Charged particle therapy apparatus and charged particle therapy system
A charged particle therapy system is disclosed in which a hard switch for making a beam request of the accelerator side is installed in an irradiation room so that the accelerator side can start a desired beam irradiation preparation after depressing the hard switch. This arrangement allows the accelerator allocated time to be reduced, thereby improving the usage efficiency of the facilities by increasing the throughput with respect to patients.
The present invention relates to a charged particle therapy apparatus and a charged particle therapy system.
In the irradiation therapy using a medical accelerator, an operator performs positioning with respect to a patient in an irradiation room, and thereafter enters an irradiation operation room from the irradiation room through a passage. Then, the operator sends a desired beam request from a console provided in the irradiation operation room to the accelerator control side. The passage in the irradiation room has a labyrinth-like configuration in order to shield against radiation, and a protective door at the outlet of the irradiation room is constituted by a large-sized electric door because a large shielding work load. Such techniques are disclosed, for example, in JP, A 5-223987.
SUMMARY OF THE INVENTIONIn the above-described related art, after having performed positioning with respect to a patient, an operator enters an irradiation operation room from the irradiation room through the labyrinth-like passage, then the operator requires beams to the accelerator side, and from that point in time, the accelerator side starts a preparation for required beams. The operator in the irradiation operation room, therefore, must wait for some time until the preparation for beam transport is made.
The object of the present invention is to allow the accelerator to be efficiently used, and enable the throughput with respect to patients to be enhanced by reducing the accelerator allocation time.
To solve the above-described object, the present invention provides a medical accelerator control system in which a hard switch for beam request is arranged in an irradiation room. This arrangement allows the accelerator side to start a desired beam irradiation preparation after depressing the hard switch.
BRIEF DESCRIPTION OF THE DRAWINGS
Embodiments according to the present invention will be described with reference to the drawings. The medical accelerator control system according to this embodiment comprises a main body of an accelerator for performing the generation, acceleration, and accumulation of charged particle beams; irradiation rooms 16 in each of which an irradiation therapy is performed using charged particle beams extracted from the main body of the accelerator; irradiation operation rooms 403 for each outputting an irradiation start command; a controller 400 mainly performing control of a plurality of constituent components of the main body of the accelerator; and an accelerator control room 501 including the controller 400 principally and some user interface for setting and adjusting the accelerator. The accelerator control room 501 is disposed in a reasonable position within the facilities. The main body of the accelerator includes a pre-stage accelerator 10 for generating charged particle beams; a low-energy beam transport system (or simply referred to as a beam transport system; the same shall apply hereinafter) 11 for transporting the charged particle beams generated by the pre-stage accelerator 10 to a synchrotron for acceleration 13; the synchrotron for acceleration (i.e., accelerator) 13 for performing the acceleration and accumulation of charged particle beams and their extraction to each of the irradiation rooms 16; and a high-energy beam transport system 15 for transporting the charged particle beams extracted by the synchrotron for acceleration (i.e., accelerator) 13 to each of the plurality of irradiation rooms 16. The beam transport system 11 comprises a bending magnet 20 for bending charged particle beams, an injector 23 for injecting charged particle beams into the synchrotron 13 for acceleration, and current monitors 320 to 322 each measuring the beam current of charged particle beams.
The synchrotron 13 for acceleration includes bending magnets 20, quadrupole magnets 21 for performing the convergence and divergence of charged particle beams, steering magnets 26 for fine-tuning the position of charged particle beams, and an accelerating cavity 22 for accelerating charged particle beams, and current monitors 330 to 337.
The beam transport system 15 includes an extractor 27 for extracting charged particle beams from the synchrotron 13 for acceleration, a bending magnet 20 for bending charged particle beams, a switching magnet 28, dampers 29 each changing the beam current of charged particle beams, quadrupole magnets 21 for performing the convergence and divergence of charged particle beams, current monitors 340 to 346 each measuring the beam currents of charged particle beams, and irradiation rooms.
Next, descriptions of the irradiation rooms and irradiation operation rooms will be provided.
The operator fixes the patient 371 to the irradiation position, and when an irradiation preparation has been completed, the operator depresses the hard switch 401 for beam irradiation request of the accelerator control room 501. Upon acceptance of this beam irradiation request, the acceptance confirmation lamp 502 blinks. At this time, in the accelerator control room 501, a startup of the accelerator for extracting required beam begins. Thereafter, the operator moves to the pertinent irradiation operation room 403 through a labyrinth-like passage 406 of the pertinent irradiation room 16. Upon completion of a beam irradiation preparation, a notification of the completion of the beam irradiation preparation is provided from the accelerator control room 501 to the irradiation room 16 and the irradiation operation room 403, and the acceptance confirmation lamp 502 and the display device 408 blink. The operator in the irradiation operation room 403 makes sure that beam is correctly set, by the display device placed on the operation console 404, and depresses the hard switch 407 for beam irradiation command that is disposed on the operation console 404, thereby making a request for a beam irradiation command.
As described above, according to the present invention, it is possible to reduce the accelerator allocated time, and improve the usage efficiency of the facilities by enhancing the throughput with respect to patients.
Claims
1. A charged particle therapy apparatus comprising:
- a plurality of irradiation rooms in each of which a therapy is performed by irradiating a person to be treated with accelerated charged particle beams,
- wherein said apparatus is configured such that when a beam irradiation command requiring irradiation is issued after a beam request command requiring an irradiation preparation for charged particle beams has been issued, charged particle beams are applied to the person to be treated; and
- wherein the plurality of irradiation rooms each have a switch for the beam request command.
2. The charged particle therapy apparatus according to claim 1, wherein the switch for beam irradiation command is disposed in an irradiation operation room.
3. The charged particle therapy apparatus according to claim 1 or 2, further comprising accelerator control means for uniquely determining an automatic operation setting file for an accelerator based on the beam request command.
4. The charged particle therapy apparatus according to any one of claims 1 to 3, wherein the particle is a proton.
5. A charged particle therapy system comprising:
- a beam generator for generating charged particle beams;
- an accelerator for accelerating the charged particle beams; and
- a plurality of irradiation rooms in each of which a therapy is performed by irradiating a person to be treated with the accelerated charged particle beams,
- wherein said system is configured such that when a beam irradiation command requiring irradiation is issued after a beam request command requiring an irradiation preparation for charged particle beams has been issued, charged particle beams are applied to the person to be treated; and
- wherein the plurality of irradiation rooms each have a switch for the beam request command.
Type: Application
Filed: Jul 7, 2004
Publication Date: Feb 10, 2005
Inventors: Daisuke Ueno (Hitachi), Daishun Chiba (Hitachi), Yasutake Fujishima (Hitachinaka)
Application Number: 10/884,971