Hazardous material handling system and method

A method and system for handling hazardous materials contained in a vial includes an isolation enclosure having an opening selectively sealable about the vial, a bag body portion, and a cap portion. A latching extraction element is attached to the cap portion and has a preceding engaging member to secure the vial to the isolation enclosure, an extraction member to be inserted into the vial and remove material therefrom, and a primary engaging member to secure the vial to the extraction member. A valve is mounted outside the isolation enclosure and controls the flow of fluid from the vial. An adaptor having a reseal member permits flow when coupled to the valve and restricts flow when uncoupled from the valve. Once uncoupled, the adaptor is removably associated with a second valve located remotely from the isolation enclosure, allowing fluid to pass into the second valve.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

[0001] The present invention relates to the field of handling hazardous materials, including but not limited to materials such as drugs used for medical purposes. More particularly, this invention relates to a means and method for enabling a user to transfer a hazardous material from a sealed vial or container without allowing significant leakage of the material to the environment. Specific examples of hazardous materials to which the invention is particularly applicable include but are not limited to liquid, freeze dried or powdered cytotoxic drugs that are used extensively in chemotherapy treatment of cancer patients and radiographic materials.

[0002] High toxicity materials, including cytotoxic drugs and radiographic materials, are often enclosed in small bottles or vials that have an opening sealed by an elastomeric plug. It is highly desirable to prevent spillage or escape of even minimal amounts of hazardous materials in either liquid or gas form. Small droplets of materials could undesirably contaminate the ambient environment or come in contact with the person administering the substance.

[0003] Hazardous drugs are compounded in different ways. In large hospital pharmacies and homecare pharmacies, pharmacy technicians wearing gowns and double gloves compound hazardous drugs under vented biological laboratory hoods. These specially designed hoods are expensive and take up valuable floor space. In hospital wards, clinics, doctors' offices and other locations, laboratory hoods may not be readily available and the personnel compounding the drugs may not usually wear such elaborate protective equipment. Shelf life limitations and patient specific dosing requirements may demand that the drug be mixed closer in time and space to the point of care.

[0004] According to one conventional means and method used at the point of care, the user utilizes a sharp needle attached to a syringe to pierce an elastomeric plug or other cap that seals the vial and draw the drug out, often after injecting a suitable solvent or diluents into the vial. The user then injects the drug into a reseal element on an intravenous (IV) container from which the drug is delivered to the patient. Unfortunately, this method creates another hazard in that the person handling the drug or someone else can be “pricked” by the sharp needle.

[0005] Therefore, a principal object of this invention is to provide a method and means for securing a vial within an impermeable isolation enclosure.

[0006] A further object of the invention is to provide a method and means for piercing a vial within the impermeable isolation enclosure in a fixed position; and selectively accessing the contents of the vial.

[0007] Another object of the invention is to provide a method and means for safely transferring a portion of the vial contents, while the vial remains pierced within an impermeable isolation enclosure.

[0008] These and other objects will be apparent to those skilled in the art.

SUMMARY OF THE INVENTION

[0009] A method and system for handling hazardous materials contained in a vial includes an isolation enclosure having an opening selectively sealable about the vial, a bag body portion, and a cap portion. A latching extraction element is attached to the cap portion and has a preceding engaging member to secure the vial to the isolation enclosure, an extraction member adapted to be inserted into the vial and remove material therefrom, and a primary engaging member to secure the vial to the extraction member. A valve mounted outside the isolation enclosure controls the flow of fluid from the vial. An adaptor having a reseal member permits flow when coupled to the valve and restricts flow when uncoupled from the valve. Once uncoupled, the adaptor is removably associated with a second valve located remotely from the isolation enclosure, allowing fluid to pass into the second valve.

DESCRIPTION OF THE DRAWINGS

[0010] FIG. 1 is a top view of the material handling system of this invention;

[0011] FIG. 2 is a partial sectional side view of the material handling system of this invention taken on line A-A of FIG. 1;

[0012] FIG. 3 is a partial sectional side view similar to FIG. 2 of an alternative embodiment of the material handling system of this invention;

[0013] FIG. 4 is a bottom view of a latching extraction element of the present invention;

[0014] FIG. 5 is a side view of the latching extraction element of the present invention;

[0015] FIG. 6 is a sectional side view of the latching extraction element of the present invention taken on line B-B of FIG. 4;

[0016] FIGS. 7, 8 and 9 are sequential sectional side views of the latching extraction element of the present invention associating with a vial taken on line A-A of FIG. 4;

[0017] FIG. 10 is a rear view of an adaptor of the present invention;

[0018] FIG. 11 is a sectional side view of the adaptor of the present invention; and

[0019] FIGS. 12 and 13 are sequential sectional side views of the adaptor attached to a syringe and associating with a valve.

DESCRIPTION OF THE PREFERRED EMBODIMENT

[0020] With reference to FIG. 2, a material handling system 10 for use with a sealed vial 12 includes an isolation enclosure 14 adapted to completely enclose the vial 12. It will be understood by those skilled in the art, that the term vial, as used herein, includes but is not limited to any type of sealed container, ampule, or bottle. A sealing closure 13 is attached to or integrally formed with the vial 12. In the case of a bottle, an elastomeric stopper can seal the opening of the container.

[0021] The isolation enclosure 14 is impermeable and has a body portion 16, a cap portion 17, and an opening 20 that is selectively sealable by a closure portion 22. In one embodiment, the body portion 16 is a flexible bag constructed of a material that is transparent or translucent. The cap portion 17 is constructed of a rigid material and has an inlet port 18 and an outlet port 19. Of course, one of ordinary skill in the art will recognize that the body portion 16 can be semi-rigid or rigid and the cap portion 17 can be semi-rigid or even flexible in whole or part without detracting from the present invention.

[0022] Opening 20 is optionally located in any convenient location on the isolation enclosure 14. In one embodiment, the opening 20 is formed between the body portion 16 and the cap portion 17. The closure portion 22 includes a fastener 24 located on the body portion 16 and a fitting 26 located on the cap portion 17. The fastener 24 and fitting 26 mate to selectively seal the opening 20 and form the closure portion 22. It will be understood by one of ordinary skill in the art that the closure portion 22 may be of any known design, including but not limited to snaps fittings, threaded fittings, latch fittings, hook fittings, and clamp fittings.

[0023] With reference to FIG. 3, the opening 20 is formed in the body portion 16 in another embodiment. The closure portion 22 includes a mated track 28 located on the body portion 16 about the opening 20 and a zipper element 30 located on body portion 16 and about the mated track 28. The zipper element 30 is slidably associated with the mated track 28 to selectively close the opening 20. It will be understood by one of ordinary skill in the art that the closure portion 22 may be of any known design, including but not limited to clips, clamps, zipper free mated track seals, and adhesive.

[0024] A latching extraction element 32 is attached to the cap portion 17 and has a preceding engaging member 34 to secure the vial 12 to the material handling system 10, an extraction member 36 to extend into and remove material from the vial 12, and a primary engaging member 38 to secure the vial 12 to the extraction member 36.

[0025] With reference to FIG. 4, the preceding engaging member 34 is mounted on a body portion 40. The preceding engaging member 34 has a plurality of latch arms 42 positioned, preferably equally spaced peripherally, around the body portion 40 and extending from the body portion 40 in the same direction as the extraction member 36. With reference to FIG. 8, the latch arms 42 are positioned and adapted to secure the vial 12 to the extraction member 36 in a first or preceding fixed position wherein the extraction member 36 is outside the vial 13. Once the vial 12 is secured, the opening 20 is closed to seal the isolation enclosure 14.

[0026] With reference to FIG. 7, the extraction member 36 is located at a proximal end of the body portion 40 and has an elongated fluid passage 44 extending through both the extraction member 36 and the body portion 40. With reference to FIG. 9, the extraction member 36 is adapted to be inserted into the vial 12 (preferably by puncturing the closure 13) and to remove material from the vial 12 through the fluid channel 44. The extraction member 36 can be of any known design other than a needle, including but not limited to a spike or piercing pin, a blunt cannula, and a tube. For example, a spiking pin is illustrated in the figures.

[0027] With reference to FIG. 6, a vent channel 46 extends through both the extraction member 36 and the body portion 40, to a vent port 48. The vent channel 46 allows gas in the vial 12 to escape via the vent port 48 when fluid is inserted into the vial 12 by the fluid channel 44.

[0028] With reference to FIGS. 4 and 5, the primary engaging member 38 has a plurality of latch arms 50 positioned, preferably equally spaced peripherally, around the body portion 40 and extending from the body portion 40 in the same direction as the extraction member 36. The latch arms 50 are preferably positioned in staggered relation to the latch arms 42 of the preceding engaging member 34 around the body portion 40. With reference to FIG. 9, the latch arms 50 are positioned and adapted to secure the vial 12 in a second latched or primary fixed position with the extraction member 36 extending thereinto. The extraction member 36 extends a greater distance from the body portion 40 than the latch arms 50, but less than the latch arms 42.

[0029] With reference to FIG. 2, a connecting member 52 is located at a distal end of the body portion 40. The connecting member 52 is in fluid communication with the fluid passage 44 and is capable of attaching the latching extraction element 32 to the inlet port 18 of the cap portion 17.

[0030] International Publication Number WO 94/08549 describes one embodiment of a latching extraction element or piercing pin suitable for the present invention; said description is expressly incorporated herein in its entirety.

[0031] As best seen in FIGS. 2 and 3, a valve 54 is mounted to the outlet port 19 of the cap portion 17, outside the isolation enclosure 14. The valve 54 is in fluid communication with the fluid passage 44 and controls the flow of fluid to and from the vial 12.

[0032] With reference to FIGS. 2, 3, 12 and 13, the valve 54 has a threaded outer surface 56, a hollow spiked pin 58 connected in fluid flow communication with the fluid passage 44, and a seal member 60 positioned about the hollow spiked pin 58 to selectively restrict flow through the hollow spiked pin 58.

[0033] U.S. Pat. No. 5,738,663 describes one embodiment of a valve suitable for the present invention; said description is expressly incorporated herein in its entirety. The valve described in U.S. Pat. No. 5,738,663 is commonly known as a CLAVE® valve and is commercially available from ICU Medical Inc. of San Clemente, Calif., U.S.A.

[0034] With reference to FIGS. 10-13, an adaptor 62 permits flow through valve 54 when coupled to the valve 54 and restricts flow when uncoupled from the valve 54. The adaptor 62 has a body 64 with an elongated fluid passage 66 therethrough. A fastening element 68, which includes raised grips, threads, or lugs 69 thereon, is located at a proximal end of the body 64 for releasably coupling the adaptor 62 to the valve 54 and drawing them together in an axial direction. Such a coupling is commonly called a luer-lock connection.

[0035] An actuating post 70 is located at the proximal end of the body 64 and along the fluid passage 66. The actuating post 70 extends beyond the fastening element 68 in the proximal direction. The actuating post 70 is adapted to penetrate the valve 54, compress the seal member 60, and expose the hollow spiked pin 58, thus opening the valve 54.

[0036] The adaptor 62 has a reseal member 72 coupled to the actuating post 70 and in fluid communication with the fluid passage 66. The reseal member 72 is preferably formed of a resilient elastomeric material and has a preslit opening 74 that is normally closed due to the resiliency of the reseal member 72. The preslit opening 74 is adapted to receive the hollow spiked pin 58, opening the adaptor 62 to fluid flow from the valve 54. The preslit opening 74 closes when uncoupled from the valve 54, thus restricting flow out of the fluid passage 66.

[0037] A port 76 is located at a distal end of the body 64 and along the fluid passage 66. The port 76 is adapted to fluidly connect the adaptor 62 to a needleless syringe 78. Raised grips, threads, or lugs 80 are provided on the body 64 for facilitating connecting the adaptor 62 to the needleless syringe 78. It will be understood to one skilled in the art, that the adaptor 62 and needleless syringe 78 could be made of a unitary construction.

[0038] With reference to FIGS. 2, 8, 9, 12 and 13, in operation the vial 12 is placed within the open isolation enclosure 14. The vial 12 is secured to the material handling system 10 in a first preceding latched or fixed position by forcing the vial 12 to engage the preceding engaging member 34. Once the vial 12 is secured, the isolation enclosure 14 is closed.

[0039] Alternatively, the latching extraction element 32 is provided separate from the isolation enclosure 14. In this case, the vial 12 is first secured to the preceding engaging member 34 outside the isolation enclosure 14. Once the latching extraction element 32 and vial 12 are secured together, they are placed within the open isolation enclosure 14. The connecting member 52 of the latching extraction element is then attached to the inlet port 18 of the cap portion 17, securing the vial 12 within the isolation enclosure 14. Once the vial 12 is secured, the isolation enclosure 14 is closed.

[0040] The vial 12 can then be safely punctured by gripping the vial through the flexible bag body portion 16 and forcing the vial 12 to simultaneously engage the extraction member 36 and the primary engaging member 38. The extraction member 36 thus punctures the vial 12 and permits access to the vial 12. The primary engaging member 38 secures the vial 12 to the extraction member 36.

[0041] Typically, a diluent will be added at this point to the vial 12. To accomplish this, a diluent containing needleless syringe 78 is equipped with the adaptor 62. The adaptor 62 is engaged to the valve 54, opening both the hollow spiked pin 58 and the preslit opening 74 to fluid flow. The diluent is added to the vial 12, and excess gas is vented from the vial through vent port 48.

[0042] Once diluted, a portion of the vial 12 contents is removed into the syringe 78. The adaptor 62 and syringe 78 are disconnected from the valve 54. When disconnected, the hollow spiked pin 58 and the preslit opening 74 are resealed, maintaining their respective contents in isolation. At this point the vial 12 remains pierced by the extraction member 36 and fixed by the primary engaging member 38.

[0043] The contents of the syringe 78 are now transferred to a desired destination. The transfer occurs by removably associating the adaptor 62 and syringe 78 to a second valve 54 located remotely from the isolation enclosure 14. Again, both the hollow spiked pin 58 and the preslit opening 74 are opened allowing fluid to pass into the second valve 54.

[0044] It is therefore seen that the present invention provides a method and means capable of securing a vial within an impermeable isolation enclosure. The present invention further provides a method and means capable of piercing a vial within the impermeable isolation enclosure in a fixed position; and selectively accessing the contents of the vial. The present invention also provides a method and means capable of safely transferring a portion of the vial contents, while the vial remains pierced within an impermeable isolation enclosure.

[0045] It is therefore seen that this invention will accomplish at least all of its stated objectives.

Claims

1. A material handling system for use with a sealed vial, comprising:

an isolation enclosure adapted to completely enclose the vial;
a latching extraction element mounted within the isolation enclosure and including an extraction member having a fluid channel, the extraction member being adapted to be inserted into the vial and to remove material from the vial through the fluid channel; and
a primary engaging member mounted within the isolation enclosure and adapted to secure the vial to the latching extraction element in a fixed position wherein the extraction member extends into the vial for removal of material therefrom.

2. The apparatus of claim 1, wherein the isolation enclosure has an opening that is selectively sealable by a closure portion.

3. The apparatus of claim 2, wherein the isolation enclosure has a body portion and a cap portion.

4. The apparatus of claim 3, wherein the closure portion comprises a fastener located on the body portion and a fitting located on the cap portion, wherein the fastener and fitting mate to selectively seal the opening.

5. The apparatus of claim 3, wherein the body portion is a flexible bag.

6. The apparatus of claim 5, wherein the body portion is constructed of a material permitting an amount of light to pass through rendering the body portion at least translucent.

7. The apparatus of claim 3, wherein the cap portion is constructed of a rigid material, and is connected to the latching extraction element.

8. The apparatus of claim 1, further comprising a preceding engaging member mounted within the isolation enclosure and adapted to secure the vial in a preceding fixed position adjacent to the extraction member such that the extraction member is located outside the vial.

9. The apparatus of claim 1, further comprising a valve mounted outside the isolation enclosure in fluid flow contact with the fluid channel and adapted to control the flow of fluid from the vial.

10. The apparatus of claim 9, further comprising an adaptor having a reseal member, capable of removably associating in fluid flow contact to the valve, wherein the reseal member permits fluid flow when coupled to the valve and restricts fluid flow when uncoupled from the valve.

11. The apparatus of claim 11, further comprising a second valve at a location remote from the isolation enclosure, the second valve capable of removably associating in fluid flow contact to the adaptor.

12. The apparatus of claim 1, wherein the extraction member is a piercing pin.

13. An adaptor for fluidly connecting to a valve, comprising:

a body having an elongated fluid passage therethrough;
a fastening element located at a proximal end of the body for releasably coupling the adaptor to the valve;
an actuating post located at a proximal end of the body and along the fluid passage, adapted to penetrate the valve and open the valve to fluid flow when the adaptor is coupled to the valve; and
a reseal member coupled to the actuating post to permit fluid flow through the adaptor when the adaptor is coupled to the valve and restrict fluid flow through the adaptor when the adaptor is uncoupled from the valve.

14. The apparatus of claim 13, wherein the reseal member has a preslit opening that is normally closed due to the resiliency of the reseal member.

15. The apparatus of claim 14, wherein the preslit opening is adapted to receive a hollow spiked pin of the valve, opening the adaptor to fluid flow from the valve through the valve hollow spiked pin.

16. The apparatus of claim 13, further comprising a port located at a distal end of the body and along the fluid passage, adapted to fluidly connect the adaptor to a needleless syringe.

17. A latching extraction element for use with a sealed vial, comprising:

a body portion having an elongated fluid passage therethrough;
a connecting member located at a distal end of the body portion in fluid communication with the fluid passage;
a extraction member located at a proximal end of the body portion in fluid communication with the fluid passage, adapted to enter the vial and to remove material from the vial through the fluid channel;
a primary engaging member mounted on the body portion, adapted to secure the vial to the extraction member in a primary fixed position wherein the extraction member extends into the vial for removal of material therefrom; and
a preceding engaging member mounted on the body portion, adapted to secure the vial in a preceding fixed position adjacent to the extraction member such that the extraction member is located outside the vial.

18. The apparatus of claim 17, wherein the primary engaging member has a plurality of latch arms equally spaced peripherally around the body portion and extending from the body portion in the same direction as the extraction member.

19. The apparatus of claim 18, wherein the preceding engaging member has a pair of latch arms equally spaced peripherally around the body portion and extending from the body portion in the same direction as the extraction member.

20. The apparatus of claim 19, wherein the latch arms of the primary engaging member are in staggered relation to the latch arms of the preceding engaging member on and around the body portion.

21. The apparatus of claim 1, wherein the extraction member is a piercing pin.

22. A method of accessing materials from a sealed vial, comprising:

placing the vial in an open impermeable isolation enclosure;
closing the impermeable isolation enclosure;
securing the vial to the impermeable isolation enclosure in a fixed position; and
selectively accessing the contents of the vial externally from the impermeable isolation enclosure, while the vial remains in the fixed position.

23. The method of claim 22, further comprising the step of simultaneously piercing the vial and securing the vial to the impermeable isolation enclosure.

24. The method of claim 22, further comprising the step of simultaneously removing at least a portion of the contents of the vial and maintaining the contents in isolation.

25. The method of claim 24, further comprising the step of transferring the removed portion of the contents while maintaining the contents in isolation.

26. The method of claim 22, further comprising the step of securing the vial to the impermeable isolation enclosure in a preceding fixed position prior to closing the impermeable isolation enclosure.

27. A method of accessing materials from a sealed vial, comprising:

placing the vial in an open impermeable isolation enclosure;
closing the impermeable isolation enclosure;
piercing the vial while inside the impermeable isolation enclosure;
removing at least a portion of the contents of the vial; and
transferring the removed portion of the contents and maintaining the contents in isolation, while the vial remains pierced.

28. The method of claim 27, further comprising the step of simultaneously securing the vial to the impermeable isolation enclosure in a fixed position while the vial is pierced.

29. The method of claim 27, further comprising the step of securing the vial to the impermeable isolation enclosure in a preceding fixed position without piercing the vial prior to closing the impermeable isolation enclosure.

30. A method of accessing materials from a sealed vial, comprising:

securing the vial to the impermeable isolation enclosure in a preceding fixed position;
closing the impermeable isolation enclosure; and
selectively accessing the contents of the vial externally from the impermeable isolation enclosure.

31. The method of claim 30, further comprising the step of simultaneously piercing the vial and securing the vial to the impermeable isolation enclosure in a primary fixed position, prior to accessing the contents of the vial.

32. The method of claim 30, further comprising the steps of removing at least a portion of the contents of the vial, transferring the removed portion while maintaining the contents in isolation.

33. The method of claim 30, further comprising the steps of simultaneously piercing the vial and securing the vial to the impermeable isolation enclosure in a primary fixed position, prior to accessing the contents of the vial; removing at least a portion of the contents of the vial; and transferring the removed portion and maintaining the contents in isolation while the vial remains pierced and in the primary fixed position.

Patent History
Publication number: 20040249235
Type: Application
Filed: Jun 3, 2003
Publication Date: Dec 9, 2004
Inventors: Edward G. Connell (Grayslake, IL), Marwan Fathallah (Mundelein, IL), Kenneth A. Hsu (Highland Park, IL), John Norman (Gurnee, IL), William L. Rudzena (McHenry, IL), Karl J. Sprague (Waukegan, IL), John S. Ziegler (Arlington Heights, IL)
Application Number: 10453393
Classifications
Current U.S. Class: Destruction Or Containment Of Radioactive Waste (588/1)
International Classification: G21F009/00;