Liquid crystal display device and fabrication method thereof
The present invention provides a novel photolithography processes using photoresist pattern having at least two areas which has different thickness from each other for a fabrication method for a liquid crystal display device having reversed staggered and channel-etched type thin film transistors, reduce a number of photolithography processes required for whole of the fabrication process of the liquid crystal display device, and improve brightness of the liquid crystal display device.
Latest Patents:
1. Field of the Invention
The present invention relates to a liquid crystal display device and, for example, to one of a pair of substrates between which a liquid crystal layer is interposed, i.e., a so-called TFT substrate on which thin film transistors (hereinafter referred to as TFTs) are formed, as well as to a fabrication method for such a TFT substrate.
2. Description of the Related Art
In the case of a related art liquid crystal display device, as described in Japanese Patent Laid-Open No. 202153/1994, its TFT substrate is fabricated by forming openings in the gate insulating film and the protective film laminated on the TFT substrate, through one photo-process (a process which includes the photolithography of forming a photomask on a work and partly removing the photomask according to a processing pattern), and carrying out patterning through a total of five photo-processes. In the TFT substrate obtained by this fabrication method, a charge holding capacitor for the TFT provided in each pixel includes a metal electrode which is formed in the same process as and of the same material as gate wiring lines and serves as a lower electrode, a metal electrode which is formed in the same process as and of the same material as signal lines for the TFT and serves as an upper electrode, and a dielectric which is disposed between the lower and upper electrodes. As the dielectric, a gate insulating film, a nondoped semiconductor (an i-type semiconductor; also called an intrinsic semiconductor) and a semiconductor containing an impurity (also called an n+-type semiconductor according to the conduction type of the impurity) are constructed in the form of a laminated film. The upper electrode of the charge holding capacitor is connected to a pixel electrode made of a transparent conductive film via a through-hole formed in the protective film of the TFT.
In addition, as described in Japanese Patent Laid-Open No. 232409/1998, there is a fabrication method which forms through five photo-processes a TFT substrate provided with thin film transistors each of which is of the reversed staggered type (the type in which a semiconductor layer serving as a channel is disposed on the gate electrode of a transistor) and has a channel etch structure (a structure in which a portion serving as the channel of the semiconductor layer is partly thinned by etching or the like).
In addition, there is an art which fabricates a TFT substrate for an In-Plane-Switching (hereinafter, IPS) mode of liquid crystal display device through four photo-processes by using the above-described fabrication method.
In another related art liquid crystal display device, as described in Japanese Patent Laid-Open No. 90404/1997, the upper electrode of each charge-holding capacitor is made of a metal electrode formed in the same process as and of the same material as its gate wiring lines, and the lower electrode of the charge-holding capacitor is made of a transparent electrode deposited in the same process as a metal film for signal lines of each TFT. The dielectric of the charge holding capacitor is made of a gate insulating film, and an opening (a through-hole) is formed in a protective film made of an organic material formed on the upper electrode of the charge-holding capacitor, and the upper electrode and the pixel electrode are connected to each other via the opening.
SUMMARY OF THE INVENTIONAccording to the arts disclosed in Japanese Patent Laid-Open No. 202153/1994 and Japanese Patent Laid-Open No. 232409/1998, at least five times of patterning (five photo-processes) are needed during the processing of the TFT glass substrate of the liquid crystal display device. Moreover, in Japanese Patent Laid-Open No. 232409/1998, although the TFT glass substrate of a lateral electric field type, i.e., the IPS display mode, of liquid crystal display device is formed through four photo-processes, the terminals of its gate and drain wiring lines are not coated with a transparent conductive film such as Indium-Tin-Oxide (hereinafter, ITO), so that the terminals suffer the problem of electrical corrosion due to humidity. In addition, since comb-teeth like pixel (source) electrodes are disposed close to the gate wiring lines, there is the problem that parasitic capacitance becomes large.
The dielectric of the charge holding capacitor described in Japanese Patent Laid-Open No. 202153/1994 has the laminated structure in which the i-type semiconductor and the n+-type semiconductor are laminated on the gate insulating film. Therefore, during charging for driving the TFT type liquid crystal display device, the potential of the lower electrode of the charge holding capacitor becomes higher than that of the upper electrode of the charge holding capacitor and electrons are injected into the i-type semiconductor film from the lower electrode, so that the capacitance value is determined by the thickness of the gate insulating film. During a charge-holding period in such driving, electrons are emitted from the i-type semiconductor and the capacitance value fluctuates and lowers to a capacitance value which is a value for the thickness of the i-type semiconductor, resulting in the problem that image retention occurs in the liquid crystal.
The TFT liquid crystal display device described in Japanese Patent Laid-Open No. 90404/1997 has the protective film made of the organic material, and the drain wiring lines are used as light-shielding electrodes, and pixel electrodes are disposed to overlap the drain wiring lines above the organic protective film of low dielectric constant, thereby improving the aperture ratio. However, patterning processing needs at least five photo-processes.
An object of the invention is to simplify a fabrication process for a TFT substrate compared to the above-described fabrication methods for the related art liquid crystal display devices. Another object of the invention is to improve the display contrast of a liquid crystal display device by forming a wiring structure which has high accuracy and can prevent drain wiring lines from being easily disconnected, by employing the simplified fabrication method. A further object of the invention is to increase the capacitance value per unit area of a charge holding capacitor provided in each pixel of a liquid crystal display device and increase the aperture ratio of the pixel, by using the simplified fabrication method.
Another object of the invention is to use a simple fabrication method which decreases the capacitance difference in charge-holding capacitance between on-switching and off-switching during the driving of a liquid crystal display device and so reduce image retention. A further object of the invention is to reduce the parasitic capacitance between gates and pixel (source) electrodes in IPS display mode.
To achieve the above objects, the invention provides a liquid crystal display device having a novel wiring structure.
One example of liquid crystal display devices according to the present invention comprises:
-
- a first insulating substrate and a second substrate being disposed so that respective main surfaces thereof are opposite to one another;
- a liquid crystal layer being interposed between the first and second insulating substrates;
- gate wiring lines being formed on the first insulating substrate and transmitting scanning signals;
- a gate insulating film being composed of the first insulating substrate and the gate wiring lines;
- drain wiring lines being composed of metal films formed on the gate insulating film and transmitting video signals;
- semiconductor layers being formed on the gate insulating film and at least under the drain wiring lines;
- thin film transistor sections, each of which has
- (1) a semiconductor channel layer composed of a part of the semiconductor layer located at least over a part of the gate wiring layer,
- (2) a drain electrode composed of a part of the drain wiring line located on the semiconductor channel layer and a semiconductor contacting layer formed of a part of the semiconductor layer being contacted with the part of the drain wiring lines,
- (3) a source electrode composed of another metal film formed on the semiconductor channel layer to be spaced from and opposite to the drain electrode and another semiconductor contacting layer formed of another part of the semiconductor layer being contacted with a lower surface of the another metal film, and
- (4) a protective film covering the drain wiring lines, the source electrode, and the drain electrode; and
- pixel electrode sections, each of which has a pixel electrode being contacted with the source electrodes, wherein
- (a) a planar pattern of each of the semiconductor layers is broader than those of the metal layers of the drain wiring layer, the source electrodes, and the drain electrodes formed thereon, and
- (b) a planar pattern of each of the semiconductor layers other than the semiconductor contacting layers formed therein is broader than those of the semiconductor contacting layers.
The aforementioned semiconductor channel layer and the aforementioned semiconductor contacting layer often designate specific parts of the semiconductor layer. Namely, neither the semiconductor channel layer nor the semiconductor contacting layer should be limited to be interpreted as layers other than the semiconductor layer, and thus the semiconductor layer is allowed to have a stacked structure of the semiconductor channel layer and the semiconductor contacting layer being formed therein between the gate insulating film and the drain electrode, for instance. Preferably, the semiconductor channel layer should be formed of an intrinsic semiconductor layer (without impurities doped intentionally therein) and the semiconductor contacting layer should be formed of an impurity (e.g. n-type)-doped semiconductor layer. These definitions of the semiconductor channel layer and the semiconductor contacting layer are also applied to following examples and embodiments.
Another example of liquid crystal display devices according to the present invention comprises:
-
- a first insulating substrate and a second insulating substrate disposed to be opposite to the first insulating substrate;
- a liquid crystal layer being interposed between the first insulating substrate and the second insulating substrate;
- a plurality of gate wiring lines, each of which is formed on the first insulating substrate and transmits a scanning signal;
- a gate insulating film being formed on the first insulating substrate and the plurality of gate wiring lines;
- a plurality of drain wiring lines, each of which is formed on the gate insulating film and transmits a video signal;
- a plurality of semiconductor layers being formed on the gate insulating film and at least under one of the plurality of drain wiring lines;
- thin film transistor sections, each of which has
- (1) a semiconductor channel layer formed of a part of the one of the plurality of semiconductor layers extended at least over a part of one of the plurality of gate wiring lines,
- (2) a drain electrode formed of a part of the one of the plurality of drain wiring lines situated on the semiconductor channel layer,
- (3) a source electrode formed on the semiconductor channel layer at an opposite side of the part of the one of the plurality of gate wiring lines to the drain electrode to be spaced from the drain electrode;
- a protective film covering the plurality of drain wiring lines, the source electrodes, and the drain electrodes;
- a plurality of pixel electrodes, each of which is contacted with the source electrode of one of the thin film transistor sections; and
- charges-holding capacitance sections, each of which has an upper electrode connected to one of the pixel electrode and a lower electrodes formed of the gate wiring line or a material thereof (metallic material, alloy material, or the like), wherein,
- (c) a dielectric film being interposed between the lower electrode and the upper electrode of each of the holding capacitance sections has a stacked layer structure formed of the gate insulating film and the semiconductor layer, and
- (d) each of the pixel electrodes is contacted with one of the semiconductor layers through a contact hole provided by perforating the protective film.
Moreover, an example of liquid crystal display device according to the present invention other than the aforementioned two examples thereof comprising:
-
- a liquid crystal layer being interposed between a first insulating substrate and a second insulating substrate provided to be opposite to the first insulating substrate;
- gate wiring lines formed on the first insulating substrate and transmitting scanning signals;
- a gate insulating film formed on the first insulating substrate and the gate wiring lines;
- drain wiring lines being composed of metal layers formed on the gate insulating film and transmitting video signals;
- semiconductor layers, each of which is formed on the gate insulating film and is provided at least under one of the drain wiring lines;
- thin film transistor sections, each of which has
- (1) a semiconductor channel layer formed of a part of one of the semiconductor layers located over a part of one of the gate wiring lines,
- (2) a drain electrode formed of a part of the drain wiring lines located on the semiconductor channel layer,
- (3) a source electrode being formed on the semiconductor channel layer to be opposite to and spaced from the drain electrode;
- a protective film being formed over at least one of the drain wiring lines, the source electrode, and the drain electrode; and
- pixel sections, each of which has at least one pixel electrode being connected to the source electrode and at least one of common electrode being spaced from the at least one pixel electrode in a plane along at least one of main surfaces of the first and second insulating substrates, wherein
- (e) semiconductor contacting layers are formed in each of the semiconductor layers along respective interfaces thereof contacting metal layers of the one of the drain wiring lines, the source electrode, and the drain electrode, and
- (f) the at least one pixel electrode is formed as three layered structure having the semiconductor layer, the semiconductor contacting layer, and a metal layer of either the drain wiring line or the source electrode being stacked in this order on the gate insulating film. This example also enables to generate an electric field having a component thereof substantially parallel to at least one of the main surface of the first and second insulating substrates in the liquid crystal layer by applying a voltage between the pixel electrode and the common electrode in accordance with the aforementioned structure of the pixel section. The liquid crystal display device displaying an image by controlling optical transmissivity of the liquid crystal layer in such a manner is called as the In-Plane-Switching (IPS) type.
In any of the above-described examples, the drain wiring lines, the source electrodes and the drain electrodes are in many cases formed of a metal, an alloy or a similar material. Three films, i.e., a metal film which constitutes the drain wiring lines, the source electrodes and the drain electrodes, a film which constitutes an n+-type semiconductor underlying the metal film, and a film which constitutes an i-type semiconductor underlying the n+-type semiconductor, are integrated into a pattern for the drain wiring lines. The metal film is made wider in line width than the n+-type semiconductor, and the i-type semiconductor is made wider in line width than the n+-type semiconductor, whereby the resultant steps are arranged in a staircase-like shape on the gate insulating film.
By distributing the line width of each of the films in this manner, the tensile stress of the metal film is canceled by the compressive stress of the semiconductor films, thereby preventing disconnection of the drain wiring lines at steps produced on the main surface of the substrate by the gate wiring lines. Moreover, the steps of the wiring lines are formed into a staircase-like shape, thereby dispersing and moderating the difference in height to maintain the coverage of the overlying protective film (the coating ratio of the protective film). Thus, shades due to rubbing during a liquid crystal alignment process are reduced and contrast is improved.
In addition, the liquid crystal display device according to the invention adopts a new charge-holding capacitance structure. The lower electrode of each charge holding capacitor is made of a metal electrode formed in the same process as and of the same material as gate wiring lines, and the upper electrode of the charge holding capacitor is made of a transparent conductive film which is present on a protective film and covers the openings of the protective film, and a laminated film made of a gate insulating film and an i-type semiconductor film or only the gate insulating film is used as a dielectric. The i-type semiconductor or the gate insulating film is directly connected to the transparent conductive film.
In addition, the liquid crystal display device according to the invention can adopt another charge-holding capacitance structure. The upper electrode of each charge holding capacitor is made of a transparent conductive film disposed on a protective film and connected through an opening of the protective film to a metal electrode formed in the same process as and of the same material as gate wiring lines, and the lower electrode of the charge holding capacitor is made of a metal electrode formed in the same process as and of the same material as drain wiring lines, and a protective insulating film is used as a dielectric.
According to the liquid crystal display device according to the invention, a new structure is adopted for the pixel electrodes of the IPS type liquid crystal display device. Each pixel electrode is formed as a three-layer structure made of an n+-type semiconductor, an i-type semiconductor and a metal film over a gate insulating film, and the steps of the pixel electrode are formed in a staircase-like shape so as to widen the lower section thereof. Owing to this structure, the parasitic capacitance between gate wiring lines and source electrodes is reduced.
The increase in the capacitance value per unit area of the above-described charge holding capacitor according to the invention makes it possible to narrow the widths of the gate wiring lines, the charge holding capacitor wiring lines or the common electrode wiring lines of the IPS liquid crystal display device, thereby improving the aperture ratio of each pixel of the liquid crystal display device.
To achieve the above objects, there is provided a new fabrication method which forms a TFT substrate through four photo-processes. The first is patterning gate wiring metal, the second is patterning a metal film for drain wiring lines and a semiconductor film, the third is patterning of openings in a protective film overlying the drain wiring lines, and the fourth is patterning pixel electrode on the protective film or a transparent conductive film having a particular function.
In the above-described fabrication method, the semiconductor film can use amorphous silicon (hereinafter, a-Si). In this fabrication method, the exposure and development of a photoresist for patterning the metal films of the drain wiring lines and the source and drain electrodes of TFTs as well as n+-type a-Si semiconductors and i-type s-Si semiconductors are carried out through one process. After the completion of the one exposure and development process, the drain metal is divided into the area in which a photoresist is absent, the area in which a thick photoresist is present and the area in which a thin photoresist is present.
A photomask for realizing the photoresist having such two different thicknesses through one exposure and development process has a construction having two metal film areas having different optical transmissivities, or a construction made of an aggregate area which has one nontransparent (opaque) metal film area and another nontransparent metal film area having slits or holes of 1-4 μm.
The substrate which has, in addition to the photoresist area having such two different thicknesses, the metal film having the area in which a photoresist is absent, the n+-type a-Si film underlying the area, the i-type a-Si film underlying the n+-type a-Si film and a SiN film underlying the i-type a-Si film is processed in the following sequence, and is separated into the drain wiring lines, the source and drain metals and the channel areas (i-type a-Si) of TFTs. The sequence includes removing the metal from the area having no photoresist by etching, selectively removing the n+-type a-Si film and the i-type a-Si film from the gate SiN film, removing the thin photoresist area by oxygen ashing with the thick photoresist area being left, again removing the metal film by etching, and removing the n+-type a-Si film having no metal film.
By using a photomask having three areas having different optical transmissivities, it is possible to process drain wiring lines, source electrodes and drain electrodes and s-Si films through one photo-process for exposure and development, whereby it is possible to simplify the entire process. In addition, the number of photo-processes per TFT substrate can be reduced to four.
Although the metal films of the drain wiring lines, the source electrodes and the drain electrodes are removed through two separate etching processes, it is possible to improve the processing accuracy of the drain wiring lines by performing dry etching as the first process and wet etching as the second process.
The metal film of the drain wiring lines is preferably a single film made of a metal containing Mo or a metal containing Ta, Ti or W, or a laminated film of these metals.
To realize another object of the invention, there is provided a new fabrication method for a charge holding capacitor. An i-type a-Si film formed as a dielectric for a charge holding capacitor and a protective film formed on the i-type a-Si film and made of SiN are removed by etching with an aqueous solution containing hydrofluoric acid and ammonium fluoride (a buffer solution of hydrofluoric acid), then the i-type a-Si film is selectively removed from a gate insulating film SiN by dry etching, and subsequently a transparent conductive film such as Indium-Tin-Oxide (hereinafter, ITO) is deposited to be a lid over openings of the protective film.
In the case where two films, i.e., a film made of SiN and a film made of an organic material, are used as the aforementioned protective film, it is possible to adopt another fabrication method for processing the SiN protective film and the organic-material protective film which overlie the i-type a-Si film of a charge-holding dielectric section. A photosensitive material is used as the organic material, and a pattern having openings with respect to the underlying film is formed by exposure and development, and this organic material itself is used as a mask pattern to remove the protective film SiN by etching with a buffer solution of hydrofluoric acid, and heat treatment which extends the organic material inwardly of the openings is performed at a treatment temperature of 150-200° C. After that, a transparent conductive film such as ITO is deposited to be a lid over the openings of the protective film.
In the above-described fabrication method, the i-type a-Si film may also be removed by etching before or after the heat treatment of the organic material.
By using the fabrication method for the charge holding capacitor, it is possible to form the dielectric of the charge holding capacitor with a gate insulating film or a laminated structure of the gate insulating film and the i-type a-Si film, whereby the capacitance value per unit area is increased and hence the aperture ratio is increased. In addition, even if the i-type a-Si film is directly connected to ITO, the contact resistance is high, so that electrons are not injected and image retention does not occur.
These and other objects, features and advantages of the present invention will become more apparent from the following description when taken in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments of the invention will be described with reference to the accompanying drawings. Incidentally, in each of the following embodiments, amorphous silicon (a-Si) is used as a representative example of semiconductor film and ITO is used as a representative example of transparent conductive film, but instead, semiconductor film such as polycrystalline silicon and transparent conductive film such as indium zinc oxide (IZO) may be used. Scanning lines and video signal lines which are wiring lines for TFTs are herein called gate wiring lines and drain wiring lines, respectively. The source and drain electrodes of each pixel of the liquid crystal display device cannot be easily defined, because each TFT is driven by AC power and the source and drain electrodes are electrically switched, but in the following description, the electrode section of each TFT that is connected to a drain wiring line is called the drain electrode, and the electrode section of the TFT that is connected to a pixel electrode with its channel length region interposed therebetween is called the source electrode. A charge-holding capacitance is also called storage capacitance, added capacitance or the like, but in the following description of the invention, the term “charge-holding capacitance” is used.
<<Embodiment 1>>
In the TFT section of the liquid crystal display device, as shown in
In the construction of this TFT section, one problem to be solved in terms of manufacturing yield factor is that the material of the transparent conductive film ITO1 which constitutes the pixel electrode PX, for example, ITO, does not have sufficient adhesion to the stepped undersurface, so that the transparent conductive film ITO1 may be easily disconnected during etching processing. Particularly in the cross-sectional structure shown in
In the section of the charge-holding capacitance Cstg, as shown in
As shown in
The following effects are obtained from the structure of the video signal line DL which is not simply made of the metal film d1 alone but has staircase-like steps made of the metal film d1, the a-Si contact film d0 and the a-Si channel film AS, respectively. As the metal film d1, Cr can also be used, but Al or Mo is preferable as a material of low resistivity.
However, during the etching of the transparent conductive film ITO1 of the pixel electrode PX which is located at the top of the cross-sectional structure shown in
In Embodiment 1, this method is used.
Another problem to be solved in terms of manufacturing yield factor is the disconnection of the video signal line DL which intersects a plurality of gate wiring lines GL as shown in
Since the video signal line DL is tensed in its lengthwise direction (in a direction perpendicular to the extending direction of the gate wiring lines GL; refer to
As shown in
As shown in
A fabrication method for the TFT substrate of the reversed staggered type TFT display device shown in
A first photo-process is shown in
A second photo-process is shown in
Then, a predetermined resist pattern (photo-resist pattern) is formed on this metal film dl. In
In the photo-process, the photomask is disposed over the TFT substrate SUB1 whose entire surface is coated with a resist, with a predetermined gap interposed between the photomask and the TFT substrate SUB1. The photomask has a structure having a nontransparent area (an opaque area) MAK1 made of Cr deposited to a predetermined thickness, an area MAK2 made of thinly deposited MoSi which can transmit light to a predetermined degree, and the other transparent area. In the case where a positive resist is used as the resist, the thickness of the resist after exposure and development becomes approximately close to the thickness of deposited film in the nontransparent area MAK1, and to a thickness 10-90% less than the thickness of film being deposited in the semitransparent area MAK2, and in the other transparent areas the resist is completely removed by cleaning. Accordingly, since the pattern of the photomask substrate MASUB is formed into three areas, i.e., nontransparent, semitransparent and transparent, the resist patterns PRES1 and PRES2 of different thicknesses can be realized on the TFT substrate SUB1 through one exposure and development process. In the next process et seq., the area of the resist pattern PRES1 forms the video signal lines DL for TFTs as well as the source and drain electrodes SD1 and SD2, while the area of the resist pattern PRES2 forms the channel length L areas of the TFTs.
The photomask fabrication method which forms resist patterns of different thicknesses on the TFT substrate SUB1 through one exposure and development process is not limited to the above-described method of forming the semitransparent metal area MAK2, but as disclosed in Japanese Patent Laid-Open No. 186233/1997, it is also possible to use a halftone mask in which the area MAK2 is made of a mesh-formed metal film having the same thickness as the area MAK1 so that the amount of exposure of the resist is reduced. However, as compared with the method of Embodiment 1, the method using such a halftone is low in the margin for adjustment of the amount of exposure reduction.
Then, as shown in the next cross-sectional view of the photo-process (
Then, as shown in
Then, the metal film d1 and the i-type a-Si channel film AS are half-etched so that a predetermined thickness is left, by using as a mask the resist pattern PRES1 which has been divided into sections corresponding to the source and drain electrode SD1 and SD2. In this process, the metal film d0 is removed by wet etching, and the etch selectivity of the a-Si contact layer do relative to SiN is increased by adjusting the amount of Cl2 to be added to SF6 or CF4.
As described above, as compared with the prior art of performing the processing of an a-Si film and the processing of source and drain metals through two separate photo-processes, it is possible to integrate these processes into one process by using the semitransparent mask, whereby it is possible to realize a reduction in the number of required fabrication processes and hence an improvement in yield factor. In addition, since there is no need for photo-alignment of the a-Si film and the source and drain metal films, accuracy is improved and aperture ratio is also improved.
On the other hand, as compared with the prior art method, the metal films for the source and drain electrodes SD1 and SD2 as well as the drain wiring line DL are etched twice, and if the metal film d1 is wet-etched, the amount of undercutting due to side etching becomes large and pattern accuracy becomes low. On the other hand, dry etching features a high pattern accuracy, but in the second etching (channel length L portion) shown in
Alternative photo-processes for the TFT substrate are shown in
Then, as shown in
In accordance with the above-described fabrication process of Embodiment 1, as compared with the prior art fabrication process, it is possible to reduce the number of required photo-processes including exposure and development from five to four, whereby it is possible to simplify the fabrication process and it is also possible to reduce defects due to dust or the like occurring in a process and improve the yield factor of the fabrication process. In addition, in terms of the TFT structure, the a-Si film and the signal lines are processed in one photo-process after having been continuously deposited, whereby the pattern accuracy of Embodiment 1 is improved compared to the conventional pattern accuracy with which a-Si films, signal lines and source and drain electrodes are separately processed through photo-alignment. Accordingly, it is possible to realize a bright liquid crystal display device having a high aperture ratio.
<<Embodiment 2>>
A reversed staggered type TFT liquid crystal display device according to the second embodiment of the invention will be described below with reference to FIGS. 10 to 13.
The fabrication method for the cross-sectional structure shown in
Cross-sectional views of the fabrication process of the second photo-process of Embodiment 2 are shown in
Then, a photoresist is applied to the metal film d1, and is exposed and developed by using a photomask having a nontransparent area, a semitransparent area and a transparent area as shown in
Then, processes similar to those shown in
Then, after the protective film PSV made of SiN has been deposited by using a CVD method, the predetermined resist pattern PRES1 is patterned so as to correspond to an opening for the source electrode SD2 and an opening for the charge-holding capacitance Cstg (
The subsequent process deposits the transparent conductive film ITO1 and patterns the pixel electrode PX in a manner similar to that shown in
The charge-holding capacitance Cstg of Embodiment 2 has a laminated structure consisting of an upper electrode made of the transparent conductive film ITO1 which is formed in the same process and of the same material as the pixel electrode PX and a lower electrode which is the gate wiring line GL, as in Embodiment 1. However, unlike the charge-holding capacitance Cstg of Embodiment 1, the charge-holding capacitance Cstg of Embodiment 2 has a dielectric film having a stacked structure made of the SiN gate insulating film GI and the half-etched a-Si channel film AS. In the structure of the charge-holding capacitance Cstg of Embodiment 2, the dielectric film is thin in thickness compared to the dielectric film of Embodiment 1 having a stacked structure made of the SiN gate wiring line GL and the SiN protective film. Moreover, the dielectric constant of the a-Si film is 12 which is greater than 7 of the SiN film, whereby Embodiment 2 makes it possible to form a larger charge-holding capacitance Cstg in a smaller area than does Embodiment 1. Accordingly, since the width of the gate wiring line GL can be made narrower in Embodiment 2 shown in
A structure which uses an a-Si film in a charge-holding capacitance section is disclosed in Japanese Patent Laid-Open No. 202153/1994. The disclosed structure includes a gate insulating film formed over lower wiring, an i-type a-Si film and an n+-type a-Si film formed over the gate insulating film, source and drain electrode metals formed over the i-type a-Si film and the n+-type a-Si film, and a protective film overlying the electrode metals, and the protective film is opened above the electrode metals so that the electrode metals are connected to a transparent conductive film. The present inventor fabricated this structure and obtained the following result. During charging of a TFT, electrons were supplied to the i-type a-Si film from the transparent conductive film via both a metal electrode formed in the same process as the source and drain electrodes and an n+-type a-Si film, whereby the i-type a-Si film became a conductor and the charge-holding capacitance value became large. Contrarily, during the charge-holding period in which the TFT was off, the i-type a-Si film worked as a dielectric and emitted electrons, with the result that during the charge-holding period the pixel potential lowered and caused a display defect such as image retention. This image retention effect became larger as the i-type a-Si film became thicker.
As compared with the above-described prior art, in Embodiment 2, the image retention is reduced owing to the following advantages, whereby it is possible to realize a good display device. One of the advantages is that the a-Si channel film AS of the charge-holding capacitance Cstg shown in
<<Embodiment 3>>
A reversed staggered type TFT liquid crystal display device according to the third embodiment of the invention will be described below with reference to FIGS. 14 to 15C.
As shown in the cross-sectional view of
Cross-sectional views of the fabrication process of the third photo-process of Embodiment 3 are shown in
Then, by using a buffer solution of hydrofluoric acid, the protective film PSV is opened to form the through-hole CN above the source electrode SD2 and the through-hole CNS in the section of the charge-holding capacitance Cstg. In Embodiment 3, in this process, drying etching with SF6 or CF4 cannot be used for the processing of the through-holes CN and CNS. This is because the etching speed of the gas for the a-Si channel film AS is as fast as that for SiN which forms the protective film PSV, so that the gas also etches the gate insulating film GI on the gate wiring line GL. With the buffer solution of hydrofluoric acid, it is possible to effect approximately 100% selective etching of a-Si and SiN. In addition, if the surface of the metal electrode d1 of the source electrode SD2 that is in contact with the protective film PSV is made of Mo, Cr or an alloy of Mo and Cr, the buffer solution of hydrofluoric acid does not etch (
Then, the a-Si channel film AS over the charge-holding capacitance Cstg is selectively etched above the gate insulating film GI formed of SiN at the opening CNS with the resist pattern PRES1 being left. The etching is performed with a so-called chlorine type gas in which Cl2 or HCl is added to SF6 or CF4. If the outermost surface of the metal film d1 of the source electrode SD2 is made of Cr or a metal containing Cr, the a-Si channel film AS is not removed by the dry etching using the chlorine gas. If the outermost surface is made of Mo or a metal which mainly contains Mo, the speed of the drying etching for the processing of the through-holes is slower than that for the a-Si channel film AS in the section of the charge-holding capacitance Cstg. Accordingly, the metal film dl of the source electrode SD2 is not completely removed when the etching of the a-Si channel film AS is completed, whereby it is possible to achieve the good contact characteristics between the source electrode SD2 and the transparent conductive film ITO1. The favorable effect of the above-described etching is also achieved due to the fact that the a-Si channel film AS of the charge-holding capacitance Cstg shown in
On the other hand, the a-Si channel film AS underlying the protective film PSV is etched near the outline of the opening CNS of the charge-holding capacitance Cstg, and if the a-Si channel film AS is thick, the a-Si channel film AS is side-etched into the protective film PSV, so that the transparent conductive film ITO1 to be deposited in a later process may be disconnected. In the structure and the fabrication method according to Embodiment 3, the a-Si channel film AS is thinned by half-etching, and regarding the deposition temperature of SiN in the CVD method that of the protective film PSV is set to be lower than that of the gate insulating film GI so that the etching speed of the protective film PSV is set to be larger than that of the gate insulating film GI during the same dry etching. Accordingly, the etched end surfaces of the protective film PSV and the a-Si channel film AS at the through-hole CNS of the charge-holding capacitance Cstg of the pixel electrode PX have good shapes, whereby the transparent conductive film ITO1 of the pixel electrode PX is not disconnected.
In Embodiment 3, owing to the above-described advantages, the above-described image retention is reduced, whereby it is possible to realize a bright display device having a large aperture ratio. The charge-holding capacitance Cstg has an upper electrode made of the transparent conductive film ITO1, a lower electrode made of the gate wiring line GL, and a dielectric film is made of parallel capacitances in the area formed of three films, i.e., the gate insulating film GI, the a-Si channel film AS and the protective film PSV, in and near the area of the contact hole CNS used as the gate insulating film GI. In particular, since the section of the contact hole CNS is composed of only the gate insulating film GI, the capacitance per unit area can be made large compared to Embodiments 1 and 2, so that the width of the underlying gate wiring line GL can be made small and the aperture ratio can be increased, whereby it is possible to realize a bright liquid crystal display device. In Embodiment 3, the efficiency of injection of electrons into the a-Si channel film AS from the pixel electrode PX is small compared to Embodiment 2, whereby the liquid crystal display device is improved in performance for reducing image retention. In addition, it is possible to provide a fabrication method in which even if the protective film PSV and the gate insulating film GI are made of the same kind of material such as SiN film, even if the protective film PSV overlying the gate insulating film GI is removed, the gate insulating film GI only can be selectively left.
<<Embodiment 4>>
A TFT liquid crystal display device according to the fourth embodiment of the invention will be described below with reference to FIGS. 16 to 18C.
The plane structure of the one pixel shown in
A structure peculiar to the invention for realizing the above-described high aperture ratio is shown in
Here will be given the reasons that the above-described structure of the charge-holding capacitance Cstg and the organic second protective film PSV2 introduced in Embodiment 3 realize a so-called liquid crystal display device having a high aperture ratio. The second protective film PSV2 shown in
On the other hand, a prior art in which an organic film is used as a protective film and a charge-holding capacitance line is disposed in each pixel including a TFT and a gate insulating film is used as a charge-holding dielectric is disclosed in Japanese Patent Laid-Open No. 90404/1997. In this prior art, the source electrode of the TFT is formed to be extended onto the charge-holding capacitance line, and this source electrode is connected to a pixel electrode through an opening formed in the organic protective film. This method improves the capacitance value per unit area, but separately processes the source electrode and an a-Si semiconductor film through different photo-processes, and therefore, needs at least five or more photo-processes for processing a TFT substrate. As a result, with the prior art method, it is impossible to achieve another object of the invention which is to reduce the number of photo-processes to four or less and improve yield factor to reduce cost.
A fabrication method according to Embodiment 4 is shown in
Then, for example, an acrylic photosensitive resin is formed as the second protective film PSV2 by a spin coating method. Moreover, this resin is exposed and developed into a pattern which has an opening for the source electrode SD2 of the TFT and an opening for the charge-holding capacitance Cstg (
Then, the TFT substrate SUB1 is heated at 200° C. By this heating, the corner portions of the cross-sectional structure are rounded, and further, the second protective film PSV2 is extended into each of the openings CN and CNS (
As described above, the structure of the charge-holding capacitor Cstg of Embodiment 4 is such that in the essential section of the charge-holding capacitor Cstg, an upper electrode is the pixel electrode PX made of the transparent conductive film ITO1 formed to be extended from the organic protective film PSV2 into the through-hole CNS formed in the first protective film PSV1 made of an SiN film and the organic protective film PSV2, and a lower electrode is made of the metal film g1 of the charge-holding capacitance line CL formed in the same process as and of the same material as the gate wiring line GL. The gate insulating film GI is used as a dielectric, and another dielectric is a laminated film made of the gate insulating film GI, the a-Si channel film AS, the first protective film PSV1 and the second protective film PSV2. This construction is fabricated with good yield factor through four photo-processes.
In the case where the opening CNS in the protective films PSV1 and PSV2 of the a-Si channel film AS of the section of the charge-holding capacitor Cstg is etched with a mask, this etching may be performed after the above-described heat treatment process of the organic material.
<<Embodiment 5>>
Embodiment 5 of the invention is shown in FIGS. 19 to 21.
The layout of one pixel is such that, as shown in
Similarly to the planar construction of one pixel of a display mode having common electrodes on the color filter substrate SUB2 used in each of Embodiments 1 to 4, in the planar construction of one pixel of Embodiment 5, a TFT is provided with the gate wiring line GL and the drain wiring line DL which perpendicularly intersect each other, and the pixel electrode PX is connected to the source electrode SD2 of the TFT via the through-hole formed in the protective film and is formed of the transparent conductive film ITO1. Similarly to the charge-holding capacitance line of Embodiment 4, this common electrode wiring line CT is independent of the gate wiring line Gl and is formed in the same process as and of the same material as the gate wiring line GL, and is branched off in a comb-teeth shape in the pixel and forms common electrodes CX disposed to be opposite to the pixel electrodes PX. Similarly to the charge-holding capacitance line CL of Embodiment 4, the counter electrode wiring line CT also works as a circuit wire which constitutes a charge holding capacitor, and constitutes the charge-holding capacitor Cstg which uses the transparent conductive film of the pixel electrode PX as its upper electrode.
Incidentally, in Embodiment 5, the laminated wiring structure made of the gate insulating film GI and the half-etched a-Si channel film AS is used as the dielectric film of the charge-holding capacitor Cstg. However, it goes without saying that, similarly to the liquid crystal display device of Embodiment 1 and the Embodiment 3, the liquid crystal display device according to Embodiment 5 can be applied to a structure in which both a laminated film made of the gate insulating film GI and the protective film PSV and the gate insulating film GI on which the half-etched a-Si channel film AS is disposed around the opening of the protective film PSV are used as a dielectric which constitutes the charge-holding capacitor Cstg.
<<Embodiment 6>>
Embodiment 6 of the invention is shown in FIGS. 22 to 24.
The layout of one pixel is such that, as shown in
Unlike Embodiment 5, the charge-holding capacitor Cstg is formed of one electrode made of the pixel electrode PX and the other electrode constructed as the transparent conductive film ITO1 connected to the common electrode CX through the through-hole CNS. Similarly to the charge-holding capacitance line CL of Embodiment 4, the transparent conductive film of the pixel electrode PX works as a circuit wiring line constituting the charge-holding capacitor Cstg and is used as the upper electrode.
The charge-holding capacitor Cstg has a lower electrode made of the metal film d1 formed to be extended from the source electrode SD2 and an upper electrode which is made of the transparent conductive film ITO1 connected to the common electrode wiring line CT via a through-hole CNC formed in a laminated film made of the gate insulating film GI and the protective film PSV made of an SiN film. The dielectric of the charge-holding capacitor Cstg is the protective film PSV which is made of a 200-600-nm-thick SiN film.
In the IPS display device according to Embodiment 6, although the pixel electrode PX is laminated on the a-Si channel film AS, the pixel electrode PX does not intersect the common electrode wiring line CT, whereby there does not occur an image retention phenomenon due to a variation in the capacitance of the a-Si film in the charge-holding state. Moreover, although in Embodiment 5, as shown in
As described above, in accordance with the invention, metal films for a-Si films and source and drain electrodes which constitute channel-etch type TFTs having a reversed staggered structure can be processed through one photo-process. Specifically, although the related art needs five photo-processes, the invention makes it possible to fabricate a TFT substrate through four photo-processes, thereby improving yield factor and reducing cost.
Moreover, if the above-described fabrication method using four photo-processes is used to form each drain wiring line of a TFT liquid crystal display device as a three-film structure made of an i-type a-Si film, an n+-type a-Si film and a metal film on a gate insulating film, i.e., a staircase-like structure, or if each pixel electrode of an IPS type liquid crystal display device is formed as the above-described structure by using the above-described fabrication method, micromachining is enabled, and it is possible to realize a bright liquid crystal display device having a high aperture ratio. In addition, it is possible to reduce parasitic capacitance.
In addition, since the dielectric of the charge holding capacitor can use the gate insulating film or a laminated structure of the gate insulating film and the i-type a-Si film or the protective insulating film, it is possible to reduce the capacitance value per unit area and it is also possible to narrow the widths of the gate wiring lines, the charge-holding capacitance lines or the common electrode wiring lines. Accordingly, it is possible to provide a bright liquid crystal display device having a high aperture ratio.
While we have shown and described several embodiments in accordance with the present invention, it is understood that the same is not limited thereto but is susceptible of numerous changes and modifications as known to those skilled in the art, and we therefore do not wish to be limited to the details shown and described herein but intend to cover all such changes and modifications as are encompassed by the scope of the appended claims.
Claims
1. A liquid crystal display device comprising:
- a pair of substrates;
- a liquid crystal layer interposed between said pair of substrates;
- a plurality of drain wiring lines and a plurality of gate wiring lines being formed one of said pair of substrates;
- at least one pixel is composed in respective regions surrounded by said drain wiring lines and said gate wiring lines;
- a lower electrode, a dielectric film, a protective film, and an upper electrode being formed at location corresponding to said at least one pixel in this order;
- a semiconductor layer formed between said dielectric film and said protective film;
- a contact hole is provided by perforating said protective film, and
- said upper electrode contacts with said semiconductor layer through said contact hole.
2. A liquid crystal display device according to claim 1,
- wherein said upper electrode is a transparent electrode.
3. A liquid crystal display device according to claim 1,
- wherein at least one transistor is formed in said one pixel.
4. A liquid crystal display device according to claim 3,
- wherein said upper electrode is electrically connected to said transistor.
5. A liquid crystal display device according to claim 3,
- wherein said dielectric film is a gate insulating layer of said transistor.
6. A liquid crystal display device according to claim 3,
- wherein said lower electrode is composed of the same material as a gate electrode of said transistor.
Type: Application
Filed: Jun 30, 2004
Publication Date: Jan 13, 2005
Applicant:
Inventors: Kikuo Ono (Mobara), Yoshiaki Nakayoshi (Mobara), Ryutaro Oke (Mobara), Toshiki Kaneko (Chiba)
Application Number: 10/879,635