNA is re-precipitated by adding an equal volume of isopropanol and placing the tube at −20° C. for at least 1 h. Tubes are microcentrifuged at high speed at 4° C. for 20 mm. Supernatants are decanted and pellets are washed once with 70% ethanol. Pellets are allowed to dry at RT and then resuspended in TB (10 mM Tris-HCl, 1 mM EDTA, pH 7.4). Possible contaminating DNA is removed by incubating RNA in 10 mM MgCl2, 1 mM DTT and 50 U/ml RNase free DNase (Boehringer-Mannheim, Indianapolis, Ind.) for 15 min at 37° C. The solution is adjusted to 10 mM Tris, 10 mM EDTA, 0.5% SDS and 1 mg/ml Pronase (Bochringer-Mannheim) followed by incubation at 37° C. for 30 mm. Samples are extracted once with phenol-chloroform and once with chloroform, and RNA was then re-precipitated in isopropanol at −20° C. After centrifugation the pellets are washed with 70% ethanol, air dried, and resuspended in sterile water. Total RNA is quantitated by measuring OD at 260 and 280 nm. OD 260/ 280 ratios are typically 1.65-2.0. RNA is stored at −70° C. PolyA+ RNA is either isolated from total RNA using Oligotex (Qiagen, Chatsworth, Calif.) or directly from tissue culture cells using the Messenger RNA Isolation kit (Stratagene, La Jolla, Calif.) as per manufacturer's protocols.

[1535] Production of In Vitro Transcribed RNA

[1536] The 1.9-kb EcoRI fragment containing the coding region and 3′ un-translated region is cloned into the EcoRI site of pGEM4Z (Promega, Madison, Wis.). Clones containing the insert in both the sense and anti-sense orientations are isolated and large scale plasmid preparations are made using Maxi Prep Kits (Qiagen). Plasmids are linearized with BamHI for use as templates for in vitro transcription. Transcription is carried out at 37° C. for 34 h using the 5P6 MEGAscript In vitro Transcription Kit (Ambion, Austin, Tex.) per manufacturer's protocol and adjusting the GTP concentration to 1.5 mM and including 6 mM m7G(5′)ppp(5′)G cap analogue (Ambion). Template DNA is digested with RNase free DNase I and RNA is recovered by phenol/chloroform and chloroform extraction followed by isopropanol precipitation. RNA is pelleted by microcentrifugation and the pellet is washed once with 70% ethanol. The pellet is air-dried and resuspended in sterile water. RNA is incubated for 30 mm at 30° C. in 20 mM Tris-HCl, pH 7.0, 50 mM KCl, 0.7 mM MnCl2, 0.2 mM EDTA, 100 mg/ml acetylated BSA, 10% glycerol, 1 mM ATP and 5,000 U/ml yeast poly(A) polymerase (United States Biochemical, Cleveland, Ohio). The capped, polyadenylated RNA is recovered by phenol/chloroform and chloroform extraction followed by isopropanol precipitation. RNA is pelleted by microcentrifugation and the pellet is washed once with 70% ethanol. The pellet is air-dried and resuspended in sterile water. RNA is quantitated by measuring OD at 260 and 280 nm and stored at −70° C.

[1537] Pulsing of Antigen-Presenting Cells, Accessory Cells DCs, Tumor Cells or DC/Tumor Cell Hybrids with RNA Derived from S/D/t Cells

[1538] Pulsing of cells with RNA is routinely performed in serum-free Opti-MEM medium (GIBCO BRL). Cells are washed twice in Opti-MEM medium. Cells are resuspended in Opti-MEM medium at 25×106 cells/nil and added to 15 ml polypropylene tubes (Falcon). The cationic lipid, DOTAP, (Boehringer Mannheim) is used to deliver RNA into cells. RNA (in 250-500 l Opti-MEM medium) and DOTAP (in 250-500 p.1 Opti-MEM medium) are mixed in 12×75-mm polystyrene tubes at room temperature (RT) for 20 mm. The amount of polyA+ RNA or IVT RNA used is 5 g and the amount of total RNA used is 25 g. The RNA to DOTAP ratio is 1:2. The complex is added to the APC (2-5×106 cells) in a total volume of 2 ml and incubated at 37° C. in a water-bath with occasional agitation for 2-4 h.

EXAMPLE 34 In Vivo Immunization with RNA Derived from “S/D/t Cells” or SAg-Transfected Tumor Cells

[1539] Preparation of mRNA for Transfection

[1540] DNA is linearized downstream of the poly A tail with a 5-fold excess of PstI. The linearized DNA is then purified with two phenol/chloroform extractions, followed by two chloroform extractions. DNA is then precipitated with NaOAc (0.3M) arid 2 volumes of EtOH. The pellet is resuspended at about 1 mg/ml in DEP-treated deionized water.

[1541] A transcription buffer is prepared, comprising 400 mM Tris. HCl (pH 8.0), 80 mM MgCl2, 50 mM DTT, and 40 mM spermidine. The following materials are added in order to one volume of DEP-treated water at room temperature: 1 volume T7 transcription buffer; rATP, rCTP, and rUTP to 1 mM concentration; rGTP to 0.5 mM concentration; 7 g(5′)ppp(5′)G cap analog (New England Biolabs, Beverly, Mass.) to 0.5 mM concentration; the linearized DNA template to 0.5 mg/ml concentration; RNAsin (Promega, Madison, Wis.) to 2000 U/ml concentration; and T7 RNA polymerase (N.E. Biolabs) to 4000 U/ml concentration.

[1542] This mixture is incubated for 1 hour at 37° C. The successful transcription reaction is indicated by increasing cloudiness of the reaction mixture.

[1543] Following generation of the mRNA, 2U RQ1 DNAse (Promega) per microgram of DNA template used is added and was permitted to digest the template for 15 minutes. Then, the RNA is extracted twice with chloroform/phenol and twice with chloroform. The supernatant is precipitated with 0.3M NaOAc in 2 volumes of EtOH, and the pellet is resuspended in 100 mu 1 DEP-treated deionized water per 500 l transcription product. This solution is passed over an RNAse-free Sephadex G50 column (Boehringer Mannheim #100 411). The resultant mRNA is sufficiently pure to be used in transfection of vertebrates in vivo.

[1544] mRNA Vaccination In Vivo

[1545] A liposomal formulation containing mRNA coding for the SAg/tumor associated antigen protein prepared and is inserted into the plasmid pXBG in A volume of 200 l of a formulation is prepared containing 200 mg/ml of S/D/t cell-derived mRNA and 500 mg/ml 1:1 DOTAP/PE in 10% sucrose is injected-into the tail vein of mice 3 times in one day. At about 12 to 14 h after the last injection, a segment of muscle is removed from the injection site, and prepared as a cell lysate according to Example 7. The S/D/t cell-derived specific protein is identified in the lysate.

[1546] Severe combined immunodeficient (SCID) mice (Molecular Biology Institute, (MBI), La Jolla, Calif.) were reconstituted with adult human peripheral blood lymphocytes by injection into the peritoneal cavity according to the method of Mosier (Mosier et al., Nature 335:256 (1988)). The mice were maintained in a P3 level animal containment facility in sealed glove boxes. mRNA coding for the S/D/t cell-derived proteins is prepared by obtaining the S/D/t cell gene in the form of a plasmid removing the gene from the plasmid; inserting the gene into the pXBG plasmid for transcription; and purifying the transcription product S/D/t cell-derived mRNA. The S/D/t cells mRNA is then incorporated into a formulation and 200 l tail vein injections of a 10% sucrose solution containing 200 mg/ml S/D/t cell RNA and 500mg/ml 1:1 DOTAP:DOPE (in RNA/liposome complex form) were performed daily on experimental animals, while control animals were likewise injected with RNA/liposome complexes containing 200 mg/ml yeast tRNA and 500 mg/ml 1:1 DOTAP/DOPE liposomes. At 2, 4 and 8 weeks post injection, biopsy specimens are obtained from injected lymphoid organs and prepared for immunohistochemistry.

[1547] A volume of 200 l-of the formulation, containing 200 mg/ml mRNA from S/D/t cells, and 500mg/ml 1:1 DOTAP:DOPE in 10% sucrose is injected into the tail vein of the human stem cell-containing SCID mice 3 times in one day. Following immunization, the mice are challenged by tumor inoculation.

[1548] The full-length sequence for the cDNA of the S/D/t-derived gene is obtained and ligated to BgIII linkers and then digested with BgIII. The modified fragment is inserted into the BgIII site of PXBG. S/D/t-derived protein is transcribed and purified mRNA is incorporated into a formulation. Balb 3T3 mice are injected directly in the tail vein with 200 l of this formulation, containing 200 mg/ml of S/D/t-derived mRNA, and 500 mg/ml DOTAP in 10% sucrose.

EXAMPLE 35 Preparation of “String of Beads” Tumor Antigens for Transfection of SAg-Transfected DCs, Other Accessory Cells, or Tumor Cells

[1549] Generation of rAd

[1550] All cell lines were maintained in Iscove's modified Dulbecco's medium (IMDM) (Scromed, Berlin) supplemented with 4% fetal calf serum (FlyClone), penicillin (110 international units/ml; Brocades Pharma, Leiderdorp, The Netherlands) and 2-mercaptoethanol (20 mM) at 37° C. in a 5% CO2 atmosphere. The adenoviral vector construction adapter plasmid pMad5 is derived from plasmid pMLP10 as follows. pMLP10-lin is constructed by insertion of a synthetic DNA fragment with unique sites for the restriction endonucleases MluI, SplI, SnaBI, SpeI, AsulI, and MunI into the HindIII site of pMLP10. Subsequently, the adenovirus BgIII fragment spanning nucleotides 3328 8914 of the AdS genome is inserted into the MunI site of pMLP-lin. Finally, the SalI-BamHI fragment is deleted to inactivate the tetracycline resistance gene, resulting in plasmid pMad5. A mini-gene cassette vector, pMad5-0. is generated by ligation of the annealed and phosphorylated double-stranded oligonucleotides 1a/b and 2a/b into the MluI and SpeI sites of pMad5. This cloning step leads to elimination of the original MluI and SpeI sites and to creation of a small ORF, which essentially consists of a start codon, the sequence SEOKLISEEDLNN, a human c-Myc-derived sequence, which is recognized by mAb 9E10 and a stop codon. A small “stuffer” sequence. flanked by newly generated MluI and SpeI sites, is present between the start codon and the c-Myc sequence.

[1551] pMad5-1 and -2, each of which harbor a multi-epitope encoding minigene are constructed by unidirectional cloning of the following double-stranded oligonucleotides into pMad5-0, which had been cleaved with MluI and SpeI. pMad5-I. After each cloning step, the sequence of the inserts is verified by DNA sequencing. Expression of these minigenes is driven by the Ad5 major late promoter, which in this configuration is linked to the AdS immediate early enhancer, resulting in immediate early expression of the minigenes.

[1552] rAds are generated through in vivo homologous recombination in the Ad5E 1-transformed helper cell line 911 between plasmid pJMI7. containing the sequence of the AdS mutant d1309, and either of the plasmids pMad5-1 or pMad5-2. 911 cells are transfected with 10 g of plasmid pJMI7 in combination with 10 g of either pMad5-1 or pMad5-2. The rAds are plaque-purified three times, after which the clonal rAds are propagated in 911 cells, purified by double cesium chloride density gradient centrifugation and extensively dialyzed. The presence of replication-competent adenoviruses is routinely checked by infection of Hep-G2 cells. The viral stocks were stored in aliquots with 10% glycerol at −80° C. and titered by plaque assay using 911 cells.

[1553] Further Transfection of SAg-Transfected DCs, Accessory Cells, or Tumor Cells

[1554] In short, 100 ng of plasmid DNA encoding Ad5LI, HPV 16 E7, murine p53 or the influenza-matrix protein are transfected into 104 SAg-transfected DCs, accessory cells or tumor cells. The transfected cells are incubated in 100 ml of IMDM containing 8% fetal calf serum for 48 h at 37° C., after which 1500-500 CTL.??? in 25 ml of IMDM containing 50 Cetus units (=300 international units) of recombinant interleukin-2 (Cetus) are added. After 24 h, the supernatant is collected, and its tumor necrosis factor (TNF) content is determined by measuring its cytotoxic effect on WEHI- 164 clone 13 cells.

EXAMPLE 36 Production of Exosomes from DCs Expressing SAg and Tumor Associated Antigens and Normal Hepatocytes

[1555] Exosome Isolation

[1556] SAgs or tumor associated antigens are transfected into tumor cells, DCs, or DC/tc hybrids by methods disclosed herein. The SAg-encoding nucleic acid is provided with sorting sequences which route the translated protein to the endoplasmic reticulum and thereupon to secretory vesicles or exosomes. Alternatively, tumor cells, DCs or DC/tc are incubated 18-20 hours with tumor peptides or SAgs. DCs supernatants are harvested, centrifuged (at 4° C.) at 300 g for 20 mm and then at 10,000 g for 30 min (to eliminate cell debris). Exosomes are then pelleted at 100,000 g for one hour, and washed once in a large volume of PBS (over 100-fold the final volume of resuspension of the exosomes). The protein concentrations in exosome preparations is measured by Bradford assay (BioRad). The slightly acidic pH transiently induced by the acid peptide elution increases the amounts of exosomes produced by DCs. Three to five g of exosomes are routinely obtained from 5-10×105 DCs in 18-20 hours. Exosomes containing LDL, oxyLDL, apolipoproteins, LDL receptors and oxyLDL receptors are obtained from normal hepatocytes by a method similar to that described above for dendritic cells and sickled erythrocytes as in Example 6.

[1557] Mice and Tumor Cell Lines for Exosome Trials

[1558] DBA/2J (H-2d) and BALB/c (H-2d) female mice 6-8 weeks of age are raised in pathogen-free conditions. P815 (H-2d) is a methylcholanthrene induced mastocytoma, syngeneic with DBA/2. TS/A (H-2d) is a spontaneously-arising undifferentiated mammary adenocarcinoma, syngeneic with BALB/c. All tumor cell lines are maintained in RPMI 1 640 supplemented with 10% endotoxin-free fetal calf serum (Gibco BRL), 2mM L-Glutamine, 100 U/ml penicillin, 100 mg/ml streptomycin, essential amino acids and pyruvate.

[1559] Experimental Mouse Models for Exosome Trials

[1560] Twice the minimal tumorigenic dose of tumor cells (5×105 P815, 105 TS/A) is inoculated intradermally in the upper right flank of DBA/2 and BALB/c mice, respectively. Animals with established tumors at days 3-4 for TS/A, or days 8-10 for P815, are immunized with a single intradermal injection of 3-5 g of exosomes per mouse in the lower ipsilateral flank. The tumor size is monitored biweekly and mice are sacrificed when bearing ulcerated or huge tumor burdens. All experiments are performed two to three times using individual treatment groups of five mice per group.

EXAMPLE 37 Bacterial Constructs for the Expression of SAgs Linked to Galactosylceramides, &agr;-Gal Epitope. Peptidoglycans, Lipopolysaccharides and &bgr;1,3-Glucans

[1561] Nucleic acids encoding SAgs may be transfected into bacteria which naturally synthesize and express fundamental recognition units for innate immunity. Some of these moieties such as monogalactosylceramides and &agr;-gal actosylceramides are potent immunogens and induce anti-tumor activity. The addition of the SAg and a dominant tumor associated epitope coexpressed with these natural bacterial constructs and administered to a tumor bearing host would promote a potent tumor specific response. The system described uses S. carnosus as a model bacterial system to express a SAg peptide and dominant tumor epitope.

[1562] Expression Vectors for Surface Display

[1563] The shuttle vector constructed pSPPmABPXM consists of the following parts: (i) the origin of replication for E. coli and the 13-lactamase gene giving ampicillin resistance for transformed E. coli cells; (ii) the origin of replication for phage f1; (iii) the origin of replication from S. aureus and the chloramphenicol acetyltransferase gene for staphylococcus expression; (iv) the promoter, signal sequence, and propeptide sequences from the S. hyicus lipase gene construct, optimized for expression in S. carnosus; (v) a multicloning site containing three unique recognition sites for restriction endonucleases; (vi) a gene fragment encoding a serum ABP from streptococcal protein G; and (vii) gene fragments encoding the cell wall-anchoring regions X and M from staphylococcal protein A.

[1564] As a model system, the surface display of SAg staphylococcal enterotoxin B. substitutes for place the 80 amino acid malaria peptide M3 from falciparum blood stage antigen Pf155/RESA. A plasmid vector, pSPPM3ABPXM is constructed, in which a gene fragment encoding SEB instead of M3 is introduced between the propeptide region and the ABP sequence of plasmid pSPPmABPXM. An oligonucleotide linker (5′AGCTTGGCTGTTCCGCCATGGCTCGAG-3′ with complementary sequence) is inserted into the HindIII site of plasmid pSZZmpISX thus creating additional NcoI and XhoI recognition sites downstream of the HindIII site in the resulting vector, pSZZmpI8XhoXM. A gene fragment encoding a 198-amino-acid ABP from the serum albumin binding region of streptococcal protein G is generated by a PCR 26 5′-CCGAATTCAAGCTTAGATGCTCTAGCAAAAGCCAAG-3′ and 5′-CCCCTGCAGTTAGGATCCCTCGAGAGGTAAAATTTCATC-3′

[1565] respectively) with plasmid pSPGI as template sequenced in plasmid pRIT28 by solid-phase DNA sequencing and HindIII-XhoI subcloned in frame downstream of the mp18 multilinker of pSZZmp18XhoXM. yielding plasmid pSZZmpI8ABPXM. An M3-encoding gene fragment was BamHI-HindIII subcloned from plasmid pRIT28EM3DAStop into pSZZmp18ABPXM, yielding plasmid pSZZM3ABPXM. Plasmid pLipPS17 is constructed from pLipPSlk the introduction of a BsmI recognition site in the beginning of the lipase signal sequence. a Bc/I site at the end of the signal sequence and a BgIII site at the end of the propeptide-encoding region by site-directed in vitro mutagenesis. A gene fragment constituting almost the entire S. carnosus vector pLipPSI except for a fragment encoding the C terminus of the propeptide and the majority of the mature lipase from S. hyicus is isolated by SalI-Hind III digestion and ligated to the E. Co/i plasmid pRIT28. which had previously been cut with the same restriction endonucleases. The resulting plasmid, designated pSDLip, contained the origin of replication for both E. coli and S. aureus. To restore the C-terminal region of the lipase propeptide, a gene fragment encoding the C-terminal part is generated by PCR amplification with the oligonucleotides 27 5′-CCGAATTCTCGAGGCTCCTAAAGAAAATAC-3′ and 5′-CCAAGCTTGGATCCTGCGCAGATCTTGGTGTTGGTTTTTTG-3′

[1566] as upstream and downstream primers. respectively, with plasmid pLipPS17 as template. This amplification introduced upstream EcoRI and XhoI sites and downstream FspI. BamHI. and HindIII recognition sequences by noncomplementary sequences in the PCR primers. The gene fragment encoding the C-terminal propeptide region was EcoRI-HindIII subcloned to pRIT28 to verify a correct sequence by solid-phase DNA sequencing and thereafter XhoI-BamHI transferred to SalI-BamHI-restricted pSDLip. The resulting plasmid. pSPP is HindIII restricted, filled in with Klenow polymerase. and religated to yield plasmid pSPPDHind, which encodes the signal peptide and the complete propeptide of the S. hyicus lipase with transcription from a promoter region suitable for overproduction in S. carnosus.

EXAMPLE 38 Gene Transfer for Expression of an Mono or Digalactosylceramide by Transfection with a Cosmid Genomic Library Prepared from a Cell Line in which the Specific Glycosylceramide is Highly Expressed

[1567] The deliberate transfer of mono or digalactosylceramide expression in tumor cells is achieved by transfection with a cosmid DNA library prepared from Fabry's cells in which the mono or digalactosylceramide is highly expressed. This model demonstrates a general method for transferring glycosyltransferase genes and other factors necessary for the expression of glycosphingolipid antigens. The recipient tumor cells contain mono or digalactosylceramide and the direct precursor, lactosylceramide. The transfected cells express mono or digalactosylceramide detected both chemically and immunologically and contained human DNA detected by an Alti sequence probe.

[1568] Cells and antibodies: Fabry's cells or normal cells with an &agr;-gal actosidase deficiency and tumor cells including but not limited to neuroblastoma cells are used. Anti-galactosyl ceramide monoclonal antibody is prepared. Total DNA is prepared from Fabry's cells is excised by MboI and ligated by Bam HI-treated cosmid vector PCV 108, which has the SV40 promotor fused to the neomycin phosphotransferase gene. The target DNA for cosmid cloning is purified by gel electrophoresis between 30-40 KB size. In vitro packaging is made with an extract of lysogenic bacteria and propagated in E. coli. as described elsewhere.

[1569] Transfection and Selection of Galactosylceramide Expression: Cosmid library DNAs are transfected into various cells using the calcium phosphate DNA precipitation technique with the addition of a glycerol shock after a 6 hour incubation. Galactosylceramide selection is started 2 days later at 400 mg/ml concentration. The expression of galactosylceramide in the original Fabry's cell and the transfected tumor cells was determined by cytofluorometry (FACS II), in which FITC-conjugated anti-mono or digalactosylceramide antibody is used. Glycolipids in transfected cells are analyzed after cells were extracted in chloroform-methanol (2:1 and 1:1 v/v). The neutral glycolipid fraction is prepared by an acetylation procedure. The glycolipid profile is confirmed on HPTLC, followed by immunostaining with anti- mono or digalactosylceramide antibody.

EXAMPLE 39 Staphylococcal Collagen Binding Adhesin Nucleic Acids Transfected into SAg Transfected Tumor Cells, SAg Transfected DCs or Accessory Cells and S/D/t Cells

[1570] Collagen gene fragments from S. aureus strain FDA 574 are overexpressed in E. coli using the vector pQE-30 (QIAGEN inc. Chatworth, Calif.). Recombinant proteins expressed from this vector contain an NH2-terminal tail of six histidine residues. The gene named cna encoding a S. aureus collagen adhesin is isolated from a S. aureus genomic library cloned and sequenced. The cna gene encodes a 1185 amino acid polypeptide. The deduced amino acid sequence reveals several structural characteristics similar to previously described Gram-positive bacterial cell surface proteins.

[1571] Plasmids expressing cna gene fragments are produced as follows. Recombinant S. aureus collagen adhesin fragments are overexpressed in E. coli using three different prokaryotic expression systems. The amino terminus including the entire A domain is amplified from S. sureus FDA 574 chromosomal DNA using PCR together with primers CNA 20 and CNA 21. The amplified 1.6-kb cna gene fragment is cleaved with EcoRI and PstI, gel purified and ligated to the prokaryotic expression vector pKK223-3 obtained from Pharmacia LKB Biotechnology to create plasmid pKK1.5. Expression vector pKK223-3 contains an IPTG-inducible tac promoter adjacent to a consnesus Shine-Dalgarno ribosomal binding site. However, this vector lacks an initiation codon; therefore, the DNA to be expressed must contain an appropriate start codon. In order to express an internal cna fragment, a DNA linker sequence containing an ATG start codon is synthesized. Two partially complementary ologonucletides, JPI (5′AATTACCATGGAATTCCTGCA-3′) and JP2 (5′-TGGTACCTTAAGG-3′), are heated to 70° C. and slowly cooled to allow annealing. Once annealed, the double-stranded linker is phosphorylated by the addition of ATP and T4 polynucleotide kinase. The DNA linker contained EcoRI and PstI restriction sites at the 5′- and 3′-termini, respectively. These sites are used to insert the linker onto pKK223-3. A 2.9-kb EcoRI/PstI DNA fragment, originally isolated from lambdaGT11 clone pCOL1 1 was ligated to vector pKK223-3 to create plasmid pKK2.9. The collagen adhesin fragment encoded by pKK2.9 contains three repeated domains (B1, B2, and B3), the carboxyl terminus and downstream sequences.

[1572] The plamid containing the collagen adhesin is transfected into DTES by methods in Example 1 and 3 and expression of the transduced gene is monitored by Immunoblots (Example 33).

EXAMPLE 40 Transfection of Nucleic Acids Encoding SAgs in Combination with Nucleic Acids that Promote Apoptosis Induction or Predispose to Apoptosis

[1573] SAgs expressed in apoptotic tumor cells or tumor cell/DC hybrids are ingested by DCs which present them to the immune system in more which evokes a potent immune response to the tumor associated antigens. The apoptotic cell is also one which is overexpresses a GalCer such as one with a natural or acquired &agr;-galactosidase deficiency or from a patient with Fabry's Disease. The apoptotic stimulus can be produced by concordant influenzal infection, radiation or chemotherapy. In addition, it may be inducible by an exogenous source such as TNF if the cell is predisposed by transfection of an potent inhibitor of NF-kB such as a modified form of I&kgr;B&agr;. Additional stimuli to apoptosis are provided by numerous well established activators (caspase 9) or initiators (caspase 8) of the caspase system or the CD95 TNFR network. Having undergone apoptosis, the SAg transfected, GalCer overproducing cell is now ingested by DCs which are cross-primed to present the tumor antigens and the GalCer in the context of SAg stimulation resulting in a potent antitumor response. Methods and protocols for SAg transfection are given in Example 1 and for priming of DCs in Example 27-28 The apoptotic transfectants are used as a preventative or therapeutic antitumor vaccine by protocols in Example 15, 16, 18-23 and 29. They are also useful ex vivo to a population of tumor specific effector T cell or NKT cells for use in the adoptive immunotherapy of cancer (Examples 2-5, 7, 15, 16, 18-23, 29).

EXAMPLE 41 Preparation and Isolation of Glycosphingolipids and Verotoxins

[1574] Galabiosylceramide, Globotrioslceramides and Globotetraosylceramide

[1575] Globotrioslceramides (GB3) and globotetraosylceramide (Gb4) are purified from human renal tissue. Briefly, the chloroform/methanol tissue extract is first applied on a Bio-Sil A (Bio-Rad) silica column in chloroform. The column is extensively washed with chloroform, and neutral glycolipids are eluted with acetone/methanol,9:1 (vol/vol). The neutral glycolipid fraction is then applied on a second Bio-Sil A column in chloroform/methanol, 98:2 (vol/vol). Glycolipids are then resolved with a linear solvent gradient comprising equal weights of chloroform/methanol 15:1 (vol/vol), to chloroform/methanol, 4:1 (vol/vol). Galabiosylceramide (Gb2) or Gal(&agr;1-4)Gal ceramide from marine sponge may be obtained, for example, from Dr T. Matsubara (Department of Chemistry, Kinki University, Kowakae. Japan).

[1576] VTs and Subunits: A simple method for purifying E. coli H30 verocytotoxin is as follows. The toxin, released from the cells by exposure to polymyxin B, is subjected to differential ammonium sulfate precipitation and sequential chromatography on hydroxylapatite, chromatofocussing, Cibachron blue, and Sephadex G-100 columns. The purified toxin, 39 kDa by gel filtration and having a pI of 6.72, resolves as a band which migrates at 32 kDa and another band of less than 14 kDa which migrates with the buffer front on reducing SDS-PAGE. The purified preparation is relatively heat-stable, and has a specific activity of 3×109 CD50 units/mg protein in Vero sells, and LD50 values of 0.2, 9.0, and 40 g protein/kg in rabbits, rats, and mice, respectively. Antiserum to the toxin specifically neutralizes H 30 VT, Shiga toxin, and VT activity from some clinical isolates of VT+E. coli but not that from a porcine edema disease strain.

[1577] Verocytotoxin 2 (VT2) is purified from E. coli strain E32511 using, as starting material, cells harvested from a Penassay broth culture incubated for 6 h at 37° C. in the presence of mitomycin C (0.2 mg /ml). A crude extract of VT2, is obtained by polymyxin B treatment of cell pellets, is purified using differential ammonium sulphate precipitation, and sequential column chromatography. The purified toxin is estimated to have a pI of 6.5 by chromatofocusing and a molecular weight of 42 kDa by gel filtration; it has a specific activity of 1.39×106 CD50 units/mg protein in Vero cells, and resolves as a major band of Mr 35 kDa and another band of <14 kDa which migrates with the buffer front on reducing SDS-PAGE. The purified toxin is not neutralized by VT1 antisera, and antisera prepared to this toxin in rabbits did not neutralize VT1, but completely neutralized the activity of the homologous toxin.

[1578] Recombinant Methods of Preparing VT's and Subunits: Recombinant VT1 is purified from pJLB28. VT2 from R82. and VT2c from E32511. The recombinant E. coli strain pJLB28 is used as a source of VT1 B subunit. High yields of the toxins or subunits (10-15 mg/3 liters, of broth culture) are purified by a method involving polymyxin B extraction, ultrafiltration, hydroxylapatite chromatography, chromatofocusing, and Cibacron Blue chromatography. VT2 is purified by virtually the same method from an E. coli clinical isolate, strain E32511. The cistron encoding the B subunit of E. coli Shiga-like toxin I (SLT-I) is cloned under control of the tac promoter in the expression vector pKK223-3 and the SLT-I B subunit is expressed constitutively in a wild -type background and inducibly in a lacIq background. E. coli TB 1 lac pro rpsL ara thi f 80d LacZ D MI5 hsdR is obtained from Bethesda Research Laboratories (Gaithersburg, Md.). E. coli JMIO1 D lacc pro supE thi (F′ traD36 IacZ A MIS pro AB lacP) is obtained from Dr. J. D. Friesen (Department of Medical Genetics, University of Toronto, Toronto, Ontario, Canada). Plasmids pTZ18R and pKK223-3 are obtained from Pharmacia. Plasmid pJLB5 consists of a 3.0 kb KpnI fragment of bacteriophage H 19B DNA cloned in the KpnI site of pUC18. To construct plasmid pJLB34, pJLB5 is cut at the BgIII site and digested with nuclease Bal31. The ends are filled with Klenow fragment and dNTPs. The fragment remaining after deletion is cleaved with EcoRI, and the piece carrying the SLT-I B cistron is purified by agarose-gel electrophoresis. The fragment is recovered from the gel and cloned into pUC18 cut with EcoRI and HindII. The EcoRI-HindIII fragment is cloned in M13mp18 and its nucleotide sequence is determined. The B cistron coding sequence is recovered from pJLB34 as a 1.1 kb PstI fragment and was then cloned in the PstI fragment and was the cloned in the PstI site of the polylinker of pKK223-3. Clones with the correct orientation of insertion relative to the tac promoter are identified by restriction-endonuclease analysis. One plasmid with the orientation is selected and designated pJLB120. pJLB120 is transformed into E. coli TB1 for constitutive expression and into E. coli JM101 for inducible expression. Bacteria are grown in L-broth or brain heart infusion broth (Difco Laboratories, Detroit, Mich.) supplemented as necessary with carbenicillin at 50 mg/ml and IPTG (Bethesda Research Laboratories) at 1 mM.

[1579] Expression of Toxins: For E. coli JM 101 (pJLB 120), an overnight culture is used to inoculate fresh L-broth supplemented with carbenicillin (50 pg/ml) and was grown to mid-exponential phase (A600=0.3-0.6) at 37° C. with shaking at 300 rev./min. IPTG is added to a final concentration of 1 mM. and incubation is continued with aeration. For E. coli TB I (pJLB120), an overnight culture is used to inoculate fresh L-broth supplemented with carbenicillin (50 mg/ml), and this is grown for 12-18 h at 37° C., with shaking at 300 rev./min. In both cases the culture is harvested and the pellet is washed once with PBS (0.15M-NaCl/10 mM sodium phosphate buffer, pH 7.4) before extraction.

[1580] Polymxin B extraction of Toxins: The washed pellet is resuspended in PBS containing 0.1 mg/ml polymyxin B in one-quarter of the original culture volume and extracted as previously described. For purification, 18 h cultures of E. coli TBI (pJLB 120) are extracted with polymyxin B, and the extracts are concentrated 10-fold using a stirred-cell Amicon concentrator with a Ym-5 membrane (Amicon Corp., Danvers, Mass., USA).

[1581] Quantification of Toxins: Periplasmic extracts of VT-producing clones, prepared by polymyxin B extraction, are diluted as required and filtered onto nitrocellulose paper in a slot-blot apparatus (Bio-Rad Laboratories). VT is detected by using MAb 1 3C4 according to the Western-blot procedure described above. Blots are scanned with a Molecular Dynamics model 300A computing densitometer. VT is quantified by comparison with a standard curve generated with purified B subunit protein.

[1582] Purification of Toxins: The concentrated polymyxin B extract are dialysed overnight against 50 mM-Tris/HCl buffer, pH 7.4, and then applied to a DEAE-Sephacel column (1 cm×20 cm) equilibrated with 1 mM-Tris/HCL buffer, pH 7.4. Bound material is eluted by using a linear gradient of 0-1M-NaCl in 50 mM-Tris/HCl buffer, pH 7.4, and 5 ml fractions are collected. Fractions containing VT are identified, pooled and concentrated with Centriprep-3 concentrators (Amicon Corp.). This pool is dialyzed overnight against 25 mM-imidazole/HCl buffer, pH 7.4, and is applied to a column (1.5 cmx 2° Cm) of Polybuffer exchangcr 94 (Pharmacia) equilibrated with the same buffer. Elution is carried out with a degassed solution of Polybuffer 74 (Pharmacia) diluted 1:8 with distilled water and adjusted to pH 4.0 with HCl (11 column volumes). Fractions (5 ml) are collected, and the B subunit positive fractions are pooled and concentrated with Centriprep-3 (Amicon). Ampholytes are removed by Sephadex G-50 gel-filtration.

[1583] HPLC Purification of Toxins Approximately 1 mg (in 1 ml) of purified toxin or subunit is injected into a TSK-G2000SW HPLC gel filtration column previously equilibrated with 50 mM Tris-buffered saline (TBS), pH 7.4, flow rate of 1.0 ml/mm. Peaks, measured by absorbance at 1=280 nm, arecollected.

[1584] Toxin Subunit Separation: 1 mg of toxin subunit is concentrated to 30-50 ml using a Centricon 30 concentrator (Amicon). 1 ml of a subunit dissociating solution (6 M urea, 0.1 M NaCl, 0.1 M propionic acid, pH 4, is added dropwise, and the toxin is incubated without stirring at 4° C. for 1 h. The solution is then separated by HPLC gel filtration (as above) after previous column equilibration with the dissociating solution. Peaks, measured by absorbance at 1=280 nm, are collected.

EXAMPLE 42 Gangliosides Shed from Tumor Cells: Isolation from Tumor Cell Supernatants

[1585] Collection of Tumor Cell Supernatant

[1586] Tumor cells are cultured in 25 ml of no serum-low protein medium (NSLP) in an 8° Cm2 flask for 1-5 days. Cells are harvested by centrifugation at 400 g for 10 mm, and the supernatant is concentrated 10-fold at 4° C. in an Amicon stirred cell with a 10-kDa cutoff ultrafilter. Concentrated supernatant and NSLP concentrated under the same conditions are stored at −20° C., and passed through a 0.1-um sterile membrane filter.

[1587] Metabolic Labeling of Gangliosides in Tumor Cell Supernatant

[1588] Tumor cells (105/ml) are cultured in 10 ml of NSLP for 2 days. After three washes with fresh medium, cells are transferred into 10 ml of NSLP containing 1 mCi/ml D-[1-14C]GlcNH2-HCl (50 mCi/mmol (ICN Biomedicals, St. Laurent, Quebec, Canada) and 1 mCi/ml of D-[1-14C]Gal (56 mCi/mmol; Amersham) to label gangliosides. After 24 hr, cells are washed with medium three times to remove unincorporated sugars, then cultured for an additional 24-48 hr in fresh medium, before harvesting by centrifugation at 400 g. Radioactivity in the tumor cell supernatant and cells is quantitated by liquid scintillation counting. The supernatant is clarified by centrifugation at 15,000g for 10 mm, then concentrated 10-fold using a Speedvac concentrator, before being analyzed by gel filtration chromatography.

[1589] Gel Filtration Chromatography of 14C-Labeled Tumor Cell Supernatant on Sepharose 2B-300

[1590] Concentrated 14C-labeled tumor cell supernatant is chromatographed on a Sepharose 2B-300 column (5 ml bed volume; Sigma Chemical Go, St Louis, Mo.), equilibrated with Tris-buffered saline (TBS; 50 mM Tris-HCl in 0.15 M NaCl, pH 7.4). The column is eluted at a flow rate of 0.2 ml/min at 22° C., and 200 ml fractions are collected and counted for 14C. Dipalmitoylphosphatidylcholine liposomes and sodium azide are used as standards to calibrate the void and included volume of the column, respectively.

[1591] Gel Filtration FPLC of ‘P-Labeled Tumor Cell Supernatant on Superose

[1592] FPLC is carried out on a Superose 6 column (1×30 cm; Pharmacia, Dorval, Quebec, Canada) linked to a Gilson HPLC system and a Gilson iliB ultraviolet flow detector. The column is calibrated with a series of standard proteins of known molecular mass, ranging from &bgr;-galactosidase (465 kDa) to &bgr;-lactoglobulin (36.8 kDa) (Pharmacia, High Molecular Weight Gel Filtration Calibration kit). The void volume and included volume are determined using Blue Dextran (2000 kDa) and sodium azide, respectively. 3H-Labeled bovine brain gangliosides and [14C]Gal dissolved in NSLP or TBS are also used as standards. Concentrated YAC-1 supernatant is eluted through the column at 22° C. with TBS at a flow rate of 0.5 ml/min. Fractions (0.5 ml) are collected and counted for 14C.

EXAMPLE 43 Assessment of SAg and VT Binding to Glycosphingolipids by TLC Overlay

[1593] Glycolipids (dissolved in chloroform/methanol (2:1 v/v), are applied to a TLC plate and separated in choroform/methanol/water (65:25:4, v/v). Toxin binding is determined using known methods. Briefly, after separation of the glycolipids, the plate is air dried, incubated overnight at 37° C. in a solution of 1% (m/v) gelatin in 50 mM Tris/HCL, 150 mM NaCI, pH 7.4 (buffer A). The plate is washed in buffer A and incubated successively with VT 1 (0.07 mg/ml in buffer A) followed by monoclonal antibody PHI (1.5 mg/ml in buffer A), and finally with goat antimouse IgG horseradish peroxidase conjugate (diluted 1:2000 in buffer A). Toxin binding is visualized using 4-chloro-1-naphthol. An equivalent plate is run and treated with 3% (m/v) orcinol spray in 3 M H2SO4 to visualize carbohydrate and ensure equal concentrations.

[1594] Alternate Microtitre Plate Binding Assay

[1595] Quantification of toxin binding to various glycoconjugates is performed using published methods. A methanolic solution [100 pl containing glycolipid (300 nmol). phosphatidylcholine (0.5 mg) and cholesterol (0.25 mg)] is added to microplate wells and the methanol is allowed to evaporate overnight at room temperature. The wells are blocked with 2% (m/v) BSA in buffer A (200 ml/well) for 2 h at room temperature and subsequently washed once with buffer A containing 0.1% BSA (BSA/buffer A). 100 ml aliquots of dilutions of [125I]-VT-1 in BSA/buffer A are added to the wells and incubated for 2 h at room temperature. The wells are washed five times with BSA/buffer A, excised and the radioactivity is measured in a g counter. Scatchard analysis was performed using the LIGAND program.

EXAMPLE 44 Methods of Induction and Assessment of Apoptosis & Inhibition of Protein Synthesis

[1596] Tumor cells (5×105cells/ml) are cultivated at 37° C. in 96-well round-bottomed microtiter plates (Becton Dickinson) in 200 ml leucine-depleted RPMI (Eurobio, France) containing 1 mCi of [3 H] leucine. with or without 10 ng/ml VT. After 18 hrs. cells are harvested on class fiber filters, and radioactivity incorporated in proteins measured in a scintillation counter.

[1597] Ultrastructural Analysis of VT-Treated Astrocytoma Cells

[1598] Cells are cultivated on a transferable 9 mm cylcopore membrane (0.45 mm pore size. Falcon) to form a confluent monolayer and are incubated at 37° C. with VTI (10 ng/ml). Cells are fixed at room temperature by addition of 1.6% glutaraldehyde to the wells and then incubated in 0.066 M Sorensen buffer (pH 7.4) containing 1.5% glutaraldehyde for 1h at 4° C. After 2 h of washing with 0.1 phosphate buffer, cells are post-fixed in 2% osmium tetroxide in the same buffer. After dehydration in graded ethanols and propylene oxide, Epon embedding, thin sectioning and uranyl-lead counterstaining on grids are performed. Thin sections are examined in a Philips EM 400 electron microscope and ultrastructural features of apoptosis are analyzed

[1599] Flow cytometry: Apoptosis of astrocytoma cells, incubated with 10 ng/ml of VT1 for 24-36 hrs in-the presence of 10% bovine fetal serum is analyzed on an Epics Profile Analyzer (Coulter Electronics. Pathology. University of Toronto) according to known procedures. After treatment, cells are trypsinized and the 200×g centrifuged cell pellet is suspended in.1 ml of hypotonic fluorochrome solution of 50 mg/ml propidium iodide (Sigma) and stained for 30 min at 4° C. To remove RNA prior to staining. cells are treated with 100 ml of 200 mg/ml solution of DNase-free RNase A at 37° C. for 30 min. Cell cycle distribution is determined using manual gating. Flow cytrometric quantitation of apoptotic cells within the propidium iodide-stained population is performed as described. Debris and dead cells are excluded on the basis of their forward and side light-scattering properties. Astrocytoma cells grown simultaneously in the absence of VT1 serve as controls.

[1600] DNA Fragmentation Assays Cells: Tumor cells are incubated in RPMI 1640 medium alone or in the presence of intact VT or VT-B. After 18-h culture, cells are counted and viability assessed by trypan blue exclusion. Cells are then centrifuged and washed twice with saline buffer. The pellets are lysed by incubation for 1 h at 50° C. in 10 mM EDTA, 200 mM NaCl, 0.1 mg/ml proteinase K, 0.5% (w/v) SDS, and 50 Mm Tris-HCL, pH 8. The DNA is extracted with phenol, chloroform:isoamylalcohol (24:1), and then ethanol precipitated. Unfragmented DNA is discarded, and 0.1 volume of 3 M sodium acetate, pH 7.2, is added to the supenatant which is left at −80° C. overnight. The precipitate containing fragmented DNA is centrifuged (1300 g, 30 mm) and dried under vacuum. DNA derived from 5×106 cells is then resuspended in 20 ml RNAse buffer containing 0.5 mg/ml DNAse-free RNAse (Sigma), 15 mM NaCl, and 10 mM Tris-HCL, pH 7.5. and incubated at 50° C. for 1 h; Electrophoresis is carried out at 70V in 2% agarose gel containing 0.1 mg/ml ethidium bromide in a buffer containing 2 mM EDTA, 80 mM Tris-phosphate. pH 8. After electrophoresis. gels are examined under UV. Phage DNA from bacteriophage 1 and f digested by HindIII and HaeII, respectively, provide molecular weight standards.

[1601] Nuclear staining with propidium iodide: SF-539 cells grown on the cover slips overnight are incubated at 37° C. with VT-12B subunit (50 mg/ml) for 1.5 hrs or 10 hrs and fixed (with 1% paraformaldehyde for 3 minutes). permeabilized with 0.1% Triton X in 100 mM PBS for 5 min, and stained with 5 mg/ml propidium iodide (Sigma). After extensive wash with 50 mM PBS, the fixed cells are mounted with DABCO (1,4-diazabicyclo-octane (Sigma), and nuclear staining is observed under incident UV illumination.

[1602] Proliferation assay: Approximately 1-5×104 cells are added to 24-well plates and incubated in a-MEM in 5% CO2 at 37° C. After 24 hr, the growth medium is replaced with medium containing various concentrations of the holotoxin VT1 (0.0.1.5.50, 100 ng/ml). The treated astrocytoma cell lines and endothelial cells are trypsinized and counted at intervals throughout the growth curve. Cell viability is assessed by trypan blue dye exclusion. Cell counts are plotted against time for the various concentrations of VT1 and B subunit. For each time point analyzed, the wells are set-up in triplicate.

[1603] For selected cell lines, the B subunit of VT1, VT2, and VT2c is added alone to the astrocytoma cells at same concentrations listed above. A single dose of VT1. VT2. and VT2c is added to confluent astrocytoma cells in microplate wells. Cell survival at 72 hr is monitored by staining with 0.1 % crystal violet, and measuring the optical density at 590 nm using a Dynatek microtiter plate reader.

EXAMPLE 45 Multidrug Resistant Cells: Culture and Preparation

[1604] MCF-7-wt and MCF-7-AdR (adriamycin-resistant) cells are obtained from Drs. K. H. Cowan and M. B. Goldsmith, National Cancer Institute. Cells are maintained in RPMI 1640 medium containing 10% FBS (v/v), 50 units/ml penicillin, 50 mg/ml streptomycin, and 584 mg/liter L-glutamine. KB-3-1 human oral epidermoid carcinoma cells (parent, drug-sensitive) and KB-V-1 cells (highly MDR) and subclones are obtained from the National Cancer Institute). Cells are grown in high glucose (4.5 g/liter) Dulbecco's modified Eagle's medium containing 10% FBS and other components described above. The KB-V-1 cell line is maintained with vinblastine (1.0 mg/ml) in the medium. NIH:OVCAR-3 cells (human ovarian adenocarcinoma, drug-resistant) are obtained from the American Type Culture Collection and grown in RPMI 1640 medium containing insulin (10 mg/ml), 10% PBS, and other components listed above. All cells are cultured in a humidified, 6.5% CO2 atmosphere, tissue culture incubator. Cells are subcultured once a week using 0.05% trypsin and 0.53 mM EDTA solution.

[1605] Lipid Mass Analysis: Cell lipids are analyzed by TLC separation and charring of the chromatogram. Briefly, total cellular lipids are extracted and equal aliquots (by weight) from each sample are spotted on TLC plates. Plates are developed in the desired solvent system (see below), air-dried for 1 h, and sprayed using a 35% solution of sulfuric acid in water (v/v). The lipids are charred by heating in an oven at 180° C. for 30 mm, and resulting black bands are visualized.

[1606] Cell Radiolabeling and Analysis of Sphingolipids: MCF-7 cells grown in medium containing 10% FBS, are switched to serum-free medium containing 0.1% fatty acid-free BSA. Cell lipids are radiolabeled by incubating cells with [3H]serine (2.0 mCi/ml), [3H]palmitic acid (1.0 mCi/ml, or [3H]galactose 1.0 mCi/ml) for the indicated times. In some instances, cells are radiolabeled in medium containing 5% PBS. Cells are then rinsed twice with PBS, and 2 ml of ice-cold methanol containing 2% acetic acid is added. The cells are scraped free, transferred to glass test tubes (13×100 mm), and lipids are extracted by the addition of chloroform (2 ml) followed by water (2 ml). The resulting organic lower phase is evaporated under a stream of nitrogen. Lipids are resuspended in 100 ml of chloroform methanol (1:1, v/v) and aliquots are applied to TLC plates. When using [3H]galactose, radiolabeled cells are washed twice with PBS, transferred to glass tubes with methanol (2 ml, and glucosylceramides and gangliosides (2.5 mg of each) are added to aid recovery. Lipids are extracted by the addition of water (2 ml; and 2 ml of chloroform (three times consecutively). The pooled organic lower phase is treated as above. Lipid analysis is carried out by various TLC separations using solvent system I, chloroform/methanol/ammonium hydroxide (65:25:5, v/v); solvent system II, chloroform/methanol/ammonium hydroxide (40:10:1, v/v), solvent system III, chloroform/methanol/water (60:40:8, v/v), or solvent system IV, chloroform/methanol/acetic acid/water (50:30:7:4, v/v). For determination of ceramides. an aliquot of the chloroform-soluble lipids is base-hydrolyzed in 0.1 N KOH in methanol for 1 h at 37° C.; lipids are re-extracted and separated using solvent system V hexane/diethyl ether/formic acid (60:40:1, v/v). Galactosyl- and glucosyl-ceramides are separated using solvent system VI, chloroform/methanol/water (60:25:4, v/v). This separation is performed on TLC plates that are pre-run in 2.5% borax in methanol/water (1: 1) and heated at 110° C. prior to use.

[1607] Radiochromatograms are sprayed with EN3HANCE and exposed for 3-7 days for autoradiography. TLC areas, aligned with hands on the autoradiographs or with iodine-stained commercial lipid standards are scraped from the plate. Water (0.5 ml) is added to the plate scrapings, followed by 4.5 ml of EcoLume counting fluid, and the samples are quantitated by liquid scintillation spectrometry.

[1608] Purification of Glycosylceramides: The compounds, extracted with total lipids from MCF-7-AdrR cells, are resolved from other lipids on preparative TLC using silica gel H plates developed in solvent system II. The appropriate region of the TLC plate is then scraped into test tubes, and lipids are extracted with chloroform/methanol/acetic acid/water (50:25:1:2, v/v). The samples are centrifuged, and the solvent transferred to new glass tubes and evaporated to dryness under nitrogen.

[1609] Fast-Atom Bombardment/Mass Spectrometry of TLC-isolated Lipid-: FAB/MS spectra are acquired using a VG 70 SEQ tandem hybrid instrument of EBqQ geometry (VG analytical, Altrincham, UK.). The instrument is equipped with a standard unheated VG FAB ion source and a standard saddle-field gun (Ion Tech Ltd., Middlesex, UK) that produces a beam of xenon atoms at 8 kV and 1 mA. The mass spectrometer is adjusted to a resolving power of 1000, and spectra are obtained at 8 kV using a scan speed of 10 s/decade. 2-Hydroxyethyl disulfide is used as matrix in the positive FAB/MS, and triethanolamine is used as a matrix in the negative FAB/MS. Negative FAB and positive FAB give different values for the same compounds, due to charge (proton content) differences.

EXAMPLE 46 Incubation of Tumor Cells with Hydroxy Fatty Acids for Selective Synthesis of Galactosphingolipids and Lipid Analysis

[1610] Tumor cells on filters are incubated for 1 hr at 37° C. in the presence of labeled and unlabelled [3H]Cer(C6[D-20H]). After the incubation, lipids are extracted from the cells and the combined incubation media and analyzed Lipids are extracted from cells and media by a two-phase extraction. The upper phase contains 20 mM acetic acid and (for radiolabeled lipids) 120 mM KCl. After a chloroform wash. which is added to the lower phase, lipids remaining in the upper phase GalCer are collected on SepPak C18 cartridges (Waters, Milford, Mass.) from which lipids are eluted with chloroform/methanol/water 1:22:0.1) and methanol. The organic (lower) phase is dried under N2, and the lipids are applied to TLC plates that were dipped in 2.5% boric acid in methanol, dried, and activated by heating at 110° C. for 30 mm. They are developed in two dimensions:

[1611] I. chloroform/methanol/25%NH4OH/water (65:35:4:4. v/v); and

[1612] II. chloroforrm/acetone/methanol, acetic acid/water (50:20:10:10:5. v/v).

[1613] Fluorescent spots are detected under UV scraped from the TLC plates and the fluorescent lipid analogs are extracted from the silica in 2 ml chloroform/methanol/20 mM acetic acid (1:2:2:1 v/v) for 30 mm. After pelleting the silica for 10 min at 1,500 rpm fluorescence in the supernatants is quantified in a fluorimeter (Kontron. Zorich, Switzerland). Radiolabeled spots are detected by fluorography after dipping the TLC plates in 0.4% PPO in 2-methylnaphthalene with 10% xylene. Preflashed film (Kodak X-Omat S) is exposed to the TLC plates for 3 d at −80° C. The radioactive spots are scraped from the plates, and the radioactivity is quantified by liquid scintillation counting in 0.3 ml Solulyte (J. T. Baker ChemicaL. Deventer, The Netherlands) and 3 ml of Ultinsa Gold (Packard Instruments. Downers Grove. Ill.).

EXAMPLE 47 Conjugation of Proteins to Lipoproteins

[1614] The preferred method for coupling superantigens to lipoproteins is to use 10 mM solution of sodium periodate for oxidation of the carbohydrate in the lipoprotein. This will also cleave c-c bonds in the sugars with adjacent hydroxyls and oxidize them to reactive aldehydes. Superantigens form Schiff base linkages with the aldehyde modified sugar groups under alkaline conditions. the aldehyde modified sugar is then coupled to the amine containing superantigen peptide or polypeptide. The oxidation is followed by reductive amination using sodium cyanoborohydride to reduce the labile Schiff base between the aldehyde on the carbohydrate and the amine on the superantigen to form stable secondary amine covalent linkages.

[1615] An alternative procedure is to periodate oxidize the lipoprotein as above to create reactive aldehyde groups. Heterobifunctional cross-linking agent such as 4-(4-N-Maleimidophenyl)butryric acid hydrazide (MPBH) 4-(4-N-Maleimidophenyl)buryric acid hydrazide (MPBH), and 4-(N-Maleimidomethyl)cyclohexane-1-carboxyl-hydrazide (M2C2H) which contain a carbonyl-reactive hydrazide group on one end and a sulfhydryl-reactive maleimide on the other are preferred. The hydrazide reacts specifically with aldehyde functional groups to create a hydrazone linkage a type of Schiff base. To stabilize the bond between the hydrazide and aldehyde, the hydrazone is reacted with sodium cyanoborohydride to reduce the double bond and form a secure covalent linkage. The cross-bridge between the two functional ends provides a long, 17.9-A spacer. These agents couple to periodate-oxidized aldehydes on the lipoportein carbohydrate via the hydrazine and to sulfhydryl groups on the superantigen via sulthydryl reactive maleimide group. Superantigens without reactive sulfhydryl groups are first thiolated with SATA or Trout's reagent before addition to the reactive maleide. A sulthydryl-containing protein or molecule is is bound via the maleimide end of MPBH and the derivative purified by gel filtration to remove excess reactants, and then mixed with a lipoprotein (that had been previously oxidized to provide aldehyde residues) to effect the final conjugation.

[1616] The opposite approach e.g., modification of the glycoprotein first, purification, and subsequent mixing with a sulfhydryl-containing molecule is also acceptable. With this second option, however, the purification step should be done quickly to prevent extensive hydrolysis of the maleimide group. (See Hermanson GT Bioconjugate Techniques Academic Press, San Diego Calif., 1996).

[1617] Protocol for periodate oxidation

[1618] 1. Periodate-oxidize a liposome suspension containing glycolipid components according to Section 2. Adjust the concentration of total lipid to about 5 mg/ml.

[1619] 2. Dissolve the protein to be coupled in 20 mM sodium borate, 0.15 M NaCl, pH 8.4, at a concentration of at least 10 mg/ml.

[1620] 3. Add 0.5 ml of protein solution to each milliliter of lipoprotein suspension with stirring.

[1621] 4. Incubate for 2 h at room temperature to form Schiff base interactions between the aldehydes on the lipoprotein and the amines on the protein molecules.

[1622] 5. In a fume hood, dissolve 125 mg of sodium cyanoborohydride in I ml water (makes a 2 M solution). This solution may be allowed to sit for 30 mm to eliminate most of the hydrogen-bubble evolution that could affect the lipoprotein suspension.

[1623] 6. Add 10 &mgr;l of the cyanoborohydride solution to each milliliter of the lipoprotein reaction.

[1624] 7. React overnight at 4° C.

[1625] 8. Remove unconjugated protein and excess cyanoborohydride by gel filtration using a column of Sephadex G-50 or G-75.

EXAMPLE 48 Isolation of Lipoproteins

[1626] Human LDL is isolated by sequential ultracentrifugation (d 1.019-1.063 g/ml) from freshly drawn, citrated normolipidemic human plasma to which EDTA 0.1 mmol/liter is added. Freshly obtained plasma is subjected to differential ultracentrifugation to isolate the desired lipoprotein fractions Typically, the following density fractions were isolated: 1) d<1.02. to remove VLDL and IDL; 2) d=1.02-1.05, to obtain LDL; 3) d=1.05-1.08, to obtain Lp(a); and 4) d=1.08-1.21, to obtain Lp(a) and HDL. The Lp(a)-containing density fractions were subjected to gel filtration chromatography on a Bio-Gel A-15 m column (2.5×90 cm). This column was eluted with 1.0 M NaCl, 10 mM Tris, 10 mM NaN3, 1 mM EDTA, pH 7.4, and was continuously monitored at 280 nm. The LDL- and HDL-containing density fractions are also subjected to gel filtration chromatography to remove any contaminating species and for uniformity of sample preparation. They are further dialyzed against 0.01 M sodium phosphate pH 7.4, containing 0.15 M sodium chloride and 0.01% EDTA, sterilized on 0.2-um Millipore membrane, and stored at 4° C. under nitrogen (up to 3 weeks).

[1627] Lipoprotein (a) (Lp(a)): Lp(a) is prepared from fresh human plasma by flotation centrifugation followed by affinity chromatography on lysine-Sepharose and CsCI density gradient centrifugation as described. Lipoprotein preparations are dialyzed against 0.15 M sodium chloride containing 0.01% EDTA at 0.01% sodium azide, filter sterilized (0.45 pm) and stored at 4° C. in vials filled to allow no air space. No contamination of the preparations by plasminogen is detected by either Coomassie Blue staining of sodium dodecyl sulfate (SDS) gels or by treatment with streptokinase and measuring plasmin activity with a chromogenic substrate. S2251. The sensitivities of these assays excluded plasminogen contamination of >1% and >0.4% respectively. Lp (a)-free LDL, HDL and acetylated LDL are prepared as previously described. The LDL contained no apoA-1 and the HDL contained no detectable apoB-100. The apoprotein composition is verified by SDS polyacrylamide gel elecrophoresis.

[1628] Lysine-Sepharose Chromatography: Lipoprotein (a) has an affinity for lysine-Sepharose by virtue of lysine binding kringle 4 domain(s) located on apo(a). The most important domain appears to be kringle 437, which has the greatest homology to kringle 4 of plasminogen, although there may be other kringles with lesser affinity for lysine which also contribute to the interaction of Lp(a) with lysine-Sepharose. Plasminogen and Lp(a) have similar affinities for lysineSepharose; however, Lp(a) species with different apo(a) isoforms may have affinities that are significantly greater or weaker than that of plasminogen. The buffer of choice in the isolation of plasminogen from plasma by lysine-Sepharose affinity chromatography has been 0.1 M phosphate buffer, pH 7.4. When the same buffer system is used in the chromatography of Lp(a), not all the lipoprotein is found to bind to the lysine-Sepharose i.e., approximately 80% of Lp(a) contained in the plasma had the capacity to interact with lysine-Sepharose. The percentage of Lp(a) binding to lysine-Sepharose is increased by lowering the ionic strength of the buffer medium. Lipoprotein (a) species with large apo(a) isoforms tend to self-associate in the cold therefore it is best to perform the chromatographic isolation at room temperature.

[1629] Preparation of Lysine-Sepharose 4B: Packed Sepharose 4B (250 ml) is washed with 8 liters of water on a coarse sintered glass funnel and activated with 25 g CNBr dissolved in 50 ml acetonitrile. The reaction is carried out in a well-ventilated hood, on ice, and the pH is maintained with 6 N NaOH at pH 11. After approximately 15 to 30 mm, the activated Sepharose 4B is washed with 8 liters of 0.1 M NaHCO3 pH 8.1. The agarose is then packed by filtration, diluted with 250 ml of 0.1 M NaHCO3 pH 8.1, containing 50 g lysine, and stirred gently overnight at 4°. The freshly conjugated lysine-Sepharose is then washed with 6 to 10 liters of 1 mM HCl followed by 8 liters of 0.1 M NaHCO3, pH 8.1, and an aliquot is saved for determination of the concentration of immobilized lysine residues using the method of Wilkie and Landry. The concentration of coupled lysine varies from 15 to 25 umol per milliliter packed gel.

[1630] Chromatography: Bio-Rad (Richmond, Calif.) Econo-Pac columns (1×12 cm) are packed with 5 ml lysine-Sepharose which is preequilibrated with column buffer (e.g., 0.1 M phosphate, 0.01% NaN2, pH 7.4). A porous polymer filter is placed on top of the lysine-Sepharose gel bed to prevent the column from running dry. Plasma samples smaller than 3 ml are applied to the column and allowed to run through by gravity at room temperature. Larger volumes (up to 50 ml) should be applied with a pump or by gravity, but at flow rates that should not exceed 20 ml/cm2/hr. The samples are washed into the column with four 0.5-ml aliquots of column buffer to be followed with four 0.5 ml aliquots, before Lp(a) is eluted withe 0.2<EACA in 10 mM phosphate, pH 7.4. One milliliter aliquots are applied at a time, and 1 ml fractions are collected in separate tubes. Liprotein(a)and plasminogen-containing fractions (tubes 4 through 10) are located by their absorbance at 280 nm. The volume of applied plasma depends on the Lp(a) content and on the sensitivity of the absorbance monitor that is part of the density gradient fractionating system.

[1631] Density Gradient Centrifugation of Lp(a): Place 5 ml of 20% (w/w) NaBr into a SW-40 ultracentrifuge tube (ultraclear). Carefully layer the eluate from the lysine-Sepharose column (up to 8 ml) on top of the NaBr solution and, if necessary, top off the tube with 0.2 M EACA, 10 mM phosphate, pH 7.4. Place the tubes in the bucket of the swinging-bucket rotor and centrifuge 64 hr at 39,000 rpm and 20°. After centrifugation is completed, the tubes are carefully removed from the buckets and placed in the density gradient fractionating system. The tubes are pierced at the bottom, and the gradient is pushed out the top at a flow rate of 1 ml/min with a dense fluorocarbon oil, Fluorinert FC-40 (ISCO), that has a density of 1.85 g/ml. The chart speed is 1 cm/min, and the fraction collector is set to 0.5 ml/tube. The gradient is monitored at 280 nm, and the sensitivity of the chart recorder is adjusted according to the Lp(a) content of the eluate. Densities of the various fractions are measured with a density meter by established techniques.

[1632] Isolation of Apolipoproteins B-48 and B-100: The following density gradient ultracentrifugation procedure for isolating subfractions of triglyceride-rich lipoproteins is suitable for SDS-PAGE on both slab and rod gels. Plasma is recovered by low speed centrifugation (1750 g, 20 min, 10). To minimize proteolytic degradation of apo B, 1.0 &mgr;l/ml plasma phenylmethylsulfonyl fluoride (PMSF, Sigma, St. Louis, Mo.), 10 mM dissolved in 2-propanol, and 5 &mgr;l/ml plasma aprotinin (Trasylol, Bayer, Leverkusen, (Germany), 1400 &mgr;g/liter, are added. Subsequently 140.4 mg solid NaCl is added per 1.0 ml plasma to increase the density to 1.10 kg/liter. Normally, atotal volume of 4.0 ml of the d 1.10 kg/liter plasma is put in the bottom of a 13.4-ml polyallomer ultracentrifuge tube (Ultra-Clear, Beckman Instruments, Palo Alto, Calif.). Alternatively, 3.0 ml plasma can be mixed with 1.5 ml) 1.42 kg/liter NaUr, from which 4.0 ml is transferred to the ultracentrifuge tube. For the rod gel method, two such tubes are required to obtain enough material from each sample. For the slab gel method, 1.0 ml plasma is sufficient. In the latter case, a 1.0 ml portion of 1.10 kg/liter plasma can be mixed with 3.0 ml of 1.10 kg/liter NaCl in the tube. A density gradient consisting of 3.0 ml each of 1.065, 1.020, and 1.006 kg/liter NaCl solutions is then sequentially layered on top of the plasma.

[1633] Ultracentrifugation is performed in a SW40 Ti swinging bucket rotor (Beckman) at 40,000 rpm and 15° (Beckman L8-55 ultracentrifuge). Consecutive runs calculated to float Svedberg flotation rate (Sf)>400 (32 min), SI 60-400 (3 hr 28 mm), and Sf20-60 (14-16 After each centrifugation, the top 0.5 ml of the gradient containing the respective lipoprotein subclasses is aspirated, and 0.5 ml of density 1.006 kg/liter salt solution is used to refill the tube before the next run. The Sf1 12-20 fraction is recovered after the last ultracentrifugal run by slicing the tube 29 mm from the top after the Sf 20-60 lipoproteins have been aspirated. All salt solutions should be adjusted to pH 7.4 and contain 0.02 % (w/v) NaN3 and 0.01% Na2EDTA. This method yields lipoprotein preparations almost completely devoid of plasma albumin.

EXAMPLE 49 Preparation & Isolation of Oxidized LDL (oxyLDL

[1634] Oxidized LDL (oxyLDL): Native LDL (200 &mgr;g protein/ml) is oxidized by exposure to 5 uM CuSO4 for 24 h at 25° C. and the degree of oxidation is assessed by the increase of mobility on 1% agarose gel (1.3-1.5 versus native LDL) and the formation of thiobarbituric acid-reactive substances (3.41±0.8 mmol/L). Oxidation is terminated by refrigeration. Different preparations of oxyLDL display similar electrophoretic mobilities. For comparison, commercially available preparations of native and copper-oxidized LDLs (Sigma Chemical Co., St. Louis, Mo. and Biomedical Technologies, Inc. Stoughton, Mass., respectively) are used. The level of LDL oxidation is evaluated by monitoring the formation of lipid hydroperoxides, using the FOX-2 procedure and thiobarbituric acid-reactive substances (TBARS)). The relative electrophoretic mobility is evaluated on Hydragel (Sebia, Paris, France) and the level of trinitrobenzenesulfonic acid-reactive amino groups was determined

[1635] The formation of thiobarbituric acid-reactive substances is 17.8 nanomoles of malondialdehyde/mg protein using an oxyLDL preparation with relative electrophoretic mobility of 1.4.

[1636] Methods for Measurement of Low-Density Lipoprotein Oxidation

[1637] Oxidation of LDL in vitro is accompanied by characteristic changes of chemical, physicochemical, and biological properties, and a variety of methods may therefore be used for determining the extent and/or rate of oxidation of LDL. They include measurement of the increase of thiobarbituric acid-reactive substances (TBARS), total lipid hydroperoxides defined lipid hydroperoxides, hydroxy and hydroperoxy fatty acids, conjugated dienes, oxysterols, lysophosphatides, aldehydes and fluorescent chromophores as well as measurements of the disappearance of endogenous antioxidants and polyunsaturated fatty acids, and oxygen uptake. The apolipoprotein B (apoB) becomes progressively altered during oxidation; its loss of reactive amino groups and fragmentation to smaller peptides is determined and used as an index of oxidative modification. The net increase of the negative surface charge of the whole LDL particle is analyzed as relative electrophoretic mobility (REM) by agarose gel electrophoresis. The biological assays used most frequently for assessment of the extent of oxidative modification are the rate of uptake of LDL by cultured macrophages and its cytotoxicity toward cultured cells. Immunological assays such as enzyme-linked immunosorbent assay (ELISA) and radioimmunoassay (RIA) employing polyclonal or monoclonal antibodies recognizing certain modifications in apoB characteristic for oxidative modification are employed. The epitopes produced by covalent binding of malonaldehyde or 4-hydroxynonenal are of particular interest. Nuclear magnetic resonance (NMR), electron spin resonance (ESR), circular dichrorism (CD), and fluorescence polarization have also been applied to study certain aspects of LDL oxidation. Simple methods, such as the measure of TBARS, conjugated dienes, or fluorescence are preferred. Most characterize oxidized LDL by at least two independent measurements, for example, TBARS or REM and macrophage uptake, antioxidants and conjugated dienes.

[1638] From kinetic experiments one can conclude that both cell-mediated oxidation of LDL and oxidation in the absence of cells catalyzed by Cu2+ ions proceed in three consecutive time phases: lag phase, propagation phase, and decomposition phase. I)during the lag phase the LDL becomes depleted of antioxidants, and during this period only minimal lipid peroxidation occurs in LDL, as shown by measuring polyunsaturated fatty acids (PUFAs), TBARS, lipid hydroperoxides, fluorescence, and conjugated dienes. When LDL is depleted of its antioxidants, the rate of lipid peroxidation rapidly accelerates and a lipid peroxide maximum is reached after about 70-80% of the LDL, PUFAs are oxidized. Thereafter, the peroxide content of LDL, starts to decrease again because of decomposition reactions. During the lag and propagation phases the time profile for TBARS, fluorescence at 430 nm, lipid peroxides, dienes, and REM are very similar and only after the peroxide maximum do the different indices separate and follow different kinetics. This also indicates that all the methods will give equivalent results for the susceptibility of LDL to oxidation as measured by the duration of the lag time.

[1639] Preparation of Low-Density Lipoproteins for Oxidation Isolation of Low Density Lipoproteins

[1640] After overnight fasting blood samples are withdrawn by venipuncture and collected by free flow of blood into plastic tubes containing the appropriate volume of an aqueous solution of 10% EDTA (w/v) (disodium salt, pH 7.4) to obtain a final blood concentration of 0. 1% EDTA (wlv). EDTA serves as anticoagulant and antioxidant. Blood is centrifuged at 1000 g for 10 mm; the supernatant is then centrifuged at 10° C. and 1000 g for 5 min, followed by centrifugation at 15,000 g for 10 min. This procedure removes all cellular debris, and a completely clear plasma is obtained. Generally plasma is not stored but is used the same day for LDL. isolation. The most common method for isolation of LDL is a two-step sequential ultracentrifugation with a total run duration of about 48 hr. LDL is prepared for oxidation experiments by a single 20-hr run with a discontinuous density gradient. Plasma (up to 4 ml) adjusted with solid KBr to a density of 1.22 g/liter is layered on the bottom of a centrifuge tube (Beckman polyallomer tubes, total volume 13.2 ml) and then overlaid by KBr density solutions of 1.08 (3 ml), 1.05 (3 ml), and 1.00 g/liter (to fill the tube) containing 1 g/liter EDTA (pH 7.4). All density solutions are purged with nitrogen before use. The tubes are centrifuged in a Beckman SW 41 Ti rotor at 40,000 rpm at 100 for 20 hr. After centrifugation the main lipoproteins very low-density lipoproteins (VLDL), LDL, and high-density lipoproteins (HDL) are well separated from each other, and the LDL band characterized by the yellow color due to the endogenous &bgr;-carotene, is collected by aspiration with a syringe and transferred into a polycarbonate tube.

[1641] Next, the cholesterol content of the isolated LDL sample is determined with the CHOD-PAP enzymatic test kit (Boehringer, Mannheim, Germany). When 4 ml normolipidemic plasma is centrifuged, the final LDL stock solution harvested from the ultracentrifugation has a concentration of total cholesterol of about 1.6 to 2.2 mg/ml. Based on the known composition of LDL the total cholesterol values can be converted to LDL mass per milliliter (multiply cholesterol by the factor 3.16) or LDL protein per milliliter (multiply total cholesterol by the factor 0.63). It is also possible to determine the LDL concentration by protein measurement. Next EDTA is from the LDL stock solution and the oxidation is conducted immediately after isolation of LDL. For storage the LDL stock solution is sterile filtered through a 0.3 um filter adapted to a syringe into a sterile, evacuated glass vial and subsequently purged with nitrogen (Techne Vial, Mallinckrodt-Diagnostica, Holland, or Behring, Marburg, Germany).

[1642] Removal of EDTA: Removal of EDTA and salt from the density gradient from the LDL stock solution is conducted with prepacked columns (Econo-Pac 10DG, Bio-Rad, Richmond, Calif.) filled with Bio-Gel P6 as desalting gel. The bed volume is 10 ml with a void volume of 3.3 ml, and the total column volume is 30 ml. The gel is preconditioned by passing 20 ml phosphate-buffered saline (PBS, 10 ml sodium phosphate buffer, pH 7.4, containing 0.15 M sodium chloride) through the column.

[1643] A volume of 0.5 ml of the LDL stock solution is then applied to the column. After the LDL solution has run into the gel, 2.5 ml PBS is applied. The first 3 ml of eluate are discharged. The column is then eluted with 1 ml PBS, and 1 ml EDTA-free LDL solution is collected in a 1.5-ml Eppendorf vial. The vial is immediately made oxygen-free by nitrogen gassing and transferred to a refrigerator. An aliquot is removed to determine again the concentration by the CHOD-PAP method. The LDL solution can be rather unstable at this stage, depending on the donor, and therefore the time elapsed between desalting and the final oxidation experiment should not exceed 60 mm.

[1644] Thiobarbituric Acid-Reactive Substances as Index of Low-Density Lipoprotein Oxidation: The preferred assay in LDL oxidation studies, both in presence and absence of cells, is the determination of thiobarbituric acid (TBA)-reactive substances (TBARS) by one of the TBA assays developed for lipid peroxidation studies. The basal value of TBARS in freshly prepared LDL samples is usually low (0.5 to 3 nm/mg LDL protein) or undetectable. In LDL oxidized for about 24 hr with cells or CU2+ ions, the TBARS are in the range of 30 to 100 nmol/mg protein. In copper-stimulated oxidation, formation of TBARS shows a lag phase of about 40-150 min depending on the LDL, temperature, medium, and Cu2+ concentration; during this lag phase TBARS do not increase. Thereafter, TBARS rapidly increase for about 1-2 hr to a plateau value. On prolonged incubation TBARS remain more or less constant or increase slightly. The reported time course studies for TBARS in cell-mediated oxidation suggest that oxidation proceeds similarly to Cu2+ oxidation, with a lag phase followed by a rapid increase to a plateau level. In this context, it should be noted that most researchers only determine TBARS as an end point after about 24 hr incubation, when LDL has reached a final stage of oxidation.

[1645] Assays used for measurement of TBARS: Specifically, 100 ul of an LDL preparation (50 &mgr;g LDL cholesterin or 150 &mgr;g protein) is added to 1 ml of 20% trichloroacetic acid (TCA). Following precipitation, 1 ml of 1% thiobarbituric acid (TBA) is added, and the mixture is heated 45 min at 95°, cooled on ice, and centrifuged (20 min at 1000 g). TBARS are then determined by measuring the absorbance at 532 nm or the emission fluorescence at 553 nm (excitation 515 nm). Calibration is done with a malonaldehyde standard prepared from tetramethoxypropane.

[1646] The second assay is typically as follows: LDL (25 &mgr;g protein) is mixed with 1.5 ml of 20% TCA and 1.5 ml of 0.67% TBA. After heating at 1000 for 30 mm, TBARS are determined fluorimetrically at an emission wavelength of 553 nm with excitation at 515 nm. The sensitlvity was reported to be 0.1 nmol TBARS/assay. This is equivalent to 4 nmol TBARS/mg protein. Haberland a al. determined the malonaldehyde-LDL adduct using a TBA assay. The malondialdehyde (MDA-treated LDL was precipitated with heparin-manganese, the supernatant was discharged after centrifugation, and the precipitate was washed with heparin-manganese prior to the TBA test.

[1647] Minimally modified LDL (MM-LDL) is prepared by dialyzing native LDL against 9 uM FeSO4 in PBS for 72 h at 4° C. The electrophoretic mobility increased 1.1 to 1.2 versus native LDL. Mildly oxidized LDL was also obtained by (UV+copper/EDTA)-mediated oxidation under mild conditions: LDL solution (2 mg of apo/B/ml containing 2 umol/liter CuSO4) was irradiated for 2 h. as a thin film (5 mm) in an open beaker placed 10 cm under the UV-C source (HNS 30W OFR Osram UV-C tube, 1max 254 nm, 0.5 milliwatt/cm2 determined using a Scientech thermopile Model 360001), under the standard conditions. At the end of the irradiation, aliquots were taken up for analyses and oxidized LDL (200 &mgr;g of apoB/ml under standard conditions or at the indicated concentration) were immediately incorporated in the culture medium.

[1648] Acetylation of LDL is performed with excess acetic anhydride. Endotoxin contamination in oxyLDL is measured with the coagulation Limulas amebocyte lysate assay using a commercially available kit (E-TOXATE, Sigma Chemical Co.).

[1649] Induction of Apoptosis by oxyLDL: Incubation of HUVEC with oxLDL for 18 hours induced DNA fragmentation in a concentration-dependent manner with maximal effects at 10 &mgr;g/mL. In contrast, native LDL did not induce apoptosis in the concentration range tested. The induction of apoptosis by oxyLDL is confirmed by demonstrating DNA fragmentation through agarose gel electrophoresis. LDH release did not increase 310 &mgr;g/mL oxLDL (105±11% compared with control cells) excluding the induction of necrosis.

[1650] Detection of Fas and FasL Expression on Endothelial Cells: 90% confluent HAECs and HUVECs were incubated with oxyLDL (150 g protein/ml) or L-a-palmitoyl lysophosphatidyleholine (LPC, 45 uM, Sigma Chemical Co.) at 37° C., 5% CO2 for 13 h, and detached from the culture plate with 0.5% EDTA. To determine FasL expression, endothelial cells are incubated with an anti-FasL antibody (C-20, Santa Cruz Biotechnology, Santa Cruz, Calif.) or with rabbit IgG followed by a FITC-conjugated antibody against rabbit Ig (Biosource, Camarillo, Calif.). To determine Fas expression, endothelial cells were incubated with an FITC-conjugated anti-Fas monoclonal antibody (clone UBZ. Immunotech. Wemtbrook. Me,) or an FITC.conjugated mouse IgG. Immunofluorescence staining was analyzed by FACS (fluorescence-activated cell sorter) (Becton Dickinson. Mountain View, Calif.).

[1651] Detection of DNA fragmentation by agarose gel electrophoresis: IIUVECs (106) were incubated in the presence or absence of native LDL (300 &mgr;g protein/ml). oxyLDL (300 &mgr;g protein/ml). LPS (100 endotoxin U/ml), or a neutralizing anti-FasL antibody (i0 &mgr;g/ml, 4H9,MBL, Nagoya. Japan) for 36 h. Attached cells and floating cells were combined and lysed in 0.33 ml of lysis buffer (10 mM Tris-HCl. pH 8.0, 1 mM EDTA, 0.2% Triton X-100) followed by incubation with 0.1 mg/ml RNAase A for 1 h at 37° C. and 0.2 mg/mi proteinase K for 3 h at 50° C. Ethanol-precipitated DNA was resuspende in TE buffer, fractionated on 1.5% agarose gel in 1×TBE buffer, and stained with ethidium bromide.

[1652] Detection of DNA fragmentation by TdT-mediated dUTP nick-end labeling (TUNEL): 70% confluent HUVECs are incubated in the presence or absence of OxLDL (300 &mgr;g protein/ml), a neutralizing anti-FasL antibody (10 &mgr;g/m 4H9). or an agonistic anti-Fas antibody (0.5 &mgr;g/ml CH11, MBL) for 16 h at 37° C., 5% CO2. Attached cells harvested by trypsinization and floating cells are combined, fixed in 4% paraformaidehyde, permeabilized in 0.1% Triton X-100, 0.1% sodium citrate, and incubated with TUNEL solution (Boehringer Mannheim. Indianapolis. Ind.) in the absence or in the presence of terminal deoxynucleotidyl transferase. After washing in PBS, fluorescence intensity was analyzed by FACS.

[1653] Cell viability assay: HAECs or HUVECs are cultured in a 96-well plate at 80% confluency and incubated in the presence or absence of oxyLDL (300 &mgr;g protein/ml), LPC-C 16:0 (55 uM). a neutralizing anti-FasL antibody (10 &mgr;g/ml. 4H9). or an agonistic anti-Fas antibody (0.5 &mgr;g/ml. CH11) for 18 h. Cell viability is measured by means of MTT (dimethyithiazol-diphenyltetrazolium bromide) assay and percentage of cell death was calculated as 100×(1−viability of treated endothelial cells/viability of untreated endothelial cells).

[1654] Cell Viability Assay and Reagents-Human umbilical vein endothelial cells (HUVECs) are isolated and cultured in endotheial growth medium (SCM; Clonetics, San Diego, Calif.). HUVECs cultured in a 96-well plate at 80% confluency are incubated with oyxLDL or LPC at indicated doses for 16 h. Cell viability is measured by means of MTT (3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay.

EXAMPLE 50 Preparation of Vesicles Expressing Recombinant Membrane Bound Superantigens Using the Yeast sec6 Mutant

[1655] The superantigen cDNA, or oxyLDL receptor, apoprotein verotoxin or other polypeptide given herein corresponding to the cDNA for protein expression in yeast is used. The length of the 5′-untranslated region is minimized. Expression of a cDNA in the sec6-4 yeast mutant is best controlled and may be maximized with an inducible promoter. The GAL1 promoter is preferred. The pYES2 expression vector (InVitrogen, San Diego, Calif.) contains the GALI promoter followed by a multiple cloning site. Other commonly used inducible promoters include the metallothionein CUPI promoter, which is tightly controlled by copper; promoters activated in response to heat shock, which are of particular interest for expression in the temperature-sensitive sec6-4 mutant and the PH05 promoter, which is derepressed at low phosphate concentrations. Introduction of the plasmid into yeast cells is accomplished either by electroporation or LiCi-mediated transformation. Isolation of transformants requires selection yeast that are ura3 auxotrophs are able to grow on media lacking uracil when they contain the pYES2 expression vector that contains the wild-type URA3 gene. Other selectable markers include enzymes in the adenine, histidine, leucine, lysine, and tryptophan biosynthetic pathways. The superantigen cDNAs are cloned into the pYES2 expression vector and selected for transformants on plates with synthetic complete (SC) medium lacking uracil but containing 2% raffinose as the carbon source (SC-Ura raff medium). Single colonies are isolated and grown overnight to saturation in 2 ml of SC-Ura raff medium at 250 with constant shaking in 2% raffinose instead of glucose. In a subsequent step the yeast are switched to medium containing galactose as the carbon source as the GAL1 promoter initiates gene expression only when galactose is the predominant carbon source. The 2-ml starter culture in SC-Ura raff medium is added to a 1-liter culture of the same growth medium and incubated at 25° with constant shaking. When these cultures reach an OD600 (optical density at a wavelength of 600 nm) of about 1.0 (usually about 12 hr), the cultures are centrifuged at 4000 g at 4° for 5 min, resuspended in 4 liters of SC-Ura gal induction medium (containing 2% galactose instead of 2% raffinose as the carbon source), and shifted to 37° for 2-3 hr to induce protein expression in the sec6 vesicles.

[1656] Following growth at 37°, the cells are collected by centrifugation at 4000 g at 40 for 5 mm and washed once in ice-cold water. Pellets are resuspended in an absolute minimum volume of water and quick frozen in liquid nitrogen. Cultures may then be stored indefinitely at −70°. Thawed cultures are resuspended to a final concentration of 50 OD618˜units/ml (e.g., a 1 -liter culture at 0D600 =1.0 is resuspended in 20 ml) in 10 mM dithiothreitol (DTF) and 100 mM Tris-CI, pH 9.4. The resuspended culture is shaken gently at room temperature for 10 min. This step increases the efficiency of spheroplast lysis at a later step by reducing disulfide bonds in the yeast cell wall. We then collect the cells by centrifugation at 4000 g at 40 for 5 mm and resuspend them in spheroplast buffer to a final concentration of 50 OD600 units/ml. Spheroplast buffer consists of 1.4 M sorbitol, 50 mM K2HPO4, pH 7.5, 10 mM NaN3, and 40 mM 2-mercaptoethanol. Spheroplasts are generated by digesting the cell wall with lyticase (or zymolyase) for 45 min at 37°, The amount of bacterially expressed, recombinant lyticase needed to form spheroplasts is determined empirically; after 45 min the OD600 of a 10-ul aliquot of the yeast suspension diluted into 1 ml of 0.1% sodium dodecyl sulfate (SDS) should be ˜20% of the OD600of the initial dilution measured at 0 min. The spheroplasts are then harvested at 3000 g for 5 min at 4°, and the cells are resuspended gently with a pipette or Teflon rod in spheroplast buffer containing 10 mM MnCl2 to a final concentration of 50 OD600 units/ml. Concanavalin A (Sigma, St. Louis, Mo.) is then added to a final concentration of 0.78 to 1.25 mg/ml and incubated with rotation or gentle shaking at 40 for 15-30 mm. A concanavalin A stock solution (25 mg/ml) is prepared in spheroplast buffer containing 1 mM MnCl2 and 1 mM CaCl2 and is frozen in 1-mi aliquots. Lectin-coated spheroplasts are harvested at 3000 g for 5 mm at 40 and then resuspended in lysis buffer to a final concentration of 60-70 0D600 units/mi. The suspension is homogenized using the loose pestle of a Dounce homogenizer and 30-40 strokes of the pestle at 40 (or on ice). Lysis bufferconsists of 0.8 M sorbitol, 10 mM triethanolamine (TEA), and 1 mM EDTA. The pH is adjusted to 7.2 with acetic acid or TEA.

[1657] Unlysed cells, cell debris, mitochondria, and nuclei are pelleted at 20,000 g for 10 min at 4° C. The supernatant is removed with a pipette and centrifuged at 144,000 g for 1 hr at 40 to pellet the secretory vesicles. The supernatant is decanted carefully and the pellet is resuspended in either lysis buffer or another buffer containing osmotic support.

EXAMPLE 51 Use of Antisense Oligonucleotides to Inactivate ITIMS In Vitro and In Vivo

[1658] Antisense agents inhibit specific gene expression by exploiting hybridization of complementary nucleic acids, resulting in decreased mRNA stability, or through blocking mRNA processing, transport or translation. An RNA or single stranded DNA molecule that is complementary to the mRNA of ITIM is introduced into cells in vitro. The antisense molecule forms base-pairs with the mRNA, thus blocks some essential step in translation.

[1659] Antisense oligonucleotides can be delivered by plasmids or as small single-stranded oligonucleotides. Modifications of these strategies, include inducible antisense vectors, antisense retroviral vectors, and a variety of oligonucleotide modifications to facilitate delivery and enhance efficacy are known in the art.

[1660] Expression vectors are constructed to produce high levels of antisense RNA in transfected cells. Antisense nucleic acids can be introduced into cells of the immune system using synthetic single-stranded DNA oligonucleotides. When short oligonucleotides are complementary to the sequence around the translational initiation site (the AUG codon) of mRNA in the cells, they hybridize to the mRNA and prevent initiation of translation. Chemically modifying the oligonucleotides can greatly increase the efficiency with which they enter cells and their stability once inside.

[1661] Principle of the Method: Genetically engineered plasmid-based antisense methods, expression vectors which generate RNAs containing sequences complementary to key regions of specific genes are used. These antisense expression vectors include prokaryotic or eukaryotic selectable markers that allow identification of transfectants, a promoter that controls the expression of the antisense RNA, an antisense sequence which is complementary to a bindable region in the target gene sequence (5′ untranslated region and/or translation initiation regions preferred); and a stabilizing sequences to assure stability of the antisense RNA product.

[1662] Optimal gene replacement protocols include both inhibition of the endogenous gene and overexpression of a selected gene. Oligonucleotide-based antisense methods use synthetic single-stranded oligonucleotides which may range from simple deoxyribonucleotides to more complex molecules containing base modifications and/or covalent modifications which enhance delivery, uptake or antisense effect.

[1663] Materials and Reagents: Antisense expression vectors are obtained from the laboratories where they were developed or are constructed by combining the key elements described above. These include neomycin as a selectable marker so transfectants can be isolated employing Dulbecco's modified Eagle's medium with 10% calf serum and the appropriate concentration of the antibiotic G418 (Bethesda Research Laboratories. Bethesda, Md.). G418 permits selection of stable transformants.

[1664] Pure oligonucleotide preparations and nuclease-free culture conditions are utilized. Antisense oligonucleotides are synthesized by solid state methods and purified by chromatography or gel purification (or obtained from commercial sources). Following purification, the oligonucleotides are lyophilized two to five times in sterile distilled water to remove volatile components. Both unmodified and modified oligonucleotides are suspended in 10 mM HEPES (N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid)-buffered saline at pH 7.4. The pH of these oligonucleotide solutions is checked to avoid the toxicity of nonphysiologic pH. Nuclease-free culture conditions are employed.

[1665] Design and Construction of Antisense Expression Vectors: For inhibition of ITIM expression in mammalian cells, a prototype antisense expression vector is used that allows cloning of antisense and control “sense” gene fragments between the metal-inducible metallothionein promoter and &bgr;-globin sequences which are added to provide stability to the antisense sequences. We have also constructed vectors which differ only in the promoter region because this region is readily excised by 5′EcoRI and 3′ HindIII sites. One series of vectors is regulated by the steroid-inducible mouse mammary tumor virus (MMTV) promoter. and another series of vectors is regulated by the constitutive Rous sarcoma virus LTR. Antisense retroviral vectors are constructed which are compatible with the plasmid expression vectors: the promoter cartridge is flanked by unique 5′ XhoI and 3′ HindIII sites, and the antisense cartridge is flanked by unique 5′ HindIII and 3′ BamHI sites. Because the target sequence for the 84-bp antisense vector resides entirely within the 5′-untranslated region, this antisense vector inhibits the endogenous ITIM gene.

[1666] Antisense-resistant expression vectors are constructed by cloning the HaeII-EcoRI fragment of human ITIM cDNA into a Moloney LTR-regulated expression vector removing sequences complementary to the 84-bp antisense ITIM construct. In order to demonstrate which domains of the ITIM gene contribute to cellular inhibition, ITIM C-terminal deletion mutants are constructed by linker insertion of an in-frame termination codon. All of these mutant ITIM plasmids are subcloned into expression vectors for expression in cultured fibroblasts (Moloney-LTR promoter) or F9 embryonal carcinoma cells (Rous sarcoma virus LTR promoter).

[1667] Production of Stable Transformants Expressing Antisense RNAi: Stable transformants expressing both the antisense-resistant vector and the anti-ITIM RNA construct are obtained by cotransfection of both plasmids using the following protocol which generally results in 20-50 transformants per 20-50 mm2 tissue culture dish.

[1668] Day 1. 1.2 million cultured mouse fibroblasts (NIH 3T3, BALBc/3T3) are plated per 100-mm2 tissue culture plates in 10 ml of Dulbecco's minimal Eagle's medium supplemented with 10% calf serum and allowed cells to attach overnight.

[1669] Day 2. Each plate is transfected by calcium-DNA coprecipitation with 20 mg of cesium-banded plasmid DNA. For cotransfection studies, use 2 mg of the antisense vector containing the Neo selectable marker and 18 mg of the antisense-resistant expression vector which lacks this selectable marker. This results in expression of both plasmids in most stable transformants. A DNA-calcium solution is prepared by mixing in the following order: 20 mg of plasmid DNA dissolved in TE (10 mM Tris, pH 7.5. 1 mM EDTA), 50 ml of 2.5 M CaCl2 and TE to make 500 ml total. This solution is added slowly to 500 ml of 40 mM HEPES-buffered saline (pH 7.2) and is then mixed by bubble aeration to form an opalescent solution. After a 30-mm incubation at 25°, the entire: 1-ml coprecipitate is added to the plate. After incubating the DNA coprecipitate with the cells for 4 hr. the media is aspirated, and the cells are treated with 5% glycerol in 20 mM HEPES buffer for 3 min. After this glycerol shock, the cells are washed again with phosphate-buffered saline (PBS) and then refed with 10 ml of fresh medium containing serum.

[1670] Day 3. The media is aspirated and replaced with 10 ml of Dulbecco's minimal Eagle's medium supplemented with 10% calfserum and 1 mg/ml of the antibiotic G418.

[1671] Day 5. The medium is aspirated (which by this time contains dead cells and cellular debris from G418-sensitive cells) and refed with 10 ml of Dulbecco's minimal Eagle's medium supplemented with 10% calf serum and 1 mg/ml of the antibiotic G418.

[1672] Day 7. The medium is aspirated and refed with 10 ml of Dulbecco's minimal Eagle's medium supplemented with 10% calf serum and 1 mg/ml of the antibiotic G418.

[1673] Days 9-12. Once individual clones are clearly apparent they can be isolated with cloning rings and expanded in individual wells of microtiter plates. Multiple clones should be studied for each combination of antisense vector and antisense-resistant rescue plasmid.

[1674] Cotransfectant clones are analyzed to quantitate the extent of antisense inhibition of the ITIM gene, the level of expression of the antisense-resistant transfected gene, and the effect of target gene inhibition on cellular reactivity to lipid antigens or SAgs presented alone or in the context of cell bound or soluble MHC or CD1 molecules.

[1675] Assays to quantitate reactivity and analyze antisense inhibition in the presence and absence of antisense RNA are carried out as follows: [3H]Thymidine incorporation of stable transfectants and controls is measured after exposure to lipid antigens or SAgs in the context of MHC or CD1 either cell bound (or immobilized) or in soluble form. Control “sense” plasmids are similarly treated and tested. In addition, rescue with a wild-type antisense-resistant gene should overcome the antisense inhibition, provide additional assurance that the growth inhibition is actually due to specific inhibition of the ITIM gene.

[1676] Antisense inhibition is quantitated by measuring levels of either target gene m RNA or protein. Nuclease protection assays provide an excellent method for quantitation of antisense effect. Cells from the stable transformant clones are placed in DMEM with 0.5% calf serum for 48 hr prior to steroid treatment and/or serum restimulation. RNA is isolated from cells by the guanidinium thiocyanate method and the total RNA from 2×106 cells is hybridized with 3×106 cpm of the labeled RNA probe for 16 hr at 45°. Samples are then treated with 2 mg/ml of RNase A and 4 U/ml of RNase Ti for 30 min at 25° and are deproteinized by sequential treatment with proteinase K and phenol-chloroform followed; by ethanol precipitation. and electrophoresis on an 8% denaturing polyacrylamide gel.

[1677] Antisense Inhibition with Anti-ITIM Oligonucleotides: Oligonucleotides target regions of the ITIM mRNA or SLAP RNA which are available for hybridization i.e., a region that is unbound by protein and free of secondary structure. Sequences within the 5′-untranslated region or translation initiation region are employed for design of antisense oligonucleotides. The length of oligonucleotides employed for antisense inhibition varies between 12 and 20 nucleotides. A melting temperature™ of 50-55° is optimal for specific inhibition of target genes. Tm for short oligonucleotides is best determined by a formula in which G and C residues equal 40 and A and T residues equal 20. Optimal ITIM antisense oligonucleotides range from 14 to 19 nucleotides.

[1678] Determination of Oligonucleotide Stability: Oligonucleotides are 5′ end labeled with polynucleotide kinase and [32P]ATP and are then added to culture media and serum (plus unlabeled oligonucleotide to achieve a final oligonucleotide concentration of 5 mM: for a 15-mer this is approximately 20 mg/ml). Aliquots are removed periodically and resolved on denaturing 20% acrylamide gels.

[1679] Detection of Intracellular Duplexes: To detect intracellular duplex, 20 mg of oligonucleotide is 5′ end labeled oligonucleotides with 20 mCi of [32P]ATP to achieve a specific activity of 50 million cpm/mg. After incubation for 4 hr. unincorporated oligonucleotides are removed by washing the cells three times with HEPES-buffered saline prewarmed to 37° (to prevent the melting of duplexes). The cells are then lysed in 100 ml of Nonidet P-40 lysis buffer (10 mM Tris, pH 7.5. 10 mM NaCl. 3 mM MgCl2, 0.05% Nonidet P-4t)) containing 0.5% sodium dodecyl sulfate, 100 mg of proteinase K per ml. and a 10,000-fold excess of unlabeled oligomer (as the carrier). Following phenol/chloroform extraction and ethanol precipitation. a S1 nuclease protection assay is performed at 37° and the products are analyzed on a 20% denaturing acrylamide gel (containing 42 g of urea of 100 ml). To demonstrate that the duplex is intracellular and not an artifact of RNA isolation, an “add-back” control is performed in which the measured amount of cell-associated radioactivity is added with carrier (excess unlabeled oligonucleotide) to a lysate of cells that were previously unexposed to oligonucleotide.

[1680] To confirm that antisense oligonucleotide effects are due entirely to target gene inhibition, and not merely toxicity due to unexpected effects of double-stranded RNA, reversal experiments are performed employing an excess of anticomplementary (“sense”) oligonucleotide. If an effect is due to hybridization of antisense oligonucleotide sequences to specific gene target sequences, then addition of an excess of sense oligonucleotide reverses the observed effects on cell growth or gene expression but expression of the antisense rescue gene restores the ITIM function. This provides a useful specificity control for the antisense RNA and suggests that the observed results are due to inhibition of endogenous gene expression.

[1681] Oligonucleotide preparations can have toxic effects on cells, thus anti-sense oligonucleotide these experiments employ multiple controls to assure that the observed results are not merely due to toxicity. First, the target gene is shown to be inhibited by analyzing levels of mRNA and/or protein. Secondly, the demonstration that oligonucleotides with sufficient sequence dyshomology are able to prohibit duplex formation. and third that the addition of an anticomplementary oligonucleotide can reverse the antisense oligonucleotide effects by hybridization competition.

EXAMPLE 52 ITIM and SLAP Gene Knockout Mice

[1682] Gene Targeting and Generation of Mutant Mice

[1683] Nucleic acids encoding the ITIM of the IRTAA, IRIDA and IRSAg and SLAP are deleted in vitro using homologous recombination and insertional mutagenesis. With this approach, mice are produced that have mutations in any gene for which one has a cDNA or genomic clone. Stable cultured lines of totipotent cells, such as from mouse embryos or ES (ES) cell lines, grown and manipulated in tissue culture are introduced into blastocyst-stage mouse embryos and can participate in the development of all tissues of the embryo, including the germ line. ES cells genetically altered in culture (e.g., whether by addition or mutation of genes) are used to produce strains or lines of mice that carry and transmit this genetic alteration. Cells which have undergone homologous recombination are rendered positively selectable by introduction of a marker gene that can be inserted into any cloned DNA molecule. Negatively selectable markers are introduced at one end of the transfecting DNA molecule to allow selection against random insertions in parallel with the selection for the positively selectable marker. With these and other technical advances it is now feasible to mutate a cloned ITIM gene by site-specific mutagenesis in ES cells and thereby generate a an inbred mouse line with the desired mutation and functional deficiency.

[1684] Gene Targeting Vectors

[1685] Homologous recombination frequency is higher when the gene targeting vector is isogenic with the ES cells and also increases markedly with increasing sequence homology. With this in mind, genomic clones are isolated that contain 3-5 kb of sequence homology on each side of the intended ITIM or SLAP mutation (except for the case wherein PCR is used to screen for homologous recombination).

[1686] To make an ITIM or SLAP knockout or null mutation, a deletion is made in the ITIM gene, followed by insertion of a positive selectable marker. Insertion alone is more likely to allow some expression of the gene by aberrant transcription and/or translation. The ITIM or SLAP mutation is made near the 5′ end of the gene and includes deletion of some of the sequence encoding, the mature protein. An effective strategy is to delete the ATG start codon and the signal sequence if they fall in a single exon. If the transcription start site is known, this is also deleted. Such deletion of control elements for transcription, translation and secretion increases the probabilitty that expression of the desired protein will be completely ablated. The positive selectable marker is then inserted in place of the deleted segment.

[1687] The positive selectable marker is one that confers antibiotic resistance (to G418, hygromycin B or an equivalent antibiotic) by replacing the bacterial control sequences of the neomycin resistance (neo) or hygromycin resistance (hyg) genes, respectively, with eukaryotic control sequences. Both markers are expressed at many loci in ES cells when controlled by the mouse phosphoglycerate kinase (PGK) promoter and polyadenylation signal. The engineered pMCI promoter of the gene encoding hypoxanthine-guanine phosphoribosyltransferase (HGPRT) is also used successfully in ES cells for gene targeting.

[1688] To promote targeted versus random integration of the targeting vector, a positive/negative selection procedure is used which utilizes a negative selectable marker at one or both ends of the targeting vector. The negative marker is lost during homologous recombination but retained during random integration. The negative selectable marker utilized is the herpes simplex virus thymidine kinase gene (HSV-TK), which renders cells sensitive to ganciclovir. HSV-TK works well under control of either the pMCI or the PGK promoter. The same promoters are used for both positive and negative selectable markers. To minimize random breaks between them, the distance between shoulld be is less than about 5 kb. The targeting vector has a unique restriction site that permits linearization before transfer of the DNA into cells. Several vectors which have eight-cutter sites (e.g., the NotI restriction site) in their polylinkers are used for these constructs. Screening for targeted cells is by genomic Southern blotting using a probe that is outside the targeting vector or by by PCR.

[1689] Specific Methodology: The methods disclosed herein are all conventional in the art and are described, for example, in George E L et al., Methods in Enzymol.245: 386-420. (1994) which are hereby incorporated by reference in their entirety.

[1690] ES Cells: The ES cell lines: CC1.2, CCE, D32 ABI, and JI are useful and are tested for germ line transmission by implanting into blastocysts of a mouse strain having a different coat color genotype. ES cell lines are derived from the 129/Sv mouse strain which carries the wild type agouti gene (brown color). Injection of these ES cells into C57BL/6 (strain with black coat color) blastocysts produces chimeric offpsring with a mix of black and agouti coat color. When the ES cells contribute to the-germ line, agouti progeny are born (because agouti is dominant to black).

[1691] ES cells are are maintained in culture on mouse embryonic fibroblast (MEF) feeder cells and/or in the presence of a growth factor—leukemia inhibitory factor (LIF)—and are used at low passage numbers to maintain totipotency and avoid differentiation. The MEF feeders are prepared from embryos of an appropriate transgenic mouse strain that carries genes for resistance to the positive selection drug (e.g., G418/neomycin, hygromycin).

[1692] Reagents for ES Cell Culture: ES cell medium is a supplemented Dulbecco's modified Eagle's medium (DMEM) to which has been added L-glutamine, and sodium pyruvate and HEPES buffer; the pH is maintainedd at 7.5. For use, the medium is supplemented with the following additives: fresh glutamine, fetal bovine serum (FBS, final concentration, 15% v/v), nonessential amino acids, 2-mercaptoethanol and LIF (final concentration, 1000 U/ml) of LIF. All these components are commercially available, e.g., from GIBCO-BRL (Life Technologies, Inc.) Feeder cell medium is the above DMEM-based medium without the additives, but supplemented with FBS (10% v/v). Phosphate-buffered saline (PBS): 0.8% NaCl, 0.02% KCl, 0.02% KH2PO4, 0.115% NaHPO4 (all w/v) at pH 7.4. Ethylenediaminetetraacetic acid (EDTA) is at a final concentratin of 0.2 g/liter in PBS, pH 7.2. Trypsin-EDTA: 40 ml of EDTA, with a 2.5% (w/v) concenttation of trypsin. HEPES-buffered saline (HBS): HBS: 25 mM HEPES, 134 mM NaCl, 5 mM KCl, 0.7 mM Na2PO4, pH 7.1.

[1693] Preparation of MEF Feeder Layers; Preparation of Primary MEF: For G418-resistant feeders, a transgenic mouse line containing the neo gene is used. Similarly, if hygromycin is used for selection, feeder cells have the hyg gene.

[1694] 1. Fibroblasts are obtained by aseptically removing embryos from a 14-day pregnant mouse into PBS. One embryo at a time is dissected to removve fetal membranes, placenta, the head and soft tissue. Each embryo is placed in a separate petri dish and minced with two scalpels or fine curved scissors. Trypsin-EDTA (fresh, 2 ml) is added to each dish and incubated at 37° C. for 5 min. Then, the reaction is stopped by addition of 8 ml of feeder cell medium to each dish, and and the contents are transferred to a conical centrifuge tube and allowed to settle for 2 min.

[1695] 2. The cell-containing supernatant of each tube is poured into one 10-cm diameter culture dish. Fresh medium is added 24 hr, and the cultures are maintained in a standard tissue culture incubator for about 1-2 days until the cells are confluent.

[1696] 3. The cells of each dish are then split into ten dishes each (10 cm) and again cultured until confluent (about 2 days).

[1697] 4. The cells or each dish are trypsinized and resuspended in 1 ml of ice-cold freezing medium (feeder cell medium, but with 20% (vlv) FBS andd 10% (vlv) dimethyl sulfoxide (DMSO). Aliquots of 1 ml per vial are frozen and stored at −80° for 24 hr. For long-term storage, vials are kept at −135° C. or in liquid nitrogen.

[1698] Feeder Layers for ES Cells: Mitotically inactivated (3,000 rads of y-irradiation) MEFs at 2.5×106 cells/dish (“dish” refers to a 10 cm diameter culture dish unless otherwise specified) are used. To achieve a uniform monolayer of feeders, plates are coated with 0.1% (w/v) gelatin for at least 5 min prior to plating cells. Feeders are either pre-plated or co-plated with ES cells. If the cellsa e to be co-plated, or if no medium change is planned before addition of ES cells, it is important to wash the feeder cells out of DMSO by centrifugation because ES cells are sensitive to this compound.

[1699] Routine Culture of ES Cells: ES cells are cultured MEFs (which are at a density of 2.5×106/dish) for up to 10 days. ES cells are plated at relatively high density, 3×106 to 107/dish. They grow rapidly, and divide every 18-24 hr. ES cell cultures are fed daily with ES cell medium. The cells need to be passaged about every third day, and require a second feeding on the day before passage. Generally, higher viability is achieved if the cells are re-fed 2-3 hr prior to any trypsinization (for passaging or freezing).

[1700] Passaging ES Cells

[1701] 1. After rinsing the monolayers, 2 ml of prewarmed trypsin-EDTA is added to each dish which is held at 37° C. for about 5 min at which time the cells visibly detach. Trypsin action is stopped by adding 2 ml of ES medium. Cells are dispersed thoroughly with a Pasteur pipette and transferred to a conical centrifge tube with an additional 6 ml of medium. The cells are spun for 2 min at 500 rpm. This treatment is important because ES cells do not grow well in the presence of trypsin.

[1702] 2. The supernatant is removed by aspiration and replaced with 2 ml of fresh ES medium, in which the cells are dispersed by gentle pipetting (to avoid bubbles, etc.) with a Pasteur pipette 20 times. Thorough dispersal of ES cells is important as aggregates are more likely to differentiate.

[1703] 3. For passage, ES cells are usually split 1:6, although higher density may be desired. Even before confluence ha been reached, cultures can be split in order to disperse the ES cell colonies to prevent their differentiation.

[1704] Freezing and Thawing ES Cells.: The ES cells are re-fed 2-3 hr before trypsinization (see above) for freezing. They are frozen at high density; the contents of one confluent dish geneeally becomes six 1-ml vials. ES cells are especially sensitive to DMSO toxicity, so exposure is minimized by resuspending cells (with thorough dispersal) in ice-cold medium without DMSO first, and then adding an equal volume freezing medium which contains 2× DMSO. Vials are frozen slowly for 24 hr at −80°, then store at either −135° or in liquid nitrogen for long-term storage.

[1705] For use, the ES cells are thawed rapidly in a 37° water bath and quickly transferred to ice. The cells are spun out of DMSO in about 10 ml of ES medium, resuspended with thorough dispersal and are plated on feeder cells as described.

[1706] Transfection of ES Cells by Electroporation

[1707] 1. Linear DNA is prepared cconventionally by phenol-chloroform extraction and ethanol precipitation. Vacuum-dried DNA is resuspended in sterile HBS. An aliquot is checked for degradation by comparing restriction maps of linearized and intact plasmid DNA using multiple restriction enzymes.

[1708] 2. Cells are split 1:6 as usual, 1 or 2 days prior to electroporation. Cells are fed daily and again 2-3 hr prior to electroporation. Cells are trypsinized as usual but, on dispersal of cells, about 10 ml of medium is added and returned to the incubator for 30 min. This pre-plating allows about 90% of feeder cells to reattach, further enriching ES cells. Cells are washed twice in HBS and an aliquot is counted.

[1709] 3. The cells are resuspended in ice-cold HBS at 2.5×107 cells/ml. Linearized DNA is added from a concentrated stock in sterile HBS to a final concentration of 25 mg/ml, and the tubes are placed on ice for 10 min. After mixing with a Pasteur pipette, cells plus DNA are transferred into an electroporation cuvette (Bio-Rad, Richmond, Va.) and are kept on ice for 10 min. Each electroporation cuvette holds 0.8 ml, equivalent to about 2×107 cells.

[1710] 4. Electroporation is carried out at 240 V, 500 mF with the Gene Pulser (Bio-Rad, Richmond, Va.) with a capacitance extender. The cells are allowed to rest for 10 min at room temperature after which they are plated with, neomycin-resistant feeders (but no selection drugs) at about 5-7×106 ES cells/dish.

[1711] Selection of Targeted Clones: Beginning at 24-36 hrs after electroporation, the cells are fed daily with selection medium until selection is complete (usually 7-8 days). Cell death is observed by 3-4 days after drug addition. Selection Medium includes G418 (Geneticin; GIBCO-BRL) final concentration. The G418 is dissolved in HEPES buffer. The final concentration G418 is 200 mg/ml if PGK-neo is in the targeting construct. If pMCI-neo is in the construct, then a 150 mg/ml solution is used. For double selection, ganciclovir (Syntex Corp., Palo Alto, Calif.) is included at a 2 mM final concentration. An alternative to gancyclovir is FIAU (Bristol Meyers Squibb, Wallingford, Conn.), which is used at 0.2 mM.

[1712] Culture medium is replaced by selection medium beginning at 24-36 hr of culture. One or two plates are grown in G418 medium only, and are used to calculate the number of neomycin-resistant colonies. Cells are fed daily. Cell death is visible at about 3-4 days of selection. The colony morphology is observed carefully. Some large colonies start flattening. Clones are picked routinely at day 7 or 8 of selection before they start differentiating (but flattened colonies may still contain ES cells and can be picked). Plates are stained with Giemsa, and colonies counted on day 10 of selection.

[1713] Other Selection Measures: The above procedures are suitable for the commonly used schemes involving the neo gene as positive selection marker and the HSV-TK gene as the negative selection marker. If hyg, HGPRT- or puromycin-resistance genes are used, the feeders are modified accordingly. One can either obtain a line of mice with the appropriate transgene or use a feeder cell line just during the time of selection. A line of STO cells doubly resistant to neomycin (G418) and hygromycin can also be used. ES cells can, and should, be returned to feeder cultures at the time of picking the clones. Selection for HGPRT is in “HAT medium” which is standard medium supplemented with 0.1 mM hypoxanthine, 0.8 mM aminopterin and 20 mM thymidine. Hygromycin selection utilizes conccentratios ranging from 100 to 150 mg/ml and should be tested to determine the effective concentration.

[1714] Picking Drug-Resistant ES Cell Colonies: Clones are usually picked after 7 or 8 days of selection. Each clone is picked into an individual well of a 96-well plate containing trypsin-EDTA. Each trypsinized colony is then split into a single well of duplicate 24-well plates, so that 1 plate can be used for freezing, and the other for DNA extraction for Southern blot or PCR analysis. The transfer of cells between 96-well plates and 24-well plates is accomplished with a 12-channel pipettorwit tips in alternating channels. This allows the transfer of clones from wells #1, 3, 5, 7, 9 and 11 oof a 96-well plate into wells #1, 2, 3, 4, 5, and 6 of a 24-well plate.

[1715] Trysinization of Selected Clones

[1716] 1. Selection plates are fed 2-3 hr before picking colonies. The number of colonies to be picked is estimated, and 24-well plates with about 105 MEF/well in 0.5 ml are prepared. Each colony is split in half into wells of duplicate 24-well plates.

[1717] 2. After washing once, trypsin-EDTA at 37° C. is placed in 1 row of a 96-well plate (60 &mgr;l/well). Colonies are picked rapidly in groups of 12 (one row), and the trypsin-EDTA is maintained at 37° C. Individual clones are picked by tearing each away from the surrounding feeder cells, using a ripping/tearing motion, and drawing each gently into the pipette. Before approaching a colony, the pipette is partially filleed with PBS from the plate to prevent sticking of the colony to the glass, using as little volume as is suffficient to prevent the colony from sticking. Each clone is transferred to a well of the 96-well plate containing trypsin-EDTA.

[1718] 3. Six pipette tips are connected to the multichannel pipettor (channels 1, 3, 5, 7, 9, and 11) and clones 1, 3, 5, 7, 9, and 11 are dispersed by pipetting up and down several times. The cell suspension in 30 &mgr;l is transferred to the first row of one 24-well plate (prepared as above) and the remaining 30 &mgr;l to the first row of the duplicate 24-well plate. Clones 2, 4, 6, 8, 10, and 12 are dispersed and transferred in an analogous manner. (Alternatively, the trypsin reaction is stopped after picking 12 colonies in the first row of the 96-well plate by adding 60 &mgr;l complete medium and dispersing the cells. One can then pick the next 12 colonies into the second row. This is most helpful when the selection plates contain more than 12 colonies.) The cells are fed as soon as possible and then daily with 0.5 ml of complete medium.

[1719] Freezing Expanded Colonies: One of the duplicate 24-well plates is used. Cells are frozen when many of the wells are subconfluent, even if some wells are still sparse. This is important to ensure that the majority of the colonies have not grown too large and the cells begun to differentiate. Cells are frozen, at this stage only, in medium containing 10% (v/v) DMSO, fetal calf serum, and trypsin-EDTA. For this relatively short-term storage, the trypsin-EDTA does not appear to harm the cells.

[1720] 1. The cells are fed 2-3 hr before freezing. 120 &mgr;l of an ice-cold solution of 20% (v/v) DMSO and 80% (v/v) FBS (“ECS solution”) is placed in each Costar cluster tube and maintained on ice. The cells are washed with warm PBS and trypsinized with 60 &mgr;l of pre-warmed trypsin-EDTA for 5 min at 37° C. The plate is moved to ice, and each well receives 180 &mgr;l of ice-cold ECS. The cells are dispersed by pipetting up and down with six tips of the multichannel pipettor. Two frozen vials of each clone are prepared by transferring 120 &mgr;l of the suspension (clones 1-6) into one cluster tube (tubes 1, 3, 5, 7, 9, 11) and the remaining 120 &mgr;l into the neighboring tube in the same row (tubes 2, 4, 6, 8, 10, and 12). Thus, each row of clustered tubes corresponds to each row of the 24-well plates.

[1721] 2. To freeze the cells slowly, the cluster tube rack is wrapped in paper towels, placed at −20° for about 1 hr, then transferred to −70°. The cluster tube racks are maintained at −70° until positive clones are identified.

[1722] DNA Isolation for Genomic Southern Blot Analysis

[1723] 1. Clones are grown until most are confluent. High-quality DNA can be extracted even from overgrown clones. Wells are washed with PBS, 200 &mgr;l of lysis buffer are added to each well, and incubated at 37° for 30 min. Plates are stored frozen at this point. The lysis buffer: consists of 150 mM NaCl, 20 mM Tris (pH 7.5), 5 mM EDTA, 0.5% (w/v) sodium dodecyl sulfate (SDS), proteinase K (0.25 mg/ml).

[1724] 2. Lysates are transferred to 1.5-ml tubes. Racks are arranged to fit the format of a 24-well plate so that a 12-channel pipettor can be used to process the samples through all the steps.

[1725] 3. Lysate is extracted with an equal volume of phenol-chloroform; the mixture is vortexed, centrifuged and the organic phase is removed using a 12-channel pipettor. The amterial is then extracted with chloroform-isoamyl alcohol. The aqueous phase is transferred to clean tubes and precipitated with 20 ml of 3M sodium acetate (pH 5.2) and 0.5 ml ethanol, at −20° for 30 min.

[1726] 4. The pellets are resuspended in 10 mM Tris-HCl (pH 8.0), 1 mM EDTA (TE). The precipitation is repeated as described above, the pellets are dried and resuspended in TE. To dissolve DNA, the solution is left at room temperature for several hours or at 65° C. for 15 min. A confluent well from a 24-well plate yields approximately 10 &mgr;g of genomic DNA. One-half or one-third of each sample is digested with restriction enzymes. To aid in complete digestion, a relatively large (100 ml) volume is used and allowed to proceed overnight. The digests can then be precipitated or reduced in volume in a Speed-Vac (Savant, Hicksville, N.Y.) before loading on a gel.

[1727] Polymerase Chain Reaction Screen of ES Cell Clones.

[1728] An alternative to the Southern blotting screen described above is to use the PCR, which is done on pools of clones. Characterization of ES cell clones by PCR in pools of 12 (blot analysis of PCR products is usually required) is performed as follows. Clones are maintained in culture during this quick initial screen. Positive pools are rescreened as individual clones by PCR, and subsequently confirmed by genomic blot analysis. A PCR primer is characterized that is within the targeting vector (usually in the positive selection marker) and another in genomic DNA outside the targeting vector. These primers are tested for their lowest detection limit and extent of cross-homology. To ensure reliable amplification in small amounts of genomic DNA, the amplification distance is only about 1 kb. This limits the homology with the locus to be targeted that is included in the targeting vector and thus. decreases targeting frequency.

[1729] 1. Drug-resistant colonies are picked by the procedures described above, except allow colonies to settle overnight in 96-well dishes with feeders. Each colony is split into two 96-well dishes by trypsinization of the attached cells. One dish is for PCR analysis and the other is expanded. Each dish has a feeder cells and 0.2 ml of medium. Using a multi-channel pipettor, routine trypsinization is performed using no more than 50 ml of trypsin-EDTA. After thorough but gentle dispersal of cells, 25 ml is transferred to each 96-well dish with 0.2 ml of medium per well. The cells are still in dilute trypsin but can tolerate it overnight, which is enough time to settle. They are refed after 12 hr.

[1730] 2. One to 2 days after the initial split, the cells are trypsinized from 1 of the duplicate 96-well dishes as usual, but do not add medium with serum.

[1731] 3. Samples are combined by row (12 wells/pool) by dispersing in trypsin-EDTA, followed by a rinse with PBS. Microfuge the pools for 3 min. to spin down the cells.

[1732] 4. All but 5 ml of supernatant is removed and the pellet resuspended in 50 ml of water and frozen on dry ice.

[1733] 5. Cells are thawed at 95° for 8 min and cool. 10 mg of proteinase K (fresh aliquot) is added, incubated at 55° for 30 min. and incubated at 95° for 8 min. and cooled.

[1734] 6. Components for a standard 100-ml PCR reaction are added. 20 ml of each PCR reaction is run on an agarose gel and blot (various quick-blot procedures are adequate). Probe with subclone of partial amplification product.

[1735] 7. The remainder of each clone is expanded by continued culturing until the results of pooled PCR analysis are complete and fed daily.

[1736] 8. Once the PCR results are in, all clones are individually passed within each positive pool to a 24-well plate with feeders. One-half of each sample is saved for PCR analysis as an individual clone.

[1737] 9. The cells are fed daily. After 3 days, once the PCR analysis of clones is complete, each positive clone is placed on a 35- or 60-mm plate with feeders to expand for freezing (see below). Feed daily.

[1738] Thawing and Expanding Targeted Clones: For each positive clone, thaw one of the cluster tubes rapidly in a 37° water bath, then cool on ice. Do not spin. Plate on a 35-mm plate with feeder cells (4×105 feeder cells per plate) in 2 ml of complete medium. Feed after 12 hr. At this point, cells are cultured in normal medium without G418; it has been reported that cells maintained in G418 have a lower capacity to contribute to the germ line of injected embryos. Depending on the density of each clone, split up to 1:6. Freeze as soon as possible in small aliquots. Freeze enough aliquots for one aliquot per day of blastocyst injection. A subconfluent 60-mm plate can be frozen as eight 250 ml aliquots, in 90% (v/v) FCS and 10% (v/v) DMSO. Such an aliquot can be plated directly after thawing into one or two 35-mm plates with feeder cells, 2 days before injection.

[1739] Further Characterization of Targeted Clones: Positive clones detected by the above procedures are retested using several different: restriction enzyme digestions to ensure appropriate insertion of the selectable marker into the locus; both flanks of the insertion are checked. To determine if targeted clones have any additional insertions of the targeting vector, DNA is tested with a probe containing the neo gene. Only a single band at the expected size is detected after long exposure. A further simple check of the condition of targeted cells is to count chromosomes:

[1740] 1. A rapidly growing culture is treated with Colcemid (0.06 mg/ml) for 4 hr.

[1741] 2. Cells are trypsinized, washed in PBS, and combined with washed cells from culture supernatant.

[1742] 3. The cells are resuspended in 10 ml of 0.56% (w/v) KCl, incubated at room temperature for 8 min. and spun at 300 rpm for 2 min. at room temperature.

[1743] 4. All but 100 ml of supernatant is removed and the cells resuspended. 10 ml of fixative [3:1 (v/v), methanol-glacial acetic acid] is added dropwise and incubated for 10 min.

[1744] 5. The cells are spun and resuspended in 1 ml of fixative.

[1745] 6. The cells are dropped, from a height of 10 cm, onto glass slides (2-3 drops per slide, cleaned with ethanol and dried). After the liquid has spread to the edges of each slide, blow dry.

[1746] 7. After they are completely air dried, stain the slides for 15 min. in 3% (w/v) Giemsa in PBS, wash in water and air dry.

[1747] 8. To count chromosomes is to photograph the slide on print film so that counted chromosomes can be marked. At least 30 spreads/clone are counted. At least 50% of the spreads have 40 chromosomes. Watch out for spreads with too many chromosomes as well as those lacking chromosomes.

[1748] Generation and Breeding of Chimeric Mice: The animal and equipment requirements and procedures for generating chimeric mice by injection of ES cells into blastocysts is as follows. C57BL/6 mice are used as embryo donors and strain CD1 as foster mothers. Contribution of ES cells, which are derived from strain 129/Sv mice and have agouti coat color, is clearly evident in contrast to the black coat color of the donor embryo.

[1749] The following procedure yields healthy ES cells as a single-cell suspension. Two days prior to blastocyst injection, one of the frozen aliquots [90% (v/v) serum, 10% (v/v) DMSO] is thawed rapidly in a 37° water bath and plated directly into two 35-mm dishes with feeder cells (4×105 feeders per plate). The medium is replaced the next morning, daily, and 2 hr before trypsinization. One plate is trypsinized at the beginning of an injection session and the second about 3 hr later, in freshly prepared 0.25% (v/v) trypsin (GIBCO-BRL) 0.02% (v/v) EDTA in PBS at 37° for 5 min. Cells are gently dispersed after adding an equal volume of ES cell medium and pellet. Cells gently resuspended (by drawing them in and out of a Pasteur pipette 20 times) in 2 ml of ice-cold ES cell medium and kept on ice until transfer to the injection chamber.

[1750] General guidelines for blastocyst injection: The procedure requires an inverted microscope with interference-contrast or phase-contrast objectives. The magnification range required is ×40 to ×200. The injection microscope is equipped with a cooling stage (blastocysts are more resilient to the injection procedure when they are kept at 5-10°). A pair of micromanipulators is used one for the holding pipette and one for the injection pipette. The manipulators from Leitz Instruments are especially useful. Flow in each pipette is regulated by hand, using a micrometer to adjust a Hamilton syringe. To obtain donor embryos, a stereo dissecting microscope (total magnification, ×20) is required for flushing blastocysts from the uterus and collecting them for culture. Blastocysts are cultured in a tissue culture dish, in microdrops of medium under light-weight paraffin oil, in 5% C02 in air at 37° During an injection session, several small batches of blastocysts are transferred from culture to the injection chamber with trypsinized ES cells. The easiest blastocysts to inject are those that have expanded fully but have not yet hatched from the zona pellucida. Loading ES cells into the injection pipette is done with care so as not to damage the cells. The injection pipette is just large enough to accommodate the ES cells, but not much larger, because damage to the blastocyst would be more likely to occur. Each blastocyst is injected with 15-20 ES cells. After injection, the blastocysts are returned to culture for at least 1 hr before surgical transfer to a pseudopregnant female. The surgery is performed on the bench with general anesthesia, using a stereo dissecting microscope. Each female receives 10-12 blastocysts; uninjected blastocysts are transferred along with injected ones, to help prevent complications in the pregnancy due to small litter size.

[1751] Chimeric animals are monitored by coat color. The 129/Sv-derived ES cells give rise to an agouti (brown) coat whereas the recipient C57BL/6 embryos produce black coat color. Desirable chimeras have a high proportion of brown coat. To determine if targeted ES cells have contributed to the germ line of chimeric mice, male chimeras are bred with C57BL/6 females. Agouti pups are the result of ES cell-derived sperm. If the targeted mutation is heterozygous viable, then one-half of the agouti pups will carry the targeted allele. However, if none of the chimeras derived from a given ES cell clone has high coat color chimerism then germ line transmission is unlikely. Discard chimeras if none of the first 60 pups contains the targeted allele and, because most ES clones give chimeras of which around 50% give germ line transmission, we would discard a clone if none of the first 5 or 6 chimeras gives agouti pups.

[1752] It is necessary to obtain germ line transmission from at least two independently derived ES cell clones in order to ensure that any phenotype of the resulting mice arises from the targeted mutation and not from some other mutation that occurred during handling of the ES cells.

[1753] Genotyping Mice: Tail Blots and PCR Analysis

[1754] Genomic DNA, isolated from tail biopsies, is analyzed by either Southern blot or PCR. Generally, mice must be at least 3 weeks old to tolerate the general anesthesia used in cutting the tail. With a fresh razor blade, cut a 1-cm length from the tip of the tail and cauterize the remaining tail with a soldering iron. DNA is isolated by a simplified procedure that is amenable to large numbers of DNA samples. Transfer the tail biopsy to a 1.5-ml tube that contains 0.5 ml of tail lysis buffer: 100 mM Tris-HCl (pH 8.5), 5 mM EDTA, 0.2% (w/v) SDS. 200 mM NaCl, proteinase K (100 mg/ml) (Boehringer Mannheim, Indianapolis, Ind.). Continuously rotate the samples overnight at 55° and Vortex the tubes, and spin down hairs and tissue debris in a microfuge for 5-10 min. Transfer the supernatant to a fresh tube containing 0.5 ml of 2-propanol and mix thoroughly. Recover the precipitate with a pipette tip and transfer to a fresh tube containing 100 ml of 10 mM Tris-HCl, 0.1 mM EDTA, pH 7.5. Make certain that DNA is dissolved by incubation at 37° with intermittent vortexing.

[1755] To analyze tail DNA by Southern blot, a single-copy probe that hybridizes with wild-type and targeted alleles is required. Generally such a probe has already been characterized for use during screening for targeted ES cells. Generally 15 ml of DNA prepared as above is sufficient for one lane of a Southern blot. Restriction digestion should be carried out in a final volume of at least 50 ml, with at least 40 units of enzyme and in the presence of bovine serum albumin (BSA; 0.1 mg/ml) and 4 mM spermicide. Digestions usually require several hours to overnight for completion. If the DNA does not digest well, a phenol-chloroform extraction followed by reprecipitation is likely to help. A variety of standard blotting procedures suitable for genomic DNA can be used. Capillary blotting to a nylon membrane, ultraviolet (UV) cross-linking, and hybridization in sodium phosphate and SDS at 65° work well.

[1756] As an alternative, PCR amplification of unpurified tail DNA using appropriate PCR primers can be used. Tail (5-10 mm) is added to 0.4 ml of PCR tail buffer 150 mM KCl, 10 mM Tris-HCl (pH 8.3), 2.5 mM MgCl2, gelatin (0.1 mg/ml), 0.45% (wlv) Nonidet P-40 (NP-40), 0.45% (w/v) Tween 20]. Incubate overnight at 55° with shaking and with addition of two 25 ml aliquots of proteinase K (10 mg/ml) added at an interval of several hours. Heat at 95° for 10 min to denature residual proteins, cool to room temperature, and spin. Five microliters of each DNA sample should give definitive ethidium bromide signals after PCR amplification with primers for each allele.

[1757] To analyze DNA by PCR, primer pairs are designed that indicate the presence of the wild-type allele versus the targeted allele. This is accomplished as follows: First, both alleles are assayed by a set of three primers, one of which is within the neo gene, as described in Polymerase Chain Reaction Screen of ES Cell Clones, above. Alternatively, separate primer pairs are used to assay the alleles:one pair within the neo gene, and the other pair in the wild-type gene. In both these strategies, designing primers that yield amplification products of different sizes allows detection of both alleles in a single reaction tube and gel lane. Care is taken not to contaminate reagents with amplification products. Organization of reagents into single-use aliquots is highly recommended.

[1758] Generation of Homozygotes: To determine if homozygous mutant animals are viable, heterozygous crosses are performed and all pups genotyped at weaning. The expected 1:2:1 ratio of genotypes, or lack of it, becomes evident in three to four litters. However, genotype ratios are kept for all heterozygous crosses performed. Ideally, mice derived from two or three independent targeted clones are available. Heterozygous crosses is carried out for each targeted clone, as well as between clones. The interclonal crosses show that any phenotype is the result of the targeted mutation rather than some other mutation occurring in the ES cell clone.

[1759] For a homozygous viable mutation, the next job is to show that the targeted mutation is truly a null allele. Procedures will depend on the gene/protein of interest. This has been performed quite thoroughly for the tenascin-deficient mice and for P-selectin-deficient mice at both the mRNA and protein level.

EXAMPLE 53 Animal Models of Infectious Diseases for Testing Superantigen-Lip-IDA Conjugates, Anti-Sense Oligonucleotides, Gene Knockout Mice, Immune Cells Deleted of Inhibitory IRIDA and/or ITIMs or ITAMs

[1760] Abbreviations: IRIDA=Inhibitory Receptor for Lipid-Based Infectious Disease Associated Antigens, Lip-IDA=Lipid-Based Infectious Disease Associated Antigens, IRsAg=Inhibitory Receptor for Superantigens, IRTAA=Inhibitory Receptors for Lipid-Based Tumor Associated Antigens.

[1761] Tuberculosis:

[1762] C57BL/6 Bg/Bg mice, which are NK cell-deficient, are infected with any one of a nontuberculous species of mycobacteria: M. avium Complex, M. kansasil, M. simiac, M. malmoense or M. genavense. Same-sex mice aged 5-7 weeks are allowed to acclimate for 1 week in the facility before being used. They are housed in microisolator units (Lab Products, Maywood, N.J.) and are randomly distributed six to a group.

[1763] Inoculum and Infection Process: Primary cultures of MAC (M. kansasii or other mycobacteria) to be used for infection are obtained from clinical isolates of patients with disseminated MAC infection, or the American Type Culture Collection (ATCC). ATCC 49602 (serotype 1) strain LPR and MAC 101 (provided by Lowell Young, California Pacific Medical Center Research Institute, San Francisco, Calif.) are used. Organisms are grown in modified 7H 10 broth (7H 10 agar formulation with agar and malachite green omitted), pH 6.6, with 10% (vol./vol.) Middlebrook oleic-acid-albumin-dextrose-catalase (OADC) enrichment (Difco Laboratories, Detroit, Mich.) and 0.05% (vol./vol.) Tween 80 (Sigma, St Louis, Mo.). Broth cultures are started from one transparent, smooth, flat colony (SmT) grown on an agar plate. The culture tube is placed in an orbital shaker and incubated at 37° C. for 3-5 days. Culture suspensions are predorminately (>95%) of the smooth, transparent, and flat (SmT) phenotype which is more virulent and more resistant to antimycobacterial agents than the smooth, domed, opaque (SmD) or rough phenotypes. After incubation, the culture is diluted in 7H10 broth to a concentration of 10 Klett units/ml (Manostat colorimeter, Manostat, New York, N.Y.) or approximately 5×107 cfu/ml. The inoculum is titrated in triplicate on 7H10 agar plates (Difco) supplemented with 5% (vol./vol.). Middlebrook OADC enrichment. Plates are taped with Blenderm® (3M, St Paul, Minn.), incubated for 2-3 weeks at 37° C., and then counted to determine the precise inoculum.

[1764] Treatment Schedule and Controls

[1765] 1. Aerosol infection at low doses: The preferred model is to expose mice to a very low inoculum of bacilli using an aerosol generation chamber. After uptake of about 50 bacilli in the lungs the infection grows progressively at first and is then curtailed around 20 days. Laboratory strains of mycobacteria such as Erdman attain 4-5 logs in the lungs by this time. More virulent strains such as CSU93 (Tennessee outbreak) and strabn W (New York) can grow to between 6 and 7 logs in this time.

[1766] 2. Intravenous infection at high doses: The high-dose intravenous model is also employed. Most of the inoculum is taken up by phagocytes in the spleen and liver and only 1-2% can be detected in the lungs. The organisms grow progressively for 10-15 days in the spleen, and to a lesser extent in the liver, until acquired immunity is generated, resulting in a “chronic” disease pattern. Thus, the genetic construct under test is given soon after inoculation or after the disease has become chronic. This more closely resembles the human condition as the patient is probably at this stage before initial diagnosis.

[1767] The inoculum is injected iv in a 0.2 ml volume using a 0.5 ml syringe with an attached 28 g needle to deliver a total of approximately 107 cfu/mouse. Each experiment consists of an early control group (sacrificed 1 week postinfection at the initiation of therapy) and a late control group (sacrificed at the end of therapy), neither of which receives any treatment. One treatment group consists of a drug with known to activity (e.g., azithromycin or clarithromycin). Treatment is started 7 days postinfection and is generally continued for 10 days in succession. In extended therapy experiments, treatment is given daily (Mon-Fri) for 4 or more weeks.

[1768] Mice are weighed at the beginning and end of each trial, and averaged by group. Mice are evaluated daily, and changes in appearance or behaviour are noted. In general, infected mice appear outwardly well, and continue to gain weight with these infections. There have been some exceptions where the infected control animals have succumbed to the infection. Untreated mice develop splenomegaly, hepatomegaly (with visible lesions), and enlarged lungs. Splenomegaly, although minimal, is evident at 1 week postinfection (average weight 0.12-0.14 g) and continues to increase for the duration of the trial (average weight 0.65-0.80 g at 18-20 days postinfection). After 1 week of infection, the usual organ bacterial counts in the lungs of early control mice (104.5) is significantly less than that in the spleen (107). The late control mice (19 days postinfection) average 106 and 107.8 cfu in their lungs and spleens respectively.

[1769] At the completion of the trial (2 days after the end of the treatment phase), mice are euthanized. Their spleens and right lungs are aseptically removed. Spleens are weighed. Each organ is placed in a grinding assembly containing normal saline and Tween 80 and each sample is ground and allowed to sit for 15 min to allow for settling of aerosols. The tops of the grinding assemblies are removed and an aliquot is removed. Dilutions are made to the appropriate concentrations for plating using tubes containing double-distilled H2O (to promote red blood cell lysis) with saline-Tween 80.

[1770] Spleen weights are used to estimate dilutions for the plating of the homogenate. Large spleens, such as those belonging to members of the late control group, are heavily infected and need to be diluted. The lungs are less infected than the spleens in this model and usually require 10-100 times less dilution. Each organ is plated at three different dilutions on 7H10 agar (Difco) plates containing 5% OADC enrichment. Plates are incubated for 2-3 weeks and counted to determine viable cell counts, which are expressed as counts/organ.

[1771] Key Parameters to Monitor Infection and Response to Treatment: Mice show some or all of the following signs of infection: a hunched posture with or without difficulty ambulating, isolation from the rest of the group in their cage, labored breathing, and shivering, lack of eating and/or drinking and diarrhea.

[1772] Upon introduction of a new agent, mice are monitored initially and during the first hour for any indications of pain or discomfort, allergic reaction or swelling. During the first 3 days of therapy, the mice are monitored at least twice daily to note their general appearance. Any injection site is inspected for swelling or irritation. The general condition of the animals is carefully noted. Mice having an acute reaction are euthanized immediately.

[1773] Therapeutic Regimen and Treatment Schedule: Therapy is begun 7 days postinfection. Determination of the spleen and lung viable bacterial cell counts is done several days after the completion of therapy. Although daily treatment for 10 days allows for differentiation of relative activities, longer treatment periods (4-12 weeks) are useful to characterize efficacy.

[1774] Administration of the therapeutic constructs is started on day 20 (when the first animal becomes DTH-positive) and is continued 2-3 time weekly for four weeks. Bacterial loads are determined at 35 and 50 days. Isoniazid (25 mg/kg/day) is given as the positive control drug in each trial.

[1775] Outcome: Treated animals show elimination and/or reduction of viable organisms in the spleens and lungs or spleen weights of therapy groups in comparison to those in the spleens and lungs of the control (infected, but untreated) groups. These differences are statistically significant using the Wilcoxin rank test or other statistical method known in the art. Additional comparison is made between the therapy groups and the group given a standard therapy such as clarithromycin or azithromycin.

[1776] Leishmaniasis: Infection Procedure: BALB/c mice are infected iv to give the quickest and most reproducible infection in the liver, spleeen and bone marrow. The inoculum of parasites, either amastigote or promastigotes, is loaded into a 1 ml syringe fitted with a 23 g needle. For experimental infection, an inoculum of 107 amastigotes in a volume of 0.1 to 0.2 ml is injected intravenously (or in hamsters, by the intracardiac route). This will produce a microscopically detectable infection in the liver of mice and liver and spleen of hamster after 1 week of infection. This level is suitable for tests of the therapeutic constructs desccribed herein.

[1777] Administration of Therapeutic Constructs: Therapeutic constructs [David: what are they?] are administered to mice by a variety of routes (s.c., ip. and p.o.) and for some formulations i.v. administration by the tail vein is required. In the mouse model, treatment is best evaluated against an established infection on days 7-11 post-infection. If a lower infection inoculum is used, tests can be carried out on days 14-18 post-infection. In the commonly used BALB/c mouse the infection in the liver increases linearly until days 21-28 following infection by 107 amastigotes or promastigotes; after this point the liver infection becomes chronic and eventually cure. The spleen infection, although microscopically detectable from week 1, is fully established after the week 4. If the infection is left untreated for several weeks prior to treatment, chronic granulomatous infection is established which has been shown to be less sensitive to standard drugs.

[1778] In an alternative approach in mice,, treatment with therapeutic constructs is started immediately after infection. A 5-day course of treatment is sufficient to determine relative potencies of the constructs.

[1779] Outcome: In the early stages of infection VL [David: what is VL?] in mice presents no obvious external symptoms. Extra mice or hamsters are infected and sacrificed prior to administering the conjugates to check that the infection is established. Microscopic examination of stained slides prepared from the liver and/or spleen of will indicate whether the inoculum was satisfactory and that infection has been established. The appearance of hamsters does change in the later stages of infection. The most noticeable features are weight loss and dulling of the hair. Occasional hamsters may develop ascites. These clinical changes in the untreated controls are contrasted with changes in the treated population. The treated groups show none of these changes in the course of therapy.

[1780] At the end of treatment the mice are weighed to give an estimation of drug toxicity. The livers and spleens are removed from freshly sacrificed animals and weighed. Smears are prepared from the livers and spleens on microscope slides, fixed in methanol for 1 minute and stained with Giemsa stain for 45 minutes. The number of parasites per 500 liver cells and/or spleen cells is determined microscopically for each experimental animal. This figure is multiplied by total organ weight (mg) and this figure, the Leishman-Donovan unit (LDU) is used as the basis for calculating the difference in parasite load between treated and untreated animals. Treated animals show complete elimination or reduction in the number of parasites/500 liver and/or spleen cells. The difference in parasite loaded between the treated and control groups is statistically significant using the Wilcoxon rank test. The activity of novel compounds is compared with that of the standard antimonial drugs and expressed as a therapeutic ratio.

[1781] Trypanosoma cruzi {Chagas Disease): Chagas disease has been observed in different mammal species. Several animal models have been used experimentally—mice, hamsters, dogs, rats, rabbits and monkeys. The course of the T cruzi infection varies widely between these species, depending upon the host and parasite strains used, the route of inoculation and the size of the inoculum.

[1782] Mouse Model: The mouse model is cheaper, easy to work with and it can produce both the acute and the chronic phases of the disease. Various mice strains differ markedly in their resistance to T cruzi. More resistant strains might providea good model for the chronic disease. At this stage, the murine model of Chagas' disease is used in experimental therapy. Several strains of mice have been used in this model: Swiss, weight 18-20 g, female; Balb/c, 8-10 weeks, female; albino [what is albino? it's a mutation and coat color, not a strain!!], weight 18-20 g male. Preliminary experiments are performed to determine the optimal parasite inocula to insure infection. The parasites are maintained by serial passage through female C3II/IIe mice, a resistant strain. Mice with parasitemia are bled into heparinized (1000 UA) PBS (50:50) and cryopreserved.

[1783] Hamster model: Hamsters (non-isogenic Syrian hamsters, Mesocricetus auratus, male/female) are infected with T cruzi. During the acute phase an inflammatory reaction is observed characterized by mononuclear and polymorphous leukocyte infiltration of variable degree in the majority of tissues and organs. In the chronic phase the same kind of lesions can be observed, but the inflammatory process is less severe and characterized by mononuclear infiltration in the myocardium (Ramirez L E, et al., Rev Soc Bras Med Trop, 1994 27:163-916). The authors noted high levels of parasitemia in the beginning of the infection, which varied with the strain used.

[1784] Parasite Strain & Stages of Disease: Different parasitic strains behave quite differently in experimental Chagas' disease with regard to characteristics such as the course of infection, the degree of parasitemia, tissue tropisms, histopathological changes and mortality. Several strains of T cruzi have been used in different animal model and include Y Ernane, Benedito and Vicentina. Strains of T. cruzi, from different geographical areas, had previously been characterized into various types according to their infectivity rate and tropism in mice. The classification includes the following:

[1785] 1. Type I, characterized by a rapid course of infection in mice, high levels of parasitemia and mortality around the 9th and 10th day of infection, with predominance of slender forms and macrophage tropism during the acute phase of the infection.

[1786] 2. Type II shows increasing parasitemia from the 12th to the 20th day of infection, low mortality rate, predominance of broad forms of the parasite and myocardial tropism.

[1787] 3. Type III shows a slow development of parasitemia that reaches a high level 20-30 days after inoculation, low mortality and predominance of parasitism in skeletal muscles.

[1788] Inoculation & Infection Process: The inoculum range is usually from 103 to 107 trypomastigotes (obtained from infected animals) or 2-4×103 metacyclic trypomastigotes (obtained from triatomid bugs). Acceptable inoculation routes are intraperitoneal and conjunctival. Mice weighing. 18-20 g are inoculated by the intraperitoneal route with 5×104-1×105 trypomastigotes which produces a homogeneous infection. Daily trypanosome counts provide the following pattern for the parasitemia: parasites appear from the 4th or 5th day after inoculation, their number decreases markedly on the 6th day, increases until the 7th or 8th day, and decreases again around the 9th day. From the 10th day onwards the pattern of parasitemia is irregular. Most infected animals die in the period from the 5th to the 20th day after inoculation; the highest mortality rates are observed around the 15th day. Mortality rates are about the same for both sexes and only a small number of infected animals will outlive 40 days.

[1789] The administration of constructs begins on the day after inoculation and doses corresponding to about one-fifth of the LD50 are given for 10 consecutive days. On the 5th day after inoculation the number of parasites in 5mm3 of blood is determined. On the 8th day, when the number of parasites in the inoculated animals is generally higher, a new count is performed.

[1790] Outcome: The best initial criteria for therapeutic activity in the experimental Chagas' disease is mortality and parasitemia. Parasitemia is usually high with little variation, depending on the strain used and follow-up is done by daily fresh blood examination. The blood is collected and the parasites counted in a Neubauer's chamber. The acute phase of the infection is followed by a chronic stage in which parasites are reduced to submicroscopic level, then indirect laboratory methods are used, such as subinoculation, xenodiagnosis and serological techniques. The polymerase chain reaction has been used as a complementary criterion for therapeutic activity in the chronic stage of experimental Chagas disease.

[1791] The following techniques are used to establish reliable criteria for cure in the mouse model of Chagas' disease:

[1792] 1. Fresh blood examination: a drop of blood from the tail is carefully examined in a Neubauer chamber daily or every other day.

[1793] 2. Blood subinoculation: mice are killed about 1 or 2 months after treatment and 0.4-0.6 ml of citrated blood, collected from the severed axillary artery, is inoculated intraperitoneally into susceptible mice. From the 5th day of inoculation, fresh blood examinations are performed daily or every other day for a period of at least 6 weeks.

[1794] 3. Blood culture: blood from treated animals is inoculated into Noeller's culture medium and culture examined for at least 30 days after inoculation.

[1795] 4. Xenodiagnosis: 1 or 2 months after treatment, mice are anesthetized and 4 triatomine nymphae are allowed to feed on them. After 45-50 days, the bugs are carefully examined for trypanosomes

[1796] 5. Histological examination: histological sections of the heart of treated animals are stained with hematoxylin and eosin and examined.

[1797] 6. Re-inoculation: some of the treated animals are reinoculated at different times after treatment with about 4000 blood parasitic forms per gram of body weight; daily counts of trypanosomes are performed so that a new acute phase of the disease can be detected.

[1798] Treated animals show 80-100% cures and prolonged survival associated with elimination or reduction in parasitemia compared to untreated control groups. The differences are statistically significant using the Wilcoxon rank test or other non-parametric or parametric statistics known in the art.

[1799] Antisense Oligonucleotides and IRIDA, ITIM, ITAM or SLAP Gene Knockout to Delete or Inactivate IRIDAs and/or ITIMs, ITAMS or SLAP

[1800] In a representative ex vivo protocol, using the murine TB, Leishmania and trypanosome models described above, an antisense oligonucleotide at a dose of 0.01-1 mg corresponding to the coding region of IRIDA ITIM or SLAP is added to autologous T cells in culture. The uptake of the oligonucleotides by the cells is confirmed using oligonucleotides labeled at the 5′end with fluorescein isothiocyanate (FITC). To check for inactivation of the the IR and ITIMs or SLAP by the oligonucleotides, Western blot quantitation is carried out on the lysed T cells. Expression of the IRIDA genes and their respective ITIM genes is downregulated by >95%.

[1801] In a parallel experiment, T cell are deleted of the gene encoding the IRIDA and their respective ITIM or SLAP by homologous recombination with a mutant gene. The knockout T cells and the antisense-treated T cells are expanded in IL-2 for 24-72 hours, harvested and reinfused into mice with established tuberculosis, leishmaniasis or trypansomiasis. Optionally the T cells are exposed to Lip-IDAs for 24 hours before the addition of IL-2. The animals are sacrificed at the end of the experiment and assayed for residual disease as deseribed above. Results are statistically assessed as given above and show that the adoptively transferred knockout T cells induce greater thann 95% reduction in the number of residual organisms.

[1802] In a representative in vivo experiment, mice are inoculated with organisms. The antisense phosphorothioate oligodeoxynucleotide corresponding to an antisense-sensitive part of the IRIDA genes and of their respective ITIM genes and a control antisense construct (the same nucleeotide composition but with a jumbled sequence) are used.

[1803] A single dose of ITIM or SLAP antisense or control antisense (1 mg per 0.1 ml saline per mouse) or saline (0.1 ml per mouse) is injected s.c. into the right flank of mice once the disease is established in the above models At each indicated time, the animals from the control and antisense-treated groups are killed and residual organisms assayed as described above.

[1804] The uptake of ITIM or SLAP antisense in the tissues is assessed by photoaffinity labelling followed by immunoprecipitation of ITIM or SLAP as follows: The tissues are homogenized with a Teflon/glass homogenizer in ice-cold buffer 10 (Tris-HCl, pH 7.4, 20 mM; NaCl, 100 mM; NP-40, 1%; sodium deoxycholate, 0.5%; MgCl, 5 mM; pepstatin, 0.1 mM; antipain, 0.1 mM; chymostatin, 0.1 mM; leupeptin, 0.2 mM; aprotinin, 0.4 mg ml; and soybean trypsin inhibitor, 0.5 mg ml; filtered through a 0.45-pm pore size membrane), and centrifuged for 5 min in an Eppendorf microfuge at 4° C. The amount of ITIM in organs is determined by photoaffinity labelling with 8N-3-[32P]cAMP followed by immunoprecipitation with anti-ITIM antibodies.

[1805] In a second representative in vivo experiment, IRIDA/ITIM or SLAP knockout mice are prepared by the above methods. They are then inoculated with organisms as above. On day three following injection, the mice are immunized with 0.1-1 mg of Lip-IDAs alone or conjugated to SAgs (see Section 51 and 55) in CFA. If unconjugated Lip-IDA is given, SEB (0.01-0.1 mg) is administered i.p. 2-3 times per week for three weeks. Separate groups of mice are treated with Lip-IDAs or SAgs alone or with CFA or saline or without either Lip-IDAs or SAg respectively. The mice are sacrificed on day 21 and the number of residual organisms assayed as above.

[1806] Alternatively, the antisense oligonucleotides complementatry to IRIDA ITIM or SLAP (0.01-1 mg/mouse) are injected intravenously into mice with established disease. Lip-IDA and SAg or conjugates thereof (Sections 51 and 55) are given on the same schedule as immediately above. Infectious burden is assayed at the end of experiments in both treated and untreated groups as indicated above. Results show >95% reduction in infectious burden in treated animals compared to controls.

EXAMPLE 54 Animal Tumor Models: Antisense Oligonucleotides and Gene Knockout Mice and Cells Deleted of Inhibitory Receptors for Lipid-Based Tumor Associated Antigens (IRTTA) and/or Inhibitory Receptors for Superantigens (IRSAg) and/or their ITIMs and/or ITAMs and/or SLAP

[1807] In a representative ex vivo protocol, using the MCA 205/207 murine sarcoma model in C57BL/6 mice (see Examples 15-16), antisense oligonucleotide 0.01-1 mg corresponding to the coding region of IRTAA/IRSAg ITIM or SLAP are added to autologous T cells in tissue culture. The uptake or the oligonucleotides by the cells is confirmed using oligonucleotides labeled at the 5′end with fluorescein isothiocyanate (FITC). To check for inactivation of the the IR and ITIMs or SLAP by the oligonucleotides, Western blot quantitation is carried out on the lysed T cells. The IRTAA and IRSA genes and their respective ITIM genes are downregulated by >95%. In a parallel experiments, T cell are deleted of the gene encoding their IRTAA or IRSAg genes and their respective ITIM SLAP genes by homologous recombination with a mutant gene. The knockout T cells and the anti-sense treated T cells are expanded in IL-2 for 24-72 hours, harvested and reinfused into C57BL/6 mice with established pulmonary metastases as described in Example 16. Optionally the T cells are exposed to lipid-based TAAs or SAg or SAg transfected tumor cells or SAg transfected tumor cell/dendritic cell fusion cells (Example 25-26) for 24 hours before the addition of IL-2. The animals are sacrificed 21 days later and the number of pulmonary metastases counted. Results are statistically assessed as given in Examples 15-16 and show that the adoptively transferred knockout T cells induce a >95% reduction in the number of pulmonary metastases.

[1808] In a representative in vivo experiment, MCA 205/207 tumor cells (1.5×106) are inoculated s.c. into the left flank of C57/B1 mice. The antisense phosphorothioate oligodeoxynucleotide corresponding to the codons for IRTAA and IRSAg genes and their respective ITIM or SLAP genes and control anti-sense (the same base composition as the antisense with the sequence jumbled) are used. A single dose of ITIM or SLAP antisense or control antisense (1 mg per 0.1 ml saline per mouse) or saline (0.1 ml per mouse) are injected s.c. into the right flank of mice when tumour size reached 80-100 mg, 1 week after cell inoculation. Tumor volumes are obtained from daily measurement of the longest and shortest diameters and calculation by the formula, 4/30r3 where r=(length+width)/4. At each indicated time, two animals from the control and antisense-treated groups are killed, and tumours removed, weighed, immediately frozen in liquid N, and kept frozen at −80° C. until used.

[1809] Photoaffinity labelling followed by immunoprecipitation of ITIM is carried out as follows: The tumors are homogenized with a Teflon/glass homogenizer in ice-cold buffer 10 (Tris-HCl, pH 7.4, 20 mM; NaCl, 100 mM; NP-40, 1%; sodium deoxycholate, 0.5%; MgCl, 5 mM; pepstatin, 0.1 mM; antipain, 0.1 mM; chymostatin, 0.1 mM; leupeptin, 0.2 mM; aprotinin, 0.4 mg ml; and soybean trypsin inhibitor, 0.5 mg ml; filtered through a 0.45-pm pore size membrane), and centrifuged for 5 min in an Eppendorf microfuge at 4° C. The supernatants are used as tumour extracts.

[1810] The amount of ITIM or SLAPin tumours is determined by photoaffinity labelling with 8-N3-[32P]cAMP followed by immunoprecipitation with the ITIM antibodies. In a representative in vivo experiment, IRTAA/ITIM Knockout C57BL/6 mice are prepared by above methods. The MCA 205/207 tumor cells (2-3×105) are then injected intravenously to induce pulmonary metastases. On day three following injection, they are immunized with 0.1-1 mg of Lip-TAAs alone or conjugated to SAgs (Section 51 and 55) in CFA. If unconjugated Lip-TAA is given, SEB (0.01-0.1 mg) is administered i.p. 2-3 times per week for three weeks. Separate groups of mice are treated with Lip-TAAs or SAgs alone or with CFA or saline or without either Lip-TAA or SAg respectively. The mice are sacrificed on day 21 and the number of metastases in the lung are counted as given in Example 16.

[1811] Alternatively, the antisense oligonucleotides complementatry to the IRTAA or IRSAg or ITIM or SLAP coding sequences (0.01-1 mg/mouse) are injected intravenously into C57BL/6 mice with MCA 205/207 tumors present subcutaneously ((at least 1 mm in diameter) or with pulmonary metastases established by injection of 2-3×105 tumor cells intravenously 3 days before. Lipid-based TAA and SAg or conjugates thereof (Sections 51 and 55) are given on the same schedule as immediately above. Tumor size is measured weekly in both treated and untreated groups. The number of pulmonary metastases in the treated and untreated groups is determined as given in Examples 16 and 21. Results are evaluated statistically as given in Examples 16 and 21 and show >95% reduction in tumor size and pulmonary metastases in treated animals compared to controls.

EXAMPLE 55 Preparation of Lip-TAAs and Lip-IDAs of Bacterial, Fungal, Yeast, Parasitic, Mycobacterial, Invertebrate or Protozoan Origin

[1812] Isolation and Characterization of Glycosphingolipids: The following are procedures for obtaining purified glycosphingolipid antigens and lipid-based SAg receptors (digalactosylceramides) from biological sources for use in treatment of cancer and infectious diseases. The major membrane bound glycosphinolipids useful for treatment of cancer include the alpha mono-, di- and tri-galacotsylceramides in mammalian cells, phytosphingosines present in yeast, vertebrate and plant cells as the well established array of tumor associated membrane antigen e.g., GD2 neuroblastoma associated antigens. It also includes the vast array of glycosphingolipid antigens associated with infectious diseases as given in Section 54.

[1813] The basis for extraction of glycosphingolipids from biological sources is their solubility in chloroform-methanol mixtures. Gangliosides (glycosphingolipids containing neuraminic acids) and glycosphingolipids with five or more carbohydrate residues are not only soluble in chloroform-methanol mixtures but also form molecular aggregates that are soluble in water. Glycosphingolipids with one to four residues, form emulsions in water which is the basis for the Folch partition (chloroform-methanol (2:1) with one-fifth volume of water or dilute KCl solution) in which gangliosides are partitioned into the upper water-methanol layer and neutral glycosphingolipids remain in the lower chloroform-methanol layer. Most glycosphingolipids are easily extracted from tissue or other material with chloroform-methanol (2:1) but quantitative extraction of gangliosides requires more polar extraction mixtures such as chloroform-methanol (1:1) or chloroform-methanol (1:2). Metal ions also affect the distribution of gangliosides in biphasic systems. Glycosphingolipids are separated from a total lipid extract by silicic acid column chromatography followed by thin-layer chromatography. Ion exchange cellulose (DEAE) column chromatography is used to separate acidic compounds, such as sulfatide and gangliosides, from less acidic or nonpolar compounds.

[1814] Extraction and Partition: All solvents used in the following procedures are redistilled from glass to remove nonvolatile compounds. Chloroform is stabilized by the addition of methanol (after distillation) to a final concentration 0.25% (by volume). Chloroform-methanol and other mixed solvents are given as volume/volume ratios. A weighed portion of the tissue to be extracted is vigorously homogenized with seven volumes of methanol (w/v) in a blender or homogenizer. Fourteen volumes of chloroform are added and the mixture homogenized again. The final solvent ratio is chloroform-methanol (2:1). The material is filtered with a Buchner funnel using an aspirator and a coarse-grade solvent-washed filter paper. The residue is reextracted with 10 volumes (based on weight of the original material) of chloroform-methanol (2:1). After filtration, the residue is extracted a third time with 5 volumes (v/v) of chloroform-methanol (1:1) or chloroform-methanol (1:2). The third extraction is only necessary for quantitative removal of gangliosides. The final combined extract is adjusted by addition of chloroform so that the final proportion is chloroform-methanol (2:1). A volume of 0.1 M KCl equivalent to one-fifth that of the final solvent extract is added, mixed vigorously, and allowed to stand at 4° overnight or until the layers are completely separated. If the volumes are small, the layers are separated by centrifugation. The upper and lower layers are washed three times with theoretical lower and upper phases, respectively, prepared by shaking a mixture of 1 volume of chloroform-methanol (2:1) and 0.2 volume of 0.1M KCl in water and letting the phases separate. With large volumes of combined extracts, the solvents are evaporated in vacuo and the residue redissolved in a convenient volume of chloroform-methanol (2:1) for the partition and washing steps described above.

[1815] The combined lower phases (original and washes) are collected and reduced in vacuo to a small volume with gentle warming (<50°) on a rotary evaporator (fraction I). The combined upper aqueous phases are dialyzed against cold tap water for 24 hours and then lyophilyzed (fraction II). The lyophilyzed material, usually containing some insoluble protein, is extracted with chloroform-methanol-water (10:5:1), filtered and reduced to a small volume on a rotary evaporator. Fraction II generally contains only gangliosides and may be analyzed by thin-layer chromatography without further purification (see below).

[1816] Silicic Acid Column Chromatography: The lipids from the chloroform-methanol layer (fraction I) are fractionated into neutral lipids, glycolipids, and phospholipids on a column of Unisil silicic acid (Clarkson Chemical Co., Williamsport, Pa.). This procedure is useful for glycolipids containing from one to four glycosyl residues and for sulfatides. Inisil (20-40 g per gram of lipid) is activated at 80° for several hours and is slurried with chloroform as quickly as possible after removal from the oven and poured into a column. The adsorbent is washed with about three bed volumes of chloroform or until it is translucent. The column is not allowed to run dry. A 20 mg/ml solution of the sample is applied in chloroform. Neutral lipids are eluted with about five bed volumes of chloroform and then glycosphingolipids are eluted with 8 to 10 bed volumes of acetone-methanol (9:1). Phospholipids are eluted with 5 bed volumes of methanol.

[1817] A different procedure has been used to isolate a particular glycolipid on a preparative scale, as in the purification of trihexosyl ceramide, gal (1→4) gal (1→4) glc-ceramide, from a kidney of a patient with Fabry's disease (trihexosylceramidosis). A crude glycolipid and phospholipid mixture is obtained from fraction I by addition of 200 ml of ether and filtration of the resultant glycolipid-phospholipid precipitate at room temperature. The glycolipid mixture (3 g in one experiment) is then subjected to mild alkali-catalyzed methanolysis. A silicic acid column (400 g) is prepared in chloroform-methanol (19:1), and the sample applied in chloroform-methanol (19:1). The column is eluted successively with 1500 ml each of 12%, 14%, 16%, 20%, 30%, and 50% methanol in chloroform. Fabry trihexosylceramide (1.5 g) is eluted as a pure compound in the 20% fraction. The 16% and 30% fractions also contain some (1 g) of the Fabry lipid mixed with other glycolipids. A similar mixture of glycolipids is fractionated on a silicic acid column using a continuous gradient from 5% to 50% methanol in chloroform.

[1818] Mild Alkali-Catalyzed Methanolysis: The glycolipid fraction from the silicic acid column is treated with mild base to remove contaminating phospholipids. This treatment does not affect glycolipids or gangliosides unless they contain an O-acyl group. The following quantities are used for 1-10 mg of glycolipid fraction. Add 1 ml of chloroform and 1 ml of 0.6 N NaOH in methanol to the dry fraction and allow the mixture to react at room temperature for 1 hour. Then add 1.2 ml of 0.5 N HCl in methanol, 1.7 ml of water, and 3.4 ml of chloroform, mix well, centrifuge, and remove the lower layer containing the glycolipids. Wash the lower layer three times with methanol:water (1:1) and then evaporate it to dryness in vacuo. If a ganglioside fraction is to be methanolyzed, the sample is treated in the same way except that after neutralization with methanolic HCl the sample is dried in vacuo, emulsified in water and dialyzed against tap water at 4° for 24 hours. The nondialyzable material is lyophilyzed and applied to TLC plates as described below.

[1819] Thin-Layer Chromatography: Glycosphingolipids are separated on thin-layer plates of silica gel G, H, or HR. The plates are prepared and activated at 100° C. for 2-4 hours. Plates of 0.25 mm thickness are used for general work and plates of 0.75 mm thickness are used for preparation of large quantities of material. Thin-layer tanks are lined with paper and equilibrated with solvent for 4 or more hours before use. Commercial pre-prepared TLC plates (Quantum Industries, Fairfield, N.J., Brinkman Instruments Inc., Westbury, N.Y., and Analtek Inc., Wilmington, Del.) have been used successfully for qualitative analysis of glycosphingolipids. Separation on these plates, however, is not usually as great as on plates made in the laboratory and contaminants are often obtained when silica gel is removed from pre-prepared plates and eluted with solvents.

[1820] A glycolipid mixture obtained from a column is separated into various components on a silica gel H plate (0.25 mm) using a chloroform-methanol-water (100:42:6) solvent system. Some hematoside, NANA(2-3)gal(1-4)glc-ceramide, is usually partitioned into the lower phase of a Folch wash and is separated from human or porcine globoside, galNAc (1-3)gal(1-4)gal(1-4) glc-ceramide in this system. Monohexosyl ceramide, glc- and gal-ceramide, and dihexosyl ceramide, gal (1→4) glc-ceramide and gal-(1-4) gal-ceramide, often appear as two spots because of the presence of a-hydroxy fatty acids in the ceramide. Otherwise the two forms of monohexosyl and dihexosylceramide are not separated on silica gel alone. Glucosylceramide and galactosylceramide, however, have been resolved on borate-impregnated thin-layer plates. Sulfatide (galactosylceramide sulfate) is not usually completely separated from dihexosylceramide, but these compounds can be completely separated by DEAE chromatography. Gangliosides larger than hematoside remain very near the origin in this system.

[1821] Gangliosides and neutral glycosphingolipids with more than four glycosyl residues are separated by more polar solvent systems such as chloroform-methanol-water (60:45: 10) or chloroform-methanol-2s N NH4OH (65:45:9). In the latter case, when gangliosides are involved, the plate is developed two times with thorough drying (4 hours at room temperature) between developments. Hematoside is well separated from globoside on silica gel G plates with this system.

[1822] Glycosphingolipids are visualized with iodine vapor or by spraying with a 2% a-naphthol solution (in ethanol) followed by concentrated H2SO4 spray and heating for 10 minutes at 100°. The a-naphthol spray gives deep red-purple spots with carbohydrate-containing compounds and brown spots with phospholipids or neutral lipids. As little as 1-10 mg of material is visualized in this way. Gangliosides are specifically visualized by spraying with the following solution: mix 10 ml of 3% resorcinol (stored in refrigerator) with 80 ml of concentrated HCl, 0.25 ml of 0.1 M CuSO4 and enough water to make 100 ml of solution. The sprayed plate is placed horizontally in a closed jar and heated in an oven at 125° for 20 minutes. Gangliosides appear as black or purple areas and other compounds appear as light brown areas.

[1823] Preparative thin-layer chromatography is carried out by streaking the sample on a 0.75 mm thick plate and developing as outlined above. Only the edges of the streak are visualized with I2 or a-naphthol and areas containing neutral glycolipids are removed from the plate and the silica gel is eluted with chloroform-methanol-water (100:50:10). Gangliosides are eluted from silica gel with more polar solvents such as chloroform-methanol-water (50:50:15).

[1824] DEAE Column Chromatography: Water-soluble oligoglycosylceramides are separated from gangliosides from fraction II by the following procedure. Diethylaminoethyl cellulose (DEAE) in the acetate form is washed and columns are prepared. The sample is applied in chloroform-methanol (7:3) and neutral glycolipids are eluted with 8 bed volumes each of chloroform-methanol (7:3) and (1:1). Gangliosides are retained on the column and are eluted with 10 bed volumes of chloroform-methanol (2:1) saturated with aqueous 58% NH4OH.

[1825] Dihexosylceramide and sulfatide isolated from a preparative TLC plate as described earlier is separated on a DEAE column. The sample is applied in chloroform-methanol (9:1) and neutral dihexosylceramide is eluted with 10 bed volumes each of chloroform-methanol (9:1) and chloroform-methanol (7:3). The sulfatide is eluted with chloroform-methanol (4:1) made 10 mM with respect to ammonium acetate, to which is added 20 ml of 28% aqueous ammonia per liter. Sulfate analysis of lipid fractions is carried out.

[1826] Florisil Column Chromatography: An alternative method of isolation of glycosphingolipids is by Florisil column chromatography of the peracetylated glycolipids wherein all the glycophingolipids (except polysialylgangliosides) are isolated in one fraction. Briefly, the procedure consists of peracetylation of the total lipid extract with pyridine-acetic anhydride (3:2) (1 ml per 50 mg of dry total lipid). The pyridine and acetic anhydride are removed in vacuo with additions of toluene, and the products are applied to a Florisil column (40 g per gram of lipid), and neutral lipids and cholesterol are eluted with dichloroethane (8 bed volumes). Peracetylated glycosphingolipids are eluted with 8 bed volumes of dichloroethane-acetone (1:1), and phospholipids are eluted with 5 bed volumes of dichloroethane-methanol-water (2:8:1). Acetyl groups are removed from the glycolipids with 0.25% sodium methoxide in chloroform methanol (1:1) (1 ml per 25 mg of lipid) at 25° for 30 minutes. The mixture is neutralized with acetic acid, emulsified in water and dialyzed overnight at 40 The glycolipid fraction, analyzed by TLC, is free of contaminating phospholipids.

[1827] Characterization of Glycosphingolipids: The first step in the characterization of glycosphingolipids is the complete cleavage of the lipid into its component parts which is carried out by methanolysis with 0.75 N methanolic HCl. The products of methanolysis of a glycosphingolipid ate sphingolipid bases and their O-methyl derivatives, fatty acid methyl esters, and methyl glycosides. These components are separated by solvent extraction and analyzed by gas-liquid chromatography.

[1828] Methanolysis: A solution of a glycosphingolipid (up to 1 mg), isolated from columns or thin-layer chromatography plates, is evaporated to dryness in an 8-ml culture tube fitted with a Teflon-lined cap. Three milliliters of 0.75 N methanolic HCl (prepared by bubbling gaseous HCl into methanol) is added to the sample, and the capped tube is heated at 80° for 12-20 hours. At the end of this period, 0.05-0.3 mmole of mannitol (in methanol) is added as an internal standard. The sample is extracted three times with 1 ml hexane to remove fatty acid methyl esters. The hexane solution of methyl esters is retained for GLC analysis. Approximately 100 mg of solid Ag2CO2 is added to each. tube and carefully mixed until neutral. Methyl glycosides of amino sugars and neuraminyl methyl ester, and sphingosines- are N-acetylated by addition of 1 ml of acetic anhydride. The remaining Ag,C03 and AgG1 act as catalyst for this reaction. The mixture is allowed to react for 6-16 hours at room temperature, after which the sample is centrifuged and the precipitate is washed with methanol several times. About 0.25 ml of H2O is added to decompose excess acetic anhydride, and the sample is evaporated under a stream of nitrogen. If N-acetylation is not performed, the neutralized sample is centrifuged, washed, and evaporated to dryness under nitrogen.

[1829] Trimethylsilylation and Gas-Liquid Chromatography of Methyl Glycosides: Dry samples of methyl glycosides are converted to trimethylsilyl (TMS) derivatives by addition of pyridine-hexamethyldisilazane-tri-methylchlorosilane (8:2:1) (about 50 mM for 500 mg of lipid). The mixture is allowed to stand for 15 minutes at room temperature and an aliquot is injected into the gas-liquid chromatograph. The mixed silane solution is cloudy and is used without centrifugation, but exposure to water vapor is avoided. If very small amounts of sugars are present, the sample is evaporated under nitrogen and redissolved in a convenient solvent such as pyridine or CS2.

[1830] An aliquot of the solution of TMS derivatives is injected into a gas-liquid chromatographic column (2 m by 3 mm) of 3% SE-30 or OV-1 on Supelcoport (80/100 mesh, Supelco Inc., Bellefonte, Pa.) at 160° with nitrogen carrier gas (25 ml/minute). Programming from 1500 to 2500 at 30 per minute is useful when sialic acids are present. A chromatogram of a methanolyzed sample of globoside, galNAc(1→3)gal (1→4) gal (1→4) glc-ceramide shows three peaks for TMS methyl-D-galactoside (a, g, and b forms); two peaks for methyl-D-glucoside (a and b forms); and two major peaks for methyl-2-acetamido-2-deoxy-D-galactoside. Other methods are useful for gas-liquid chromatography of methyl glycosides are suitable for identification of glycolipids containing fucose, glucose, galactose, galactosamine, glucosamine, and sialic acid. Mannose exhibits peaks overlapping with galactose and if these two sugars are present, the method employing alditol acetates is preferred.

[1831] The ratios of glucose and galactose are determined without conversion factors by simply comparing the ratio of the total peak areas of each methyl glycoside. Since many glycosphingolipids contain only one glucose, ratios are usually expressed in relation to glucose and for globoside the ratio of galactose to glucose is 2. The ratio of galactosamine to glucose calculated in this way is usually about 0.65 for globoside. Methanolysis, N-acetylation, and trimethylsilylation is carried out to obtain reproducible ratios for hexosamines. The mass ratio obtained for N-acetylneuraminic acid to glucose is usually 1.0 to 1.2, and these values should be compared with those obtained from known gangliosides treated in the same way. The absolute quantity of galactose and glucose are determined by comparison to the internal standard mannitol with the use of the following equation.

mmoles glucose=area of glucose peaks/area of mannitol peak×1.25×mmoles of mannitol added

[1832] The mannitol peak falls between the second glucose peak and the first galactosamine peak and does not interfere with either compound. The area of peaks is calculated by triangulation.

[1833] Fatty Acids and Sphingosines: Normal fatty acids and a-hydroxy fatty acids are determined qualitatively and quantitatively by gas-liquid chromatography of the fatty acid methyl esters obtained from the hexane extract of the methanolyzate. Sphingosines are determined by hydrolysis of the glycolipid with aqueous HCl followed by N-acetylation and GLC of the TMS derivatives. A colorimetric assay and a method involving GLC of aldehydes produced by NaIO4 cleavage of sphingosine are also available.

[1834] Enzymatic Degradation of Glycosphingolipids: Specific glycosidases are used for sequence determination and anomeric analysis of glycolipids. Glycosyl residues are released sequentially from globoside (cytolipin R reacts in the same way) by stepwise treatment with the following glycosidases; &bgr;-hexosaminidase from jack bean, a-gal actosidase from fig ficin, and &bgr;-galactosidase from jack bean. Reactions are carried out with 100 mg of lipid in 0.1 ml of 0.1 M sodium citrate buffer at pH 5, containing 100 mg of crude ox bile sodium taurocholate. After 18 hours at 37°, reaction mixtures are frozen and lyophilized. One milliliter of chloroform-methanol. (2:1) is added and the mixture is sonicated for 5 minutes. After centrifugation, the supernatant fraction is dried, taken up in a small amount of chloroform-methanol (2:1) and spotted on a silica gel HR plate. The plate is developed in chloroform-methanopwater (100:42:6) and visualized with 12 vapors or a-naphthol spray. Products are identified by cochromatography with standards and by elution, methanolysis and GLC analysis.

[1835] Mass Spectrometry of TMS Glycosphingolipids: Mass spectrometry of intact TMS derivatives of glycolipids gives information about the sugar groups, the fatty acid and the sphingosine portion of glycosphingolipids. Bis(trimethylsilyl)trifluoroacetamide (100 ml) and pyridine (50 ml) are added to 20-200 mg of the purified glycosphingolipid in a small capped vial and heated at 60° for about 30 minutes. An aliquot containing 10-20 mg of the TMS glycolipid is evaporated to dryness under nitrogen in a mass spectrometer direct probe tube. The samples are volatilized in the mass spectrometer ion source at temperatures ranging from 10° to 180° depending on the size of the oligosaccharide unit. The following information can be obtained by comparison of the resulting mass spectra with those of reference samples: (1) whether the terminal residue is a hexose or hexosamine; (2) the number of and nature of —N-acetylneuraminic acid groups (i.e., terminal or branched); (3) whether N-acetyl and/or N-glycolylneuraminate is present; (4) information regarding the number of glycosyl residues present and the fatty acid and sphingosine composition. Because of the the inability to distinguish between hexoses, this technique in conjunction with other techniques, such as permethylation analyses, and studies with specific glycosidases.

[1836] Ozonolysis of Glycosphingolipids: The carbohydrate portion of glycosphingolipids is cleaved from the lipid portion. The glucose-sphingosine linkage is broken but there is no hydrolysis of other glycosidic linkages, including those of sialic acid residues. The glycolipid (100 mg) is ozonized in 50 ml of methanol at room temperature. Ozone consumption is monitored by bubbling the effluent gas through a KI-starch solution which blackens when excess ozone is present. The solution is dried in vacuo and the compound is hydrolyzed with 10 ml of 0.2 M Na2CO2, for 12 hours at 20°. Sodium ion is removed by stirring with Dowex 50 (H+) and the resin is filtered. After a Foich partition, the upper aqueous phase is lyophilized and the resultant oligosaccharides (about 80% yield) are stored in a desiccator. The procedure is changed for microscale operation (1 mg of lipid).

[1837] Permethylation of Glycosphingolipids: Permethylation, hydrolysis, and gas-liquid chromatography of glycosphingolipids is used to determine linkage of glycosyl residues. Permethylation is carried out using methyl sulfinyl carbanion. Sodium hydride (0.88 g of 57% in oil) is washed six times under nitrogen with dry hexane, drained thoroughly, and stirred with dimethyl sulfoxide (10 ml) under a stream of nitrogen at 70° for 3 hours or until bubbling ceases and the solution turns a dark clear green. Any dark precipitate is removed at this point by centrifugation. The carbanion solution (about 0.5 ml) is added under a stream of nitrogen to the glycolipid sample in 0.5 ml of dimethyl sulfoxide, and the mixture is sonicated briefly. After standing at room temperature for 2-6 hours, 1.5 ml of CH3I is added dropwise under nitrogen, and the mixture is allowed to react for 1 hour. After this step, it is not necessary to keep the reaction dry. The permethylated glycolipids are extracted into chloroform, the chloroform layer is washed once with 1% Na2S3O3 to remove I2, and four times with water. The chloroform fraction is mixed with absolute ethanol and is evaporated under nitrogen. Two milliliters of 1 N H2S04 is added, and after heating at 105° for 12 hours the hydrolyzate is neutralized with BaCO3 diluted, and filtered on Celite and filter paper, washing the Celite twice with water (5 ml). The sample is concentrated to 5 ml and percolated onto a small Dowex 50 H+ column. Neutral sugars are eluted with water and methanol-water (1:3) (10 ml each) and amino sugars are eluted with 0.3 N NH4OH. The resulting partially methylated sugars are reduced with NaBH4, the products are acetylated and gas-liquid chromatography is carried out.

[1838] Partial Hydrolysis of Glycosphingolipids: The presence of N-acetylneuraminic acid or N-glycolylneuraminic acid in a ganglioside sample is determined by mild acid hydrolysis of the neuraminic acid followed by TLC or GLO analysis. The N-acylneuraminic acids are released from gangliosides (0.1-0.2 mg) with 1 ml of 0.05 M HCl (aqueous HCl) at 80° for 1 hour. The solution is extracted with chloroform and the aqueous phase is percolated through about 2 g of Dowex 1 (acetate form) in a small column. The column is washed with 8 ml of water, and the neuraminic acids are eluted with 10 ml of 1 M formic acid. The sample is analyzed on silica gel C plates using n-propanol-water-concentrated ammonia (6:2:1). The Rf of N-acetylneuraminic acid is 0.41 and that of N-glycolylneuraminic acid is 0.28. This sample is also be derivatized with bis (trimethylsilyl) trifloroacetamide and analyzed by GLC.

[1839] Neuraminic acids are usually analyzed by GLC as their TMS-methyl ketoside methyl ester derivatives. A ganglioside sample (0.1 mg) or mixture of glycolipids is methanolyzed with 2 ml of 0.05 M methanolic HCl (1 part 12 N HCl and 240 parts methanol) at 80° for 1 hour. The cooled solution is extracted three times with 3 ml hexane and the methanolic layer is evaporated to dryness under nitrogen. Pyridine-hexamethyldisilazane-trimethylchlorosilane (8:4:2) (50 ml) is added and the TMS derivatives are analyzed on a 3% OV-1 column (2 m×2 mm) at 205°. The sulfate moiety of sulfatide (up to 2 mg) is released by reaction with 2 ml of 0.05 N methanolic HCl for 4 hours at room temperature. The reaction mixture is neutralized with aqueous NaOH and the glycolipid product is extracted by Folch partition with 4 ml of chloroform. The chloroform layer is washed with 2 ml of methanol-water (1:1) and is analyzed by TLC.

[1840] The carbohydrate sequence of glycosphingolipids is determined by partial degradation under mild acidic conditions. The glycolipid (1 mg) is hydrolyzed with 1 ml of 0.3 N HCl in chloroform-methanol (2:1) at 60° for various times up to 2 hours. After Folch partition (with addition of 0.2 volume of water) the lower phase is dried in vacuo and the upper phase is deionized with Amberlite CG-4B resin (OH form). The glycolipids (from lower phase) are purified by TLC and analyzed by GLC after complete hydrolysis. The upper phase is analyzed for sugars (and polysaccharides) by GLC. Trihexosyl ceramide, gal(1→4)gal (1→4)glc ceramide, hydrolyzed for 2 hours in this way did not yield ceramide but yielded cerebroside containing only glucose, and a dihexosyl ceramide containing glucose and galactose in a 1:1 molar ratio. The water-soluble fraction contained galactose and a disaccharide but no glucose. These data provide evidence for a linear arrangement of the hexose units as given above.

[1841] Characterization of the oligosaccharide moieties of glycolipids by partial degradation is also been carried out by treatment of glycolipids with 0.1 N aqueous HCl for 30 minutes to 3 hours, and by treatment of gangliosides with 0.01 N H2SO4 at 85° for 1 hour and 0.1 N H2SO4 at 100° for 1 hour.”

[1842] Mixed Molecular Species of Glycosphingolipids: The purification and characterization of glycosphingolipids is complicated by the fact that naturally occurring glycosphingolipids which are homogeneous in the carbohydrate portion are heterogeneous in the sphingosine and fatty acid portions. Complete hydrolysis and subsequent analyses of the fatty acids and long-chain bases provide information about the extent of this heterogeneity. Additional heterogeneity results when there are glycosphingolipids with identical composition but which differ in glycosidic linkage and/or anomeric configuration of one or more glycosidic bonds. Such mixtures probably cannot be separated by TLC alone. Whether or not products which are homogeneous by TLC actually contain such mixtures can only be determined with techniques such as permethylation and sequential enzymatic degradation.

[1843] Extraction of Inositolphosphorylceramides (InsPCers) of Fungi and Yeast: Extraction of InsPCers from Saccharomyces cerevisiae and from the mycelial phase of Neurospora crassa is as follows: Cells uniformly labeled with [3H]inositol are used to gauge the extraction efficiency of a variety of procedures. Treat the cells with 5% trichloroacetic acid at 0C to destroy phospholipases, known to be activated by organic solvents during lipid extraction, followed by extraction with a slightly alkaline, warm, water-rich mixture of ethanol-diethylether-water-pyridine. This method approached 100% extraction of the labeled inositol; Some water-poor solvents completely failed to extract the InsPCers. The adopted procedure has been used for InsPCer extraction from other fungi such as Histoplasma capsulatum and from fresh tobacco leaves and has been used for the extraction of lipophosphoglycan from Leishmania donovani. In the absence of labeling of InsPCer components, efficacy of InsPCer extraction could be judged by monitoring total long-chain base and/or very-long-chain fatty acids.

[1844] Purification of InsPCers: Purification of INsPCers is no different from any very polar, acidic lipid. First, InsPCers precipitate almost quantitatively at low temperature after adjusting to pH 5 the initial lipid extracts from S. cerevisiae, H. capsulatum, N. crassa, and tobacco leaves. Second, mild alkaline methanolysis is used to destroy the ester-containing lipids in crude or semipurified extracts; however, stronger alkaline conditions should be avoided owing to the lability of unsubstituted inositol attached by a phosphodiester bond. Finally, liquid chromatography on silica gel columns is used for isolating InsPCers; low levels of salt in the eluting solvents are required to chromatograph macroscopic quantities of the very polar InsPCers. A solvent polar enough to dissolve a practical amount of the very polar InsPCers yields insufficient retention. Inclusion of salt increases the retention presumably by providing a charged surface for the negatively charged InsPCers. In contrast, the salt had little influence on the retention of neutral lipids.

[1845] Extraction and Purification of Galactosylceramides--Cell culture: Human kidney cells (PT cells) are prepared as described previously (Chatteree et al., Proc. Natl. Acad. Sci. (1983)). Human cadaver kidneys (post mortem <12 hr) are used for the isolation of PT cells. Glucosylceramide was prepared from the spleen of a Gaucher's patient. Digalactosyklceramide is prepared from the kidney of a Fabry's patient. Other GSLs are purchased from Sigma. Normal rat kidney cells were purchased from the American Tissue Culture Collection (Rockville, Md.). Cells (×104) are seeded in 24 well trays and grown for 6 days in medium containing 10% fetal calf serutn (Hyclone, Utah).

[1846] Lipid Extraction and Fractionation of GSL from Human Kidney: Total lipids are extracted from freeze-dried cultured PT cells or human kidney cortex or both by vigorous homogenization and extraction with hot (50° C.) chloroform:methanol 2:1 (v/v)10 ml/mg protein. The lipid extracts are filtered on a sintered disc tunnel and the non-lipid residue is extracted further with hot chloroform-methanol 1:2 (v/v) containing 5% H20. Lipid extraction is pursued at 50° C. for 30 min with constant stirring. The lipid extract is filtered on a sintered glass funnel and the residue is extracted further, first with hot chloroform:methanol:water 1:2, 5%) and then with methanol. The lipid extracts are pooled and dried by flash evaporation. Water-soluble contaminants are removed from the lipid extracts.

[1847] Isolation and Purification of GSL: The lower phase lipid fraction obtained following Folch partitioning of human kidney total lipids is fractionated into neutral lipid, GSL and phospholipids by silicic acid chromatography as described previously (Chatterjee et al., 1982). The acetone:methanol fraction containing GSL is subjected to alkaline methanolysis, neutralized and dried under a nitrogen atmosphere. The dried residues are solubilized in chloroform:methanol 2:1 (vlv) and subjected to HPTLC on Silica gel HPTLC plates with chloroform:methanol:water (65:25:4, v/v) as the developing solvent. The individual GSLs are identified with aniline diphenylamine (OPA) reagent or iodine vapours. The chromatogram is calibrated with authentic GSL standards of known structure. The total GSL fraction was precipitated with ether and subjected to mild alkali-catalysed methanolysis, dialyzed against water and separated by silicic acid chromatography. The silicic acid column is equilibrated with chloroform:methanol (19:1) and a sample suspended in the same solvent is applied on the column bed. The column is eluted successively with 12, 14, 16, 20, 30 and 50% methanol in chloroform, and the fractions are dried in a nitrogen atmosphere. The various fractions are analysed for the composition of GSLs. Several of the fractions obtained when the column is eluted with 14% methanol in chloroform contained digalactosylceramide. Such preparations of digalactosylceramide are further characterized by high-performance liquid chromatography (HPLC) and are utilized for binding to SEB.

[1848] Quantitation of GSL: GSLs are quantified by HPLC, after perbenzoylation. An aliquot of perbenzoylated GSL sample is suspended in hexane and subjected to HPLC on a Spherisorb Si-5 column with detection at 230 nm. The amount of GSL is calculated by using a standard curve for the respective GSLs.

[1849] Characterization of Galactosylceramides: Acid hydrolysis of GSLs are carried out followed by TLC of sugars on aluminium-backed silica gel 60 (without indicator) HPTLC plates with the use of 2-propanol-1% sodium borate (3:1, v/v) as the developing solvent. The sugars are localized by spraying the plate with 10% H2S04 in 50% ethanol and heating at 150° C. for 10 min in an incubator. Anomeric linkage of the purified GSL receptor is determined using &bgr;-galactosidase, &agr;-galactosidase and &bgr;-glucosidase An aliquot of the purified GSL receptor is incubated with or without &bgr;-galactosidase; &bgr;-galactosidase and &bgr;-glucosidase in 0.05 M citrate buffer (pH 5.4) containing taurodeoxycholate for 18 h at 37° C. The reaction is terminated with chloroform:methanol (2:1 vlv) and the lower-chloroform layer is subjected to HPTLC. The plate is developed with aniline DPA reagent.

[1850] GC-MS of GSL: Suitable aliquots of the putative SEB receptor are subjected to acid-catalysed methanolysis (Esselman et at., 1972). The methyl sugars, methyl fatty acids and methyl sphingosines are purified by solvent extraction as described above. They were dried in a nitrogen atmosphere and derivatized by employing trimethylchlorosilane reagent. The derivatized samples (fatty acid methyl esters) suspended in hexane were injected into a Varian-3400 gas chromatograph (DB-wax capillary column, 30 m; J and W Company, California) that is attached to a mass spectrometer ITD-850, Finnigan Ion Trap detector. Helium is used as a carrier gas. Temperature programming from 160° C. to 250° C. at 1° C./min is employed to separate the various fatty acid methyl esters. The TMSi sugars are separated on a DB-5 column using temperature programming from 160° C. to 250° C. at 1° C./min. Data analysis of TMSi sugars is pursued by the use of a Compaq deskpro-2862 computer. Suitable aliquots of the GSL are subjected to microscale permethylation. The gas chromatography column (DB-5 capillary column 0.25 mm×30 m) is calibrated with authentic standards of mixtures of partially methylated alditol acetates (Biocarb. Chemicals, Sweden). Temperature programming is from 160° C. to 250° C. at 1° C./min and from 250° C. to 350° C. at 2° C./min.

EXAMPLE 56 Transfection of Thymidine Kinase Gene into Activated Immunocytes

[1851] In order that the immunocytes with deleted or inactivated IRs do not undergo unlimited proliferation in vivo it is necessary to provide a method for eliminating these cells after they have performed their tumoricidal function in vivo. To achieve this effect, a retrovirus-mediated transfer of a gene encoding a ‘prodrug’, a reagent that confers sensitivity to cell killing following subsequent administration of a suitable drug is used. Thymidine kinase (Wigler M et al., Cell, 11: 223 (1977); Colbere-Garapin F et al., Proc. Natl. Acad. Sci., 76: 3755 (1979)) is encoded by the cellular, HSV, or vaccinia virus tk genes and the HSV-tk gene is used as a prodrug gene. The HSV-tk gene is transfected into immunocytes by methods given in Example 1. The HSV-tk confers sensitivity to the drug gancyclovir by phosphorylating it within the cell to form gancyclovir monophosphate which is subsequently converted by cellular kinases to gancyclovir triphosphate. This compound inhibits DNA polymerase and causes cell death. The immunocytes are administered to the host. Unopposed proliferation of immunocytes cells deleted of IRTAAs, IRSSAgs, IRIDAs in response to tumor associated lipid-based antigens may lead to immunocyte excess. Therefore, after the immunocytes have performed their tumor killing in vivo, gancyclovir is administered in conventional pharmacologic doses which induces apoptosis of HSV-tk transfected immunocytes.

EXAMPLE 57 Deletion of Immunocyte and Antigen Presenting Cell LipTAA Receptors in Tumor Bearing Hosts

[1852] Lip-TAA receptors are deleted or inactivated in T Cells, NKT Cells and NK Cells in vivo and in vitro using but not limited to anti-sense oligonucleotides gene knockouts Examples 51-52. Immunocytes and accessory cells used for adoptive transfer are depleted of their TGG receptors using antisense and gene knockout technology as given in Examples 51-52. The T Cells, NKT Cells and NK Cells (collectively immunocytes) and accessory or antigen presenting cells including but not limited to macrophages, dendritic cells, fibroblasts, B cells and with deleted or inactivated TGG receptors are therefore protected from ganglioside-induced immune suppression and are capable of inducing an anti-tumor response.

[1853] Model Tumor Systems for Testing Efficacy of Immunocytes Deleted of Lip-TAA: Receptors: Tumor models used for determining efficacy of ganglioside receptor deletion or inhibition on immunocytes and accessory cells are given in Examples 20-23.

[1854] The deletion or inhibition of ganglioside receptors on immunocytes or accessory cells in tumor bearing hosts is carried out in vivo. Alternatively, the deletion or inhibition of ganglioside receptors on immunocytes or accessory cells can be achieved ex vivo and the treated cells used for adoptive immunotherapy. Outcomes are given in Examples 21, 23.

[1855] General Procedures for Ex Vivo Sensitization of Immunocytes Depleted of Lip-TAA Receptors to Produce Tumor Specific Effector Cells for Adoptive Immunotherapy

[1856] MCA 205/207 tumor cells, A/20 lymphoma cells, FBL-3, a Friend virus-induced erythroleukemia of B6 origin, is (provided by Dr. Philip Greenberg) and Lewis lung carcinoma cells are used. Tumor growth is initiated by subcutaneous inoculation of mice on both flanks with 1.5×106 tumor cells suspended in 0.05 ml of HBSS. After 9-12 days of tumor growth (approximately 8 mm in diameter), tumor-draining inguinal LN are removed sterilely. Lymphocyte suspensions are prepared by teasing LN with needles followed by pressing with the blunt end of a 10-mi plastic syringe in HBSS. Tumor draining LN cells delpleted of ganglioside receptors are stimulated in vitro in a two-step procedure. Briefly, 4×106 LN cells in 2ml of complete medium (CM) containing the superantigens are incubated in a well of 24-well plates at 37° C. in a 5% C02 atmosphere for 2 days. CM consisted of RPMI 1640 medium supplemented with 10% heat-inactivated FCS, 0.1 mM nonessential amino acids, 1 mM sodium pyruvate, 2 mM freshly prepared L-glutamine. 100 ug/ml streptomycin, 100 U/ml penicillin, a 50 mg/ml gentamycin, 0.55 mg/ml fungizone (all from GIBCO, GrandIsland, N.Y.) and 5×10−5 M 2-mercaptoethanol (Sigma). The cells are harvested, then washed and further cultured a 3×105/well in 2 ml of CM with IL-2. After 3-day incubation in IL-2, the cells are collected and counted to determine the degree of proliferation. Finally, the cells are suspended in appropriate media for flow cytometric analysis, evaluation of cytotoxicity and lymphokine secretion, or for adoptive immunotherapy.

[1857] General Adoptive Immunotherapy Protocol: Mice are injected with 2 to 3×105 syngeneic MCA 205 or 207 fibrosarcaoma tumor cells suspended in 1 ml of HBSS to initiate pulmonary metastases. This is the preferred animal model for evaluation of the adoptively transferred effector cells (Shu S. a at, .I. Immunol. 152: 1277-1288 (1994)). Other models of tumor metastases are induced by injection of:

[1858] (a) with 2×106 B16 or FBL-3 (erythroleukemia) cells in the spleen to induce liver metastasis,

[1859] (b) intravenously with 3×105 B16 or 2×106 LLC (Lewis lung carcinoma) cells for pulmonary metastases or;

[1860] (c) subcutaneously with 2×106 B 16 cells (melanoma) for subcutaneous tumor growth on day 0.

[1861] On day 3, ganglioside receptor depleted immunocytes or accessory cells are given i.v. at numbers indicated generally 106-108 into syngeneic hosts. In some instances, mice are also treated with 15,000 U IL2 in 0.5 ml HBSS twice daily for 4 consecutive days to promote the in vivo function and survival of the activated cells. On day 20 or 21, all mice are randomized, killed and metastatic tumor nodules enumerated. If pulmonary metastases exceeds 250, this number is arbitrarily assigned for statistical analysis. The significance of differences in metastases numbers between experimental group is determined by the Wilcoxon rank sum test. Two sided p values of <0.1 are considered significant. Each experimental group consists of at least five mice and no animal is excluded from the statistical evaluation.

EXAMPLE 58

[1862] The Lip-TAAs expressed and shed by tumor cells are isolated and tested for capacity to bind to various lipid binding proteins and to inhibit mitogen induced T cell proliferation. The best binding agent for use in vivo as a decoy to bind Lip-TAAs and prevent their uptake by APCs of T cell is selected from among the Siglecs, prosaposins, saposins, glycolipid transfer proteins (GLTP), non-specific lipid transfer agents and other ganglioside binding proteins. Monoclonal antibodies specific for Lip-TAAs are also useful as Lip-TAA binding agents. They are particularly useful when it is determined that immunosuppressive Lip-TAAs share a common antigenic domain. The natural Lip-TAA binding agents are preferred because of their broad specificity and unlike monoclonal antibodies do not require preparation of a new agent for each variant immunosuppressive ganglioside identified.

[1863] Extraction of gangliosides from tumors.: Gangliosides are purified from pools of human tumors and/or serum lipoprotein fractions as previously described. Briefly, tumor tissue is homogenized in chloroform/methanol 1/1 (v/v) and extracted twice in the same solvent. After evaporation the lipid residue is dissolved in chloroform/methanol 2/1, filtered and dried to remove most peptidic contaminants. After two cycles, total gangliosides are purified by three successive partitions in chloroform/methanol/phosphate-buffered saline pH 7.40, 1/1/0.7 (v/v/v) and desalting by reverse-phase chromatography on C 18-bonded silica gel. In the case of serum or serum fractions, the procedure is essentially the same but contained only one extraction. Purity of the preparation was controlled by thin-layer chromatography (TLC) on silica gel 60 HPTLC plates (Merck. Paris. France) using a solvent system made of chloroform/methanol/0.2% aqueous CaCl2. 60/35/8 (v/v/v). Staining is performed with resorcinol HCl. Lipid-bound sialic acid is assayed by the penodate/resorcinol method. The relative proportion of each ganglioside is estimated after resorcinol/HCl by scanning densitometry of the TLC plates on a Shimadzu CS-930 Chromatoscan set at 580 nm.

[1864] Preparation of lipoproteiin fractions: Lipoprotein fractions are prepared from human AB sera by sequential centrifugations. The lipoprotein is fractionated by density-gradient ultracentrifugation in sodium bromide. Sera are first centrifuged at 10,000 g for 20 minutes to remove chylomicrons. Very-low-density lipoprotein (VLDL), low density lipoprotein (LDL) and high-density lipoprotein (HDL) are floated at respective densities of 1.006. 1.073 and 1.220 g/ml. LDL HDL and the lipoprotein-free fraction (LFF) are extensively dialyzed against phosphate buffer before use to remove sodium bromide and resuspended in phosphate buffered saline in the original volume of serum from which they are extracted. Total serum and the serum lipoprotein fractions are at a final concentration of 10% (v/v).

[1865] Inhibition of peripheral blood mononuclear cell (PBMC) proliferation: PBMC are obtained from the blood of normal donors by Ficoll/Hypaque centrifugation and are washed in medium without serum (RPMI-1640. Gibco, with 1 mM glutamine and penicillin/streptomycin). The culture medium consists of medium without serum, or medium supplemented (10% v/v) with one of the following: total human AB serum, VLDL, LDL, HDL or LFF. Samples containing 1×105 cells are incubated in a final volume of 200 &mgr;l (96-well plates, Beckton-Dickinson. Le Pont de Claix. France) in the presence or absence of total tumor gangliosides and one of the following mitogens: phytohemagglutinin (PHA, 1 &mgr;g/m; Sigma. St Louis, Mo.), OKT3 monoclonal antibody (100 ng/ml; Coulter) concanavalin A (0.5 &mgr;g/ml; Sigma), interleukin-2 (IL-2. 1000 UI/ml, Roche, France) or 12-O-tetradecanoylphorbol 13-acetate (10 ng/ml: Sigma). After 72 h of incubation, proliferation is assayed by the incorporation of [3H]thymidine (0.5 mCi/well, specific activity 1 mCi/nmol=37 GBq/mmol; C.E.A., Gif-sur-Yvette, France) after an 18-h pulse.

[1866] Screening of Lip-TAAs for Binding to Lip-TAA Binding Proteins: The extracellular domains of Siglecs or other LipTAA binding agents, e.g., glycolipid transfer proteins (GLTP), prosaposins are cloned into a FLAG-human Fc expression vector (pEDdc). COS-7 cells are transiently transfected at 60-70% confluency using LipofectAMINE Reagent (Life Technologies), in serum-free OptiMEM medium. After 5 h the medium is diluted 2 times with 10% fetal calf serum containing OptiMEM medium and the next day the medium is changed for OptiMEM with 2% fetal calf serum. The COS-7 cell supernatants are collected 5-7 days after transfection. The fusion protein is purified on Protein A-Sepharose. Microtiter wells (Nunc) are coated overnight at 4° C. with Protein A (200 ng/well) in 50 mM carbonate/bicarbonate buffer, pH 9.5. Wells are blocked with enzyme-linked immunosorbent assay buffer (20 mM HEPES, 1% bovine serum albumin, 125 mM NaCl, 1 mM EDTA, pH 7.45) for 1 h and incubated with various lipid binding agents (500 ng/well) for 2 h. Between incubations (all at room temperature) wells are washed 3 times with enzyme-linked immunosorbent assay buffer. Lip-TAAs and circulating lipoprotein-bound TAAs are isolated and frationated from tumors and tumor bearing sera as described in Example 59 and below in this section. They are are added for 2 h at various concentrations ranging from 100 ng to 2 &mgr;g/well. The plates are washed and biotin-conjugated polyacrylamide substituted with the natural substrates for the individual lipid binding agent are added. In the case of Siglec 5 this is Neu5Ac&agr;2-6Gal/&bgr;-4G1c, Neu5Ac&agr;2-3Gal&bgr;1-4G1c, Neu5Ac&agr;2-6GalNAc&agr;(sialyl-Tn), and GalNAc&agr;(Tn) (Glycotech). The plates are washed then incubated with alkaline phosphatase-conjugated streptavidin (Life Technologies; 1:1000) for 1 h and development with 100 pl/well of p-nitrophenyl phosphate Liquid Substrate System (Sigma). Plates are read-out at 405 nm. Competitive inhibition of binding of the Lip-TAA relative to the natural substate for each lipid binding agent is recorded. Concomitantly, the Lip-TAAs and circulating lipoprotein fractions are tested for their capacity to inhibit mitogen induced T cell proliferation using the methods given below.

[1867] Preparation of Siglecs from cDNAs: Siglecs 1-7 are isolated by standard recombinant techniques using cDNA for each siglec. cDNAs for the Siglecs are obtained starting with their full length amino acid sequences as given in GenBank. Accession numbers for each Siglec is given below. The first 120 amino acid sequences of mouse Siglec-1 (GenBank accession #Z36293) and human Siglecs 266 (X59350, 4502654, M29273, 4502658, and 4502656, respectively) are used to carry out homology searches of the dbEST division of GenBank database.

[1868] cDNA of Myelin Associated Glycoprotein, Sialoadhesin, CD22 & CD33: Myclin associated glycoprotein (MAG, Siglec 4a) cDNA has been cloned as described by by Arquint M et al., Proc. Natl. Acad. Sci. 84: 600-604 (1987). Sialoadhesin (Siglec 1) cDNA has been cloned by methods given in Crocker P R et al., EMBO J 13: 4490-4503 (1994). The cDNA for the sialoadhesin p75/ARM1 has been cloned (Falco M et al., J. Exp. Med. 190: 793-801 (1999). The cloning of cDNA of CD22 uses methodolgy of Stamenlovic I et al., Nature 345: 74-77 (1990) and Wilson G L et al., J. Exp. Med. 173:137-146 (1991).

[1869] CD33 has been cloned (Cornish A L et al., Blood 92: 2123-2132 (1998). cDNA cloning in the human and mouse shows that CD33 is a type I transmembrane glycoprotein with two Ig-like extracellular domains. These domains belong to the V-set and C2-set of Ig-like domains and share sequence similarity with a distinctive subgroup of the Ig superfamily. This consists of the myelin-associated glycoprotein (MAG), the Schwann cell myelin protein, the B-cell antigen CD22, and the macrophage receptor sialoadhesin. All of these Ig-related proteins contain an unusual arrangement of conserved cysteine residues at the NH2 terminus. These are predicted to give rise to an intrasheet disulfide bridge within the V-like domain and an interdomain disulfide bridge between the V- and C2-like domains. In addition, MAG, CD33, and CD22 are closely linked within the genome, mapping within the region of chromosome 19q13.1-13.3 in the human and a syntenic region on chromosome 7 of the mouse

[1870] cDNA of Siglec-5: By using the amino acid sequence of CD33, a specific homology search was performed against a database containing more than one million expression sequence tags (ESTs) obtained from over 700 different cDNA libraries. A full-length clone in pBluescript II (SK1 encoding one of the CD33-like sequences identified in the search was isolated from a human activated monocyte library and designated pHMQCD 14. A computer search of nucleotide and protein sequence was performed by using the Blast GeneSearch (National Center for Biotechnology Information, National Institutes of Health. Bethesda, Md.). Manipulation of sequences and alignments were performed by using Baylor College of Medicine molecular biology software available on the internet (Human Genome Center, Baylor College of Medicine, Houston, Tex.).

[1871] Preparation of recombinant Siglec-5: The extracellular region of siglec-5 is amplified by polymerase chain reaction (PCR) with the following forward and reverse primers (5′-3′): ACTCTAGAGTTCGATCTCCCTTGCAGCAG and ACAGATCTGTTCGATCTCCCTTGCAGCAG. The PCR product is cloned in-frame into the pIGplus vector, which encodes a Factor Xa cleavage site between the extracellular region and the hinge region of the Fc portion of human IgGI. Plasmids encoding other Fc-proteins are prepared. To generate recombinant proteins, plasmids are transfected into COS-1 cells by diethylaminoethyl-dextran (DEAE) transfection and Fc-proteins are purified from the conditioned supernatants. Briefly, supernatant is passed over a protein-A Sepharose column, and the bound protein is eluted with 0.1 mol/L glycine pH 3.0 followed by neutralization with 10% vol/vol 1.0 moL/L Tris pH 8.0. The proteins are dialyzed against 20 mmol/L Tris pH 8.0, and the concentrations are estimated by using the bicinchoninic acid (BCA) assay kit (Pierce, Rockford, Ill.) with bovine semm albumin (BSA) as a standard. Fc-proteins are shown to be greater than 95% pure. by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) analysis.

[1872] cDNA of Siglec 6 (OB-BP1 and OB-BP2): A TF-1 cDNA library is constructed with oligo(dT) priming and cloned into the EcoRI/NotI sites of the retroviral vector pBabe-X-puro, in which the multiple cloning site from pBabe-X are substituted for that of pBabe-puro. The library is packaged in B05C23 cells and then introduced into Ba/F3 cells by retroviral infection. For expression cloning, three rounds of sorting are necessary to isolate a homogenous population positive for rhOB-F staining. Geonmic DNA is extracted from the third sort of the Ba/F3 cells using the Easy DNA kit (Invitrogen). Polymerase chain reaction is performed with Vent polymerase (New England Biolabs) using nested primers designed from the retroviral vector. Another related molecule was cloned from the TF-1 library in pBabe-X-puro by colony hybridization using the OB-BP1 cDNA as a probe. After the initial submission of these sequences to GenBank other reports indicated that OB-BP1 (GenBank accession number U71382) is identical to GDSSL (GenBank accession number D86358) and OB-BP2 (GenBank accession number U71383) is identical to Siglec-5

[1873] cDNA of Siglec-7: Since the clone lacked a coding sequence for the first half of an Ig-like domain, 5′-RACE and RT-PCR are performed, using human PBMC total mRNA as a template (PBMC are chosen based on preliminary Northern analysis using the partial clone). RT-PCR is performed using primers based on the DNA sequence of the EST clone and 5′ RACE product. First strand cDNA is synthesized by reverse transcription of I &mgr;g of PBMC total RNA with random DNA hexamers as primer. The reaction product is subjected to two rounds of PCR using two DNA polymerase (Roche), using SLX-5′UTR (5′-CTCG-GATCCCTGGCACCTCTAACCC-3′) and SLX-3′UTR (5′-GGTCTAGAACCCTCAAACAAGCCC-3′) as primers. The PCR products are digested with BamHI and XbaI ligated to BamHI-XbaI sites of pBluescript II KS(−) (Stratagene) and sequenced. A point mutation converting an Arg residue (R124) to Lys is introduced using QuickChange Site-Directed Mutagenesis Kit (Stratagene), following the manufacturer's protocol. A human 12-lane Multiple Tissue Northern Blot is probed with the NcoI-XhoI fragment of the EST clone labeled with the Strip-EZ DNA kit (Ambion) and [&agr;-32]dATP (NEN). Hybridization signals are visualized using a Phosphor Imager.

[1874] The full-length clone contains an open reading frame encoding 374 amino acids, starting with a typical signal sequence and two Ig-like domains, followed by a probable transmembrane domain and cytosolic tail. The cytosolic tail of the full-length protein contains two tyrosine residues, of which the first is contained in an Immunoreceptor Tyrosine-based Inhibitory Motif (ITIM; S/I/L/VxYxxL/V). The second is in a motif [NEYSBI] similar, but not identical to the binding site on SLAM (Signaling Lymphocyte Activating Molecule) for SLAM-associated protein (SAP). Nucleotide identity with other human Siglecs (first 750 nucleotides) are: Siglec-1, 45.9%; Siglec-2, 48.0%; Siglec-3, 63.6%; Siglec-4, 45.4%; Siglec-5, 64.0%; Siglec-6, 63.0% and many of the residues typical of the Siglecs are conserved. Siglec-7 forms a closely related cluster with Siglecs 3, 5, and 6.

[1875] Prosaposin & Saposin: Purification Procedure: Purified prosaposin and saposins are prepared from their respective cDNAs (O'Brian et al Science) using standard recombinant techniques.

[1876] Prosaposin is purified from the spent media of Spodopterafrugiperda (Sf9) cells infected with a baculovirus expression vector (pAC 610) containing a full-length cDNA for human prosaposin as described by Hiraiwa M et al., FASEB J. 6: 969 (1990). Purification steps included column chromatography on Con A-Sepharose and reverse-phase HPLC on a C4 column. The purity of the final purified preparation is assessed by SDS/PAGE, immunoblotting, and N-terminal analysis. Naturally occurring prosaposin is also isolated by the same method from human seminal plasma

[1877] Saposins A, C, and D are all isolated in pure form from the spleen of a patient with Gaucher disease as described by Morimoto S et al., Anal. Biochem 190:154-157 (1990). Saposin B is purified from a heat-treated extract of Gaucher disease spleen by a slightly modified procedure involving reverse-phase HPLC on a C4 column and isoelectric focusing with the Rotofor cell. Each purified protein gives a single band on SDS/PAGE, and no cross-contamination of one saposin with another is detected after immunoblotting using monospecific antibodies against saposins A, B, C, and D, respectively.

[1878] Glycolipid Transfer Protein (GLTP): Purification Procedure: Purified GLTP is isolated and prepared from GLTP cDNA (GTP cDNA) by the method of Lin et al., J. Biol. Chem. 275:5104-5110 (2000) using standard recombinant techniques.

[1879] The method of Sasaki T et al., Methods in Enzymology 179: 559-567 (1989) is used to purify GLTP to homogeneity with a yield of 19%. The data presented derive from the processing of 3,950 g of pig brain (44 brains).

[1880] Step 1: Postmitochondrial Supernatant. Fresh pig brains are stored at −20°; thin blocks after removal of pia mater. Frozen brains (4,000 g) are partly thawed by allowing to stand at 20° for 1 hr and then cut in small pieces, after which all manipulations are performed at, 4°, A 30% homogenate in buffer A is prepared by homogenizing with a Waring blendor for 1.5 mm at high speed. The mixture is centrifuged at 8,700 g for 30 mm. The pellet is reextracted by stirring with 10 liters of buffer A. Phenylmethylsulfonyl fluoride (PMSF), 0.2 M in 2-propanol, is added to the postmitochondrial supernatant to a final concentration of 0.5 mM.

[1881] Step 2: Ammonium Sulfate Precipitation. Ammonium sulfate is added to the postmitochondrial supernatant to 35% saturation (19.4 g/100 ml). After stirring for 1 hr, the precipitate is removed by centrifugation at 8,700 g for 40 mm. The supernatant is adjusted to 70% saturation with ammonium sulfate (21.8 g/100 ml) to precipitate GLTP. After allowing to stand overnight, the clear supernatant above the thick precipitate is siphoned off by the use of a tube. The precipitate is collected by centrifugation (8,700 g for 30 mm), dissolved in 200 ml of buffer C, divided into three dialysis bags (4 cm flat diameter), and dialyzed for 2 days against 7 times 4 liters of buffer C. After addition of PMSF to 0.5 mM the dialysate is centrifuged at 100,000 g for 2 hr to obtain a membrane-free solution.

[1882] Step 3: First Phosphocellulose Chromatography. The supematant is diluted to 670 ml with buffer C and applied to a column (7×25 cm) of phosphocellulose (Whatman P11) in buffer C at a flow rate of 100 ml/hr. Unbound protein is eluted by rinsing the column with 5 liters of buffer C. The transfer activity is eluted with 2 liters of 0.3 M sodium chloride in buffer C. PMSF is added to the effluent at 0.5 mM.

[1883] Step 4: Chromatography on CM-Cellulose. Protein is precipitated from the effluent with ammonium sulfate added to 90% saturation (60.3 g/100 ml), left overnight, and collected by centrifugation at 33,000 g for 10 mm. The pellets are dissolved in 90 ml of buffer C and dialyzed against 4 times 1 liter of buffer C. The dialysate is centrifuged at 100,000 g for 30 mm to remove a small amount of insoluble material. The supernatant is applied to a column (2.7 )<45 cm) of CM-cellulose (Whatman CM-52 microgranular) equilibrated with buffer C. The column is rinsed with 1.4 liter of buffer C to elute unbound protein. The elution is continued with a 1.6-liter linear gradient of sodium chloride from 0 to 0.2 M in buffer C at a flow rate of 37 ml/hr. Fractions of 17 ml each are collected, and 50-ul aliquots are assayed. A major peak of transfer activity appears in the effluent at about 55 mM sodium chloride, but some transfer activity is eluted before the main peak. Fractions of the major activity peak with an activity of 0.14 nmol of [3H]galactosylceramide transferred/50 ul/30 mm are pooled, and PMSF is added to 0.5 mM.

[1884] Step 5: Fractionation on Sephadex G75: Protein is precipitated from the pooled fractions with ammonium sulfate (65 g/t00 ml), left overnight, and collected by centrifugation at 25,000 g for 15 mm. The pellets are dissolved in 7 ml of buffer B and dialyzed against 5 times 300 ml of this buffer. The dialysate is centrifuged at 100,000 g for 90 mm, and the supernatant is applied to a column (2×140 cm) of Sephadex G-75 (fine, Pharmacia). Protein is eluted with buffer B at a flow rate of 39 ml/hr. Fractions of 4 ml each are collected, and IS-4ul aliquots are assayed. Transfer activity appears at VJ V3=1.84. Fractions with an activity of 0.17 nmol of [3H]galactosylceramide transferred/15 ul/30 mm are pooled.

[1885] Step 6: Chromatography on Phenyl-Sepharose. Sodium chloride is added to the pooled fractions to 3 M, which is then applied at a flow rate of 48 ml/hr to a column (2×19 cm) of Phenyl-Sepharose CL-4B (Pharmacia) equilibrated with buffer E containing 3 M sodium chloride. The column is rinsed with 220 ml of buffer E containing 3 M sodium chloride and 775 ml of buffer E. The transfer activity is eluted with 250 ml of 50% (v/v) ethylene glycol in buffer E. Fractions of 4.3 ml each are collected, and 2-ul aliquots are assayed. Fractions with an activity of 0.03 nmol of [3H]galactosylceramide transferred/2 ul/30 mm are pooled. Extensive washing of the column with buffer E elutes a portion of the transfer activity. Therefore, it is important to determine the proper time to switch from buffer E to 50% (v/v) ethylene glycol in buffer E.

[1886] Step 7: Second Phosphocellulose Chromatography The pooled fractions are diluted 2-fold with buffer D and then applied to a column (1.4×15 cm) of phosphocellulose (Whatman P11), which has been extensively washed and equilibrated with buffer D. The column is rinsed with 180 ml of buffer D. The elution is continued with a 200-ml linear gradient of sodium chloride from 0 to 0.2 M in buffer D at a flow rate of 20 ml/hr. Fractions of 3.4 ml each are collected, and 2-ul aliquots are assayed. Most of the transfer activity and protein are eluted in a single peak at about 93 mM sodium chloride. GLTP in this peak is homogeneous and has a specific activity of 40.6 nmol/min/mg protein under the conditions of [3H]galactosylceramide transfer assay and of 140 nmol/min/mg protein under the conditions of PyrGalCer transfer assay. A small amount of the transfer activity is eluted as a separate peak after the elution of the major peak. The purity of GLTP in the second peak varies depending on the extent of rinsing with buffer E in Step 6. No difference has been found in the properties of GLTP in the first and second peaks.

[1887] In vivo Use of Lip-TAA Binding Proteins.: Tumor models given in Examples 18, 20-23 are used. Lip-TAA receptor mimic and Lip-TAA receptor antisense constructs are injected in doses of 0.05 to 50 &mgr;g in 0.1-0.5 ml of normal saline on days 3, 5, 7, and 9 after the day of subcutaneous tumor implantation or intravenous injection of tumor to establish pulmonary metastases. Control animals are injected with PBS on the same schedule. The diameters of tumors are measured daily with calipers. The sizes of the tumor are expressed as the products of the longest diameter times the shortest diameter (in mm2).On day 21, the mice are killed and either primary tumors measured or metastatic pulmonary nodules counted. Unless indicated otherwise above, treatments are given one to three times per week. The results shown in Example 21 (Table VI) are for each composition and dose tested. The results are statistically significant by the Wilcoxon rank sum test. The other models given in Example 20 are also suitable for evaluation of the therapeutic effectiveness of the effector T cells.

[1888] Adoptive Therapy of Tumors in Humans Using Lip-TAA Receptor Depleted Immunocytes or Antigen Presenting Cells.

[1889] Eligible patients are treated with tumor antigens such as irradiated tumor cells or GM-CSF transduced tumor cells injected approximately 10 centimeters from a draining lymph node site. Ten days post injection, draining lymph nodes are obtained in a limited surgical procedure at the site draining the injection. The lymph nodes are converted to a single cell suspension of lymphocytes. These lymphocytes are depleted of ganglioside receptors by methods given above. They are then incubated with various SAg preparations for two days followed by IL-2 for an additional 72 hours. These lymphocytes now called effector T cells or NKT cell are used for adoptive immunotherapy. Effector immunocytes are harvested by centrifugation at 500×g for 15 mm and the cell pellets are pooled. After washing the cells in HBSS, the cell are resuspended in 200 ml of normal saline containing 5% human serum albumin and 450,000 IU of IL-2 for transfer. Each recipient will receives four escalating doses or 33 million, 100 million, 330 million and 1 billion cells per square meter of body surface area each given one week apart. Cells are infused through a subclavian central venous catheter over a 30-minute interval. IL-2 administration iv. is optional and if used is generally commenced shortly after completion of cell infusion at a dose and schedule of 180,000 IU/ml every 8 h. for 5 days. All patients receive indomethacin (50 mg P.O.) every 8 h, acetaminophen (650 mg P.O.) every 6 h. and ranitidine (150 mg P.O.) every 12 h while receiving IL-2 in order to reduce febrile and gastric side effects. As controls, a cohort of patients is treated with the in vivo tumor vaccination step and IL-2 without the tumor effector cells. Patients are followed for clinical response every 4 weeks for 2 months with repeat radiological examinations. Results are given in Example 23 (Table VIII).

EXAMPLE 59

[1890] Preparation and Use of Lip-TAA Receptor Mimics for Inactivation of Lip-TAAs in Tumor Bearing Hosts

[1891] Lip-TAA Isolation: The cellular gangliosides are isolated from FBL-3 tumor cells which are pelleted lyophilized and extracted twice with chloroform-methanol (1:1). The total lipid extract was taken to dryness. Gangliosides are purified by partitioning the dried total lipids in diisopropylether/1-butanol/0.1% aqueous NaCl. The lyophilized final aqueous phase is dissolved in a small volume of water, after which Sephadex G-50 gel exclusion chromatography is used to remove salt and low m.w. impurities from the ganglioside fraction. Gangliosides are quantified as nanomols of lipid-bound sialic acid by a modified colorimetric resorcinol assay. Analysis of gangliosides is performed using 10-×20-cm precoated Silica Gel 60 high performance TLC plates. The plates are developed in chloroform-methanol. 0.25% aqueous CaCl2—H,O (60:40:9). Gangliosides are visualized as purple bands with resorcinol-HCl.

[1892] High performance liquid chromatographic purification of Lip-TAA: Lip-TAAs are purified by normal phase HPLC. Briefly, 800 nmol lipid-bound sialic acid (LBSA) of FBL-3 cell gangliosides in 100 &mgr;l HPLC water are chromatographed with a Perkin-Elmer (Norwalk. Conn.) HPLC system, on a LiChrosorb-NH2 column (250 mm long, 10 mm inside diameter, Merck, Germany). The separation is conducted at ambient temperature with a solvent gradient program described by Gazzotti et al. (27). The eluting solvent system is composed of acetonitrile-5 mM Sorensen's phosphate buffer (83:17), pH 5.6 (solvent A), and acetonitrile-20 mM Sorensen's phosphate buffer (1:1), pH 5.6 (solvent B). The gradient elution program of 80 mm, at a flow rate of 6.25 ml/mm, is as follows: 100% of solvent A for 7 mm, then a linear gradient from 100% solvent A to solvent A-solvent B (66:34) over 53 mm, and then a linear gradient from solvent A-solvent B (66:34) to solvent A-solvent B (36:64) over 20 mm. The elution profile is monitored by flow-through detection of UV absorbance at 215 nm. The isolated gangliosides are lyophilized, dissolved in a small volume of distilled water, desalted by Sephadex G-50 gel exclusion chromatography, and lyophilized.

[1893] Mass spectrometric analysis: The carbohydrate structure of TGGs is characterized by negative-ion fast atom bombardment mass spectrometry (FAB-MS). Ceramide structures are elucidated by negative ion FAB collisionally activated dissociation tandem MS (FAB CAD-MSIMS) without prior derivatization using linked scans. Approximately 1 &mgr;l of ganglioside-methanol solution is mixed with 2 &mgr;l of triethanolamine (matrix) on the FAB probe tip. Ions are formed by bombardment with a 6-keV beam of xenon atoms in a JEOL HX-110 double-focusing mass spectrometer. For analysis of the ceramide structure by FAB CAD-MS/MS the [cerO]− fragment ion is selected as the precursor ion. Helium is used as the collision gas, and the helium pressure is adjusted to reduce the abundance of the precursor by 75%. A JEOL DA-500 data system generated the linked scans.

[1894] Lip-TAA Shedding: FBL-3 tumor cells are metabolically labeled by culture for 48 h in RPMI 1640 medium containing 10 MCi each of D-[1-14C]glucosamine hydrochloride and D-[1-14C]galactose, after which the cells are washed three times in RPMI medium and resuspended at 2.0×106 cells/ml in three 25-cm2 tissue culture flasks. The supernatant and the cells from the same flask are harvested 24 h after the cells are resuspended. The gangliosides present in the cells and in the supematant are then purified. The radiolabeled gangliosides are quantified by p-scintillation counting of the ganglioside-associated radioactivity, and equal aliquots of radiolabeled gangliosides are qualitatively analyzed by high performance TLC (HPTLC) autoradiography (29) with radiolabeled rat brain gangliosides as standards.

EXAMPLE 60 Construction of Adenovirus Vectors with Insertions for Superantigens

[1895] Superantigens are inserted into human adenoviruses (Ads) which are used as live viral vector for expression of superantigens in mammalian cells. Adenoviruses vectors are exemplified here for insertion of the superantigen nucleotide. A mutant adenovirus with selectivity for P53 deficient tumors is preferred such as ONYX-015. An efficient and flexible system for construction of adenoviral vector with insertions or deletions in early regions 1 and 3 as described by Bett A J et al., Proc. Natl. Acad. Sci. 91: 8802-8806 (1994) is given below. Similar procedures insertion of the superantigen gene would be applied to the ONYX-014 mutant.

[1896] Principle of Method: Superantigen genes are inserted into adenoviral vectors using the following principles and methods adapted from Bett, A J et al., Proc. Nat. Acad. Sci. 91: 8802-8806 (1994). Additional methods are given in a book titled Adenovirus Methods and Protocols Wold, WSM ed. Humana Press, Totowa, N.J. (1999) which is incorporated in entirety by reference. These methods involve insertion of the superantigen DNA either by overlap recombination or by ligation insertion. The method exemplified below for insertion of SAg sequences uses the Ad5DNA virus but may be adapted to the dl1150 or ONYX-015 mutant or any other adenovirus. The Ad5 DNA sequences are cloned into into bacterial plasmids. Deletions are made in the early region 1 and(3180 bp) and early region 3 (2690 or 3132 bp) and are combined in a single vector that have a capacity for inserts of up to 8.3 kb, enough to accommodate the majority of cDNAs encding proteins with regulatory elements. SAg genes are inserted into either early region 1 or 3 or both and mutations or deletions are readily introduced into the viral genome.

[1897] SAg genes may be inserted into areas of the viral genome that have been inactivated or deleted and considered to be non-essential to the lytic activity of the virus or its ability to evade the host immune response. Both Ad and HSV carry genes that are not essential for viral replication and these may be utilized for SAg insertion.

[1898] The first step is the construction of AdBHG, a virus that contains the Ad5 genome with the deletion of E3 sequences from bp 28,133 to 30,818 and the insertion of a restriction enzyme site. The next step is the the generation of a bacterial plasmid containing the entire AdBHG genome and subsequent identification of infectious clones. Baby rat kidney (BRK) cells are infected with AdBHG under conditions that result in the generation of circular Ad5 genomes. At 48 h after infection, DNA is extracted from the infected BRk cells and used to transform E. coli HMS174 to ampicillin and tetracycline resistance. Plasmids with the complete AdBHG genome are selected. The final step is the generation of the pBHG10 by deleting the packaging signals in pBHG9 by partial BamHI digestion and religation. A Pac I restriction enayme site unique to this plasmid is present between Ad5 bp 28,133 and bp 30,818 to permit foreign gene insertion. Because the packaging signal is deleted, pBHG10 is non-infectious but cotransfections with plasmids that contain the left-end Ad5 sequences including the packaging signal produce infectious viral vectors with an efficiency comparable to that obtained with pJM17.

[1899] Use of the pBHGE3, pBHG10, or pBHG11 combined with the 3.2-kb deletion in E1 permits superantigen DNA inserts of ˜5.2,˜7.9, and ˜8.3. respecitvely, into viral vectors. To test the capacity of the BHG system, a 7.8 kb consisting of the lacZ gene driven by the HCM promoter (E1-antiparallel orientation) and the SEB gene driven by the beta actin promoter (E1-parallel orientation) are inserted into the 3.2-kb E1 deletion. The 7.8-kb insert is constructed by inserting the 4.1-kb Xba I fragment from the SEB gene containing the SEB gene driven by the beta actin promoter into the Xba I site in pHCMVsp1LacZ generating pHlacSEB. The isolate pHlacSEB expressed both lacZ and SEB at levels comparable to those obtained with vectors containing single inserts.

[1900] The Method: The first step involves the construction of AdBHG, a virus that contains the Ad5 genome with the deletion of E3 sequences from bp 28,133 to 30,818 and the insertion of modified pBR322 at bp 1339. AdBHG is made by cotransfection of 293 cells with purified viral DNA from Ad5PacI, digested with Cia I and Xba I, and pWH3.

[1901] The next step involves the generation of a bacterial plasmid containing the entire AdBHG genome and subsequent identification of infectious clones. Baby rat kidney (BRK) cells are infected with AdBHG under conditions that result in the generation of circular Ad5 genomes. At 48 h after infection DNA is extracted from the infected BRK cells and used to transform E. coli HMS 174 to ampicillin and tetracycline resistance (Apr and Tetr, respectively). From two experiments, plasmid DNA from a total of 104 colonies is screened by HindIII and BamHI/Sma I digestion and gel electrophoresis. Plasmids that appear to posses a complete AdBHG genome are selected and all four are found to be infectious when transfected into 293 cells.

[1902] The final step involves generation of pBHG10 by deleting the packaging signals in pBHG9 by partial BamHI digestion and religation. The left and right termini of the Ad5 genomes are covalently joined and a segment of plasmid pBR322 is present between AdS bp 188 and 1339 to allow propagation of pBHG10 in E. coli. A Pac I restriction enzyme site, unique in this plasmid, is present between AdS bp 28,133 and bp 30,818 to permit insertion of the superantigen genes. Because the packaging signal is deleted, pBHG10 is noninfectious but cotransfections with plasmids that contain the left-end AdS sequences including the packaging signal produce infectious viral vectors with an efficiency comparable to that obtained with pJM17.

[1903] To generate two useful variants, pBHGE3 and pBHG11 are constructed from the original plasmid pBHG10. pBHGE3 permits construction of vectors with wt E3 sequences and pBHG11 increase the cloning capacity of resulting viral vectors. The 2.69-kb E3 deletion in pBHG10 removes the major portions of all E3 mRNAs, the first E3 3′ splice acceptor site, and the L4 polyadenylylation site but leaves the E3 promoter, the 5′ initiation site, the first E3 5′ splice donor site, and the E3b polyadenylylation site intact. Viruses with the 2.69-kb E3 deletion have the same growth kinetics and progeny virus yields as wt virus. The 3.1-kb E3 deletion in pBHG11 removes two additional elements not removed by the 2.69-kb E3 deletion: the first E3 5′ splice donor site and the E3b polyadenylylation site. This deletion does not interfere with the open reading frame for pVIII or any of the L5 family of mRNAs. Viruses containing the 3.1-kb deletion give wt progeny yields in infected 293 cells.

[1904] To maximize the capacity of the BHG system and to facilitate the introduction of inserts such as the SEB gene into the E1 region, plasmids containing a 3.2-kb deletion of E1 sequences and multiple restriction sites for the insertion of foreign genes have been constructed. This deletion leaves intact the left ITR and packaging signals and extends just past the Spi binding site of the protein IX promoter. The promoter for transcription of the protein IX gene is relatively simple, consisting of this Spi binding site and a TATA box. The Spi binding site is essential for expression of protein IX and it is therefore, reintroduced at a position 1 bp closer to the TATA box than in the wt promoter. However, neither the original 3.2-kb E1 deletion nor the deletion mutants containing the synthetic Spi site are significantly altered in protein IX expression, heat stability or final progeny yields of viruses with this deletion.

[1905] General Treatment Plan for Patients with the SAg-dl1150 Construct: SAg-dl1150 is administered intratumorally to patients with recurrent and refractory cancers. The efficacy of SAg-dl1150 treatment is based on the injected tumor(s) response. The clinical benefit of SAg-dl1150 is evaluated through quality-of-life assessment (EORTC instrument), Karnofsky performance score, and pain assessment. Survival and progression-free survival intervals are recorded. Results are given in Example 23 (Table VIII).

[1906] SAg-dl1150 Dosages and Dosing Rationale: Patients are treated with SAg-dl1150 administered daily for 5 d at a dose of 1010 pfu per day. This is the highest dose administered daily for 5 d in the phase I study and was shown to be safe (i.e., no dose-limiting toxicities).

[1907] Treatment with SAg-dl1150:

[1908] a. Dosing Regimen: For administration of each dose of, patients are treated and observed in a properly equipped outpatient clinic. The target tumor is injected with 1010 PFU of SAg-dl1150 daily over 5 d (i.e., a total dose 5×1010 PFU) (with day 1 being the first day of SAg-dl1150 injection. Nontarget tumor(s) (where applicable) are injected with either diluent or SAg-dl1150 on the same days in identical fashion to the target tumor following the guidelines detailed in steps below.

[1909] b. Target Tumor Masses: The dominant, symptom-causing tumor (if symptoms are present) is identified as the target tumor and is the only tumor injected with SAg-dl1150 during the first two treatment cycles. The identification of the most symptomatic, problematic lesion is based on the judgement of the Principal Investigator. Multinodular, but contiguous tumors are treated and evaluated as a single lesion.

[1910] c. Secondary, Nontarget Tumor Masses: If additional, smaller, accessible lesions are present, these lesions are injected with diluent for the first two treatment cycles as described in step 3 below. Thereafter, treatments are divided between up to three separate lesions (i.e., the initial two cycles are concentrated within the dominant lesion; thereafter, 6 wk after treatment initiation, two additional secondary lesions are injected). However, the total dose to the patient remains the same (i.e., the same total dose will be divided up between the tumors to be treated); the total volume in which the SAg-dl1150 is suspended will be increased based on the total tumor volume of the tumors to be treated. If a CR occurs in a treated lesion, injections can be continued as outlined above with newly defined dominant and secondary lesions.

[1911] d. Immediate Posttreatment Monitoring of Patients: The patient's vital signs are taken ≦15 mm before each SAg-dl1150 injection. After each injection is completed, the patient will be observed in the clinic for a minimum of 30 mm. Vital signs are taken after 30 min ±5 mm. If vital sign(s) have changed by >15%, vital signs will be repeated every 30 mm until returning to within baseline 15% of baseline values. Following the observation period, the patient is sent home or hospitalized overnight at the discretion of the investigator. Results are given in Example 23 (Table VIII).

[1912] Plasmid Superantigen-HPV E7 Constructs.: The method of Chen CII et al., Cancer Res. 60 1035-1042 (2000) is used. A DNA fragment encoding SEB is prepared as described in Example 1 and Dow S W et al., J. Clin. Invest. 101: 2406-1414 (1998). Briefly, the genes for SEA and SEB and the pHBNeo beta actin promoter which are to be inserted into the BHG system at multiple restriction sites are described in Example 1 Additionally the SEB and SEA genes are obtained from Dr. John Kappler (National Jewish Hospital), and the gene for TSST-1 are obtained from Dr. Brian Kotzin (National Jewish Hospital). After PCR amplification, all three genes are subcloned into a eukaryotic expression vector (PCR3; Invitrogen Corp., San Diego, Calif.). The primers used for cloning SEA were 28 (forward): GGGAATTCCATGGAGAGTCAACCAG; (backward): GCAAGCTTAACTTGTTAATAG; for SEB (forward): GGGAATTCCATGGAGAAAAGCG; (backward): GCGGATCCTCACTTTTTCTTTG; for TSST-1 (forward): CGGGGTACCCCGAAGGAGGAAAAAAAAATGTCTACAAACGAT AAT ATAAAG; (backward): TGCTCTAGAGCATTAATTAATTTCTGCTTCTATAGTTTTTAT.

[1913] The full-length TSST-1 gene is cloned into PCR3, whereas only the mature SEB and SEA genes (minus the putative bacterial signal sequences) are cloned into PCR3. Removal of the SEB and SEA signal sequences increased the level of gene expression in transfected cells (data not shown). The plasmids are grown in E. coli and plasmid DNA used for recombination in the adenoviral constructs are extracted by modified alkaline lysis-method and purified on a CsCl gradient. For the generation of SEB-expressing plasmid, (pcDNA-SEB) the SEB was subcloned into the unique BamHI and HinIII cloning sites of the pcDNA3.1(−) expression vector (Invitogen, Carlsbad, Calif.) downstream of the cytomegalovirus promoter. For the generation of HPV-16 E7-expressing plasmid (pcDNA3-E7), E7 DNA is amplified by PCR using primers designed to generate BamHI and HindIII restriction sites as the 5′ and 3′ ends of the amplified fragments, respectively. The amplified E7 DNA is then cloned into the unique BamHI and HindIII cloning sites of the pcDNA3.1. For the generation of E7-SEB chimera (pcDNA-E7-SEB), E7 DNA is amplified by PCR using primers designed to generate BamHI restriction sites at both 5′ and 3′ ends of the amplified fragments. The E7 DNA is then subcloned to the 5′ end of pcDNA3-SEB. The accuracy of these constructs is confinned by DNA sequencing. Plasmid DNA with SEB, E7, or E7-SEB gene insert and the “empty” plasmid vector are transfected into subcloning efficient DH5 (TM cells; Life Technologies). The DNA is then amplified and purified using double cesium chloride purification (BioServe Biotechnologies. Laurel, Md.). The integrity of plasmid DNA and the absence of Escherichia coli DNA or RNA are checked in each preparation using 1% agarose gel electrophoresis. DNA concentration os determined by the absorbance measured at 260 run. The presence of the inserted E7 fragment is confirmed by restriction enzyme digestion and gel electrophoresis.

[1914] DNA Vaccination.: Gene gun particle-mediated DNA vaccination is performed using a helium-driven gene gun (Bio-Rad. Hercules, Calif.) according to the protocol provided by the manufacturer. Briefly, DNA-coated gold particles were prepared by combining 25 mg of 1.6˜m of gold microcartiers (Bio-Rad, Hercules, Calif.) and 100 M1 of 0.05 Ni spermidine (Sigma, St, Louis, Mo.). Need to house this chimeric plasmid construct in a viral vector which can transport the chimeric DNA into tumor cells for transport selectively to tumor cells.

[1915] Generation of Dendritic Cells Exposed to Necrotic Tumor Cells Transfected with: Ag Genes: DCs are generated from blood monocyte precursors as follows. Briefly, mononuclear cells are plated in 6-well culture plates at 8×106 cells per well and allowed to adhere to plastic for 2 hours. Plastic adherent cells are cultured in RPMI-1640 (BioWhittaker, Walkersville, Md., USA) supplemented with 1% autologous plasma, 20 &mgr;g/ml gentamicin (clinical grade; Fujisawa USA, Deerfield, Ill., USA), 800 U/mL GMP grade IL-4 (Cell Genix, Freiburg, Germany), and 100 IU/mL clinical grade GM-CSF (Immunex, Seatde, Wash., USA) for 7 days. Cultures are supplemented with cytokines on days 2,4, and 6. On day 7, cells are transferred to new plates and cultured in the presence of 50% (vol/vol) monocyte-conditioned medium (MCM) for 2 additional days. Using this methodology, 1.5×106 to 4×106 mature DCs expressing high levels of CD86, CD83, and HLA-DR, and lacking other lineage markers (e.g., CD 14), are reproducibly generated from 80 ml of peripheral blood. MCM is prepared by adhering 50×106 PBMCs in 7 ml of 1% autologous plasma to plates precoated with 100 &mgr;g/mL human IgG (Bayer Corp., Elkhart, Ind., USA) for 90 minutes. The PBMCs are harvested after overnight culture of adherent cells and are filtered and frozen at −20° C. before use. Mature DCs generated using this methodology are potent stimulators in mixed lymphocyte reaction at T/DC ratios of 900:1.

[1916] Injection of SAg-Tumor Antigen Pulsed Dendritic Cells: Antigens are added to DCs overnight 1 day before injection. On the day of injection (i.e., day 9 or 10 of culture), the DCs are washed free of antigen and resuspended in normal saline containing 0.5% autologous plasma in two 0.2 ml aliquots. Phenotype and purity of injected DCs are monitored by the expression of the DC maturation-associated marker CD83 by flow cytometty. DCs are injected as a superficial subcutaneous injection in 2 adjacent sites on the upper inner arm, ˜4 inches from the axilla. All injected DC preparations test negative for bacterial and fungal contamination. All subjects are observed overnight. Results are given in Example 23 (Table VIII).

[1917] Viral Vector Containing Superantigen and I&kgr;B&agr; Nucleic Acids.: The super-repressor I&kgr;B&agr; and superantigen nucleotides are cloned into the replication-deficient Ad5 vector with transgene expression driven by the CMV pormoter. The replication deficient Ad.CMV3 containing the superantigen and super-repressor I&kgr;B&agr; is used ot produce stably transfected HT10801 cells. The cells are pre-infected with Ad.CMV I&kgr;B&agr;; or Ad.CMV3 empty control vector for 1 h.

[1918] In vivo tumor model with Ad.CMV I&kgr;B&agr; and TNF treatment.: HT1 0801 cells (106 cells/0.1 ml) or control HT1080V cell suspensions are injected subcutaneously into each flank of female, athymic, nu/nu mice 5-6 weeks old (Taconic, Germantown, N.Y.). Tumors are allowed to develop for 21 d and then were injected with TNF&agr;; (10 &mgr;g/100 &mgr;l in PBS once a day for 3 d). Both maximum and minimum diameters of resulting tumor are measured over the skin every 2 days using a slide caliper. Tumor cells (106) were injected subcutaneously in the flanks of nu/nu, female, athymic nude mice 5-6 weeks old (body weight, 18-20 g). Tumors are treated 2-3 weeks after cancer cells are injected when tumor dimensions were approximately 1 cm×1 cm. Tumor treatment involved the intratumoral injection of recombinant adenovirus Ad.CMV I&kgr; B&agr;. Virus (1010 PFU, diluted in a total of 200 ul of PBS) is administered in a single pass of a 27-gauge hypodermic needle. A second virus injection was given 7 d after the first. The recombinant adenovirus Ad.CMV3 and vehicle alone are used as controls. CPT-11 (Irinotecan; Pharmacia & Upjohn Company, Kalamazoo, Mich.) was administered by tail vein injection at a dose of 33 mg/kg in 100 ul every 4 d beginning 24 h after the first viral injection. A total of five doses of CPT-11 are given. PBS (100 ul) administered by tail vein injection was used as a control for drug treatment. Tumor diameter is measured along the longest orthogonal axes every other day after treatment was initiated, and recorded as tumor volume. Tumor volume is calculated by assuming a spherical shape, using the formula (volume=4/3 &pgr;r2), where r=1/2 (mean tumor diameter measured in two dimensions). Tumors are fixed in 10% formalin and embedded in paraffin blocks. Paraffin-embedded sections are pre-treated with dewax and rehydrated (55° C. for 15 mm), then washed in xylene and rehydrated through a graded series of ethanol and redistilled water. Tissue sections were then incubated with proteinase K (20 &mgr;g/&mgr;l in 10 mM Tris/HCl, pH 7.4-8.0, for 15 mm at 21-37° C.), permeabilized in 0.1% Triton-X100 in 0.1% sodium citrate, and then labeled with the TUNEL reaction mixture (Boehringer). Results are given in Example 21 (Table VI).

[1919] Therapeutic Model: The therapeutic efficacy of SAg-dl1520 construct is determined in vivo by growing p53-C33A cells and p53+U87 human glioblastoma multiforme cells as tumor xenografts in athymic mice. The tumor cells are injected subcutaneously into each flank of each mouse, and after establishment of palpable tumors (mean tumor volume 150 &mgr;l), the tumors are directly injected with CsCl-purified wild-type adenovirus, with SAg-dl1520. dl1520 or ultraviolet (UV)-inactivated wild-type virus as a negative control every other day for three total doses. Tumor growth is followed for 6 weeks, at which time the mean tumor volume in each group are determined. Treatment of C33A tumors with superantigen-dl1520 results in a 100% reduction in mean tumor volume as compared with dl1520 cells or wild type UV inactivated adenovirus (unpaired two tailed test: P=0.02). In contrast, dl1520-injected p53+ U87 tumors are comparable in size to control-injected tumors after 6 weeks, although shrinkage is seen in some cases.

[1920] Construction of plasmids encoding SAg self replicating RNA (pRep-SA): pRep-SAg is constructed by replacing the LacZ fragment in pRep-LacZ with SAg fragment from the plasmid PHBNeo-SEB or by using the plasmids developed by Dow as in the above section on viral DNA. pRepdel-LacZ is created by cleavage of the Rep-LacZ plasmid with XhoI and BgIII (creating a 1407-bp deletion) which was then end-filled and self-ligated.

[1921] The plasmid SFV3-LacZ contains a SP6 promoter, a 7-kb fragment encoding the SFV RNA replicase, and a subgenomic promoter that is bound by the RNA replicase to synthesize large quantity of subgenomic RNA. The LacZ gene is located in the 5′ region of the subgenomic promoter. The plasmid pRep-LacZ is constructed by inserting an SphI fragment containing the CMV immediate early promoter/enhancer into the SphI site of SFV3-LacZ (Life Technologies). The CMV promoter/enhancer fragment is inserted so that the resulting plasmid could potentially be used for DNA immunization studies similar to those reported. An additional SpeI site is inserted 5′ of the 5P6 promoter together with the CMV promoter/enhancer fragment. Digestion of the plasmid with SpeI generates a DNA fragment that contains only the SFV RNA replicase and &bgr;-gal coding sequences without sequences encoding ampicillin-resistant p-lactamase, which is used as the template for in vitro transcription of Rep-LacZ RNA. The primers used for generating a PCR fragment containing the CMV promoter/enhancer from pCR3.1 plasmid (Invitrogen, Carlsbad, Calif.) are: 5′ primer, 5′-ACATGCATGCACTAGTGCGCGCGTTGACATTGATTA-3′ (SpeI site (underlined) added for subsequent linearization) and 3′ primer, 5′-ACATG-CATCCATGTGAGAGCTCTGCTTATATAGACC-3′.

[1922] Intravenous tumor model: BALB/c mice are immunized intramuscularly with RNA vaccines, then 21 d after immunization, mice were injected intravenously with 5×105 CT26.CL25 cells. Then 12 d later, pulmonary metastases are counted by experimenters ‘blinded’ to sample identity. For experiments with established CT26.CL25 tumor, BALB/c mice are injected intravenously with 105 CT26.CL25 cells, and tumor is allowed to establish itself for 2 d. Mice are then therapeutically immunized with 100 &mgr;g RNA, then assessed for survival. Alternatively, 0.1 &mgr;g IL-12 (Genetics Institute, Cambridge, Mass.) is administered intravenously once daily for 3 d starting 12 h after the therapeutic immunization and survival is assessed. Results are given in Example 21 (Table VI).

EXAMPLE 61 Isolation of Lipid Rafts

[1923] Lipid rafts were isolated using modified lysis conditions and flotation on discontinuous sucrose gradients (20, 36, 37). In brief, cells (108) are washed with ice-cold PBS and lysed for 30 mm on ice in 1% Triton X-100 in TNEV containing protease and phosphatase inhibitors (TNEV: 10 mM Tris/HCl, pH 7.5, 150 mM NaCl, and 5 mM EDTA; CLAP [2.5 mg/ml each of chymostatin, leupeptin, antipain, and pepstatin &Lgr; in DMSO] and 1 mM sodium orthovanadate). The lysis solution is further homogenized with ten strokes in a Wheaton loose-fitting dounce homogenizer. Nuclei and cellular debris are pelleted by centrifugation at 900 g for 10 min. For the discontinuous sucrose gradient, 1 ml of cleared supernatant is mixed with 1 ml of 85% sucrose in TNEV and transferred to the bottom of a Beckman 14×89 mm centrifuge tube. The diluted lysate is overlaid with 6 ml 35% sucrose in TNEV and finally 3.5 ml 5% sucrose in TNEV. The samples are centrifuged in an SW41 rotor at 200,000 g for 16-20 h at 4° C. 1-ml fractions are collected from the top of the gradient.

EXAMPLE 62 Identification and Characterization of Streptococcal Pyrogenic Exotoxins, Staphylococcal Enterotoxins and SETs

[1924] SPEA Allelic Forms and Mutants. The method of preparation of SPEA allelic forms and mutuants is carried out by the method of Kline J B et al., Infect. Immun. 64: 861-869 (1996).

[1925] Purification of SPEA from S. pyogenes. One-liter cultures of 5. pyogenes Ros (generous gift of D. L. Stevens, Idaho VA Medical Center) are grown in NCTC-135 medium (Gibco/BRL, Grand Island, N.Y.) supplemented with glucose (21). Toxin was partially purified from cell-free culture filtrates by differential solubility in ethanol and acetate-buffered saline. Toxin which were precipitated four times were redissolved in 0.1 M imidazole-acetic acid (pH 5.0) and applied to a QAE-Sephadex A-50 (Pharmacia Fine Chemicals, Uppsala, Sweden) jacketed column. The toxin was eluted as a single peak with a NaCl gradient as described previously. Sodium dodecyl sulfate (SDS)-polyacryl-amide gel electrophoresis (PAGE) analysis of purified SPEA reveals a single band with the expected molecular mass of SPEA (25.8 kDa). The toxin is diaryzed against phosphate-buffered saline (PBS) and stored at −20° C.

[1926] Construction of pET15b-spea1. 150 ng of plasmid pA2 containing the SPEA gene (kindly provided by J. J. Ferretti, Oklahoma City, Okla.) is used as a template to amplify a 663-bp DNA fragment by PCR using primers 29 19b-A1 (5′-CCCCATATGCAACAAGACCCCGAT-3′) and 19b-A2 (5′-GGGGGATCCTTACTTGGTTGTTAG-3′).

[1927] These primers encode terminal BamIII and NdeI restriction sites, respectively. After digestion with BamHI and NdeI (Gibco/BRL), the DNA fragment, which encodes the mature protein without the leader peptide, is cloned into BamHI- and AMd-digested pET15b (Novagen, Madison, Wis.), producing the construct pET15t<<pe/i7. The complete nucleotide sequence of the inserted fragment is confirmed by the dideoxy-chain termination method. In .E. coli BL21(DE3) (Novagen), this construct expresses a fusion protein consisting of an N-terminal six-histidine-residue tag and SPEA1.

[1928] Generation of point mutations in SPEA. Site-directed mutagenesis of SPEA1 is performed by using PCR with oligonudeotides containing the desired nucleotide substitution. Briefly, 150 ng of pET15b-speA1, the mutant ohgonucleotide, and either primer 19b-A1 or primer 19b-A2 were used to generate two SPEA fragments with complementary ends. A second PCR is performed with the two overlapping SPEA fragments and flanking primers 19b-A1 and 19b-A2 to generate the full-length mutated SPEA gene. This PCR product is then digested with BamHI and NdeI and inserted into pET15b as described above. The complete nucleotide sequences of both strands of each mutated SPEA are determined by the dideoxy-chain termination method to ensure that only the single desired mutation was present.

[1929] Recombinant toxin nomenclature. Recombinant SPEA1 (rSPEA1) amino acid substitution mutants are named according to the original amino acid, its position in the mature toxin, and the resulting amino acid. For example, for rSPEA1-N20A, amino acid residue 20 was changed from asparagine to alanine. All mutant recombinant proteins generated contain single amino acid substitutions except for rSPEA1-S51L,N55A and rSPEA1-C87S,C90S, which have two substitutions. rSPEA1 is the toxin encoded by SPEA1 (40). rSPEA2 (also referred to as rSPEA1-G80S) is the toxin encoded

[1930] Expression and purification of rSPEA. Expression and purification of the recombinant toxins by using the pET expression vector is as described by manufacturer (Novagen). In brief, E. coli BL21 (DE3) was transformed with pET15-SPEA constructs for production of recombinant toxins. In this background, SPEA is under the control of a T7 promoter, and the T7 polymerase gene is on the E. coli chromosome under the control of an isopropylthio-D-galactopyranoside (IPTG)-inducible lac promoter. Cultures are grown to mid-exponential phase and induced to express toxin by the addition of 0.4 mM IPTG (Sigma Chemical Co., St Louis, Mo.). Cultures are grown for an additional 3 h after induction, harvested by centrifugation, and disrupted by sonication. rSPEA preparations are purified by metal chelation chromatography using His-Bind resin (Novagen). One hundred to 500 &mgr;g of toxin is digested with 1 &mgr;g of thrombin (Novagen) for 16 h at room temperature. The toxin is then purified from the His-tag leader sequence by ultrafiltration with 10,000-moleculat-weight cutoff filters (MSI, Westboro, Mass.). In E. coli BL21(DE3) (Novagen), this construct expresses a fusion protein consisting of an N-terminal six-histidine-residue tag and SPEA.

[1931] Generation of polydonal antisera reeognizing SPEA. Female New Zealand White rabbits are by SPEA2. The toxin encoded by SPEA1, SPEA3, is also termed rSPEA1-V761.immunized subcutaneously with 50 &mgr;&bgr; of commercially available SPEA1 (Toxin Technologies, Sarasota, Fla.) in complete Freund's adjuvant (Gibco/BRL). Subsequent immunizations of 25 mg of toxin are administered at week 3 and then every 2 weeks in incomplete Freund's adjuvant (Gibco/BRL). Sera were first collected at week 6.

[1932] Western blot (immunoblot) analysis of rSPEA. Each of the mutant toxins and allelic forms is screened for instability by Western analysis. Toxins are analyzed by SDS-PAGE (12% acrylamide) and electroblotted to nitrocellulose. The nitrocellulose filters are incubated overnight in PBS supplemented with 5% low-fat dry milk and then stained with polyclonal rabbit antiserum against SPEA1. Anti-SPEA antibody binding is detected with horseradish peroxidase-labeled goat anti-rabbit antibody. Bands were visualized with 4-chloro-1-naph-thol (Sigma).

[1933] SDS-PAGE analysis. To look for the presence of disulfide bond formation between cysteine residues of rSPEA1, 2-p.g aliquots of purified toxins are mixed with gel running buffer (50 mM Tris-HCl [pH 6.8], 2% SDS, 0.1% bromophenol blue, 10% glycerol) with or without 2-mercaptoethanol (final concentration, 1%). The samples are then boiled for 5 min and electrophoresed for 5 h at 40 mA on an SDS-12% polyacrylamide gel Protein bands were visualized by staining with Coomassie brilliant blue R250 (Bio-Rad, Melville, N.Y.).

[1934] Mitogenicity assays. Heparinized whole blood is obtained from healthy donors. Samples were fractionated on Ficoll-Paque (Pharmacia Biotech, Pisca-taway, N.J.), and the peripheral blood mononuclear cells (PBMCs) are harvested and washed three times in PBS. Then cells (105) were added to 96-well U-bottom plates in 200 &mgr;l of complete RPMI1640 supplemented with 10% fetal calf serum (PCS). PBMCs are incubated for 72 h at 37° C. with various concentrations of rSPEA toxins under atmospheric conditions of 5% CO2; 1 uCi of [3H]thymidine (ICN Biochemicals, Costa Mesa, Calif.) is added to each well, and the cells are incubated for an additional 24 h. Cells were harvested onto glass fiber filters, and [3H]thymidine uptake is quantitated by liquid scintillation counting. For each mutant toxin, PBMCs from at least three distinct donors are used.

[1935] Flow cytometry of PBMCs. PBMCs (106) from healthy donors are incubated with toxins at a concentration of 1 &mgr;g/ml for 4 days. Cells were harvested, washed three times with PBS, and applied to a FACScan flow cytometer (Becton Dick-inson).

[1936] Cell lines. L-cell transfectants L66 (vector only) and L54.1 (DQ&bgr;3/DQ&agr;2) are the generous gift of Robert Karr, Monsanto Company. Transfectants were maintained in suspension in petri dishes in Oulbecco modified Eagle medium (DMEM) with 10% PCS, 2 mM L-glutamine, 100 U of penicillin per ml, 100 &mgr;g of streptomycin per ml, and 250 &mgr;g of the neomycin analog G418 per ml for selection. Before use, transfectants are examined by fluorescence-activated cell sorting analysis with fluorescein isothiocyanate-labeled anti-HLA-DQ3 (KS13) to confirm the expression and surface localization of the DQ molecule. Antibody KS13 is the generous gift of Soldano Ferrone, New York Medical College, Valhalla, N.Y.

[1937] Radiolabeled rSPEA binding assays. rSPEA1 is iodinated by using chloramine-T (Sigma). One hundred &mgr;g of toxin was incubated with 0.5 mCi of Na125I and 5 &mgr;l(5 mg/ml) of chloramine-T in 100 &mgr;l of 100 mM Tris-150 mM NaCl (pH 7.4) for 10 min. The reaction is terminated by the addition of 20 &mgr;l (5 mg/ml) of sodium metabisulfate (Sigma). Labeled toxin was separated from unincorporated radioactivity on a 1-ml Sephadex G-25 column, which had been preequilibrated with PBS. The Kd of rSPEA-DQ interaction is determined by incubating 106 L54.1 cells (expressing class II MHC) with various concentrations of mI-rSPEA in a total volume of 100 &mgr;l of DMEM-10% FCS-0.1% sodium azide. Nonspecific binding is estimated by incubating separate tubes with unlabeled competitor toxin at a concentration 100 times greater than that of labeled toxin. Cells are incubated at 37° C. for 4 h with agitation every 20 min and then pelleted through an oil gradient (80% dibutyl phthalate, 20% olive oil). Pellets are cut from the tubes, and cell-associated 125I was measured on a gamma counter.

[1938] K, determinations are evaluated in a similar fashion except that additional tubes containing various concentrations of 125I-rSPEA phis unlabeled mutant competitor are analyzed. Lineweaver-Burk plots of the reciprocal of toxin bound versus toxin free are used to determine inhibition constants.

[1939] Structure of SPEA. Predicted ribbon structure of SPEA was generated by the Swiss Model Automated Protein Modelling Server, Glaxo Institute for Molecular Biology, Geneva, Switzerland. Primary amino acid sequence of SPEA is modeled on the crystal structures of staphylococcal enterotoxin A (SEA) and staphylococcal enterotoxin E (SEE). Crystal coordinates for SEA and SEE are from the Brookhaven Database Crystal Coordinates and are deposited by Swaminathan and Sax. Structure is viewed by using the Raswin Molecular Graphics Viewer software, version 2.4, 1994 (R. Sayte, Department of Computer Science, University of Edinburgh, Edinburgh, United Kingdom).

[1940] Isolation and Purification of SSA is by the method of Mollick J et al., J. Clin. Invest. 92: 710-719 (1993) and Reda K et al., Infect. Immun. 62: 1867-1874 (1994)

[1941] Purification of SSA from S. pyogenes strain Weller. Because RDA has been used to purify several staphylococcal enterotoxins, this material is useful in identifying novel S. pyogenes superantigens. Concentrated culture supernatants from strain Weller are chromatographed on a RDA column, the column was eluted with a phosphate step gradient, and fractions are tested for the presence of a class II-dependent T cell mitogen. We identify such an activity eluting between 60 and 150 mM PO4, corresponding approximately to fraction numbers 8-55. This activity elutes in a broad peak and does not correspond to a detectable protein peak. Examination of an aliquot of the pooled activity by SDS-PAGE gel reveals many proteins, some in the 30-kD range. The pooled active fractions are fractionated from the RDA column by gel filtration (G-75) and anion exchange chromatography and active fractions from each column are selected. The product from the final chromatography step consistspredominantly of three proteins. The proteins are blotted to a solid support and analyzed by NH2-terminal sequencing. The higher Mr protein is identified as SP and/or SPE-B. These two proteins are closely similar and are not distinguished based on the 29 amino acids sequenced. The lower Mr protein, ˜27 kD in size, yields a 59-amino acid NH2 terminus that is not notably homologous to any previously characterized protein. The middle band (28 kD) displays an NH2 terminus strikingly similar to the NH2 termini of SEB, SEC, and SEC3 and dissimilar to M protein. The 28-kD molecule with the SEB-like NH2 terminus is designated SSA.

[1942] Purification of SSA by Ab affinity chromatography. To determine whether or not SSA isresponsible for the superantigen activity, our efforts are directed to its purification. An anti-peptide antiserum is raised against the first 19 amino acids of SSA. To determine the ability of the anti-SSA Abs to bind native SSA, a concentrated streptococcal supernatant from 16 liters is chromatographed on RDA in an effort to enrich for SSA. The RDA eluate is passed over the anti-SSA Ab column and the column eluted. Examination of the eluate by SDS-PAGE gel, and silver stain shows one prominent band at 28 kD, and two minor bands, one at ˜25 kD and one at ˜12 kD. NH2-terminal sequencing of the 28-kD product shows the SSA NH2 amino terminus. To determine whether the lower Mr species were contaminants or SSA degradation products, an identical sample is subjected to immunoblot analysis. Anti-SSA antibodies detect all three species shown in the silver stain gel, indicating that these lower molecular weight bands are breakdown products of the 28-kD protein. Because the antibodies are directed against the NH2 terminus, these products likely represent SSA molecules missing COOH terminal sections.

[1943] PCR amplification and cloning of the 5′ half of ssa from Weller genomic DNA. Nondegenerate, nonoverlapping oligonucleotides (SSA1, 5′-AGTCAACCAGATCCTACGCCAG AACAATTGAA-3′; SSA2, 5′-AAATCGAGTCAATTTAC GGAGTTATGGCC-3′) are designed on the basis of the SSA N-terminal protein sequence with a bias toward SEB codon usage. We hypothesized that SSA may retain homology to SEB in regions further downstream from the 24 N-terminal residues, especially in regions relatively conserved among all known staphylococcal and streptococcal superantigens. In order to amplify ssa from Weller genomic DNA with PCR, we pair each SSA oligonucleotide with an oligonucleotide (SEB7, residues 658 to 675) specific for a region in SEB immediately downstream of the disulfide loop. Weller genomic DNA (200 ng) is combined with 50 pmol each of sense (SSA1 or SSA2) and antisense (SEB7) primers, a 200 &mgr;M concentration of each deoxynucleoside triphosphate, and 10 &mgr;l of 10×Pfu polymerase buffer 1 (Stratagene) in a total volume of 100 &mgr;l. Reaction mixtures are overlaid with 100 &mgr;l of mineral oil and denatured at 95° C. for 7 min before Pfu polymerase (2.5 units) (Stratagene) is added. PCR conditions were as follows: 1 min at 95° C., 2 min at 37° C., and 3 min at 72° C. for 25 cycles in a thermocycler (Perkin-Elmer Corp., Norwalk, Conn.). Combinations of SSA1 or SSA2 with SEB7 specifically amplified products of approximately 340 or 310 bp, respectively, from strain Weller genomic DNA, but not from strain Gall DNA, which does not produce SSA, PCR products were ligated to the pBluescript SK˜ vector to make pKR1 and pKR2, which are used to transform XL-1 Blue E. coli. Nucleotide sequence analysis of pKR1 and pKR2 inserts predicted amino acid sequences identical to that determined by N-terminal protein sequencing of native SSA from strain Weller S. pyogenes (39).

[1944] Subcloning and expression of recombinant SSA. The nucleotide sequence encoding the mature form of SSA is PCR amplified from Weller genomic DNA with flanking primers and digested with HincII and SpeI, which cut 46 bp upstream and 33 bp downstream, respectively, of the ssa open reading frame. This fragment was ligated to the pBluescript II KS˜ expression vector (Stratagene) to make pKR4. An XL-1 Blue E. coli strain carrying pKR4 was grown to an optical density at,600 nm of 1.0 and induced to express SSA by the addition of IPTG (isopropyl-&bgr;-D-thiogalactopyranoside) to a final concentration of 0.1 mM. After further incubation at 37° C. with shaking for 3 h, bacteria were harvested by centrifugation and resuspended in TE, pH 8.0. An aliquot of cells was then mixed with an equal volume of SDS sample buffer, and the whole cell lysate was analyzed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE) and SSA immunoblot analysis. Lysates of E. coli strains carrying pMV7 or pBluescript, containing seb or no insert in the multicloning cassette, respeclively, were processed in parallel as positive and negative controls. Uninduced whole cell lysates were also examined.

[1945] Identification and Characterization SMEZ, SMEZ2, SPE-G, SPE-H and SPE-J is given in Profit T et al. J. Exp. Med. 189: 89-101 (1999).

[1946] Identification of Novel SAgs. The novel SAgs are identified by searching the S. pyogenes M1 genome database at the University of Oklahoma with highly conserved &bgr;5 and a4 regions of streptococcal and staphylococcal SAgs, using a TBlastN search program. The ORFs are defined by translating the DNA sequences around the matching regions and aligning the protein sequences to known SAgs using the computer program Gap. Multiple alignments and dendrograms are performed with Lineup and Pileup. We used the FAST A program for searching the SwissProt (Amos Bairoch, Switzerland) and PIR (Protein Identification Resource) protein databases. The leader sequences of SPE-G and SPE-H are predicted using the SP Scan program. All computer programs are part of the Genetics Computer Group package (version 8).

[1947] Cloning of smez, smez-2, spe-g, and spe-h. 50 ng of S. pyogenes M1 (ATCC 700294) or S. pyogenes 2035 genomic DNA is used as a template to amplify the smez DNA fragment and the smez-2 DNA fragment, respectively, by PCR using the primers smez-fw (TGGGATCCTTAGAAGTAGATAATA) and smez-rev (AAGAATTCTTAGGAGTCAATTTC) and Taq Polymerase (Promega Corp.). The primers contain a terminal tag with the restriction enzyme recognition sequences BamHI and EcoRI, respectively. The amplified DNA fragment, encoding the mature protein without the leader sequence (37) is cloned into a T-tailed pBlueScript SKII vector (Stratagene).

[1948] Spe-g and spe-h are cloned by a similar approach, using the primers 30 spe-g-fw (CTGGATCCGATGAAAATTTAAAAGATT-TAA) and spe-g-rev (AAGAATTCGGGGGGAGAATAG), and spe-h-fw (TTGGATCCAATTCTTATAATACAACC) and spe-h-rev (AAAAGCTTTTAGCTGATTGACAC), respectively.

[1949] The DNA sequences of the subcloned toxin genes are confirmed by the dideoxy chain termination method using a Licor automated DNA sequencer (model 4200). As the DNA sequences from the genomic database are all unedited raw data, three sub-clones of every cloning experiment areanalyzed to insure that no Taq polymerase-related mutations were introduced. The DNA sequence of the smez-2 gene has been annotated in EMBL/Genbank/DDBJ under accession number AF086626.

[1950] Expression and Purification of rSMEZ, rSMEZ-2, rSPE-G, and rSPE-H. Subcloned smez, smez-2, and spe-g fragments are cut from pBlueScript SKH vectors, using restriction enzymes BamHI and EcoRI (GIBCO BRL), and cloned into pGEX-2T expression vectors (Pharmacia Biotech). Due to an internal EcoRI restriction site within the spe-h gene, the pBlueScript:spe-h subclone is digested with BamHI and HindIII and the spe-h fragment is cloned into a modified pGEX-2T vector that contains a HindIII 3′ cloning site.rSMEZ, rSMEZ-2, and rSPE-H are expressed in Escherichia coli DH5a cells as glutathione-S-transferase (GST) fusion proteins. Cultures are grown at 37° C. and induced for 3-4 h after adding 0.2 mM isopropyl-p-D-thiogalactopyranoside. GST-SPE-G fusion protein is expressed in cells grown at 28° C. The GST fusion proteins are purified on glutathione (GSH) agarose and the mature toxins are cleaved off from GST by trypsin digestion. All recombinant toxins, except rSMEZ, were further purified by two rounds of cation exchange chromatography using carboxy methyl sepharose (Pharmacia Biotech). The GST-SMEZ fusion protein is trypsin digested on the GSH-column and the flow-through containing the SMEZ is collected.

[1951] Gel Electrophoresis. All purified recombinant toxins are tested on a 12.5% SDS-polyacrylamide gel according to Laemmli's procedure. The isoelectric point of the recombinant toxins is determined by isoelectric focusing on a 5.5% polyacrylamide gel using ampholine, pH 5-8 (Pharmacia Biotech). The gel is run for 90 min at 1 Watt constant power.

[1952] Toxin Proliferation Assay. Human PBLs are purified from blood of a healthy donor by Histopaque Ficoll (Sigma Chemical Co.) fractionation. The PBLs are incubated in 96-well round-bottomed microtiter plates at 105 cells per well with RPMI-10 (RPMI with 10% PCS) containing varying dilutions of recombinant toxins. The dilution series is performed in 1:5 steps from a starting concentration of 10 ng/ml of toxin. After 3 d, 0.1 &mgr;Cï [3H]thymidine is added to each well and cells are incubated for another 24 h. Cells are harvested and counted on a scintillation counter. Mouse leukocytes are obtained from spleens of five different mouse strains (SJL, B10.M, B10/J, C3H, and BALB/c). Splenocytes are washed in DMEM-10, counted in 5% acetic acid, and incubated on microtiter plates at 105 cells per well with DMEM-10 and toxins as described for human PBLs.

[1953] TCR V&bgr; Analysis. V&bgr; enrichment analysis is performed by anchored multiprimer amplification. Human PBLs are incubated with 20 pg/ml of recombinant toxin at 106 cells/ml for 3 d. A twofold volume expansion of the culture followed with medium containing 20 ng/ml IL-2. After another 24 h, stimulated and resting cells are harvested and RNA isprepared using Trizol reagent (GIBCO BRL). A 500 bp &bgr; chain DNA probe is obtained by anchored multiprimer PCR, radiolabeled, and hybridized to individual V&bgr;5 and a C&bgr; DNA region dot-blotted on a Nylon membrane. The membrane is analyzed on a Storm PhosphorImager using ImageQuant software (Molecular Dynamics). Individual V&bgr;s are expressed as a percentage of all the V&bgr;s determined by hybridization to the C&bgr; probe.

[1954] Jurkat Cell Assay. Jurkat cells (a human T cell line) and LG-2.cells (a human B lymphoblastoid cell line, homozygous for HLA-DR1) are harvested in log phase and resuspended in RPMI-10. 100 &mgr;l of the cell suspension, containing 105 Jurkat cells and 2×104 LG-2 cells are mixed with 100 &mgr;l of varying dilutions of recombinant toxins on 96-well plates. After incubating overnight at 37° C., 100-&mgr;l aliquots are transferred onto a fresh plate and 100 &mgr;l (104) of Sel cells (IL-2-dependent murine T cell line) per well are added. After incubating for 24 h, 0.1 &mgr;Cí [3H]thymidine is added to each well and cells are incubated for another 24 h. Cells were harvested and counted on a scintillation counter. As a control, a dilution series of IL-2 is incubated with Sel cells.

[1955] Computer-aided Modelling of Protein Structures. Protein structures of SMEZ2, SPE-G and SPE-H are created on a Silicon Graphics computer using InsightII/Homology software (Biosym Technologies). The SAgs SEA, SEB, and SPE-C are used as reference proteins to determine structurally conserved regions (SCRs). Coordinate files for SEA (1ESF), SEB (1SEB), and SPE-C (1AN8) are downloaded from the Brookhaven Protein Database. The primary amino acid sequences of the reference proteins and SMEZ-2, SPE-G, and SPE-H, respectively, are aligned, and coordinates from superimposed SCRs are assigned to the model proteins. The loop regions between the SCRs are generated by random choice. MolScript software is used for displaying the computer-generated images.

[1956] Methods of isolation and characterization of SPEC is carried out by the methods of Li P L et al., J. Exp. Med. 186: 375-383 (1997)

[1957] Toxin Puification. All toxins are expressed from the pGEX vector in Escherichia colt as glutathione S transferase (GST) fusion proteins and purified by glutathione chromatography. Mature toxins are cleaved from GST by trypsin digestion and purified by two rounds of cation exchange chromatography. The first round uses carboxymethyl sepharose and the second on a POROS HS (Perceptive Systems, Cambridge, Mass.) HPLC column. All toxins are resistant to trypsin digestion except SEB which has a single cleavage site in the disulphide loop region. This does not affect SEB activity.

[1958] Toxin Proliferation Assays. Human peripheral blood lymphocytes are purified by Ficoll-Hypaque and incubated for 3 d at 106 cells/ml in duplicate in 96-well microtiter plates in media containing varying dilutions of recombinant toxins. 0.1 &mgr;Ci [3H]thymidine is added to each well, and cells were incubated a further 24 h. Plates areharvested and counted on a scintillation counter.

[1959] TCR V&bgr; Analysis. These are performed using the reverse dot-blot procedure. In brief, human peripheral blood lymphocytes are incubated at 10 Vml with 1 ng/ml of recombinant toxins for 3 d. The cultures are expanded twofold with medium containing 20 ng/ml IL-2. Cells are harvested at 4 d and RNA made by standard procedures. TCR &bgr;-chain messenger is reverse transcribed using a set of primers specific for a conserved region in all &bgr;-chain genes. Amplification of a 500-bp V&bgr; probe is accomplished by an anchor primer to the 5′ end of the &bgr;-chain primers plus a single C&bgr; region primer. This probe is radiolabeled and reverse blotted to filters containing individual &bgr;-chain genes. Relative changes in individual &bgr;-chain mRNA are compared to unactivated PBL.

[1960] Anti-TCR mAb FACS Staining.Activated T cells are incubated for 1 h on ice with 25 ml of anti-TCR BV2 (MPB2/Cll; a gift from A. W. Boylston, Universtiy of Leeds, Leeds, UK), anti-BV551 (LC4; a gift from R. Levy, Stanford University Medical School, Stanford, Calif.), anti-BV5S3 (42/1C1; a gift from A. W. Boylston, Universtiy of Leeds, Leeds, UK), anti-BV8.1 (C305; a gift from A. Weiss, University of California, San Francisco, Calif.), and anti-BV12S (S511; a gift from D. Posnett, Cornell University Medical College, NY). Washed cells are then incubated with 1 ml FITC goat anti-mouse (Becton Dickinson) and incubated on ice for a further 30 min. After washing, cells are analyzed on a FACSCAN®.

[1961] Zinc Blots. Recombinant toxins (10 (ug) are incubated in triplicate with 10 &mgr;M EDTA followed by 100 &mgr;M 65ZnCl (New England Nuclear, Boston, Mass.) in 20 mM Tris, pH 8.0, 10 mM MgCl2, 0.15 M NaCl made zinc free by addition of chelex resin (Sigma Chemical Co.). Samples are then dot blotted to nitrocellulose filters using a 96-well dot-blot apparatus. Filters are washed briefly three times with zinc-free buffer, and then autoradiographed. Spots are cut out and counted on gamma counter (Packard Instrs., Meriden Conn.) to quantify 65Zn bound to each toxin.

[1962] Nondenaturing SDS Electrophoresis. Toxin samples are incubated in standard Laemmli reducing sample buffer (containing 1% SDS and 10 mM dithiothreitol), and then resolved as normal of a 12.5% acrylamide gel. For denaturing conditions, samples are heated,to 100° C. for 2 min before loading. To prevent dimers from dissociating during running, the power is. maintained below 2 W (20 mA and 100 V). Some reduced samples are treated with 20 mM iodoacetic acid, pH 7.0, before loading. EDTA is added to some samples at 10 mM. incubation at 37° C. as the percentage of LG-2 cells in aggregates, and is determined by light microscopy.

[1963] Western Blotting of S. pyogenes Strain 2035-derived SPE-C. S. pyogenes strain 2035 is grown under anaerobic conditions in brain heart fusion medium at 37° C. for 24 h without shaking. Supernatant proteins are concentrated by sequential (NH4)2SO4 precipitations, with cuts of <40%, 40-60% 60-80%, and 80% saturation, and resuspended in 50 mM Tris-1 mM EDTA, pH 7:4, at 500-1,000 times their original concentration. Recombinant SPE-C or 10 &mgr;l of the 60-80% (NH4)2SO4-precipitable fraction of 2035 supernatant are combined with an equal volume of nonreducing 2% SDS sample buffer and separated by 0.1% SDS-12% PAGE. Denatured samples are heated (95° C.) for 2 min before analysis. Fractions are dialyzed extensively against 25 mM Tris-50 mM NaCl-1 mM EDTA, pH 7.4, to remove salt. After separation by SDS-PAGE, proteins are transferred to a nitrocellulose filter (Hybond-C; Amersham Corp., Arlington Heights, Ill.) in an electroblotting apparatus using Towbin buffer lacking SDS (25 mM Tris.HCl, pH 8.5-150 mM glycine-10% methanol). The filter is blocked in PBS-0.05% Tween-5% nonfat dried milk powder-0.1%) normal rabbit serum and stained with 1:6,000 peroxidase-labeled affinity-purified rabbit and-SPE-C immunoglobulin. The peroxidase conjugate is detected on radiographic film by chemiluminescence (ECL; Amersham Corp.) according to the manufacturer's instructions.

[1964] Size Exclusion Chromatography. Recombinant SPE-C. (2 mg/ml) is dialyzed at 4° C. overnight in 20 mM BisTris-Tris, pH 6.0 or 9.0. 20 &mgr;ï samples are diluted into 100 &mgr;ï 50 mM BisTris, pH 6.0, 7.0, 8.0, or 9.0/0.1 M NaCl and incubated for 1 h at room temperature before separation at 1 ml/min (±0.05 ml/min) on a Superosel2 (Pharmacia) high resolution HPLC column attached to a Biocad Sprint (Perceptive Systems) preequilibrated with the respective incubation buffer. Trace chromatograms monitoring Abs280nm, pH, and conductivity are all recorded directly and subsequently analyzed for retention times, peak integration, and peak assignment using the on-line Biocad software. Traces are grouped and printed using the stacked trace mode which automatically aligns each trace to the injection point.

[1965] Identification and Characterization of the Staphylococcal enterotoxins SEG, SEH, SEI, SEJ, SEK, SEL, SEM is carried out by the method of Jarraud S J Clinical Microbiology (1999).

[1966] Strains. S MJB1316 (a gift from Sibyl Munson, University of Wisconsin, Madison, Wis.), an RN450 derivative that contains the cloned seg gene on the staphylococcal expression vector pRN5548, is used as seg positive control. The following S. aureus strains were used to check the specificity of PCR amplification: FDA-S6 (ATCC 13566 (sea+ seb+)), FRI-137 (ATCC 19095 (sec+, seg+, seh+, sei+)), FRI-1151 m (sed+), FRI-326 (ATCC 27664 (see+)), FRI-569 (ATCC 51811 (seh+)), FRI-1169 (tst+), TC-7 (eta+, seg+, sei+), and TC-146 (etb+seg+ sei+). Two hundred thirty S. aureus clinical isolates are collected. They are isolated from 58 patients with S. aureus infection (arthritis, skin infection, pneumonia, or infective endocarditis), 102 patients with acute toxemia (TSS, SSF, or SSSS), and 70 asymptomatic nasal carriers. All strains are collected from hospitals located throughout France and are identified as S. aureus by their ability to coagulate citrated rabbit plasma (bioMerieux, Marcy-I'Etoile, France) and to produce a clumping factor (Staphyslide Test; bioMerieux). Escherichia coli TG1 is used for plasmid amplification and genetic manipulations.

[1967] DNA amplification and sequencing DNA is extracted from A900322 cultures and used as a template for amplification with primers sei-1 and seg-2. Primers wsei and wseg are designed following identification of suitable hybridization sites in the sei and seg genes and were compatible with the Clontech Genome Walker kit (Ozyme; Montigny-Le Bretonneux, France), which is suitable for cloning unknown DNA sequences adjacent to a known sequence. This kit is used, according to the supplier's instructions, to identify sei and seg flanking regions using primers hindIII and wsei on a HindIII chromosomal digest for the amplification of the sei-upstream region; and primers hpaI and wseg on an HpaI chromosomal digest for the amplification of the seg-downstream region. PCR products are analyzed by electrophoresis through 0.8% agarose gels (Sigma, St. Louis, Mo.), purified using the High Pure PCR Product Purification kit (Boehringer Mannheim, Meylan, France), and sequenced (Genome Express, Grenoble, France). Sequences are compiled, analyzed, and compared using Blast (http://www.ncbi.nlm.nih.gov/BLAST), GeneJokey, and ClustalX software (European Bioinformatics Institute, Cambridge, U.K., http://www.ebi.ac.uk).

[1968] Toxin-gene detection. Sequences specific for sea-e, seg-i, tst, eta, and etb, encoding SEA-E, SEG-I, TSST-1, ETA, and ETB, respectively, are detected by PCR. DNA from clinical isolates is extracted from cultures and used as a template for amplification with the primers described in Table 1 (Eurogentec, Seraing, Belgium). Table 1 of primers used is given-in Jarraud et al., J. Clin. Micro. (1999). Amplification of gyrA is used as a control to confirm the quality of each DNA extract and the absence of PCR inhibitors. All PCR products are analyzed by etectrophoresis through 1% agarose gels (Sigma).

[1969] Detection of bacterial RNA by RT-PCR. Total RNA is extracted from staphylococcal cultures by using RNeasy spin columns (Qiagen, Courtaboeuf, France). cDNA is synthesized using Ready-To-Go RT-PCR beads (Pharmacia Biotech, Orsay, France) by incubating 0.1 &mgr;g of total RNA with the following pairs of primers (primer 5′, sel3), (sel-4, sel-5), (sel 1, sel2), (invsel2, invsem1), (sem1, invsei1), (sei1, sei2), (invsei2, &psgr;ent2), (&psgr;ent1, invsek 1), (sek1, sek2), (invsek2, invseg1), (seg1, seg2), (invseg2, primer 3′). The reaction mixtures are incubated with each primer pair described above, at 42° C. for 30 min for reverse transcription, followed by 30 cycles of amplification (1-min denaturation at 94° C. 1-min annealing at 55° C., and 1-min extension at72° C.). The RT-PCR products are then analyzed by electrophoresis through 1% agarose gel. RNA extracts are tested for DNA contamination by preincubating the reaction mixtures at 95° C. for 10 min to inactivate reverse transcriptase before the RT-PCR.

[1970] Production and purification of recombinant enterotoxins. Primers are designed following identification of suitable hybridization sites in sel, sem, sei, sek, and seg. The 5′ primers are chosen within the coding sequence of each gene, omitting the region predicted to encode the signal peptide, as determined by hydrophobicity analysis according to Kyte and Doolitttle with GeneJockey software and SignalP V1.1 World Wide Web Prediction Server (www.cbs.dtu.dk/services/SignalP/); the 3′ primers are chosen to overlap the stop codon of each gene. A restriction site is included in each primer. DNA is extracted from A900322 or MJB1316 and used as a template for PCR amplification. PCR products and plasmid DNA are prepared using the Qiagen plasmid kit. PCR fragments were digested with EcoRI and PstI (Boehringer Mannheim) and ligated (T4 DNA ligase; Boehringer Mannheim) with the pMAL-c2 expression vector from New England Biolabs (Ozyme) digested with the same restriction enzymes. The resulting plasmids are transformed into E. coli TG 1. The integrity of the ORF of each construct is verified by DNA sequencing of the junction between pMAL-c2 and the different inserts. The fusion proteins are purified from cell lysates of transfected E. coli by affinity chromatography on an amylose column according to the supplier's instructions (New England Biolabs).

[1971] T cell proliferation assays. PBL from healthy donors are cultured in 24-well plates (106 cells/well) in RPM11640 medium supplemented with 8% pooled human serum and 10 &mgr;g/ml recombinant staphylococcal toxin. rIL-2 (50 IU/ml) is added on day 5. When necessary, T cell cultures are diluted in IL-2-supple-mented medium until TCR analysis. For controls T cells from the same donors that are stimulated with 0.5 &mgr;g/ml Phaseolus vulgaris leucoagglutimn (PHAL) (Sigma) are used.

[1972] Flow cytometry. The following mAb (mAb; specificity indicated in brackets) are used for flow cytometry: E2.2E7.2 (V&bgr;2), LE89 (V&bgr;3), IMMU157 (V&bgr;5.1), 3D11 (V&bgr;5.3), CRI304.3 (V&bgr;6.2), 3G5D15 (V&bgr;7), 56C5.2 (V&bgr;8.1/8.2), FIN9 (V&bgr;9), C21 (V&bgr;ï 1), S511 (V&bgr;12), IMMU1222 (V&bgr;13.1) JIJ74 (V&bgr;13.6), CAS1.1.13 (V&bgr;14), Tamaya1.2 (V&bgr;16), E17.5F3 (V&bgr;17), BA62.6 (V&bgr;18), ELL1.4 (V&bgr;20), IG125 (V&bgr;21.3), IMMU546 (V&bgr;22), and HUT78.1 (V&bgr;23). These mAb, and CD4- and CD5-specific mAb, is purchased from Beckman/Couker/Immunotech (Marseille, France). Cells are phenotyped by indirect immunofluorescence, as described previously. Briefly, cells are incubated with unconjugated mAb for 30 mm at room temperature, then washed and incubated with FITC-conjugated rabbit anti-mouse Ig antiserum (BioAtlantic, Nantes, France) for 30 min on ice. After washing, cells are analyzed by flow cytometry on a FACScan apparatus (Becton Dickinson, Mountain View, Calif.) using the LYSYS II software package on a FACstation.

[1973] Immunoscope analysis. Total RNA is extracted using the Tnzol reagent (Life Technologies, Gaithersburg, Md.). TCR &bgr;-chain-specific primers are as described previously, and reverse transcription, PCR amplification, and run-off steps are performed as reported previously. Fluorescent DNA products are loaded on a sequencing gel and analyzed with the Immunoscope software.

[1974] Identification of the seg and sei flanking regions. When this work was initiated, the coding regions of only seg and sei were available, and the two genes were known to be in tandem orientation, separated by a 1.9-kb DNA fragment in S. aureus strain A900322. A 3.2-kb fragment is thus amplified by PCR with primers sei1 and seg2 and was then sequenced. The intergenic 1.9-kb DNA sequence contains three open reading frames (ORF1, 2, and 3) of 399, 327, and 777 bp, respectively. Comparison of the deduced amino acid sequences of these ORFs with translated sequences from GenBank showed that the putative proteins corresponding to these ORFs had substantial sequence similarities to known SEs: ORF1 exhibited homology to the N-terminal region of SEB; ORF2 to the C-terminal region of SEC; and ORF3 to SEA. The PCR “walking” strategy is chosen to identify the seg and sei flanking regions. The use of primers wsei and hindIII on HindIII digests amplifies and allowssequencing of the 3.2 kb of DNA upstream of sei. Analysis of this sequence showed two significant ORFs (ORF4 and ORF5) of 783 and 720 bp, respectively. ORF4 exhibited homology with SEJ, and ORF5 with SEI. The use of primers wseg and hpaI on HpaI digests amplified a 0.8-kb fragment downstream of seg. Sequence analysis of this fragment reveals no other significant ORFs. The concatenated sequence of seg-sei-intergenic, -upstream and -downstream regions is validated by sequencing a 6.189-kb PCR fragment encompassing the whole region. Although sei in strain A900322 is 100% homologous with the sequence deposited in GenBank (accession number AF064774), seg in strain A900322 showed one mutation, corresponding to a Leu→Pro substitution at position 29. This new variant is designated SEGL29P. ORFs 1-5 arehomologous but not identical with any known enterotoxins hence they corresponded to new enterotoxins. However, ORF1 and 2 are at least 50% shorter than any of the known enterotoxins. ORF-1 possesses a satisfactory Shine-Dalgarno (SD) sequence (TGGAGT-N7-AUG, consensus AGGAGG-N6/10-AUG) but, in comparison with SEB, to which it is highly related, shows a large deletion of its 3′ end, which corresponds to a region that is essential for biological (superantigenic) activity. ORF2 has neither an SD sequence nor a signal peptide, and resembles an N-terminal-truncated SEC. Accordingly, ORF1 and 2 are designated &psgr; ent1 and 2, respectively, meaning they represent pseudogenes with no likely biological function. In contrast, ORFs 3, 4, and 5 have sizes consistent with active enterotoxin-like molecules. ORF5 possesses a satisfactory SD sequence and translation start site, whereas ORF3 and ORF4 have an adequate SD sequence in front of a noncanonical, although suitable, translation start site (ATT) coding the thionine. Thus. ORF3, ORF4, and ORFS are designated sek, sel, and sem, respectively. Thus, the 6301-bp DNA region identified contains seg and set plus three potential enterotoxin genes (sek, sel, and sem) and two pseudogenes (&psgr; ent1, &psgr; ent2), all in the same orientation. We designated this region egc for “enterotoxin gene cluster.” With the exception of plasmid pIB485, which contains sed and sej in opposite orientations separated by 895 nucleotides, and the staphylococcal pathogenicity island, which contains tst and ent separated by 10.234 kb, no such gene cluster organization has been previously described for enterotoxin genes.

[1975] Transcriptional analysis. To investigate whether this seg transcript was polycistronic, i.e., encoded one or more of the ORFs identified in egc, c-DNA is generated from strain A900322 total RNA by reverse transcription and amplified by PCR using primer pairs located within each gene and bracketing adjacent genes. Abundant RT-PCR products (B to K) of the expected size are obtained using the corresponding primer pairs. In contrast, no RT-PCR product A (primer 5′, seI3) nor L (primer invseg2 and primer 3′) is obtained. These results suggest that the seven genes and pseudogenes composing egc are cotranscribed, and that the 5′ and 3′ ends of the transcript must be close to the beginning of sel and to the end of seg, respectively. Sequence analysis reveal putative −10 and −35 promoter sequences (TTGTCT-N15-TAATTT-N134-ATT) upstream of the sel start codon. The 3′ end may lie at an inverted repeat at position 6018-6067, which is a potential transcription termination signal, 5830 nucleotides downstream of the putative transcription start site. These results suggest that egc is an operon.

[1976] Superantigen activity. The association of related genes that are cotranscribed suggested that the resulting peptides might have complementary effects on the host's immune response. One hypothesis is that gene recombination created new variants of toxins differing by their superantigen profiles. Purified recombinant SEL, SEM, SEI, SEK, and SEGL29P expressed in E. coli are studied for their ability to induce selective expansion of T cells bearing particular TCR V&bgr; regions in short-term PBL culture. As shown in Tables III and IV, recombinant SEL SEM, SEI, and SEK consistently induces selective expansion of distinct sets of V&bgr; subpopulations. By contrast. SEGL29P fails to trigger expansion of any of the 23 V&bgr; subsets. The sum of results obtained with each of these recombinant toxins globally corresponds to the selective expansion of V&bgr; subpopulations induced by crude supernatant of staphylococcal culture of strains that harbored egc (data not shown). This suggests that the maltose-binding protein portion of the fusion toxins do not significantly influence the V&bgr; specificity of these superantigens. To investigate whether the L29P mutation could explain the lack of superantigen activity, a rSEG with an L29 codon is constructed from S. aureus strain MJB1316 (which contains the cloned seg on a plasmid) and then expressed in E. coli, and the superantigen activity of this toxin is tested. SEGL29.induces selective expansion of V&bgr;14 and, to a lesser extent, V&bgr;13.6,OT cells (Table III). The L29P mutation thus accounts for the complete loss of superantigen activity. Computer modeling of the two-dimensional structure of the wild-type and mutated proteins reveals no major conformational differences between the two proteins (not shown). It is likely that L29 is located at a position crucial for proper superantigen/MHC II interaction. In addition to the selective expansion of TCR V&bgr; subsets observed with the different toxins, flow cytometry reveals preferential expansion of CD4 T cells in SEI and SEM cultures. By contrast, the CD4/CD8 ratios in SEK-, SEL-, and SEG-stimulated T cell lines are close to those in fresh PBL. This phenomenon, which is observed with cells from several donors, reflects a variable contribution of the CD4 coreceptor to the T cell activation process, depending on the affinity of the TCR for the superantigen/MHC complex. To document the TCR V&bgr; composition of superantigen-stimulated T cell lines and the clonal diversity of the expanded TCR V&bgr; subsets, the size distribution of PCR-amplified TCR &bgr;-chain junctional products is studied using the Immunoscope technique. Results of this molecular analysis are in good overall agreement with those obtained by flow cytometry, as similar dominant TCR V&bgr; subsets are identified with the two approaches. Additionally, Immunoscope analysis shows that the complementarity-determining region 3 size distribution of TCR &bgr;-chain junctional transcripts within expanded V&bgr; subsets is pseudogaussian in all superantigen-stimulated cultures, reflecting a high level of polyclonality. This is further confirmed by sequence analysis of TCR &bgr; junctional transcripts derived from some expanded TCR V&bgr; subsets. Taken together, these TCR repertoire studies confirm the superantigenic nature of the new toxins identified in this study.

EXAMPLE 63 The Identification and Characterization of the SETs

[1977] See, Williams et al., Infect. Immun. 68: 4407-4414 (2000). A fragment of the set1 gene is initially cloned using a screening method incorporating alkaline phosphatase (PhoA) as a reporter molecule to identify secreted proteins, as previously described for Streptococcus pneumomae. This system utilizes an alkaline phosphatase-negative strain of Escherichia coli CC118 (PhoA−) and plasmid pHRM104, which contains a truncated E. coli phoA gene lacking its signal sequence. Thus, for the secretion of functional alkaline phosphatase activity, genes encoding signal sequences must be cloned in frame with the phoA gene in the reporter system. A 5 ug sample of S. aureus NCTC 6571 genomic DNA is digested with Sau3A, fragments of 1 to 4 kb were ligated to pHRM104 which is linearized with BamHI and the ligations are used to transform E. coli CC118. Transformants exhibiting alkaline phosphatase activity are detected by growth on nutrient agar containing 5-bromo-4-chloro-3-indolylphosphate. Plasmid DNA is prepared from all positive clones, and the sequences of the inserts are determined. One of these clones, pExp5, contains a 237-bp DNA fragment at set1.

[1978] Identification of set: An alkaline phosphatase fusion strategy is employed to identify proteins exported by S. aureus. Using this system, one clone is isolated, pExpS, that contains DNA encoding the N-terminal 79 amino acids of a secreted protein fused to phaA. Comparison of the nucleotide sequence of pExpS with those in the Oklahoma University sequencing project of S. aureus NCTC 8325 (http://www.genome.ou.edu/staph.html) revealshomology (91%) to contig 386 (designation as of July 1998). Contig 386 contains a partial open reading frame encoding a putative 191-amino-acid protein (ORF386), and a search of the SwissProt database reveals that ORF386 has approximately 25% identity to a number of staphylococcal and streptococcal exotoxins. The homology includes two regions that are similar to the consensus staphylococcal enterotoxin/streptococcal exotoxin signatures (PROSITE and PCOC00250) (12, 16). The first of these signatures is a well-conserved region found in the majority of the staphylococcal enterotoxins but not TSST-1, while the second signature is a more diffuse sequence which is present in both the enterotoxins and TSST-1. This similarity suggested that ORF386 codes for a novel exotoxin. The DNA sequence identified in pExpS as encoding an N-terminal fragment (including the signal peptide sequence) of an unknown protein and that of ORF386 are very similar although not identical. The gene within pExpS also encodes a novel exotoxin-like. protein. This open reading frame is designated set1 (for staphylococcal exotoxin-like gene 1).

[1979] Cloning of the full-length set1 gene and identification of the novel set gene cluster: A set1-specific probe (253 bp) is PCR amplified using pExp5 as template DNA and the primer pair 5′-GGGACAGAATAATACTATGAAATTAA AAACG and 5′-ATCTTTTTGGTTAAAGCGTAC. Labeling of the set1 probe DNA with digoxigenin-dUTP (DIG-dUTP), hybridization, and subsequent immunological detection are carried out as specified by the manufacturer (Roche Diagnostics Ltd.). Southern blots of genomic DNA digested with an array of restriction endonuclcascs and probed with the set1 probe reveals that this gene is present on a 5.2-kb EcoRI fragment. Chromosomal DNA is digested with EcoRI and ligated to pUC19. The ligation mix is transformed into E. coli TOP10. Transformants are transferred to Hybond-N membranes (Amersham, Little Chalfont, United Kingdom) and screened for the sel1 gene using the 253-bp set1 probe. One clone, pSETlfi, has a 5.2-kb insert containing the set1 gene. The 5.2-kb insert is sequenced by primer walking using a BigDyc terminator kit as specified; by the manufacturer (ABI Perkin-Elmer). The cycle-sequencing reactions are run on an ABI 310 genetic analyzer. The template is sequenced in both directions in duplicate.

[1980] Cloning of the full-length set1 gene and identification of the novel exotoxin-like gene cluster. The set1 gene is mapped to a 5.2-kb £coRI S. aureus genomic DNA fragment by using a 253-bp probe designed to target the 5′ end of set1 (data not shown). To clone this fragment, a complete S. aureus NCTC 6571 genomic DNA-pUC19 EcoRI library is constructed in E. coli and screened using the 253-bp set1 probe. One positive clone, pSET16, containing a 5,175-bp fragment is used for further analysis. The complete DNA sequence of this 5,175-bp fragment is determined and has been deposited in GenBank (accession no. AF094826). Analysis of the DNA sequence of pSET16 reveal four complete open reading frames together with two partial open reading frames at the 5′ and 3′ extremities of the DNA, A BLAST search of the SwissProt database indicated that the four complete open reading frames and one of the partial open reading frames (5′ end) had homology, although low, to those encoding a number of staphylococcal and streptococcal exotoxins, including TSST-1. The second partial open reading frame at the 3′ extremity encoded the start of a possible host specificity determinant methylase (HsdM)-like protein (54% identity over 26 amino acids to Klebsiella pneumoniae HsdM). The novel exotoxin-like genes are designated set1 to set5 based on the order of their discovery. The organization of the set genes is shown in Williams et al., supra. The distance between each of the set genes varies from 339 to 446 bp, while the shorter intergenic region between set4 and the isdM-like gene is 261 bp. Apart from the set2 gene (for which the upstream region has not been sequenced), all genes are preceded by putative ribosome-binding sites 7 bp upstream of their start codons.

[1981] Computer-aided modeling of protein structures: The SET sequences, excluding SET2, for which we did not have complete sequence data, were modeled against two target proteins, TSST-1 and SPEC, using a Silicon Graphics computer. Coordinate files for SPEC (1 an 8) and TSST-1 (2tss) are downloaded from the Brookhaven Protein Database. MODELLER software is used which optimizes spatial restraints derived from the sequence alignments, to build models of the SET proteins. Protein models thus derived are viewed using MOLSCRIPT. Based on sequence alignments using CLUSTAL_X Windows 1, the SET3 and SET4 sequences are modeled using TSST-1 (2tss.pdb) as template while the SET1 and SETS sequences are modeled using SPEC (1an8.pdb).

[1982] Distribution of the set1 gene among staphylococci.: Staphylococcal strains are screened for set1 by PCR. Chromosomal DNA from S. aureus NCTC 6571, NCTC 8325-4, FRI326, and eight clinical isolates (obtained from Geoffrey Scott, University College London Hospital) and S. epidermidis NCTC 11964 and NCTC 11047 are used as templates. A total of 30 cycles of amplification are performed using the 31 forward primer 5′-GAATTCAGATTGGGAGAATAATACT ATG and the reverse primer 5′-AGATCTCAACGTTTCATCGTTAAGCTGC.

[1983] Distribution of the set1 gene among staphylococci.: Ten strains of S. aureus, FRI326, NCTC 8325-4, and eight clinical isolates, together with two strains of S. epidermidis (NCTC 11964 and NCTC 11047) are analyzed by PCR for the presence of the sel1 gene. Products are generated for all of the S. aureus strains but not for either of the S. epidermidis strains (Williams et al., supra). Cloning and sequencing of the sel1 genes from three of the S. aureus strains (FRI326, NCTC 6571, and NCTC 8325-4) reveals that the NCTC 6571 gene has 92 and 88% identity to the FR1326 and NCTC 8325-4 sel1 genes, respectively. The respective GenBank accession numbers for the set1 genes from FRI326, NCTC 8325-4, and NCTC 6571 are AF188836, AF188837, and AF188835. The predicted protein sequences differ in 30 (FRI326) and 34 (NCTC 8325-4) positions from the NCTC 6571 SET1 sequence, corresponding to 87 and 84% identity, respectively, at the amino acid level.

[1984] Dot blot analysis of set1 mRNA production.: Overnight cultures of S. aureus grown in 1% casein hydrolysate-2.5% yeast extract are diluted (1:50) in fresh broth and incubated at 37° C. with aeration. Aliquots are taken at various time points, and the cells are harvested and washed with 0.5% Twccn 80. The cell pellets are suspended in 0.5 ml of lysis solution (consisting of 9.6 ml of Divolab no. 1 detergent [DiversyLever Ltd.], 24 ml of 500 mM sodium acetate [pH 4], 66.4 ml of distilled water), 0.5 ml of acid-phenol (pH 4), and 0.1 ml of chloroform-isoamyl alcohol (24:1) and lysed using a Ribolyser (Hybaid). After a 10-min incubation on ice followed by ccntrifugation, the supernatants are extracted with phenol-chloroform and the RNA is precipitated. RNA (2 &mgr;g) is blotted onto a nylon membrane and probed using a DIG-labeled set1 probe. The hybridization and subsequent chemiluminescent detection are carried out as specified by the manufacturer (Roche Diagnostics Ltd.).

[1985] Dot blot analysis of set1 mRNA production.: To determine if set1 is expressed in S. aureus, total cellular RNA extracted at various growth stages from S. aureus NCTC 6571 is probed with a probe specific to set1. The expression of set1 is growth phase dependent, with the highest level of expression in the stationary phase.

[1986] Cloning and expression of set1.: The set1 gene encoding the mature protein minus the signal peptide is PCR amplified from pSET16 DNA and inserted into the pQE30 N-terminal histidine tag fusion vector. This construct is introduced into E. coli JM109. Protein production is found to be most efficient when bacteria are grown at 28° C. after induction (data not shown), giving yields of approximately 20 mg of soluble protein per liter. Analysis of SET1 by gel filtration chromatog-raphy reveals that it exists as a monomeric protein of about 23 to 24 kDa. The set1 genes from NCTC 8325-4 and FRD26 arealso cloned and expressed using this system and found to encode monomeric proteins with molecular masses identical to that of SET1 from NCTC 6571. All rSET proteins are homogenous as determined by sodium dodecyl sulfate-polyacryl-amide gel electrophoresis and migrate with molecular masses of about 23 to 24 kDa.

[1987] Cloning of set1 into an N-terminal polyhistidine expression vector.: The oligonuclcotide 5′-GGATCCGCAGAAAAACAAGAGAGAGTAC and 5′-GTCGACAACGTTTCAf CG-TTAAGCTGCC are designed to amplify the 677-bp set1 gene minus the DNA encoding the N-terminal signal peptide and also contained recognition sequences for the restriction enzymes BamHI and SalI (underlined), respectively. The PCR fragment is initially cloned into PCR2.1-TOPO and transformed into TOP10 (Invitrogen, Leek, The Netherlands). The set1 gene is extracted from PCR2.1-TOPO on a BamHI-SalI fragment and ligated to BamHI-SalI digested pQE30 (Qiagen Ltd., Crawley, United Kingdom). The ligation mix is transformed into E. coli JM109(pREP4), and transformants are selected by growth at 30° C. on Luria-Bertani agar containing 100 &mgr;g of ampicillin per ml and 25 &mgr;g of kanamycin per ml.

[1988] Expression at set1 and purification of recombinant SET1.: For gene expression, positive clones aregrown overnight in Terrific broth, diluted 1:25 in fresh broth, and incubated for a further 1 h at 37° C. Gene expression is induced with 1 mM isopropyl-p-D-thiogalactopyranosidc (IPTG) for 4 h at 28° C. Cells are harvested by centrifugation at 6,000×g for 30 min and then resuspended and lysed for 20 min in B-PER protein extraction reagent (Pierce & Warriner Ltd.) containing 20 mM imidazole, 1.5 &mgr;M phenylmethylsulfonyl fluoride, 1 &mgr;M pepstatin, and 10 &mgr;M leupeptin. Lysates are clarified by centrifugation at 23,000×g for 15 min. Recombinant proteins are purified using Ni-nitrilotriacetic acid-agarose columns under native conditions as specified by the manufacturer (Qiagen Ltd.), except that after the lysates are loaded onto the column, an additional column wash, consisting of 2.5 mg of polymyjtin B per ml in wash buffer, is performed to remove contamination with lipopolysaccharide. Finally, recombinant SET1 (rSET1) is further purified by gel filtration chromatography using a Superdex75 column precquilibrated in phosphate-buffered saline and attached to a Pharmacia SMART system (Amersham-Pharmacia Biotech).

[1989] Assay of cytokine production by PBMCs.: PBMCs are prepared as previously described. Cells are plated at a density of 2 X 106 cells/ml in 24-well plates and stimulated with graded concentrations of protein. SEB (Sigma-Aldrich Ltd.) is used as a positive control. Cell supernatants are assayed for the presence of interleukin-1&bgr; (IL-1&bgr;), IL-6, and tumor necrosis factor alpha (TNF-&agr;) using two-site enzyme-linked immunosorbent assays as previously described.

[1990] Capacity of rSET1 to stimulate production of the proinflammatory cytokines IL-1&bgr;, IL-6, and TNF&agr;: All characterized staphylococcal enterotoxins are able to stimulate proinflammatory cytokines. The ability of rSET1 from strain NCTC 6571 to stimulate the production of the cytokines IL-1&bgr;, IL-6 and TNF-&agr; by PBMCs is compared to that of SEE. To establish the purity and to ensure that similar concentrations of each protein preparation are used, rSET1 and commercial SEE are compared by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Stimulation of PBMCs with rSET1 results in the production of all three of the proinflammatory cytokines tested (Williams et al., supra). rSET1 stimulates the secretion of IL-6 by PBMCs over the dose range of 100 ng/ml to 10 &mgr;g/ml, compared to SEB, which is active at inducing IL-6 production over the dose range of 10 ng/ml to 10 &mgr;g/ml. However, the maximal levels of IL-6 produced in response to rSET1 are almost 10-fold greater than those induced by SEB. Heating of rSET1 at 100° C. for 20 min reduces its ability to stimulate IL-6 production by 69%. SEB is a very poor inducer of IL-1&bgr; secretion by PBMCs. rSET1, on the other hand, shows a similar dose response to that produced for IL-6 secretion, being active over the range of 100 ng/ml to 10 &mgr;g/ml. The maximal level of IL-1&bgr; produced by PBMCs stimulated with rSET1 is, again, almost 10-fold greater than that induced by SEB. rSET1 is not a potent inducer of TNF-&agr; secretion, being active only over the concentration range from 1 to 10 &mgr;g/ml. In contrast, SEB was a potent inducer of TNF-&agr; secretion by PBMCs, having activity over the dose range of 1 ng/ml to 10 &mgr;g/ml. Once again, the maximum level of cytokine secretion is produced in response to rSET1 and not to SEB; however, the levels are only slightly higher.

[1991] The nuclcotide sequence data reported here have been deposited in the GenBank database under accession numbers AF094826 (set gene duster fragment), AF188835 (NCTC 6571 set1 gene), AF188836 (FRI326 set1gene), and AF188837 (NCTC 8325-4 set1 gene).

EXAMPLE 64 Isolation and Characterization of SPEB

[1992] SPEB by Purification of native SpeB from strain MGAS 1719 is given by Gubba S et al., Infect. Immun. 66: 765-770 (1998). Native 28-kDa SpeB protease was purified from the culture supernatant of strain MGAS 1719 as described previously (14). The purified protein is >95% pure, as analyzed by SDS-PAGE and staining with Coomassie brilliant blue. Amino-temtinal sequencing of recombinant proteins. A 20 pg aliquot of each recombinant protein with the His tag removed by digestion with rTEV protease is analyzed by SDS-PAGE, transferred to a Problott membrane (Applied Biosystems, Foster City, Calif.), and stained with Coomassie brilliant blue. The desired protein band is excised and analyzed with an Applied Biosystems model 473A protein sequencer located at the Baylor College of Medicine Core Protein Facility.

[1993] Construction of the speB C192S mutant is given by Musser J et al, Infect. Immun. 64: 1913-1917 (1996). The speB gene is amplified from S. pyogenes MGAS 1719, a strain that contains the speB7 allele (24), and the PCR fragment is doned into the pCR-Script vector (Stratagene, La Jolla, Calif.). The oligonucleotides used in PCR amplification corresponds to positions −160 to −138 (primer SPEBX) and 1303 to 1325 (primer SPEB2) of a published yeB gene sequence. The 30-ul PCR mixture contained 1 &mgr;g of MGAS 1719 genomic DNA, 50 mM KC1, 10 mM Tris-HCl (pH 8.5), 1 mM Mg2+, 200 &mgr;M each deoxynudeoside triphosphate, 2 &mgr;M each primer, and 2.5 U of Pfu DNA polymerase. Amplification is performed in a Perkin-Elmer Cetus model 480 thermocyder, with the following parameters: 30 cycles of denaturation at 94° C. for 1 min, annealing at 55° C. for 1 min, and extension at 72° C. for 1.5 min. A 1.5-kb amplification fragment is cloned into pCR-Script, and plasmid DNAs obtained from Escherichia coli transformants are characterized by automated DNA sequencing (24) to verify that no mutations occurred in the inserted speB gene.

[1994] One clone (pSEB1719) with the same nudeotide sequence from positions −155 to 1325 as the speB7 allele is chosen for use in mutagenesis. A PCR-based mutagenesis procedure is used to generate a C-192 (TGT)-to-S-192 (AGT) substitution. The sense-strand primer (TGT2) has the sequence CAG GAAGTGTTGCTACTGCAA, and the sequence of the antisense-strand primer (TGT1) is CAACACTTCCTGTAGCTGCATG. Separate PCRs are done with primers TGT2 and SPEB2 in one reaction and primers TGT1 and SPEBX in a second reaction. These reactions are carried out with 1 ng of plasmid pSEB1719 and the PCR conditions described above except that primer annealing is done at 40° C. for 1 min. As expected, two DNA fragments (740 and 757 bp) are generated by the reactions. Following agarose gel electrophoresis, these fragments are recovered and pooled, and 1 &mgr;g of the mixture is used in a second round of PCR amplification with primers SPEBX and SPEB2 and an annealing temperature of 55° C. A resulting 1.5-kb full-length speb gene is then cloned into pCR-Script. Screening of plasmids from 183 colonies by agarose gel electrophoresis identified five organisms with appropriately sized inserts. The target region was sequenced in these five clones, and one (pSEBC2S) that has the desired TGT->AGT (C192S) substitution is identified. The 1.5-kb insert is then sequenced in its entirety by an automated strategy (24), and no additional nudeotide substitutions are identified.

[1995] Expression and purification of recombinant proteins is given by Gubba et al. supra 1998 Recombinant proteins are obtained from E. coli BL21 containing the appropriate plasmids after induction with isopropyl-p-o-thiogalactopyranoside (IPTC). Cells are grown overnight at 30° C., diluted 1:10 in Luria-Bertani medium supplemented with 100 &mgr;g of ampicillin per ml, and cultured to an optical density at 590 nm of 0.5 to 1.0. IPTG is added (final concentration, 0.6 mM), and the cells are grown for an additional 2 to 6 h. After centrifugation at 10,000×g for 10 min, the supernatant is discarded and the cell pellet is stored at −70° C. The cells are resus-pended in 5 volumes of 50 mM Tris-HCl (pH 85) containing 10 mM 2-mercaptoethanol and 1 mM phenylmethylsulfonyl fluoride and lysed by sonication with three 20-s pulses generated by a Sonifier Cell Disrupter 250 (Branson, Danbury, Conn.). After each 20-s burst, the cells are cooled for 5 min in a wet-ice bath. Cell wall debris is removed by centrifugation at 10,000×g for 10 min, and the supernatant is applied to a 1- to 5-ml column of Ni-nitrilotriacetic acid resin (Qiagen, Chatsworth, Calif.) equilibrated by being washed with 5 volumes of buffer A (20 mM Tris-HCl pH 8.51, 100 mM KCl, 20 mM imidazole, 10 mM 2-mercaptoethanot, 10% [vol/vol] glycerol). The column was washed with 10 volumes of buffer A, 2 volumes of buffer B (20 mM Tris-HCl pH 8.51, 1 M KCl, 10 mM 2-mercaptoethanoL 10% [vol/vol] glycerol), and 2 volumes of buffer A to remove unbound protein. Recombinant protein containing the His tag is eluted from the column by washing with 5 volumes of buffer C (20 mM Tris-HCl [pH 8.5], 100 mM KCl. 100 mM imidazole, 10 mM 2-mercaptoethanol, 10% [vol/vol] glycerol). Recombinant proteins without the His tag are purified after direct cleavage of the His tag from the column-bound protein by treatment with approximately 1,000 U of recombinant tobacco etch virus (rTEV) protease per 3 mg of bound fusion protein. When this procedure is used, the rTEV protease is added to 5 ml of buffer A supplemented with 1 mM dithiothreitol and 0.5 mM EDTA and digestion is conducted for 2 h at 30° C. on a shaking platform. The recovered proteins are concentrated to 0.5 ml with Centrisep 3 or Centrisep 10 concentrators (Amicon, Beverty, Mass.), reconstituted to 3.0 ml with phosphate-buffered saline (PBS), and desalted either with desalting columns (Econopac 10 DG columns; Bio-Rad) or by dialysis against PBS with Slide-A-Lyser cassettes (Pierce, Rockford, Ill.). The concentration of the purified protein is estimated by a protein assay (Pierce), and the material is stored at 4° C. The purity of recombinant proteins is estimated by silver staining after sodium dodecyl sulfate-potyacrylamide gel electrophoresis (SDS-PAGE).

EXAMPLE 65 Identification and Characterization of Yersinia Superantigen

[1996] Bacterial strains, plasmids, and bacteriophage are given in Miyoshi-Akiyama T et al., J. Immunol. 154: 5228-5234 (1995). Y. pseudotuberculosis CYP86-15, serotype 4b, isolated from a patient in the mass outbreak of Y. pseudotuberculosis infection in Chiba prefecture in 1986, is used to prepare YPM and construct a genomic library. XEMBL3 phage vector DNA and the host strain, Escherichia coli XL1-Blue MRA (P2), are purchased from Stratagene (La Jolla, Calif.). E. coli DH10B is purchased from Life Technologies (Gaithersburg, Md.) and used as the host strain for pUC19 and pMW119 plasmid vectors. The &lgr;-in vitro packaging mixture is purchased from Amersham International (Bucks, U.K.) Nippon Gene Co. (Tokyo, Japan). The low copy plasmid pMW119 is purchased from Nippon Gene Co. (Tokyo, Japan).

[1997] Purification of YPM is given in Miyoshi-Akiyama Tet al., supra. Briefly, Y. pseudotuberculosis strain 86-15, serotype 4b, isolated from a patient in a mass outbreak of Y. pseudotuberculosis infection in Shisui Town, Chiba Prefecture, Japan, in March 1986 (4), is provided by Dr. Kenji Koiwai, Chiba Institute of Health Science, Chiba, Japan, and used for YPM purification. The bacteria are grown in 20 liters of brain heart infusion broth for 18 h at 27° C. (yields 20 g wet weight/culture). Twenty grams of the bacteria are suspended in 200 ml of PBS (pH 7.2) and ultrasonicated. The supernatant of the suspension of disrupted cells is depleted of nucleic acids by streptomycin treatment and of unprecipitated substances by precipitation with 100% saturated ammonium sulfate. The precipitated mitogenically active fraction in the ammonium sulfate saturation is serially chromatographed on DEAE-Sepharose, Sephacryl S-100 HR, and TSK-gel G2000SW HPLC system (Tosoh Corp., Tokyo, Japan). In SDS-PAGE analysis, the sample obtained after chromatography on TSK-gel G2000SW HPLC system migrate as a single band at a m.w. of 21 kDa. The total amount of YPM, recovered is about 100 to 200 &mgr;g from 20 g of wet bacteria.

[1998] Cloning and sequencing of the DNA fragment encoding the 30 amino acid residues of the N-terminal region of YPM are given in Miyoshi-Akiyama T et al., supra. The 30 amino acid residues of the N-terminal region of YPM (T[I or D]YDNTLNSIPSLRIPN1ATYTGTIOGKGE) are determined by commercial services. In the second residue of the N-terminal amino acid sequence, aspartic acid [D] is identified in one analysis and isoleucine [I] in two analyses. Based on the sequence including isoleucine in the second residue, two degenerate oligonucleotides (Primers used are given in Table I of Miyoshi-Akiyama, T. et al., J. Immunol. 154: 5228-5234 (1995)) deduced from both sides of the 30 residues of the N terminus of YPM are synthesized to amplify the DNA fragment encoding the YPM N terminus using the PCR method.

[1999] Genomic DNA from Y. pseudotuberculosis CYP 86-15 is isolated according to the procedures described previously. The DNA was denatured for 5 min in a boiling bath and used as the template DNA for PCR. The PCR was run in 50-&mgr;l reaction mixtures containing 300 ng/ml template, 0.2 ng/ml RNase, 0.5 mM deoxynucleoside triphosphate mixture, 4 nM PCR primer 1.1 nM PCR primer 2, and 40 U/ml Vent DNA polymerase (New England Biolabs, Beverly, Mass.) using a DNA Thermal cyclar 480 (Perkin-Elmer, Norwalk, Conn.). The reaction mixtures are overlaid with 50 &mgr;l of mineral oil. The PCR are subjected to the following reaction conditions: 40 cycles of a combination of 30 s at 95° C., 30 s at 25° C., and 1 min at 55° C./cycle. The PCR products obtained are purified by pheniol-chloroform extraction and applied to PAGE (10% gel). The 90-base pair (bp) fragment encoding the 30 residues of the N terminus of YPM is excised from the gel and phosphorylated by T4 polynucleotide kinase, then ligated into the SmaI site of pUC19 to obtain plasmid pUC-YPM-N90.

[2000] DNA sequencing of the gene encoding the 30 residues of the N terminus of YPM is performed by the method of Sangar et al., Proc. Natl. Acad. Sci. 12: 5436-5442 (1977) using an ABI 377A DNA sequencer system (Applied Biosystems Japan, Tokyo, Japan) with AmpliTaq (Amersham International) and PRISM ready reaction dye primer cycle sequencing kit M13 Rev. (Applied Biosystems Japan). On the basis of the DNA sequence, digoxigenine-labeled probe (DIG-labeled oligonucleotide probe in Table I) is synthesized and used as the probe for screening the genomic library of Y. pseudotuberculosis.

[2001] Construction and screening of a genomic library of Y. pseudotuberculosis is given in Miyoshi-Akiyama T et al., supra. Total genomic DNA of Y. pseudotuberculosis is partially digested with BamHI, and the resulting DNA fragments are ligated into &lgr;EMBL3/BamHI arms and packaged into the &lgr; phage particle. The mixture of the phage derivatives and E. coli XL1-Blue MRA(P2) in L soft agar containing 0.2% maltose and 10 mM MgSO4 is plated on L broth agar plates, and the plates are incubated overnight at 37° C. Grown plaques aretransferred to Hybond N+ filters (Amersham International) and screened with the DIG-labeled oligonucleotide probe by the plaque hybridization method using a DIG Nucleic Acid Detection Kit (Boehringer Mannheim, Indianapolis, Ind.). Phage plaques showing positive hybridization are picked, mixed with E. coli XL1-Blue MRA(P2) in a ratio of 10:1, and cultured overnight. The recombinant phage DNA is prepared from the culture supernatants using polyethylene glycol and used in the following subcloning experiment.

[2002] Subcloning and sequencing of the gene coding YPM is given in Miyoshi-Akiyama et al., supra.

[2003] The DNA preparations from the recombinant phages are digested with SalI and ligated into the same site of pMW119. The recombinant pMW119, pMW-YPM, is introduced into E. coli DH10B. The pMW-YPM DNA is purified from the E. coli cells and used as template for DNA sequencing. DNA sequencing experiments are performed using a Shimadzu DNA sequencer DSQ-1 system (Shimadzu Co., Kyoto, Japan) with Sequenase Ver. 2.0 (Amersham International pic.) and synthetic oligonucleotide primers (Sequence primers 1-7 in Table I). The sequence data obtained are analyzed by the GENETYX-Mac program (SDC, Tokyo, Japan).YPM

[2004] E. coli DH10B carrying the pMW-YPM is cultured overnight at 37° C. Tween 80 (0.1%) is added to the culture supernatant obtained, and this is applied to an anti-YPM polyclonal rabbit Ab-conjugated Sepharose column (1.6×3 cm) equilibrated with PBS (pH 7.2) containing 0.1% Tween 80. The elution is performed using 0.1 M glycine-Cl (pH 2.7). The eluted fractions are neutralized, pooled, desalted, concentrated, and examined for biologic properties as YPM.

[2005] Biologic Assays

[2006] Lymphoid cells and L cells.: In brief, human PBMC are obtained from peripheral blood of healthy donors by Ficoll-Conray density gradient centrifugation. T cell-enriched human PBMC are obtained by the S-2-aminoethylisothiouronium-treated SRBC rosette method as a rosette-forming cell fraction. T cells are obtained by treatment with the rosette-forming cell fraction with a combination of mAb to HLA-DR (12C3) and nontoxic rabbit serum. L cells transfected with HLA-DR4 genes (8124), L cells transfected with DQw1 genes (LAQ8251), L cells transfected with DP(Cp63) genes (LAP4108), and control L cells (8400) are used as AC in T cell activation. L cells are treated with 50 &mgr;g/ml mitomycin C at 37° C. for 30 min and irradiated (3500 rad) before use. Assays of T cell responses.

[2007] Assays for YPM-induced T cell responses: In brief, in the assay for IL-2 activity, whole human PBMC arestimulated with mitogens, and the culture supernatants are examined for IL-2 activity using IL-2-dependent CTLL-2 cells. For examination of the requirement of MHC class II molecules on AC in T cell activation, T cells from human PBMC are stimulated with mitogens in the presence or absence of HLA class II+ L cells or control L cells. The culture supernatants are assayed for IL-2 activity.

[2008] PCR method for determining TCR-V&bgr; usage.: Determination of TCR-V&bgr; selectivity of human T cells stimulated by the cloned YPM is performed by the reverse transcription-PCR method. In brief, human PBMC are stimulated with several preparations of YPM or anti-CD3 mAb, and the T cell blasts collected are expanded with IL-2 for 2 days. Samples of cDNA synthesized by incubating total mRNA obtained from T cell samples with reverse transcriptase are amplified by the PCR method using 22 5′ V&bgr;-specific sense primers and 3′ C&bgr;-specific antisense primer end-labeled with 32P. TCR C&agr; cDNA as an internal control was co-amplified in parallel. The amplified products are separated by electrophoresis on 2.5% agarose gel and examined for radioactivity by autoradiography and the GS-250 Molecular Imager System (Nippon Bio-Rad Laboratories, Tokyo, Japan). Radioactivities in the V&bgr; band are normalized to the Ca band as the V&bgr;:C&agr; ratio.

EXAMPLE 66 Superantigen DNA Delivered to Tumor Cells as Immunoconjugates

[2009] Cloning, expression, purification, and characterization of ScFv and ScFv-protamine proteins carried out by the method of Li et al Cancer Gene therapy 8: 555-565 (2001). The anti-ErbB2 ML39 ScFv gene sequence is removed from pSyn-1 ML3920 and cloned into pAcGP67B baculo-virus transfer vector at restriction sites NcoI and NotI to allow secretion of the ScFv and ScFv fusion proteins into the medium. A six-His tail is also engineered at the C-terminus of the peptide to facilitate purification. The full-length human protamine sequence is described previously. The sequence for the truncated form of human protamine comprising amino acids 8 through 29 is as follows: RSQSRSRYYRQRQRSRRRRRRS. The sequence is placed downstream of the ML39 ScFv, with a His 6×6 tail at the C-terminus. Recombinant baculovirus is generated by using the BaculoGold system from Pharmingen (San Diego, Calif.).

[2010] To isolate recombinant proteins from culture supernatants, supernatants from SF21 cell cultures infected with the recombinant viruses are collected by centrifugation at 2000 rpm for 20 minutes at 4° C. The proteins are precipitated by addition of equal volume of saturated ammonium sulfate to the harvested culture supernatant, followed by incubation of the mixture at 4° C. overnight. The proteins are then pelleted by centrifugation at 10,000×g for 30 minutes at 4° C. The resulting pellets are resuspended in phosphate-buffered saline (PBS)/10% glycerol, followed by extensive dialysis with 5% glycerol/PBS. The dialyzed protein preparations are then applied to a Probound nickel-chelating column (Invitrogen, San Diego, Calif.). Recombinant ScFv proteins are purified under native condition using increasing concentrations of imidazole in the elution buffer. The collected protein fractions are then analyzed for purity using sodium dodecyl sulfate polyacrylamide gel electro-phoresis (SDS-PAGE) and Western blot. The purified proteins are dialyzed against PBS plus 5% glycerol to remove imidazole.

[2011] To isolate protein from cellular extracts, cells are dissolved in 6 M guanidine hydrochloride (GuaHCl) for 30 minutes on ice, followed by brief ultrasonication. Insoluble cellular debris is then removed by centritugation at 12,000×g for 30 minutes at 4° C. The resulting protein preparations are then applied to a Probound column (Invitrogen, Carlsbad, Calif.) under denaturing conditions (6 M GuaHCl). Recombinant proteins are then eluted by increasing concentrations of imidazole in the presence of 6 M GuaHCl. The eluted proteins are refolded using methods previously described with slight modifications. Briefly, the samples are first dialyzed against Buffer I, which consists of PBS containing linear decreasing concentrations of GuaHCl (from 6 to 0 M) generated by a gradient maker (Fisher Scientific, Atlanta, Ga.) over a period of 48-72 hours, followed by dialysis against Buffer II, which consists of 5% glycerol, 0.5 M arginine, 1 mM EGTA, and 1 mM glutathione in reduced and oxidized form at 4° C. for 48 hours. Afterwards, the buffer is changed to PBS/5% glycerol by dialysis. Finally, the protein preparations are concentrated and stored at 4° C. with 0.005% sodium azide, or aliquoted and frozen at −70° C.

[2012] Flow cytometry: To determine binding of ScFv to the ErbB2 molecules, we use ErbB2(+) cells (SKBR3) and ErbB2(−) cells (MCF7) in a flow cytometry assay. Briefly, the cells are first detached from the bottom of tissue culture dishes by using a mild method for protection of the cell surface proteins, i.e., incubation of the cells in enzyme-free cell dissociation buffer (Life Technologies, Rockville, Md.) for 20 minutes, followed by washing with PBS containing 5% PCS. The cell suspension is then incubated with ScFv (2 &mgr;g/mL for 106 cells) for 30 minutes on ice. The cells are then washed 3× with PBS/5% PCS, followed by further incubation with murine anti-His tag monoclonal antibody (Babco, Berkeley, Calif.). Finally, the cells are washed 3× with PBS/5% PCS prior to a 30-minute incubation with FITC-conjugated goat antimouse IgG. The reaction is terminated by three additional washes with PBS/5% PCS and fixed in 2% formaldehyde/PBS. Positive cells are scored by FACS analysis.

[2013] SEA DNA Binding to Protamine-Fab fusion proteins: The SEA DNA binding to the antiERB2-protamine fusion protein is examined by a gel-shift assay. When increasing amounts of the fusion protein are mixed with the radiolabeled DNA fragments or whole plasmid DNA decreasing amounts of DNA fragments or whole plasmid DNA migrated into the agarose gels and the DNA entering the agarose gels migrated more slowly. In contrast, the DNA incubated with the antiERB2 protein alone show no significant change of its mobility in the agarose gels. The binding activity of the fusion protein to tumor cell surface after it was coupled with DNA is further examined by fluorescence activated cell sorting (FACS) in which the anti-ERB2-protamine-DNA complexes showed positive staining. Thus, the protamine fusion protein maintains binding activity to tumor cells when coupled with SEA DNA molecules.

[2014] Construction and expression of superantigen: The encoding gene of SEA is chosen for the mammalian toxin expression vectors due to the accumulated knowledge of the encoding gene sequence-function relationships. The gene is placed under the control of CMV and T7 promoters. These constructs allow expression of the toxin by transfected tumor cells. When the SEA expressors are transfected into mammalian tumor cells using lipofectin,22 SEA is produced and detected in the media.

[2015] Selective secretion of SEA by Tumor Cells Targeted by fusion protein-Superantigen DNA complexes: To investigate whether anti-ERB2-protamine fusion protein can transfer the toxin expresser into tumor cells, the purified anti-ERB2 Fv-protamine protein is incubated with pCMV-SEA plasmid DNA at a ratio of 2:1 (determined by titration) in 0.2 M NaCl solution to form fusion protein-DNA complexes. The target tumor cells are incubated with the anti-ERB2-Fv-protamine-SEA expressor complexes, SEA expresser alone or Fv-protamine fusion protein alone. After 48 h of incubation, SEA activity in the culture cells areexamined. After incubation with the anti-ERB2-Fv-protamine-toxin expresser complexes for 48 h, the target tumor cells show a significant secretion of superantigen SEA.

[2016] DNAse protection assay: Protection of SEA DNA by protein and/or lipid is performed by treating the complex with excessive amount of DNase (40-80 U of DNase I per microgram of DNA). After incubation at 37° C. for 2 hours, the reaction mixture is then added with SDS to final concentration of 1% and Proteinase K at 1 mg/mL, followed by incubation at 37° C. for 2 hours. The mixture is then twice extracted with phenol/chloroform for isolation of DNA fragments. The aqueous phase containing the DNA fragments following extraction is then analyzed by ethidium bromide staining of 1% agarose gel and photographed under UV light

[2017] Preparation of Superantigen-DNA-oligolysine-RGD-Complexes:

[2018] This is carried out by the method of Harbottle R P et al., Human Gene Therapy 9: 1037-1047 (1998). American firefly (Photinus pyralis) luciferase under the control of a simian virus 40 (SV40) promoter and enhancer in the vector pGL3 (Promega, Madison, Wis.) are used as a reporter gene. Plasmid SEA or SEB DNA is purified using Qiagen (Chatsworth, Calif.) columns and the endotoxin extraction kit after alkaline lysis of cells pelleted from overnight cultures of Escherichia coli DH5or. DNA-[K]16RGD complexes are prepared in microcentrifuge tubes by the addition of 0.2 &mgr;g of plasmid DNA to serial dilutions of peptide in 20 &mgr;l of OptiMem (GffiCO-BRL) or HBS. The mixtures are vortexed and incubated at room temperature for 30 min before the complexes are analyzed on 0.8% agarose gels.

[2019] Oligolysine peptide synthesis and chemical characterization: Peptide synthesis is performed on an Applied Biosystems. Inc. (ABI. Foster City. Calif.) solid-phase batch peptide synthesizer (model 431 A) using a 200-400 mesh p-benzyloxybenzyl alcohol (HMP) resin (Novabiochem. San Diego, Calif.). High-performance liquid chromatography (HPLC) is performed using a Gilson HPLC system composed of two solvent delivery pumps (model 306 v 1.0). a manual-Rheodyne injection valve (77251). and a variable-wavelength detector (model 118). Mass spectrometric analysis of the peptide is performed using a LASERMAT 2000 matrix-assisted laser desorption/ionization-time of flight (MALDITOF) mass spectrometer (Thermobioanalysis. San Jose. Calif.). Amino acid composition analyses are performed using an ABI amino acid analyzer (model 420A) with on-line PTC-amino acid detection. Sequence analyses are carried out using an ABI protein/peptide sequencer (model 477A) with on-line PTH analyzer (model 120A) and data analysis system (model 610A).

[2020] The peptide N—[K]16GGCRGDMFGCA ([K]16RGD) is synthesized on a small scale (0.1 mmol), using the standard fluorenylmethoxycarbonyl (FMOC)-amino acid-coupling protocol but with sequential benzoic anhydride capping steps during the generation of the N-terminal hexadeca-L-lysine sequence. Once the synthesis is concluded, the peptide is cleaved from the resin using a trifluoroacetic acid (TFA) solution (7 ml) containing the following scavengers: phenol (7% w/v), thioanisole (4%, v/v), and ethanedithiol (2%, v/v). The peptide is precipitated using ice-cold methyl/-butyl ether (MTBE) and pelleted by centrifugation. The pellet is then washed repeatedly with MTBE and dried in vacua. This dried pellet is dissolved in a minimum volume of aqueous TFA (0.1%, v/v), and then applied to a P2 BioGel gel-filtration column (2×28 cm) (Bio-Rad Laboratories, Hercules, Calif.). The column is eluted with aqueous TFA (0.1%, v/v) at a flow rate of 0.5 ml/min and the eluant monitored at 223 nm. Salt-free peptide-containing fractions are then combined and freeze dried, giving the crude peptide (10 mg). This crude peptide is then dissolved in aqueous acetic acid (7%, v/v; 160 ml) and the solution buffered to pH 6.0 with aqueous ammonia solution.

[2021] Dimethyl sulfoxide is added (20% [v/v] final concentration) and the solution stirred at ambient temperature for 24 hr. Following fivefold dilution in water, the crude cyclized peptide is applied to a reversed-phase C18 Nova-Pak HPLC column (2.5×10 cm, 6-&mgr;&eegr; particle size) (Waters-Millipore, Bedford, Mass.) previously equilibrated with aqueous TFA (0.1%, v/v) (buffer A), and then eluted with a linear gradient (125 ml) of 0-80% buffer B, which is composed of TFA (0.1%, v/v) in acetonitrile. Fractions are collected at a flow rate of 5 ml/min and elution is monitored at 223 nm. Fractions containing peptide eluting at 41% buffer B are combined and freeze dried to give a lyophilized powder (7.1 mg). By matrix-assisted laser desorption/ionization-time of flight (MALDITOF) mass spectrometry, using an acetonitrile-methanol matrix containing 33 mM a-cyano-4-hydroxycinnamic acid (&agr;-CHC), an [M+H]+ molecular ion is observed at 3123.3 m/z. The mass calculated from the empirical formula, C14H63N14O14S3, is expected to be 1072.2 m/z. The amino acid composition of purified cyclized peptide is checked by amino acid analysis. A sample of the peptide was then dissolved in 50 mM Tris-HCl, pH 9.0, containing acetonitrile (10%, v/v) and digested with endoproteinase LysC (Wako Bioproducts, Wako, Tex.) for 16 hr at ambient temperature. The digest is then subjected to amino acid sequencing and analysis by MALDITOF mass spectrometry. An ion is observed at 1072.2 m/z. The mass calculated from the empirical formula of the RGD domain, is expected to be 1072.2 m/z.

[2022] Transfection of Tumor Cells with Adenoviral Vectors encoding Superantigen and: ttenuated Factor VII: This is carried out by the method of Zhiwei H et al., Proc. Natl. Acad. Sci. 97: 9221-9225 (2000); Zhiwei H et al., Proc. Natl. Acad. Sci. 96: 8161-8166 (1999).

[2023] Cell Lines: LXCSN are TF are human melanoma lines. B16F10 is a mouse melanoma line. The culture medium is DMEM+10% FBS for all of the tumor lines.

[2024] Preparation of the Immunoconjugates: The procedures involves transfecting the expression vector pcDNAS.1 (Invitrogen) into CHO cells or the expression vector pMK33/pMtHy (gift from M. Koelle, Yale University) into Drosphila cells; each vector carried a cDNA encoding a secreted immunoconjugate. The cDNAs for the SEA or SEB superantigen are prepared by the method of Dow S W et al., J. Clin. Invest. 101:2406-2414 (1998) is used. The genes for SEA and SEB are obtained from Dr. John Kappler (National Jewish Hospital), and the gene for TSST-1 is obtained from Dr. Brian Kotzin (National Jewish Hospital). After PCR amplification, all three genes are subcloned into a eukaryotic expression vector (PCR3; Invitrogen Corp., San Diego, Calif.). The primers used for cloning

Claims

1. A method of treating a subject having a tumor or malignant mass comprising administering intratumorally to said subject a tumoricidally effective amount of a superantigen composition comprising a superantigen or a superantigen-like exotoxin.

2. The method of claim 1 wherein the superantigen or exotoxin is selected from the group consisting of a Staphylococcal enterotoxin, a Streptococcal pyrogenic exotoxin, Yersinia pseudotuberculosis superantigen, Mycoplasma arthritides superantigen, and Clostridium perfringens superantigen-like exotoxin.

3. A method of treating a subject having a tumor comprising administering intratumorally to said subject a tumoricidally effective amount of a superantigen composition which comprises:

(a) a biologically active fragment of a full-length Staphylococcal enterotoxin, a Streptococcal pyrogenic exotoxin, Yersinia pseudotuberculosis superantigen, Mycoplasma arthritides superantigen, and Clostridium perfringens superantigen-like exotoxin;
(b) a biologically active homologue of a Staphylococcal enterotoxin, a Streptococcal pyrogenic exotoxin, Yersinia pseudotuberculosis superantigen, Mycoplasma arthritides superantigen, and Clostridium perfringens superantigen-like exotoxin,
(c) a biologically active fusion polypeptide comprising a superantigen sequence of (1) said full length superantigen or exotoxin, (2) said fragment or (3) said homologue which is fused to a fusion partner polypeptide sequence;
wherein:
(i) the fragment, homologue or fusion polypeptide has the biological activity of (A) stimulating T cells or (B) stimulating T cells via a T cell receptor V&bgr; region; and
(ii) the homologue has the following sequence homology or identity compared to the native superantigen or exotoxin:
(A) at least 20% amino acid sequence identity as measured using a sequence comparison algorithm; or
(B) sequence homology characterized as a z value exceeding 10 using an algorithm and Monte Carlo analysis according to W. R. Pearson and D. J. Lipman in the Proceedings of the National Academy of Science U.S.A., 85:2444-2448, 1988, when the sequence of the homologue is compared to the sequence of a native Staphylococcal enterotoxin, a Streptococcal pyrogenic exotoxin, Yersinia pseudotuberculosis superantigen, Mycoplasma arthritides superantigen, and Clostridium perfringens superantigen-like exotoxin; or
(C) has sequence homology characterized as a z value exceeding 10 using the FASTA/FASTP programs and Monte Carlo of Pearson and Lipman when compared to a native Staphylococcal enterotoxin, a Streptococcal pyrogenic exotoxin, Yersinia pseudotuberculosis superantigen, Mycoplasma arthritides superantigen, and Clostridium perfringens superantigen-like exotoxin

4. The method of claim of any of claims 1-3 wherein the superantigen composition is administered in a sustained release vehicle.

5. The method of claim 4 wherein the sustained release vehicle is selected from a group consisting of poly (D-, L- or DL-lactic acid/polyglycolide) polymer, ethylene-vinyl acetate, a bioerodible polyanhydride, a polyimino carbonate, sodium alginate microspheres, a hydrogel, a biodegradable amphipathic copolymer, and a collagen-poly (hema) hydrogel matrix.

6. The method of any of claims 1-3 further comprising administering one or more chemotherapeutic drugs or prodrugs together with or after administration of said superantigen composition, wherein the chemotherapeutic drug or prodrug is or are given in a dose which is lower than a therapeutically effective dose of said drug or prodrug, which therapeutically effective dose is based on administration of said drug or prodrug in monotherapy or in combination therapy but without said superantigen composition.

7. The method of claim 4 further comprising administering one or more chemotherapeutic drugs or prodrugs together with or after administration of said superantigen composition, wherein the chemotherapeutic drug or prodrug is or are given in a dose which is lower than a therapeutically effective dose of said drug or prodrug, which therapeutically effective dose is based on administration of said drug or prodrug in monotherapy or in combination therapy but without said superantigen composition.

8. The method claim 6 wherein the chemotherapeutic drug is administered in a dose that is 10-95% below said therapeutically effective dose.

9. The method claim 7 wherein the chemotherapeutic drug is administered in a dose that is 10-95% below said therapeutically effective dose.

10. The method of claim 6 wherein said drug bis given within the 36 hours after the intratumoral administration of the superantigen composition.

11. The method of claim 7 wherein said drug bis given within the 36 hours after the intratumoral administration of the superantigen composition.

12. The method of claim 8 wherein said drug is first administered after the superantigen composition has been administered for two to four doses.

13. The method of claim 9 wherein said drug is first administered after the superantigen composition has been administered for two to four doses.

14. The method claim 6 wherein the chemotherapeutic drug is selected from the group consisting of an antimetabolite, a pyrimidine analogue, a purine analogue, an anthracycline, a vinca alkaloid, an anti-tubulin drug, an antibiotic, an alkylating agent, an epipodophyllotoxin, and a platinum-based agent.

15. The method claim 7 wherein the chemotherapeutic drug is selected from the group consisting of an antimetabolite, a pyrimidine analogue, a purine analogue, an anthracycline, a vinca alkaloid, an anti-tubulin drug, an antibiotic, an alkylating agent, an epipodophyllotoxin, and a platinum-based agent.

16. The method of any of claims 1-3 further comprising administering to the subject after the intratumoral administration of the superantigen composition, one or more additional cancer therapeutic agents selected from the group consisting of (a) a radiotherapeutic agent, (b) an antiangiogenic agent, (c) a cytotoxin, (d) an apoptosis-inducing agent, or (e) tumor-targeted form of any of (a)-(d).

Patent History
Publication number: 20040214783
Type: Application
Filed: May 5, 2003
Publication Date: Oct 28, 2004
Inventor: David S. Terman (Pebble Beach, CA)
Application Number: 10428817