Finned multi-aperture sheet metal, method of manufacturing the sheet metal, part for exhaust emission control device using the sheet metal, and method of manufacturing the part for exhaust emission control device

A holed sheet metal with multiple holes most suitable for forming a spaced body with a net-like cross section as a part for exhaust emission control device, a method of manufacturing the sheet metal, a part for exhaust emission control device using the sheet metal, and a method of manufacturing the part, wherein a plurality of holes (3) are formed in a long flat-like sheet metal (2) to form the finned sheet metal (1), and die holes (3) in the finned sheet metal (1) are formed by bending fins (8) from the sheet metal (2) in the direction of one surface side of the sheet metal, whereby the sheet metal can be easily provided at a low cost.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

The present invention relates to a finned multi-aperture sheet metal most preferably used in a device that purifies exhaust emission exhausted from an internal-combustion engine such as an engine of an automobile, a method of manufacturing the same, a part for exhaust emission control device such as a supporter and a filter that use the finned multi-aperture sheet metal, and a method of manufacturing the part for exhaust emission control device.

BACKGROUND ART

In an exhaust emission control device of an internal combustion engine such as an engine of an automobile and a power generator, a metal supporter in which in a cylindrical casing made of metal steel such as heat-resistant stainless steel sheet, a circular columnar honeycomb body made of the same metal steel is engaged is used.

Thus constituted conventional metal supporter is generally manufactured according to such a manner that a honeycomb body manufactured by spirally winding a flat sheet made of a band-like sheet metal and a corrugated sheet obtained by corrugating the flat sheet in a put together state is inserted in a cylindrical metal casing, followed by bonding a contact portion between the flat sheet and the corrugated sheet of a spaced body having a net-like cross section and between a honeycomb body and the casing according to a method such as brazing, welding or diffusion bonding. Furthermore, various kinds of catalysts are coated, and thereby an exhaust emission control device having a purifying function is manufactured.

However, in a method of manufacturing a thus constituted metal supporter, an operation of winding a flat sheet and a corrugated sheet in a put together state, owing to difference in the bending elasticity of both sheets and a frictional coefficient problem at a contact portion between the flat sheet and the corrugated sheet, cannot be stably carried out; that is, the manufacture is carried out with extreme difficulty.

For instance, there is a problem (winding difference problem at the time of winding) in that when a force for winding the flat sheet and the corrugated sheet works differently at both end portions in an axial direction of a honeycomb body manufactured as an intermediate part, a spirally wound honeycomb body does not form a proper circular columnar form and forms a shape (bamboo-shoot like) in which one end side in an axial direction of the honeycomb body projects bamboo-shoot like at a winding center portion and the other end side thereof recedes mortar-like.

The present invention intends to provide a perforated sheet metal most suitable for forming a spaced body with a net-like cross section of a part for exhaust emission control device, a method of forming the same, a part for exhaust emission control device having the perforated sheet metal and a method of manufacturing the same as one that is less expensive and easy.

DISCLOSURE OF INVENTION

In order to accomplish the above object, a finned multi-aperture sheet metal according to the present invention is a finned multi-aperture sheet metal in which a plurality of holes is formed in a long flat band-like sheet metal, wherein each of the holes is formed by bending a fin from the sheet metal toward one surface side, or each of the holes is formed by bending a fin from the sheet metal toward any one of surface sides.

Furthermore, a finned multi-aperture sheet metal manufacturing method according to the invention is a method of manufacturing a finned multi-aperture sheet metal where at least holes with a fin are formed in a long band-like sheet metal, wherein a plurality of substantially U-shaped cut lines is formed on the sheet metal, each of tongue portions formed based on the respective cut lines is selectively bent to any of both surface sides of the sheet metal to form a fin protruded in a bending direction, and a portion surrounded by the cut lines is opened to form a hole with the fin.

More specifically, a finned multi-aperture sheet metal manufacturing method according to the invention is a method of manufacturing a finned multi-aperture sheet metal where at least holes with a fin are formed in a long band-like sheet metal, wherein a long flat band-like sheet metal is continuously supplied between a perforating roller that is provided on an outer periphery surface with a plurality of projection-like blades that can form substantially U-shaped cut lines on the sheet metal and bend tongue portions formed based on the cut lines outwards and a receiving roller that faces the perforating roller and is provided on an outer periphery surface with a plurality of grooves that can temporally accommodate the projection-like blades formed on the perforating roller and the tongue portions bent by the projection-like blades, substantially U-shaped cut lines are formed on the sheet metal by use of the projection-like blades, each of the tongue portions formed based on the cut lines is bent outward to form a fin, a portion surrounded by the cut line is opened, and thereby a hole with the fin is formed.

Alternatively, of a pair of rollers disposed oppositely, on an outer periphery surface of one roller, a plurality of projection-like blades that can form substantially U-shaped cut lines and bend outwards tongue portions formed based on the cut lines is formed; on the outer periphery surface in band, a plurality of grooves that allows temporally accommodating projection-like blades formed on an outer periphery surface of the other roller and the tongue portions bent by the projection-like blades is formed; also on an outer periphery surface of the other roller in band, a plurality of the projection-like blades are formed; and on the outer periphery surface in band, a plurality of grooves that allows temporally accommodating the projection-like blades formed on the outer periphery surface of the one roller and the tongue portions bent by the projection-like blades, a long flat band-like sheet metal is continuously supplied between the pair of rollers, substantially U-shaped cut lines are formed on a sheet metal by the projection-like blades, each of the tongue portions formed based on the cut lines is bent outwards to form a fin, a portion surrounded by the cut line is opened, and thereby a hole with a fin is formed.

A part according to the invention of an exhaust emission control device is characterized by having a spaced body that is formed by spirally winding the finned multi-aperture sheet metal according to the invention and has a net-like cross section in a casing.

A manufacturing method according to the invention of a part of an exhaust emission control device is a method of manufacturing a part of an exhaust emission control device, the part being formed by having a spaced body that is formed by spirally winding a finned multi-aperture sheet metal and has a net-like cross section in a casing, wherein the finned multi-aperture sheet metal according to the claim 1 or 2 is wound in a spiral having a diameter smaller than an inner diameter of a casing, in this state the winding is loosened in the casing, thereby with tip end portions of fins formed on the finned multi-aperture sheet metal allowing partially coming into contact with an opposing finned multi-aperture sheet metal, and thereby the finned multi-aperture sheet metal is engaged inside of the casing as a spaced body having a net-like cross section.

Furthermore, a manufacturing method according to the invention of a part of an exhaust emission control device is a method of manufacturing a part of an exhaust emission control device, the part being formed by having a spaced body that is formed by spirally winding a finned multi-aperture sheet metal and has a net-like cross section in a casing, wherein the finned multi-aperture sheet metal according to the claim 1 or 2 is wound in a spiral, at least part of the finned multi-aperture sheet metal or/and part of the spaced body having a net-like cross section is bonded, and thereby a spaced body having a circular columnar net-like cross section is formed.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is an enlarged perspective view showing a substantial part of a first embodiment of a finned multi-aperture sheet metal 1 according to the present invention.

FIG. 2 is an enlarged sectional view showing a substantial part of the finned multi-aperture sheet metal 1 of FIG. 1.

FIG. 3 is a plan view of a substantial part showing a configuration of the finned multi-aperture sheet metal 1 of FIG. 1.

FIG. 4 is an enlarged explanatory view showing an articulated side of a fin in a hole with a fin.

FIG. 5 is an enlarged sectional view showing a substantial part of a second embodiment of the finned multi-aperture sheet metal according to the present invention.

FIG. 6 is an enlarged perspective view of a hole with a fin and a hole without a fin.

FIG. 7 is an enlarged explanatory view showing a positional relationship between a projection-like blade of a perforating roller, a groove portion of a receiving roller and the finned multi-aperture sheet metal that are used in a method of manufacturing a finned multi-aperture sheet metal according to the invention.

FIG. 8 is a conceptual diagram of a substantial part of the perforating roller and the receiving roller that are used in a method of manufacturing the finned multi-aperture sheet metal of FIG. 1.

FIG. 9 is a conceptual diagram of a substantial part of the perforating roller and the receiving roller that are used in a method of manufacturing the finned multi-aperture sheet metal of FIG. 5.

FIG. 10 is an enlarged diagram showing a configuration in one cross section of a spaced body that uses the finned multi-aperture sheet metal of FIG. 1 and has a net-like cross section.

FIG. 11 is an enlarged diagram showing a configuration in one cross section of a spaced body that uses the finned multi-aperture sheet metal of FIG. 5 and has a net-like cross section.

BEST MODE FOR CARRYING OUT THE INVENTION

Firstly, embodiments of a finned multi-aperture sheet metal according to the present invention will be explained.

A first embodiment relating to the finned multi-aperture sheet metal according to the invention is one in which on a sheet metal formed into a long flat band (including a metal foil. The same applies below), holes with a fin projected on one surface side (hereinafter, referred to as “hole with a fin”) are formed. Owing to a length of the fin, a separation can be freely controlled. As metal that is used for the sheet metal, general-purpose stainless steel expressed by iron-nickel-chromium alloys, iron-nickel alloys, iron-chromium-aluminum alloys or iron-chromium alloys can be applied. Here, to form includes, other than a case where for instance, only holes with a fin are arranged with regularity and a case where holes with a fin are formed with some kind or another of regularity in relationship to holes without a fin (hereinafter, referred to as “hole without a fin”), a case where holes are formed at random without any kind of regularity.

Thus, since a lot of holes such as the holes with a fin or the holes without a fin are disposed, when it is used as an exhaust emission control device, a warming-up process can be made shorter.

The finned multi-aperture sheet metal 1 according to a first embodiment shown in FIGS. 1 through 3 is later wound in spiral and inserted into a part of an exhaust emission control device described later, wherein in the sheet metal 2, holes with a fin 3 and holes without a fin 4 are alternately arranged in a winding direction of a spaced body 5 having a net-like cross section (hereinafter, referred to as spaced body 5. Refer to FIG. 10), and thereby a column L is formed. A plurality of the columns L is formed in proximity to each other so that, as shown in FIG. 3, the holes with a fin 3 or the holes without a fin 4 formed in adjacent columns L may not come adjacent each other, and thereby a width R is constituted. In the flat band-like sheet metal 2, a plurality of the R's is formed with a predetermined distance apart.

Here, the hole without a fin 4 in the embodiment is a slender linear hole portion 6 formed so as to be orthogonal to a direction of arrangement of holes. A hole portion 7 of the hole with a fin 3 is formed into a substantial rectangle, and the substantially rectangular hole portion 7 is provided with a fin 8 projected on the same surface side of the sheet metal 2. The fin 8 is a planar chip and a surface thereof is formed so as to direct to the direction of winding. In the embodiment, the fin 8 is formed connected to one side on an up-stream side in the winding direction of four sides that constitute the hole portion 7.

The articulated side of the fin 8, without restricting to an upstream side in a winding direction of the hole portion 7, maybe one side on a downstream side. Furthermore, as shown in, for instance, FIG. 4, a hole 6 provided with a fin 8 articulated to one side on an upstream side in a winding direction and a hole portion 7 provided with a fin 8 articulated to one side on a downstream side in the winding direction may be regularly arranged on the same column L. Furthermore, the arrangement of the various kinds of holes in the respective columns L may be different.

Still furthermore, a second embodiment of a finned multi-aperture sheet metal 1 relates to one in which holes with a fin 3 projected on any of surfaces of a long flat band-like sheet metal 2 are formed in a line.

As mentioned above, also in the present embodiment, the holes with a fin 3 and the holes without a fin 4, furthermore, in the holes with a fin 3, holes with a fin 3A in which a side articulated to the fin 8 is one side on an upstream side of the hole portion 7 and holes with a fin 3B in which a side articulated to the fin 8 is one side on a downstream side of the hole portion 7, and holes with a fin 3C in which the fin 8 is projected on one surface of the sheet metal 2 and holes with a fin 3D in which the fin 8 is projected on the other surface may be arranged with regularity or at random.

In FIG. 5, as a finned multi-aperture sheet metal 1 according to the second embodiment, a finned multi-aperture sheet metal 1 is shown in which the hole with a fin 3 and the hole without a fin 4 are alternately arranged in a direction of winding the spaced body 5, furthermore, each of the holes with a fin 3 has an articulated side of the fin 8 on one side on an upstream side of the hole portion 7, and a hole with a fin 3C in which the fin 8 is projected on one surface of the sheet metal 2 and a hole with a fin 3D projected on the other surface are alternately arranged.

In the next place, a method of manufacturing a finned multi-aperture sheet metal 1 according to the invention will be explained.

Fundamentally, as shown in FIG. 6, as to the holes without a fin 4 formed in the finned multi-aperture sheet metals 1 in the two embodiments, slender linear holes 6 are bored on a long planar band-like sheet metal 2. Furthermore, as to the holes with a fin 3, substantially U-shaped cut lines are formed, a tongue portion 9 formed based on each of the cut lines is selectively bent to any of surface sides of the sheet metal 2 along a virtual line portion (shown with a dotted line in FIG. 6) that connects both end portions of the cut line at the shortest distance to form a fin 8 projected toward the bending direction, and a portion surrounded by the cut line is opened to form a hole 7 of the hole 3 with a fin.

More specifically, as shown in FIGS. 7 and 8, between a perforating roller 10 that is provided, on an outer periphery surface thereof in accordance with the arrangement of the holes on the same column L and the arrangement of the width R's, with projection-like blades 11 (hereinafter, referred to as blade for hole with fin 11A) that can form the substantially U-shaped cut lines and bend tongue portions 9 formed based on the cut lines along a virtual line portion that connects both end portions of the cut line at the shortest distance toward the outside that is an opposite side to a side on which the perforating roller 10 of the sheet metal 2 is disposed, and projection-like blades 11 (hereinafter, referred to as blade for hole without fin) that can perforate slender linear holes 6; and a receiving roller 13 that faces the perforating roller 10 and is provided on an outer periphery surface thereof with a plurality of grooves 12 that enable to temporally accommodate the blades for hole with fin 11A formed on the perforating roller 10, the tongue portions 9 bent by the projection-like blades 11, and the blades for hole without fin 11B, a long flat band-like sheet metal 2 is continuously supplied, and the both rollers 10 and 13 are driven to rotate. Thereby, by use of the blade for hole without fin 11B, the holes without fin 4 are bored in the sheet metal 2. Furthermore, by use of the blades for hole with fin 11A, substantially U-shaped cut lines are formed in the sheet metal 2, each of tongue portions 9 formed based on the cut lines is bent outward of the perforating roller 10 of the sheet metal 2 to form a fin 8 and a portion surrounded by the cut line is opened to form a hole 7.

According to the manufacturing method, the finned multi-aperture sheet metal 1 that is shown in the first embodiment of the finned multi-aperture sheet metal 1 and has fins 8 of the holes with a fin 3 projected on the same surface side of the sheet metal 2 can be simply and efficiently formed.

Furthermore, a finned multi-aperture sheet metal 1 that is shown in the second embodiment of the finned multi-aperture sheet metal 1 and has fins 8 of the holes with a fin 3 projected on both surface sides of the sheet metal 2 can be formed as follows.

That is, as shown in FIG. 9, of a pair of rollers 14A and 14B that are disposed oppositely, on an outer periphery surface of one roller 14A, blades for holes with a fin 11A that can form substantially U-shaped cut lines and bend tongue portions 9 formed based on the cut lines along a virtual line portion that connects both end portions of the cut line at the shortest distance outward of the roller 14A of the sheet metal 2, and blades for holes without a fin 11B that can bore slender linear through holes are disposed in accordance with the arrangement of the holes 6 and 7 on the same column L and the arrangement of the widths R, and on the outer periphery surface, a plurality of grooves 12 that can temporally accommodate the projection-like blades 11A and 11B formed on an outer periphery surface of the other roller 14B and tongue portions 9 bent by use of the blade 11A for hole with a fin are formed.

Furthermore, also on an outer periphery surface of the other roller 14B, the projection-like blades 11A and 11B are formed, and on the outer periphery surface thereof, a plurality of grooves 12 that can temporally accommodate the projection-like blades 11A and 11B that are formed on the outer periphery surface of the one roller 11A and tongue portions 9 bent by use of the blade for hole with fin 11A is formed.

In any one of the rollers 14A and 14B, the blade for holes without a fin 11B may be omitted from disposing.

Then, between the pair of rollers 14A and 14B, a long flat band-like sheet metal 2 is continuously supplied and the both rollers 14A and 14B are driven to rotate. Thereby, by use of the blade for holes without a fin 11B, holes without a fin 4 are formed on the sheet metal 2 and by use of the blade for holes with a fin 11A, substantially U-shaped cut lines are formed on the sheet metal 2, and the tongue portions 9 formed based on the cut lines are bent outward of a side where a roller thereon the projection-like blades 11 of the sheet metal 2 are disposed to form fins 8, and portions surrounded by the cut line are opened to form holes.

According to the manufacturing method, the finned multi-aperture sheet metal 1 that is shown in the second embodiment of the finned multi-aperture sheet metal 1 and has fins 8 of the holes with a fin 3 projected on both surfaces of the sheet metal 2 can be easily and efficiently formed.

In the next place, a part for an exhaust emission control device will be explained with reference to FIGS. 10 and 11.

Apart for exhaust emission control device 15 according to the invention is a device mainly used to purify an exhaust gas exhausted from an internal combustion engine of an automobile and so on, that is, as a supporter or a filter. A fundamental constitution thereof is, as described in an existing example, a constitution in which a circular columnar spaced body 5 is inserted in a cylindrical casing 16.

The part for exhaust emission control device 15 according to the invention has a constitution in which a spaced body 5 formed by use of the finned multi-aperture sheet metal 1 that is manufactured according to the above manufacturing method is inserted in a casing 16.

Next, two embodiments will be explained.

In a first embodiment, as shown in FIG. 10, a circular columnar spaced body 5 that is formed by winding spirally only a finned multi-aperture sheet metal 1 in which fins 8 of holes with a fin 3 shown in the first embodiment of a finned multi-aperture sheet metal 1 are projected on the same surface side of a sheet metal 2 is used.

The spaced body 5 has an exhaust emission flow path 17 that is spirally formed with a body portion of the finned multi-aperture sheet metal 1 as a wall and upstream and downstream sides of which in an exhaust direction of an exhaust emission of an internal combustion engine are opened. Inside of the exhaust emission flow path 17, a plurality of fins 8 of the holes with a fin 3 formed on the finned multi-aperture sheet metal 1 is projected and located so as to divide the spiral exhaust emission flow path 17.

Furthermore, in a second embodiment, as shown in FIG. 11, a spaced body 5 that is formed by spirally winding only a finned multi-aperture sheet metal 1 in which fins 8 of holes with a fin 3 shown in the second embodiment of a finned multi-aperture sheet metal 1 are projected on both surface sides of a sheet metal 2 is used.

The spaced body 5 has a exhaust emission flow path 17 that is spirally formed with a body portion of the finned multi-aperture sheet metal 1 as a wall and upstream and downstream sides of which in an exhaust direction of an exhaust emission of an internal combustion engine are opened. In the exhaust emission flow path 17, similarly to the first embodiment, the flow path is surrounded by a wall made of a body portion of a spirally wound sheet metal 2, and, in the flow path, a plurality of fins 8 of the holes with a fin 3 formed on the finned multi-aperture sheet metal 1 is projected from both wall sides that constitute the exhaust emission flow path 17 so as to divide the spirally wound exhaust emission flow path 17.

In a part for exhaust emission control device 15 thus constituted, an exhaust emission flowed in the part for exhaust emission control device 15 from an upstream side in an exhaust direction of the exhaust emission of an internal combustion engine passes the flow path with the flow path thereof variously branched by a wall made of a body portion of the spirally wound finned multi-aperture sheet metal 1 and fins 8 located inside of the exhaust emission flow path 17. Furthermore, part of the exhaust emission, while changing a flow path thereof through an opening of the hole without a fin 4 or the hole with a fin 3 formed on the finned multi-aperture sheet metal 1 to an exhaust emission flow path 17 adjacent through the finned multi-aperture sheet metal 1, passes the inside of the spaced body 5 and goes through toward a downstream side in an exhaust direction of an exhaust emission.

It goes without saying that from the exhaust emission of the internal combustion engine, during passage of the inside of the part for exhaust emission control device 15, soot and so on due to, for instance, incomplete combustion, can be supported or filtered.

Subsequently, a manufacturing method according to the invention of a part for exhaust emission control device 15 will be explained.

Firstly, the finned multi-aperture sheet metal 1, before inserting in a casing 16, is a little bit tightly wound into a spiral having a diameter smaller than an inner dimension of the casing 16. Then, in a predetermined position in the casing 16, the tight winding is unwound and left free to solidly locate in the casing 16, and thereby rendering in an engaging state.

An extent of the winding of the finned multi-aperture sheet metal 1 at this time is set to a winding where when it is released and becomes a free state in the casing 16, a tip end of the fin 8 comes into contact owing to the elasticity thereof with a back surface of an opposing sheet metal 2.

Furthermore, an end side located on an outer periphery of the wound finned multi-aperture sheet metal 1 is beforehand bonded to the sheet metal 2 located one go around inside to form a spaced body 5, and the spaced body 5 may be inserted in the casing 16.

In the case of a spaced body 5 being thus constituted by winding only one finned multi-aperture sheet metal 1, in comparison with the case where one in which two different sheet metals are put together is spirally wound, a problem of winding difference at the winding that is so far one of problems can be more overcome. That is, owing to the fins on both surfaces, the spaced body 5 can be inhibited from becoming bamboo-shoot-like.

Furthermore, in the case of a spaced body 5 being formed with the finned multi-aperture sheet metal 1 that is shown in the second embodiment of the finned multi-aperture sheet metal 1 and in which fins 8 of holes with a fin 3 are projected on both surface sides of a sheet metal 2, in a wound state, some of fins 8 projected into the same exhaust emission flow path 17 from each of adjacent finned multi-aperture sheet metals 1 collide at tip end portion thereof and bite each other, and thereby a problem of winding difference at the winding that is so far one of problems can be completely overcome.

In the spaced body 5, when bonding projections are formed along both sides in a winding direction of the finned multi-aperture sheet metal 1 with an appropriate separation to keep constant between finned multi-aperture sheet metals 1 adjacently located in a wound state and an end side located on an outer periphery of the wound finned multi-aperture sheet metal 1 is beforehand bonded to a sheet metal 2 located one go around inside, the sheet metal 2 can be bonded even in the middle of the spiral by use of the bonding projections. Furthermore, in the case of a bonding method such as brazing, a tip end of the fin 8 can be directly bonded to an opposing finned multi-aperture sheet metal 1.

Furthermore, the spaced body 5, when inserted in the casing 16, is preferably bonded between at least part of the sheet metal 2 and an inner surface of the casing 16 by means of brazing, welding and so on. In particular, in the case of a spaced body 5, before being inserted into the casing 16, being bonded at an end side located on an outer periphery of the spaced body 5 to a sheet metal 2 one go around inside, since owing to the bonding a force with which the sheet metal 2 expands outwards to be free is suppressed; accordingly, in order to adhere the spaced body 5 and the inner surface of the casing 16, the brazing, the welding and so on may be used to bond.

In the part for exhaust emission control device 15 like this, in comparison with an existing one in which two metal foils of a flat foil and a corrugated foil are put together and constituted into a spiral, only one multi-aperture sheet metal 2 is necessary to use; accordingly, material cost can be reduced, resulting in less expensive. Furthermore, the finned multi-aperture sheet metal 1 that is used in the spaced body 5 according to the embodiment, being a flat band-like sheet metal, is easy to wind; accordingly, it has an advantage in that manufacturing cost in the manufacturing process can be reduced.

The finned multi-aperture sheet metal 1 shown in the second embodiment of the finned multi-aperture sheet metal 1, put together with a long flat band-like sheet metal 2, may be spirally wound to form a spaced body 5. In this case, the exhaust emission that goes through the spaced body 5, in the inside surrounded by the long flat band-like sheet metal 2, goes through the flow path variously branched by a wall that is a body portion of the finned multi-aperture sheet metal 1 and fins 8 located inside of the flow path 17 of the exhaust emission. Furthermore, the exhaust emission, while partially changing the flow path through an opening of a hole without a fin 4 or a hole with a fin 3 formed in the finned multi-aperture sheet metal 1 to the inside of the exhaust emission flow path 17 adjacent through the finned multi-aperture sheet metal 1, passes through a net structure of the spaced body 5 and goes through toward a downstream side in an exhaust direction of the exhaust emission.

The present invention, without restricting the above embodiments, may be variously modified as needs arise. The brazing is fundamentally unnecessary; however, it can be partially applied to an end surface if necessary. Furthermore, as a catalyst, known ones can be used; one in which a support layer made of, for instance, active alumina supports a catalyst such as platinum and palladium can be used.

Industrial Applicability

As explained above, the finned multi-aperture sheet metal according to the invention is the most preferable one as a sheet metal that constitutes a spaced body that is disposed inside a part for exhaust emission control device and has a net-like cross section. That is, in the part for exhaust emission control device having a spaced body that uses the multi-aperture sheet metal and has a net-like cross section, by forming a flow path of exhaust emission with a body portion of a finned multi-aperture sheet metal, and by disposing fins of holes with a fin projected into a flow path of the exhaust emission, including paths going through the holes, the flow paths in the exhaust emission flow path can be variously branched; accordingly, a contact area between the spaced body having the net-like cross section and the exhaust emission can be enlarged and purification of the exhaust emission can be carried out. Thus configured part for exhaust emission control device can fundamentally form the spaced body having a net-like cross section with one finned multi-aperture sheet metal; accordingly, it is less expensive in comparison with an existing one.

Furthermore, according to a manufacturing method according to the present invention of a finned multi-aperture sheet metal, the finned multi-aperture sheet metal in which fins of holes with a fin are projected on the same surface side of the sheet metal and the finned multi-aperture sheet metal in which fins of holes with a fin are projected on both surface sides can be simply and efficiently manufactured.

According to a manufacturing method according to the invention of a part for exhaust emission control device, since a finned multi-aperture sheet metal that is used in a spaced body that is inserted in the part for exhaust emission control device and has a net-like cross section is one flat band-like sheet metal, it can be easily wound, the manufacturing cost in the manufacturing process can be reduced, and the conventional problem of winding difference can be overcome.

Thus, the present invention has an effect that a perforated sheet metal most suitable for forming a spaced body that is a part for exhaust emission control device and has a net-like cross section, a method of manufacturing the same, a part for exhaust emission control device that uses the perforated sheet metal and a method of manufacturing the same can be provided as economical and easy one.

Claims

1. A finned multi-aperture sheet metal in which a plurality of holes is formed in a long flat band-like sheet metal, wherein each of the holes is formed by bending a fin toward one surface side from the sheet metal.

2. A finned multi-aperture sheet metal in which a plurality of holes is formed in a long flat band-like sheet metal, wherein each of the holes are formed by bending a fin toward any one of surface sides from the sheet metal.

3. A method of manufacturing a finned multi-aperture sheet metal in which at least holes with a fin are formed in a long flat band-like sheet metal, wherein a plurality of substantially U-shaped cut lines is formed on the sheet metal, each of tongue portions formed based on the respective cut lines is selectively bent toward any one of surface sides of the sheet metal to form a fin projected in a bending direction, each of portions surrounded by the cut line is opened, and thereby holes with a fin are formed.

4. A method of manufacturing a finned multi-aperture sheet metal in which at least holes with a fin are formed in a long flat band-like sheet metal, wherein between a perforating roller that is provided on an outer periphery surface with a plurality of projection-like blades each of which is capable of forming a substantially U-shaped cut line on the sheet metal and of bending a tongue portion formed based on the cut line outwards and a receiving roller that faces the perforating roller and is provided on an outer periphery surface with a plurality of grooves each of which is capable of temporally accommodating the projection-like blade formed on the perforating roller and the tongue portion bent by the projection-like blade, a long flat band-like sheet metal is continuously supplied, the cut lines are formed in substantial U-shape on the sheet metal by use of the projection-like blades, each of the tongue portions formed based on the cut lines is bent outward to form a fin, each of portions surrounded by the cut lines is opened, and thereby the holes with a fin are formed.

5. A method of manufacturing a finned multi-aperture sheet metal in which at least holes with a fin are formed in a long flat band-like sheet metal, wherein on an outer periphery surface of one roller of a pair of rollers disposed oppositely, a plurality of projection-like blades each of which is capable of forming a substantially U-shaped cut line and of bending outwards a tongue portion formed based on the cut line is formed; on the outer periphery surface in band, a plurality of grooves each of which is capable of temporally accommodating a projection-like blade formed on an outer periphery surface of the other roller and the tongue portion bent by the projection-like blade is formed; also on an outer periphery surface of the other roller in band, a plurality of the projection-like blades is formed; and on the outer periphery surface in band, a plurality of grooves each of which is capable of temporally accommodating the projection-like blade formed on the outer periphery surface of the one roller and the tongue portion bent by the projection-like blade, a long flat band-like sheet metal is continuously supplied between the pair of rollers, thereby substantially U-shaped cut lines are formed on a sheet metal by the projection-like blades, each of the tongue portions formed based on the cut lines is bent outwards to form a fin, each of portions surrounded by the cut line is opened, and thereby holes with a fin are formed.

6. A part for an exhaust emission control device, wherein a spaced body that is formed by spirally winding the finned multi-aperture sheet metal described in the claim 1 and has a net-like cross section is inserted in a casing.

7. A method of manufacturing a part for an exhaust emission control device having a spaced body that is formed by spirally winding a finned multi-aperture sheet metal and has a net-like cross section in a casing, wherein the finned multi-aperture sheet metal described in the claim 1 is spirally wound into a diameter smaller than an inner diameter of a casing followed by inserting in the casing.

8. A method of manufacturing a part for an exhaust emission control device having a spaced body that is formed by spirally winding a finned multi-aperture sheet metal and has a net-like cross section in a casing, wherein the finned multi-aperture sheet metal described in the claim 1 is spirally wound, both or either one of at least part of the finned multi-aperture sheet metal and part of the spaced body having the net-like cross section is bonded, and thereby a spaced body having a circular columnar net-like cross section is formed.

9. A part for an exhaust emission control device, wherein a spaced body that is formed by spirally winding the finned multi-aperture sheet metal described in the claim 2 and has a net-like cross section is inserted in a casing.

10. A method of manufacturing a part for an exhaust emission control device having a spaced body that is formed by spirally winding a finned multi-aperture sheet metal and has a net-like cross section in a casing, wherein the finned multi-aperture sheet metal described in the claim 2 is spirally wound into a diameter smaller than an inner diameter of a casing followed by inserting in the casing.

11. A method of manufacturing a part for an exhaust emission control device having a spaced body that is formed by spirally winding a finned multi-aperture sheet metal and has a net-like cross section in a casing, wherein the finned multi-aperture sheet metal described in the claim 2 is spirally wound, both or either one of at least part of the finned multi-aperture sheet metal and part of the spaced body having the net-like cross section is bonded, and thereby a spaced body having a circular columnar net-like cross section is formed.

Patent History
Publication number: 20050044915
Type: Application
Filed: Nov 11, 2002
Publication Date: Mar 3, 2005
Inventors: Keiichi Shimizu (Yamaguchi-ken), Shinichi Taya (Yamaguchi-ken)
Application Number: 10/497,033
Classifications
Current U.S. Class: 72/186.000