Apparatus and method for rotating avian enclosures
An apparatus and method provide rotation of avian enclosures. In a first mode of operation, the apparatus automatically rotates the avian enclosure at a slow speed when a bird is detected, and automatically rotates the avian enclosure at a faster speed when a larger animal, such as a squirrel, is detected. In a second mode of operation, the apparatus may be controlled using a wireless remote control to perform a desired action. In a third mode of operation, the apparatus sends one or more signals via wireless transmission to a wireless notification device, which notifies a user of the presence of a bird or a larger animal. The user then has the option of using a wireless remote control to perform a desired action, which may include rotating the avian enclosure at a desired speed, stopping rotation of the avian enclosure, activating a beeper or vibrator, etc.
This application is a Divisional of my earlier application of the same title, Ser. No. 10/698,298, filed on Oct. 31, 2003, which is a Continuation-In-Part (CIP) of my earlier patent application “APPARATUS FOR DETERRING ANIMALS FROM AVIAN ENCLOSURES”, Ser. No. 09/900,807 filed on Jul. 6, 2001, which is a continuation of “METHOD FOR DETERRING ANIMALS FROM AVIAN ENCLOSURES”, Ser. No. 09/480,936 filed on Jan. 11, 2000, which claims the benefit of U.S. Provisional Application No. 60/164,451 filed on Nov. 11, 1999. All of these related applications are incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Technical Field
The present invention generally relates to avian enclosures and accessories to avian enclosures. More specifically, the invention relates to apparatus and methods for rotating avian enclosures.
2. Background Art
One of main purposes of avian enclosures for their owners is the enjoyment of watching birds. Unfortunately, rodents consume large quantities of birdseed and, worst yet, destroy birdfeeders and birdhouses due to their aggressive nature. The most vulnerable feeders are the ones made out of plastic or wooden parts that squirrels will eventually chew on and destroy. As a result, people cannot enjoy watching birds at the same time while worrying about squirrels, or other rodents, damaging and/or scaring away birds from their feeders or houses.
Many attempts have been made in the prior art to develop, either internal or external to a birdfeeder, mechanisms that try to actively protect feeders by repelling rodents. Many of these use a cruel and inhumane electrical shock on the squirrels. For example, U.S. Pat. No. 5,191,857 to Boaz uses a large umbrella-shaped electrical shocking squirrel guard above the feeder. However, squirrels can get around this device simply by leaping onto the feeder from a nearby tree or from the ground. Other attempts shown by U.S. Pat. No. 2,856,898 to Doubleday et al., U.S. Pat. No. 5,937,788 to Boyd, and U.S. Pat. No. 5,471,951 to Collins all incorporate an electrical-shocking device within the feeder itself. However, defense mechanisms of these types can generally be figured-out by the squirrels who are both cunning and very determined. Over time, the squirrels train themselves where to step and where not to step in order to avoid getting shocked.
Other attempts in the prior art have tried more passive devices such as plastic baffles for deterring squirrels that are inherently designed to be very large and bulky devices. For example, U.S. Pat. No. 4,327,669 to Blasbalg, U.S. Pat. No. 5,642,687 to Nylen, and U.S. Pat. No. 4,031,856 to Chester all use some sort of large umbrella-shaped squirrel guard located either above and/or below the feeder. However, the effectiveness of these passive devices is even worse than the previously mentioned active devices since the squirrel will not only defeat the device, they will also destroy the device in the process by chewing on it repeatedly.
DISCLOSURE OF INVENTIONAn apparatus and method provide rotation of avian enclosures. In a first mode of operation, the apparatus automatically rotates the avian enclosure at a slow speed when a bird is detected, and automatically rotates the avian enclosure at a faster speed when a larger animal, such as a squirrel, is detected. In a second mode of operation, the apparatus may be controlled using a wireless remote control to perform a desired action. In a third mode of operation, the apparatus sends one or more signals via wireless transmission to a wireless notification device, which notifies a user of the presence of a bird or a larger animal. The user then has the option of using a wireless remote control to perform a desired action, which may include rotating the avian enclosure at a desired speed, stopping rotation of the avian enclosure, activating a beeper or vibrator, etc.
The foregoing and other features and advantages of the invention will be apparent from the following more particular description of preferred embodiments of the invention, as illustrated in the accompanying drawings.
BRIEF DESCRIPTION OF DRAWINGSThe preferred embodiments of the present invention will hereinafter be described in conjunction with the appended drawings, where like designations denote like elements, and:
The present invention is directed to an apparatus and method of deterring rodents, such as squirrels, from avian enclosures by rotating the enclosures about their vertical axis. To accomplish this task, the rotating device must spin the feeder at a high enough revolutions-per-minute suitable to make the squirrel dizzy and/or nauseated. Through experimentation, a revolutions-per-minute of between 70 and 100 was found to make those squirrels that jump onto a feeder want to jump back off. Results so far have shown that, at these speeds, the squirrel becomes light-headed and/or agitated due to the significant centrifugal force generated from the rotating avian enclosure. Consequently, the squirrels always jump off after a brief period of time of usually less than 15 seconds. However, to be safe, the enclosure should be allowed to run at least one minute especially for battery-operated devices which may start to slow down after the batteries start to drain. In addition, it was found that squirrels generally will not try to board an already rotating feeder. So, as a result, an optimum system is one that senses the rodents prior to them jumping onto the feeder. The feeders can then be activated before the rodent even has a chance to eat any food.
The devices chosen to accomplish this method should also be flexible enough to rotate the enclosures at very slow speeds. This is desirable when birds land to allow the birdwatcher to see all sides of their enclosure. The rotational speed has to be slow enough to not scare away the birds. Through experimentation, it was found that a rotational speed of less than about six revolutions-per-minute will usually suffice in not scaring off any birds perched on the rotating feeder. However the revolutions-per-minute speed should not be too low as to become almost boring to watch. As a result, it was determined that about a three revolutions-per-minute is a safe and yet interesting rotational speed.
The electrical and/or mechanical rotating device ultimately chosen for this invention should take some or all of the above specifications into account. Also for the convenience of the user, the device may function without user intervention. For example, the device should have the capability to sense when the rodents or birds are on the feeder and discriminate between the two in order to decide whether to rotate the feeder fast or slow. Also for the convenience of the user, the device can have a remote-control capability that notifies the birdwatcher when something is in their feeder. The birdwatcher should then have the flexibility to decide what to do next to, for example, rotate the feeder to a variably fast speed or activate a very loud buzzer. Lastly, since some rodents are very smart, the device, if it is hanging from a tree, should also have the capability to sense when a rodent is trying to climb down from above. Some possible electrical/mechanical apparatuses that meet the above specifications of the invention will now be described in detail.
Referring to
Refer now to
The printed circuit board 220 is also shown in
Shown also in
Referring now to
Buzzer 450 is an audio device that is provided to scare away unwanted animals. Buzzer 450 may be any suitable electronic buzzer or beeper, and may be activated to provide a constant buzz or beep, or may be activated to provide an intermittent buzz or beep. Buzzer 450 may also be used to provide an audible warning when there is a problem, such as low batteries, a feeder that cannot rotate (e.g., due to tree branches), etc. Vibrator 460 is likewise provided to scare away unwanted animals. Vibrator 460 causes the housing 210 and hook 104 to vibrate, which will typically aid in scaring away the unwanted animal. One suitable implementation for vibrator 460 is a small motor with an offset cam attached to its shaft that causes vibration when the motor is activated.
Controller 410 includes a first animal specification 412 and a second animal specification 414. In the load cell example, the first animal specification 412 may specify that animals of a first type (e.g., birds) are from 1 to 200 grams, and the second animal specification 414 may specify that animals of a second type (e.g., squirrels) are 200 grams or more. The controller also contains a slow speed specification 416 and a fast speed specification 418. Research has shown that a slow speed specification 416 of 3-6 revolutions per minute (RPM) allows turning an avian enclosure to view the birds without scaring the birds away. Research has also shown that a fast speed specification 418 of 70-100 RPM is sufficient to scare away squirrels. When an animal lands on the avian enclosure suspended from hook 104 in
Slow speed specification 416 and fast speed specification 418 may be fixed values. For example, slow speed specification 416 could be a fixed speed from 3-6 RPM and fast speed specification 418 could be a fixed speed from 70-100 RPM. Note, however, that one or both of slow speed specification 416 and fast speed specification 418 may include algorithms or heuristics that vary the speed of rotation. If the speed of rotation needs to be changed, the speed adjustment mechanism 470 is used. In one specific implementation, the slow speed specification 416 is set to a fixed value from 3-6 RPM, while the fast speed specification 418 begins at a relatively fast value, and increases speed at fixed time increments until the undesired animal jumps off the avian enclosure.
Referring to
Referring now to
The voltage regulator 630 receives a voltage input from the battery 640 via switch 258 when the switch is in either of the On1 or On2 positions. The switch terminal that provides battery voltage to the voltage regulator 630 is labeled “C” in
Buzzer 450 may be any suitable buzzer. In the preferred implementation of the first embodiment, buzzer 450 is a piezoelectric buzzer mounted directly to the printed circuit board 220. When buzzer 450 is a piezoelectric buzzer, the piezoelectric buzzer may be used as an input device that senses vibrations as well as an audio output device. Motor 240 is any suitable motor, and may include a suitable gearbox to provide the desired speeds of rotation for hook 104. Microcontroller 410 provides an output that drives a field-effect transistor (FET) 662 that acts as an electronically-controlled switch to complete the path between the ground terminal of the motor 240 and the circuit ground. A pull-down resistor R3 638 is provided to keep the motor 240 from turning on inadvertently before the pin of the microcontroller 410 drives the gate of FET 662 to a logic LOW. Vibrator 460, as discussed above, may be any suitable device that is capable of vibrating the hook 104 or the housing 210. The manner in which the microcontroller 410 drives the vibrator 460 depends on its specific configuration. For the example of a motor with an offset cam, the vibrator 460 could be driven in the same manner shown for motor 240.
The microcontroller 410 includes an input that is coupled to the On2 terminal of the power switch 258. This signal passes through a voltage divider circuit made up of resistors R1 632 and R2 634, to microcontroller 410. Note that switch 258 includes a contact wiper that is shown in solid lines in the OFF position, and is shown in phantom lines in the On1 and On2 positions. When the switch 258 is in the OFF position or in the On1 position, there is no connection from the battery 640 to the On2 terminal in the switch 258. As a result, the logic level on the input to the microcontroller 410 is LOW due to the pull-down resistor R2 634. When the switch 258 is in the On2 position, the voltage from battery 640 is coupled to the On2 terminal, which provides a logic HIGH on the input to the microcontroller 410. This input thus indicates to microcontroller 410 whether the switch 258 is in the On1 position or the On2 position. In the most preferred implementation, the On1 position is selected for fast rotation for rodents, while the On2 position is selected for fast rotation for rodents plus slow rotation for birds.
A detailed flow diagram for the apparatus 600 of
If P_FLAG is set (step 714=YES), the apparatus has just been powered up, so built-in tests need to be performed to assure the apparatus is functioning correctly. If P_FLAG is not set (step 714=NO), but the error count E_CNT is greater than zero (step 716=YES), the built-in tests need to be performed again. If the apparatus has not just been powered up (step 714=NO) and the error count is zero (step 716=NO), the weight is compared to the rodent threshold (which corresponds to the second animal specification 414 in
A simple example will illustrate. Let's assume that M, the maximum number of rotation periods for a rodent, is set to 5. In this case, when a rodent is first detected, R_CNT is incremented to a value of one in step 720. One is less than five, so step 722=YES. The buzzer and vibrator are activated in step 724, and the feeder is rotated at a speed that is a function of R_CNT for some period of time that may also be a function of R_CNT. On the next iteration, R_CNT is incremented in step 720 to a value of two (step 720), which is still less than five (step 722=YES). Buzzer and vibrator are activated again (step 724), and the speed of rotation is increased in step 726 because the value of R_CNT increased from one to two. The same happens for the next two iterations, when R_CNT is incremented to values of three and four. On the fifth iteration, R_CNT is incremented to a value of five, so R_CNT is no longer less than M (step 722=NO). As a result, the previously measured weight of the feeder is set to the current weight, and R_CNT is reset to zero (step 728). We fashion the algorithm in step 726 such that we are generally assured that a rodent will no longer be on the feeder by the time R_CNT=M. However, if the rodent is still present when R_CNT=M, the previous weight WP is set to the current weight W, and R_CNT is set to zero. In effect, if the rodent is still present when R_CNT=M, method 700 gives up trying to spin the rodent off. As a result, when the weight W is measured in step 712 upon exiting sleep mode, method 700 will no longer detect that the rodent is present. This mode of operation saves batter life in the event that a stubborn squirrel somehow is able to hang on for M rotation periods.
Step 726 shows an algorithmic implementation for fast speed specification 418, where rotation begins at one speed and is incrementally increased for every rotation period. Note that the fast speed specification 418 in
If the weight sensed in step 718 is less than the rodent specification (step 718=YES), method 700 checks to see if rotation for birds is enabled (step 730). If not (step 730=NO), method 700 checks to see if the feeder is off the apparatus (step 750). If so (step 750=YES), the F_FLAG is set to one (step 752) to indicate that the feeder is no longer on the apparatus. Method 700 then enters SLEEP mode. This loop will repeat itself until the feeder is set back on the bottom hook (104 in
Referring now to
If the error count E_CNT ever reaches a value that is greater than the maximum allowed error count N (step 810=YES), methods 700 and 800 will endlessly loop through steps 712, 714, 716=YES, and 810=YES. This loop will repeat itself until the owner (not shown) can help remedy the situation. The purpose of this is to conserve battery power. Once this state of idling due to excessive errors occurs, the preferred way to exit this loop is for the user to correct the problem and then cycle the power to the apparatus by turning the power switch off, then back on again. Of course, a separate reset switch could also be provided that allows method 700 to begin anew at step 710.
A second embodiment of the present invention allows a user to control the apparatus via a wireless remote control. A system 900 in accordance with the second embodiment is shown in
The wireless remote control 960 may send different messages that tell the apparatus 100B to rotate the motor 240 at a slow speed determined by slow speed specification 416, to rotate the motor 240 at a fast speed determined by fast speed specification 418, to increase or decrease the speed of the motor 240 using speed adjustment mechanism 470, to stop rotation of the motor 240, to activate buzzer 450, or to activate vibrator 460. Note that buzzer 450 is one suitable example of an audio device that may be activated by controller 910. One of the purposes of buzzer 450 and vibrator 460 is to scare away animals. Thus, if a user sees an undesirable animal, such as a crow or a squirrel, on a bird feeder suspended from apparatus 100B, the user may press a button on the wireless remote control 960 that will cause the controller 910 to activate the buzzer 450 and/or vibrator 460 to scare away the undesirable animal. Note that the wireless communication between wireless remote control 960 and wireless receiver 950 may use any suitable form of wireless communication, including without limitation radio frequency (RF), infrared, and all other forms of wireless communication, whether currently known or developed in the future.
Referring now to
A third embodiment of the present invention allows bidirectional communication between the apparatus and the wireless remote control. A system 1200 in accordance with the third embodiment is shown in
The apparatus 100C may optionally include a microphone 1270 and a speaker 1280 coupled to the controller 1210, and may further include a microphone 1266 in the wireless remote control 1260. The microphone 1270 in apparatus 100C allows a user to hear the birds at the birdhouse or feeder. The controller 1210 can transmit the audio data received from microphone 1270 to the wireless remote control 1260, where the audio data may be played on a speaker or other audio device, such as the audible warning mechanism 1262. In this manner, when a bird is detected, a birdwatcher could enjoy hearing the song of the birds on the remote control 1260. Apparatus 100C may further optionally include a speaker 1280. A birdwatcher's voice picked up by microphone 1266 in the remote control may be transmitted to the apparatus 100C and played on the speaker 1280. In this manner, a birdwatcher could shout at an unwanted animal or provide other sounds in an attempt to scare the unwanted animal away.
The system 1200 shown in
In addition, the user may program system 1200 according to the user's preferences. For example, instead of using a three-position switch 258 as shown in
Lastly, the user may wish to program system 1200, according to the user's preferences, to be notified when a particular bird species has been detected. This process is made possible by using standard digital signal processing (DSP) voice recognition algorithms. For example, the user may wish to be notified when the usually seasonal “gold finches” (not shown) have once again arrived in the near region. In this example, the user would select “Gold Finches” from the LCD display 1580 on the wireless remote control 1260 in
Referring to
A sample detailed implementation in accordance with the third embodiment is shown by apparatus 1400 in
Referring to
A user may press any of the buttons on the wireless remote control 1260 to perform any function, regardless of how the apparatus is currently functioning. For example, let's assume the system 1400 is configured for automatic operation, as shown in method 500 of
Note that remote control 960 shown in
The preferred embodiments also allow detecting when a bird feeder is low on feed, and automatically notifying the user. The apparatus can include a calibration routine that allows the user to hang the empty feeder on the apparatus, specify that the feeder is empty, then hang the feeder full of feed on the apparatus, and specify that the feeder is full. The load cell can effectively weigh the empty feeder and the full feeder, and determine the weight of the feed. The user may then specify a predetermined threshold value for feed, such as 10% or 20%. The controller may then notify the user when the feed falls below the specified threshold value. Once the level of feed (as measured by the load cell) falls below the threshold value, a message is sent to the receiver to notify the user that the feed is low in the feeder. A suitable indicator for low feed is shown on remote control 1260 as a light emitting diode 1582. Of course, the words “FEED LOW” could be displayed on the LCD display 1580 when the remote control 1260 receives the message that indicates that the feed level is low. In the alternative, the buzzer 450 may be activated to beep at the feeder to indicate the feed level is low. Automatically notifying a user when more feed is needed eliminates manual checking that is required in the prior art to make sure the feed does not run out.
The down and up speed buttons 1530 and 1540, respectively, allow the user to adjust the speed of rotation. Thus, if a squirrel is resisting jumping off the feeder the user could increase the speed of rotation by pressing and holding the up speed button 1540 until the rotation is at the desired speed. These buttons 1530 and 1540 also allow the user to modify the slow speed specification and fast speed specification in the controller to his or her own preference, if desired. In the alternative, the slow speed specification and fast speed specification could remain at their factory settings, with the user dynamically adjusting the speed of rotation as required using the down and up speed adjustment buttons 1530 and 1540.
Refer now to
Refer now to
While the invention has been particularly shown and described with reference to preferred embodiments thereof, it will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention. For example, the battery or batteries could be replaced with solar panels or with a hard-wired power source. In addition, the apparatus 100 and 100D could be incorporated into the structure of a feeder or birdhouse. Specifically, the avian enclosures could be manufactured with all of the necessary electronic and mechanical components contained inside the enclosure. The apparatus 100 and 100D could include a tachometer or other rotational sensor to monitor the rotation of the avian enclosure, and could then adjust the drive to the motor to compensate for the lower voltage that results from batteries being discharged. In addition, any suitable number of thresholds may be used within the scope of the preferred embodiments. For example, three ranges that correspond to small birds, big birds, and rodents could be defined. The present invention expressly extends to any and all suitable thresholds that allow the apparatus to change its function based on detecting two or more different types of animals.
Claims
1. An apparatus comprising:
- an animal sensing mechanism that detects an animal;
- a wireless transmitter; and
- a controller coupled to the animal sensing mechanism and the wireless transmitter, the controller sending at least one message via the wireless transmitter.
2. The apparatus of claim 1 wherein the controller sends at least one message via the wireless transmitter when the animal sensing mechanism detects an animal.
3. The apparatus of claim 1 further comprising a bird feeder coupled to the apparatus, wherein the controller sends at least one message via the wireless transmitter when an amount of feed in the bird feeder is below a predetermined threshold value.
4. The apparatus of claim 1 further comprising an audio input mechanism coupled to the controller that monitors for at least one predetermined sound.
5. The apparatus of claim 4 wherein the controller sends at least one message via the wireless transmitter when the audio input mechanism detects the at least one predetermined sound.
6. The apparatus of claim 1 further comprising a wireless receiver that receives the at least one message from the wireless transmitter and, in response thereto, provides notification to a user.
7. The apparatus of claim 6 wherein a wireless remote control comprises the wireless receiver.
8. The apparatus of claim 6 wherein the notification to the user comprises an audible sound.
9. The apparatus of claim 6 wherein the notification to the user comprises a visible notification.
10. The apparatus of claim 6 wherein the controller determines from the animal sensing mechanism whether the animal is of a first type or a second type, and wherein the controller sends a first message via the wireless interface if the animal is of the first type, and sends a second message via the wireless interface if the animal is of the second type.
11. The apparatus of claim 10 further comprising a motor coupled to the controller, wherein the controller runs the motor at a first speed if the animal is of the first type.
12. The apparatus of claim 11 wherein the first speed is from 3 to 6 revolutions per minute.
13. The apparatus of claim 10 further comprising a motor coupled to the controller, wherein the controller runs the motor at a second speed if the animal is of the second type.
14. The apparatus of claim 13 wherein the second speed is from 70 to 100 revolutions per minute.
15. The apparatus of claim 7 wherein the wireless remote control comprises a transmitter that transmits a message in response to the user selecting a predefined function on the wireless remote control.
16. The apparatus of claim 15 further comprising a wireless receiver coupled to the controller and a motor coupled to the controller, wherein the wireless receiver receives the message transmitted from the wireless remote control, and in response thereto, the controller performs at least one action.
17. The apparatus of claim 16 wherein the at least one action comprises running the motor at a first speed.
18. The apparatus of claim 17 wherein the at least one action comprises running the motor at a second speed.
19. The apparatus of claim 16 wherein the at least one action comprises stopping the motor.
20. The apparatus of claim 16 wherein the at least one action comprises changing the speed of the motor.
21. The apparatus of claim 16 further comprising an audio device coupled to the controller, wherein the at least one action comprises creating a sound on the audio device.
22. The apparatus of claim 16 further comprising a vibrator coupled to the controller, wherein the at least one action comprises activating the vibrator.
23. An apparatus for attaching to an avian enclosure comprising:
- a motor that is coupled to the avian enclosure when the apparatus is attached to the avian enclosure such that running the motor causes rotation of the avian enclosure;
- a wireless receiver; and
- a controller coupled to the motor and the wireless receiver, the controller receiving at least one message via the wireless receiver and performing at least one action corresponding to the received message.
24. The apparatus of claim 23 wherein the at least one action comprises running the motor at a first speed.
25. The apparatus of claim 24 wherein the at least one action comprises running the motor at a second speed.
26. The apparatus of claim 23 wherein the at least one action comprises stopping the motor.
27. The apparatus of claim 23 wherein the at least one action comprises changing the speed of the motor.
28. The apparatus of claim 23 further comprising an audio device coupled to the controller, wherein the at least one action comprises creating a sound on the audio device.
29. The apparatus of claim 23 further comprising a vibrator coupled to the controller, wherein the at least one action comprises activating the vibrator.
Type: Application
Filed: Aug 30, 2004
Publication Date: Feb 17, 2005
Inventor: Patrick Marshall (Tipp City, OH)
Application Number: 10/929,593