Electric motor drive controller with voltage control circuit operative in different modes
An electric motor drive controller for an electric vehicle driven by a motor with permanent excitation and powered by an energy source comprises: a power control stage coupleable to the motor for generating a drive signal at a voltage to control the motor at a desired speed; a voltage control circuit connectable between the energy source and the power control stage for controlling the voltage of the drive signal at a first voltage potential in one operating mode and at a voltage potential greater than the first voltage potential in another operating mode; and a mode controller for controlling the operating modes of the voltage control circuit based on properties of the drive signal.
This Application is a continuation application of U.S. patent application Ser. No. 10/255,253, filed Sep. 26, 2002 which application claims the benefit of the filing date Feb. 6, 2002 of the U.S. provisional application No. 60/354,765, and is a continuation-in-part-application of U.S. patent application Ser. No. 10/068,391, entitled “System and Method for Driving An Electric Vehicle”, filed on Feb. 6, 2002, which claims the benefit of the filing date Feb. 6, 2001 of the U.S. provisional application No. 60/266,736, and is assigned to the same assignee as the instant application.
BACKGROUND OF THE INVENTIONThe present invention is directed to electric motor drive controllers in general, and more particularly, to an electric motor drive controller comprising a voltage control circuit operative in different operating modes for generating different voltages for a drive signal to control a motor of an electric vehicle powered by an energy source.
A typical electric vehicle draws the energy from an energy storage device such as a battery, sometimes supported by secondary energy sources. The power is processed in a drive power control which controls the voltages and currents which are fed into one to several electric motors. In general, for slow or small scale electric vehicles, such as wheelchairs, bicycles or transportation systems permanent magnet motors are used, i.e. DC, AC or multiphase machines with permanent excitation.
Extending the operating range of motors with permanent excitation generally requires enhancing the voltage and/or current capabilities of a drive power controller. The limited dynamic range of the power controller restricts the system to a certain operating range. As the relationship between current and torque, as well as between voltage and speed is fixed, the controller has to deliver very high currents for high torque output, and very high voltages to achieve high speeds.
A common solution is using motors with a separately adjustable field excitation instead of the permanent excitation. This solution allows additional influence by determining the relationship between voltage and speed (the Ke-Factor), and current and torque. With strong excitation high torque at low currents can be achieved, with weak excitation the motor runs fast at a relatively low voltage in the other winding. Suitable motors consist of an additional armature winding which requires the use of additional slip rings. The drive power controller has to offer additional circuitry to support the additional winding. Another approach is adding a gearbox, or a variable transmission between motor and wheel. For cost reasons these approaches are only applicable to large scale vehicles, or in special circumstances.
An approach related to motors with permanent excitation is a permanent increase of the power supply voltage, for example by increasing the number of battery cells. At given dimensions, this requires reducing the size of the individual cells, increasing the power supply's impedance. At the same time, the motors can take more stall current because of the higher voltage. The system's efficiency would decrease significantly, and special precautions against overload may be required. Further, the effective resolution in terms of Volts/bit rises proportionally, i.e. the voltage steps will become larger. As one consequence, the motors start to run roughly.
The present invention provides a solution which overcomes the drawbacks of the aforementioned solutions to increase the maximum vehicle speed, while fully maintaining the other key parameters.
SUMMARY OF THE INVENTIONIn accordance with one aspect of the present invention, an electric motor drive controller for an electric vehicle driven by a motor with permanent excitation and powered by an energy source comprises: a power control stage coupleable to the motor for generating a drive signal at a voltage to control the motor at a desired speed; a voltage control circuit connectable between the energy source and the power control stage for controlling the voltage of the drive signal at a first voltage potential in one operating mode and at a voltage potential greater than the first voltage potential in another operating mode; and a mode controller for controlling the operating modes of the voltage control circuit based on properties of the drive signal.
In accordance with another aspect of the present invention, a motor drive control system for an electric vehicle driven by an electric motor powered by an energy source comprises: a power control stage coupleable to the motor for generating a drive signal at a voltage to control the motor at a desired speed; a first motor drive controller connectable between the energy source and the power control stage for controlling the voltage of the drive signal at a first voltage potential, the first motor drive controller operative to monitor the properties of the drive signal; and a second motor drive controller connectable between the energy source and the power control stage for controlling the voltage of the drive signal at a second voltage potential in one operating mode and at a voltage potential greater than the second voltage potential in another operating mode, the second motor drive controller including a mode controller for communicating with the first motor drive controller to determine the properties of the drive signal and for controlling the operating modes of the second motor drive controller based on the communicated properties of the drive signal.
In accordance with yet another aspect of the present invention, a motor drive control system for an electric vehicle driven by an electric motor powered by an energy source comprises: a power control stage coupleable to the motor for generating a drive signal at a voltage to control the motor at a desired speed; a first motor drive controller connectable between the energy source and the power control stage for controlling the voltage of the drive signal at a first voltage potential; a second motor drive controller connected, when activated, between the energy source and the power control stage for controlling the voltage of the drive signal at a second voltage potential in one operating mode and at a voltage potential greater than the second voltage potential in another operating mode, the second motor drive controller including a mode controller for controlling the operating modes of the second motor drive controller; and the first motor drive controller including means for monitoring the activation status of the second motor drive controller; and means governed by the monitoring means for connecting the first motor drive controller between the energy source and the power control stage based on the monitored activation status of the second motor drive controller.
BRIEF DESCRIPTION OF THE DRAWINGS
As shown in
As noted above, the boost circuit 11 may be operative in a low impedance state (transparent bypass mode), bypassing the power supply voltage in cases where the increased voltage is not needed and where lowest supply resistance is essential, and may be switched to another mode to increase the supply voltage, in steps or linearly, once the maximum motor speed at the power supply voltage is approached. Further, the booster 11 may consist of a multiphase converter to allow phase overlap in order to reduce overall current ripple which otherwise may stress other system components such as capacitors. This multiphase converter will be more fully explained by the description found below.
The foregoing described approach allows extending the operating range of motors with permanent excitation 16,18, characterized by increasing their possible speed while maintaining their torque. Motors 16,18 and their power supply 12 remain unchanged, and in most cases the changes to the power drive control unit 14 are negligible. The method is not restricted to rotational machines.
The boost circuit 11 increases the maximum speed of the vehicle motors 16,18 beyond the limits given by the previously fixed supply voltage 12, by increasing the voltage by a certain amount, which is then supplied to power stage(s) 28,30 of the drive power controller 14 over lines 20. Preferably, the drive power controller's internal supplies shown at 24 continues deriving its energy directly from the vehicle's battery power supply 12 over line 26, i.e. by bypassing the booster circuit 11 of controller 10, this way adaptations to the maximum operating voltage as well as to its enlarged range can be avoided in this section 14. The booster 11 may increase the voltage which is solely applied to the drive control power stage 28,30 of motors 16,18 via line 20.
In the constant voltage increase mode, the booster circuit 11 increases the maximum speed of the vehicle, as if a power supply with a higher voltage output were mounted, similar to increasing the number of battery cells. If a constant voltage increase ratio is chosen, a straightforward circuit which merely generates a fixed duty cycle pulse width modulation (PWM) can be used. As the booster 11 may be active all the time, it contributes to a noticeable efficiency degradation. In addition, because it has to withstand an increased current flow in the worst case, the booster circuit's power capabilities will be adequately high.
An automatic, variable voltage increase mode of the boost circuit 11 may account for this problem, which can be realized either as a linear process or in fixed steps. This can be achieved by adding a simple unidirectional or bidirectional communication path 22 between drive control 14 and a control circuit 32 of the booster circuit 11. Here, the drive control 14 can easily determine the presence or activation of the booster 11. As an example, the control 14 can output a test signal to a control circuit 32 in controller 10 over communication path 22 prior to any activation or during system startup. The controller 14 then detects whether it receives an elevated voltage, which indicates an attached booster 11. If not found, the drive controller 14 will continue operating as usual. If a booster 11 is found to be operative, the power controller 14 commences operation, but now using the voltage generated by the booster 11 over lines 20 as the main supply for its power stage 28,30. During operation, the controller 14 continuously checks for potential limits and outputs the need for the required voltage increase to the control circuit 32 of the booster 11.
As an alternative solution, the control circuit 32 within motor controller 10 may detect the need for and the level of the voltage increase on its own, by observing the PWM duty cycles of the drive signal 34,36 delivered by the drive control power stage 28,30 over communication path 22, and, if desired, also the motor currents of the drive signal 34,36. This way the drive power control 14 need not support any additional communication. The only structural changes needed are that the dual supplies are made available externally, i.e. bypassed battery voltage over lines 26 and 38 for internal supplies 24 and 40 and boosted voltage over line 20 for the power stage 28,30, and that the control units 32 and 42 account for the higher possible speed.
Access to the separate supplies is given in most cases, as the power input (line 26) and the power stage 28,30 of the drive controller 14 are separated by means of an isolation relay 44, protecting against malfunction and reverse polarity, following federal regulations. For continued safety, another similar isolation relay 46 can be used in the motor controller circuit 10. Then, the drive control 14 may disable its own isolation relay 44 by control unit 42 when it detects an attached or operative booster circuit 11, to avoid simply short circuiting the output voltages of the booster 11 and controller 14.
In practice, performance may be also achieved if the drive control unit 14 also controls the output voltage of the motor controller 10 in the various modes. Generally, the control (32) of the booster circuit 11 within controller 10 may work as follows: at high drive signal currents, the voltage increase of the booster circuit 11 should be low (transparent voltage bypass mode), to avoid extreme stress by a further increased current flow in stall conditions which otherwise would be subjected to the system due to the higher operating voltage. At sufficiently low drive signal currents, the voltage generated by controller 10 can increase to the desired level. The drive power control 14 does so when detecting that the voltage of its drive signal 34,36 to the motors 16, 18 approaches the maximum value at the present power stage voltage, e.g. approaches within a predetermined range of 100% duty cycle. It then commands the booster 11 via control circuit 32 over lines 22 to supply more voltage (constant or variable voltage increase mode), if possible, i.e. if current and other limits are not exceeded.
Alternatively, controller 14 may supply a signal representative of the drive signal over lines 22 to control circuit 32 when the drive current and other limits are not exceeded so that control 32 may monitor the drive signal and determine itself when a voltage increase is needed, i.e. a mode change.
A block diagram of a typical boost, or step-up circuit 11 suitable for use in the motor controller embodiment 10 is shown in
Referring to
The voltage ratio between the voltage across capacitor C or output voltage and the voltage of the battery source is determined by the duty cycle of switch S1. For example, a switch S1 duty cycle ratio of approximately 33% can cause a voltage increase of approximately 50% over the voltage of the battery source. In transitioning between modes, switch S1 may be pulsed with a variable duty cycle from 0% to a predetermined duty cycle, for example, over a predetermined period of time to cause the output voltage to increase gradually to the desired level. The desired voltage across capacitor C or output voltage is maintained above the voltage of the battery source by the diode D, i.e. substantially no diode current flows when switch S1 closes (see
In an alternate booster circuit embodiment as shown in the circuit schematic of
Multiple phase converters, i.e. multiple circuits containing elements L, S1 and S2, for example, may spread the conversion task over several smaller, interleaving channels which will be explained in greater detail herein below in connection with the circuit embodiment illustrated in
In contrast to voltage regulators, where a control loop stabilizes the output voltage by adjusting the PWM duty cycle depending on output voltage deviations from a reference level, such a control is not desired in the suggested booster circuit embodiments. The duty cycle should remain either fixed, or preferably, varied or steered under direct control by the drive power controller 14 via communication path 22 and control circuit 32. Note that in order to support the transparent bypass mode, the circuit embodiment of
Typical bridge configurations such as in the embodiment of
To achieve the driving of a switch with a “floating supply”, most circuits use a “bootstrap” supply as shown by the circuit embodiment of
Finally, as referred to herein above, a multiphase or polyphase converter may be used in the embodiment of
As the switching times of the switches of the booster circuits 11A, 11B and 11C and their corresponding currents I1, I2 and 13 are interleaved as shown by way of example in the time waveforms of
As noted above, the preferred embodiment of the invention is shown in
In one mode of operation, the booster circuit 11 is absent or inoperative and the internal isolation relay 44 of motor controller 14 is activated, which connects the power stage(s) 28,30 directly to the battery supply 12 via bypass line 26. Once the controller 14 detects via communication path 22 that the booster 11 is operative or attached, it disables activation of its internal isolation relay 44. The relay 46 in the controller 10 replaces its function and also satisfies or accounts for safety regulations. The booster's output voltage (voltage across capacitor C) is then fed via line 20 into the power stage(s) 28, 30.
If the drive controller 14 recognizes that no booster support for increase of vehicle speed is needed, it can force the booster 11 into the previously described transparent bypass mode, disabling any cycling of switches S1 and S2 and establishing a low resistance path through the booster via switch S2. Alternatively, the efforts related to the requirement of a 100% duty cycle support needed for bypassing can be saved if the drive controller 14 reactivates the internal isolation relay 44 instead once it disables the booster 11. In these situations all power to the booster 11 can be cut via relay 46.
Alternatively, communication path 22 may be used for the approach where the booster circuit 11 via control 32 derives information about the drive signal 28,30 of controller 14, allowing the control circuit 32 of motor controller 10 to determine the needed amount of voltage booster increase by itself. In this mode of operation, the isolation relay 44 of controller 14 may be disabled manually, since the controller 14 may not detect the absence or presence of a booster 11. For the same reason, the above-described use of the internal isolation relay 44 as an alternative to the transparent mode bypassing is not available.
As noted above, the booster circuit 11 may remain active all the time, reducing the operational efficiency thereof unnecessarily. Hence, in the alternative, the booster circuit 11 could stay completely passive during the time where it identifies that elevated voltages are not needed, or when high currents appear (i.e. transparent voltage bypass mode)—doing so, the energy consumption of a permanent cycling, which is typical for switching converters, can be completely avoided during most of the operating time.
Accordingly, the voltage booster circuit 11 may be operated by mode control 32 to switch in a further energy saving bypass mode, or low-impedance mode. In this mode, the booster 11 has to support 100% “on” time for one of its switches S2 which may be accomplished as explained herein above. Thus, in this configuration, the switch component's switching losses are eliminated, and the inductor's (L) magnetic core can be shrunk to a small size, compared to a permanently cycling solution. As no cycling takes place when the booster 11 is subjected to very high currents, no inductance is needed which otherwise would be needed to keep the booster 11 operative and cycling. In other words, the core of inductor L is allowed to saturate during these operating conditions. Then, the only possible source for losses in this mode is DC resistance (static conduction loss), which primarily consists of switch S2 resistance, inductor winding and internal booster wiring. In contrast to a live, cycling booster, the series impedance of the bypassed circuit is substantially lower. In addition, all energy consumption due to a permanent cycling of the internal switches will be saved. In the alternative, if the drive power controller 14 does not need booster support, it forces the booster 11 into a stand by mode and activates the internal isolation relay 44 instead, thus bypassing the current path 20 through the booster 11.
The present embodiment generally applies to cost effective electric motors with permanent excitation (i.e. when using permanent magnets), which have a fixed relationship between voltage and speed, as well as between current and torque. These motors are widely used in slow vehicles, such as wheelchairs, electric bicycles or transportation systems. In these applications, the required current capability of the power control unit is determined by the load resistance, i.e. primarily by the motor winding resistance. Subjected to a stall condition, the motor will take the maximum current, and deliver the maximum torque, which is common practice on this type of machines. As the voltages and currents do not change in the described typical embodiment of the invention, the respective performance characteristics of the overall propulsion unit can be maintained. The impedance matching between power source 12, motor controller 10, power stage(s) 28,30 and motors 16,18 can be kept at an optimum. The smooth run of the motors is also maintained, because the resolution of a typical power stage of conventional controller 14, expressed as Volts/bit, remains unchanged, in contrast to a solution where the operating voltage is permanently increased. The only effective change is that the maximum speed of the motor 16,18, thus vehicle, can be increased when needed. During this time the current consumption is relatively low, allowing a higher impedance of the power supply, which matches the given behavior of the activated booster converter circuit 11. The booster circuit 11 even increases the amount of power the system can process, as the higher motor speed is directly linked to higher power levels at a given system structure.
Hence, the embodiment of
regenerative or negative current flow to return energy back to the battery;
constant voltage increase mode providing for a fixed duty cycle PWM; or, in the alternative,
an automatic variable voltage increase circuit via a communication path 22 between the booster circuit 11 via control 32 and the controller 14 (if booster is present, booster is used as the main power supply via line 20 to driver power stage and the controller 14 continuously checks for limits and outputs the required voltage increase signal via path 22 to the booster 11); or in the alternative,
a booster control mode wherein the booster circuit 11 via control 32 detects the need for and the level of voltage increase by observing the PWM duty cycles being deliver to the driver power stage 28,30; and, as an option,
passive booster mode during periods of no boost for conserving energy by reducing or eliminating the booster circuit's cycling periods.
A suitable embodiment of the mode control 32 for use in motor controller 10 is shown, by way of example, in the circuit schematic of
Referring now specifically to
In the shown simulation, the circuit combination of NPN transistor Q4 and zener diode D4 coupled between nodes SW and SUP simulates a voltage regulator. A resistor R45 coupled between node SW and the zener D4 maintains a voltage across zener D4 which is used as a reference voltage to regulate the voltage at SUP to approximately 12 volts (refer to waveform 64 in
The input signal IN is filtered through a single pole filter circuit comprising resistor R2 and capacitor C1 and compared with the reference voltage V4 is a comparator circuit X18. More specifically, a noise-filtered IN signal is coupled to the +input of X18 through resistance R1 and reference voltage V4 is coupled to the −input of X18. Some positive feedback for comparator circuit X18 is provided by resistor R3. Accordingly, comparator X18 operates as a Schmitt trigger, to ensure clean switching transitions at its output (via pull up resistor R30) when IN signal rises above and falls below reference V4. Thus, the output of X18 is representative of the PWM drive signal in frequency and duty cycle.
This signal (output of X18) is coupled to the emitter of an PNP transistor Q1 via the series combination of resistor R8 and capacitor C3 which is clamped to the SUP bus by a diode D1. The base of Q1 is also referenced to the SUP bus. The circuit transfers the charge stored in C3 to C2/R7 on every cycle. In this manner, the frequency of the PWM signal output by X18 is converted to a voltage which appears at node ENA. The voltage of ENA is compared with reference V1 by comparator circuit X17. If the frequency and/or duty cycle of the PWM signal is at the right level to indicate activation of the booster, there will be sufficient voltage generated at node ENA as shown by the waveform 66 in
Comparator X22 compares the voltage at node SW with reference V1 and thus, is enabled only if there is sufficient voltage on SW (i.e. battery voltage). If the aforementioned two conditions are met, the common output line PRECH of comparators X17 and X22 goes positive via pull up resistor R46, representing the signal which initiates the voltage booster stage 11 activation which occurs at 68 (5-6 ms) as shown in
Components R55 and C21 simulate the capacitor precharge process. The voltage across capacitor C21 represented by node ISO increases exponentially with charge input as shown by waveform 70 in
More specifically, when X24 is enabled, an average voltage of the PWM signal output of X18 is produced at the node CTRL using a simple two pole RC filter comprising the circuit elements R9, R10, R11, R12, C4, C5, C15, C16. The average voltage is scaled to a certain range by the resistor divider network of R9, R10, and R11. In the embodiment, R10 is connected between the output of X18 and node N2; R9 and C16 are connected in parallel between the SUP bus and node N2; R11 and C4 are connected in parallel between node N2 and battery common; R12 is connected between node N2 and the node CTRL; C15 is connected between node CTRL and the SUP bus; and C5 is connected between node CTRL and battery common.
Node CTRL is coupled to the +input of a comparator X19 and the −input of a comparator X20. The comparators X19 and X20 make up a window comparator circuit referenced to the reference voltages V2 and V3. The window comparator Xl9,X20 has a common output which is pulled up to the SUP bus by Resistor R41 when enabled. As the voltage of the CTRL node increases through reference levels V3 and V2, a disable DIS pulse is generated by the window comparator X19, X20 as shown by the waveform 74 in
The CTRL node is also connected to the +input of another comparator X23 which is referenced to the reference voltage V2. When the voltage of the CTRL node exceeds V2, the output of X23 is enabled or pulled up to the SUP bus through resistor R56 as shown by the waveform 76 in
The circuits comprising comparators X8 and X15 produce the PWM signal coupled to the switch drivers for pulsing the switches S1 and S2 in accordance with a duty cycle. In the present embodiment, the circuitry of X15 generates a triangular waveform at node OSC. More specifically, a reference voltage V5 is produced by a resistance divider network R15 and R16 connected between the SUP bus and battery common. Voltage V5 is coupled to the +input of X15. The output of X15 is coupled through resistor R13 back to the −input thereof which is coupled to battery common through a capacitor C6. In addition, positive feedback is provided by the resistor R14 to cause the reference voltage V5 to switch between upper and lower levels as the output of X15 is enabled and disabled through pull up resistor R32.
So, as the SUP bus increases in voltage (
The CTRL node is also coupled to the +input of another comparator circuit X21 which is used to generate a voltage at node CTRL2 which in turn is compared with the triangular waveform OSC in comparator X8 to generate the PWM signal. The circuitry around X21 looks like a rectifier circuit because of the diode D3, but its purpose is to prevent excessive differential voltage between the inputs of the PWM comparator X8. More specifically, the output node X of X21 is coupled through a pull up resistor R44 to the SUP bus and through the diode D3 to the node CTRL2 which is also coupled to the SUP bus through resistor R42. Node CTRL2 is coupled back to the −input of X21 and to ground through a parallel combination of R43 and C19. Actually, R42 and R43 produce a reference voltage at node CTRL2 which is below, but relatively close to, the voltages of the triangular waveform 78 as shown by waveform 80 in
As the voltage at CTRL2 intersects the triangular waveform, X8 begins to generate the PWM output via pull up resistor R17 as shown by pulse train waveform 84 starting at about 16 ms in
In the present embodiment, once the input PWM signal IN becomes invalid, a low voltage limit is violated, or an unexpected voltage drop across the relay contacts appears, CTRL will be blocked or pulled low, thus disabling the signal PWM via X21 and relay 46 via X23 immediately. With relay 46 disabled, the booster circuit 11 is deactivated, i.e. without power. Also, in the present simulation embodiment, the duty cycle of input PWM signal at node IN received from controller 14 is a measure of the motor drive signal generated by the power stage(s) thereof or a voltage increase requested by the controller 14. When the duty cycle at node IN exceeds a predetermined level as set by X21, the booster circuit operates in a mode in which the duty cycle of the PWM switch control (PWM) is permitted to vary along with the measured duty cycle value of signal IN (CTRL). If the signal IN remains below the predetermined level, the booster circuit may operate in the transparent bypass mode as described herein above.
However, it is understood that the voltage booster circuit 11 is also operative in the constant voltage increase mode in which the duty cycle of switch control PWM is fixed to a predetermined value, like 33.3%, for example, to produce a constant voltage increase at the booster circuit of approximately 50%. This fixed duty cycle in switch control could be rendered operative when the drive signal is within a range of its maximum value. For example, when the duty cycle at node IN becomes within, say 80% of a 100% duty cycle, for example, the fixed PWM switch control could be activated. This mode of operation could be accomplished by a modification to the circuitry of X21. That is, instead of allowing the voltage intersecting the triangular waveform at X8 to vary when CTRL exceeds a predetermined level, it can be generated as a fixed voltage intersecting the triangular waveform at a level to produce a fixed duty cycle at the node PWM for switch control. In fact, the mode control 32 may include both such circuits and chose which one to use based on a determined mode of operation.
As noted above in connection with the embodiment of
The circuit embodiment of
Circuitry of T13 is the same as that described for Q1 and the circuits of IC7D and IC7C are comparable to the circuits of X22 and X17 which produce the precharge signal. The circuitry of IC8A which is similar to the circuitry of X24 establishes that the voltage across the contacts of relay 46 is within the permitted range to close the contacts of the relay. The comparator IC4A activates the relay and comparators IC7A and IC7B form the window comparator for generating the gate driver reset pulse DISABL. The circuitry of IC8B is the same as that for X18 and the following two pole filter circuit is the same as described for the simulation. Also, the circuit of IC4B is the same as the circuit for X21 which produces a reference signal DCI for intersecting the three phase triangular waveforms to produce the three phased apart switch control PWM pulse trains.
Referring to
In the present embodiment, the gate drivers are adjusted properly by the circuitry shown in
Still referring to
External power inductors which may be on the order of 8 microhenries, for example, are connected to the circuitry at terminals TA, TB and TC between the battery source and nodes N11, N12 and N13, respectively. MOSFET switches S81, S21 and S31 are coupled respectively between nodes N11, N12 and N13 and battery common and MOSFET switches S12, S22 and S32 are coupled respectively between nodes N11, N12 and N13 and common capacitance C comprising parallel connected capacitor banks 92, 94, 96 and 98. The voltage generated across the common capacitance is supplied to the power stages 28,30 to generate the drive signal(s) 34, 36 as shown in
While the foregoing described embodiments utilize discrete circuit elements, it is understood that alternatively, the control circuitry may be embodied in a programmed microprocessor-based controller having a CPU, memory, and inputs and outputs including PWM outputs. Using microprocessor systems for drive control units is already being practiced by the assignee of the instant application.
In a still further embodiment, the control 42 of the controller 14 as shown in
When controlled in the transparent bypass mode, the booster 11 provides a voltage to the power stage 28,30 that is matching or less than the voltage of the battery source. In this mode, the power control stage 28,30 is capable of producing a drive signal up to a maximum level, which is limited by the battery voltage, to control the motor to operate the vehicle at the desired speed or a certain maximum speed. The mode control 32 may sense as described herein above that the drive signal is nearing its maximum and thus insufficient to operate the vehicle at the desired speed, and control the voltage booster circuit 11 between modes which can increase the voltage supply to the power control stage.
However, if the control 42 determines that the current of the drive signal is greater than a predetermined level, it may send a signal over path 22, for example, to inhibit the mode control circuit from altering the mode of operation of the booster circuit 11. Alternatively, it may withhold the signal representative of the drive signal from the mode control 32 in which case, the mode control 32 would have no basis for altering the operational mode of the booster circuit. Additional protective circuits may be added such as, for example, to the booster or controller circuit to measure currents, temperatures and/or over-voltage directly.
Accordingly, the multi-mode motor controller 10 offers: improved matching of load to power supply, enhanced dynamics range for the power controller, negligible impact on efficiency, drive comfort and other key parameters, in particular while using the transparent bypass mode, and add-on solution, compatible with existing drive power control devices.
While the present invention has been described herein above in connection with a number of different embodiments, it is understood that the invention should not be limited in any way, shape or form by any single embodiment. Rather, the present invention should be construed in breadth and broad scope in accordance with the recitation of the claims appended hereto.
Claims
1-20. (cancelled)
21. An electric motor drive controller for an electric vehicle driven by a motor with permanent excitation and powered by an energy source, said motor drive controller comprising:
- a power control stage coupleable to said motor for generating a drive signal at a voltage to control said motor at a desired speed;
- a voltage control circuit connectable between said energy source and said power control stage for controlling the voltage of said drive signal between a first voltage potential and a voltage potential greater than said first voltage potential; and
- a sensing circuit for monitoring said drive signal, said sensing circuit being coupled to said voltage control circuit for governing the control of said drive signal voltage.
22. The motor drive controller of claim 21 wherein the energy source produces energy at a voltage potential; and wherein the first voltage potential is substantially the voltage potential of the energy source.
23. The motor drive controller of claim 21 wherein the sensing circuit generates a signal indicative of the condition of the drive signal; and wherein the voltage control circuit is operative to control the voltage of said drive signal in response to said sensing circuit signal.
24. The motor drive controller of claim 23 wherein the voltage control circuit is operative to couple the energy source to the power control stage so long as the sensing circuit signal indicates that the drive signal can control the motor at the desired speed.
25. The motor drive controller of claim 23 wherein the voltage control circuit is operative to conduct the first voltage potential to the power control stage so long as the sensing circuit signal indicates that the drive signal can control the motor at the desired speed.
26. The motor drive controller of claim 25 wherein the voltage control circuit is operative to increase the voltage conducted to the power control stage above the first voltage potential when the sensing circuit signal indicates that the drive signal can no longer control the motor at the desired speed.
27. The motor drive controller of claim 26 wherein the voltage control circuit is operative to increase the voltage conducted to the power control stage above the first voltage potential in incremental steps when the sensing circuit signal indicates that the drive signal can no longer control the motor at the desired speed.
28. The motor drive controller of claim 27 wherein the voltage control circuit is operative to increase the voltage conducted to the power control stage above the first voltage potential at fixed incremental steps when the sensing circuit signal indicates that the drive signal can no longer control the motor at the desired speed.
29. The motor drive controller of claim 27 wherein the voltage control circuit is operative to increase the voltage conducted to the power control stage above the first voltage potential at variable incremental steps when the sensing circuit signal indicates that the drive signal can no longer control the motor at the desired speed.
30. The motor drive controller of claim 21 including an inhibit circuit for inhibiting the voltage control circuit from increasing the voltage conducted to the power control stage above the first voltage potential based on motor current.
Type: Application
Filed: Aug 5, 2004
Publication Date: Jan 13, 2005
Inventors: Thomas Strothmann (Wallenhorst), Joseph Richey (Chagrin Falls, OH)
Application Number: 10/912,312