Semiconductor device and method for fabricating the same
A group of wires that bonds the first semiconductor chip and the second semiconductor chip together and extends on the first semiconductor chip is formed of a single plated film through plating in one continuous process. The second semiconductor chip is then bonded onto the first semiconductor chip to complete a semiconductor package.
Latest FUJITSU LIMITED Patents:
- SIGNAL RECEPTION METHOD AND APPARATUS AND SYSTEM
- COMPUTER-READABLE RECORDING MEDIUM STORING SPECIFYING PROGRAM, SPECIFYING METHOD, AND INFORMATION PROCESSING APPARATUS
- COMPUTER-READABLE RECORDING MEDIUM STORING INFORMATION PROCESSING PROGRAM, INFORMATION PROCESSING METHOD, AND INFORMATION PROCESSING APPARATUS
- COMPUTER-READABLE RECORDING MEDIUM STORING INFORMATION PROCESSING PROGRAM, INFORMATION PROCESSING METHOD, AND INFORMATION PROCESSING DEVICE
- Terminal device and transmission power control method
This application is a divisional application of Ser. No. 10/207,815, filed on Jul. 31, 2002, and claims priority of Japanese Patent Application No. 2002-051929, filed on Feb. 27, 2002, the contents being incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a semiconductor device having a layer structure with one semiconductor chip bonded to another, and a method for fabricating the semiconductor device.
2. Description of the Related Art
Recent years have seen semiconductor devices in a package structure with semiconductor chips being stacked in layers to increase packing density and a technique for layering semiconductor chips in the form of wafers. In this case, first, wires are formed on the elements of a wafer to ensure electrical connections with those semiconductor chips to be stacked thereon, and then the semiconductor chip are stacked on the wafer and bonded to the elements. The semiconductor chip to be bonded is connected to the wire formed on the wafer through the use of gold wires, solder bumps, or gold bumps.
However, the aforementioned layering method comprises separate steps of forming wires on the semiconductor chip of the wafer and layering another semiconductor chip to be implemented on the semiconductor chip of the wafer. This makes the fabrication process complicated, resulting in an increase in turnaround time and in manufacturing costs. It is also necessary to apply a pressure at high temperatures to both the semiconductor chips when bonded together. This in turn causes the pressure to be exerted on the wire or circuit underlying the terminal of the chip, possibly leading to degradation in transmission characteristics due to a break or distortion in the wire. In particular, these disadvantages conceivably appear when a porous insulating material, the demand for which will grow increasingly, is used as an interlayer insulating film for wires within the semiconductor element.
SUMMARY OF THE INVENTIONThe present invention was developed in view of the aforementioned problems. It is therefore an object of the present invention to provide a semiconductor device having semiconductor chips stacked in layers and a method for fabricating the semiconductor device. The high reliable semiconductor device provides a simplified manufacturing process and a reduced turnaround time, thereby reducing costs and easily ensuring prevention of breaks in wires and improvement in transmission characteristics.
As a result of intensive studies, the present inventor has reached the following embodiments of the invention as described below.
The invention is directed to a semiconductor device having a composite structure with a first semiconductor chip being bonded to a second semiconductor chip.
The semiconductor device according to the invention includes a single electrically conductive film that electrically connects between the first semiconductor chip and the second semiconductor chip and extends on the element-formed surface of the first semiconductor chip.
The method for fabricating a semiconductor device according to the invention includes the steps of: temporarily fixing a first semiconductor chip and a second semiconductor chip with their element-formed surfaces being placed opposite to each other; and forming a single electrically conductive film that electrically connects between the first semiconductor chip and the second semiconductor chip and extends on the element-formed surface of the first semiconductor chip.
For example, it is preferable to employ a plating method to form the electrically conductive film with the first semiconductor chip and the second semiconductor chip being temporarily fixed and thereby retained relative to each other without applying a pressure therebetween.
BRIEF DESCRIPTION OF THE DRAWINGS
Now, the present invention will be explained below in more detail with reference to the accompanying drawings in accordance with the preferred embodiment to which the invention is applied.
In this embodiment, disclosed are the configuration of a semiconductor device (semiconductor package) having one semiconductor chip bonded to another and a method for fabricating the semiconductor device. For purposes of simplicity, the configuration of the semiconductor package is explained herein following its steps for fabricating the package.
First, as shown in
Then, at each element-formed portion 11 of a first semiconductor chip on the semiconductor substrate 1, the insulating film 2 is ablated through photolithography and the subsequent dry etching to form each groove 4. An electrically conductive material is then deposited to fill in the groove 4 and then polished flat such as by chemical mechanical polishing (CMP), thereby forming a plurality of pad electrodes 3 that fill in the groove 4.
Then, at a portion on the insulating film 2 which is surrounded by the pad electrodes 3 and to which a second semiconductor chip is bonded, an opening portion 5 is formed through photolithography and the subsequent dry etching.
Then, as shown in
When the sputtering is employed to form the conductive layer 6, it is preferable to form the conductive layer 6 in a multi-layer structure that includes a metal film providing a good adhesion to the insulating film 2 and a metal film having a good electrical property, the films being stacked in layers. When polyimide is used for the insulating film, metals such as Cr or Ti may be used as the metal providing a good adhesion to the insulating film, while metals such as Cu may be used as the metal having a good electrical property.
Then, the second semiconductor chip is bonded to the element-formed portion 11 of each first semiconductor chip while patterned wires are formed on the element-formed portion 11 of each first semiconductor chip on the conductive layer 6.
More specifically, as shown in
Then, a second semiconductor chip 12 is connected to the element-formed portion 11 of each first semiconductor chip.
As shown in
The second semiconductor chip 12 is placed oppositely in alignment with the element-formed portion 11 of each first semiconductor chip and the opening portion 5 of the insulating film 2. The adhesive resin 14 is bonded to the patterned resist 8 on the element-formed portion 11, thereby fixing temporarily the second semiconductor chip 12 to the element-formed portion 11 of the first semiconductor chip.
For example, electroplating is conducted at temperatures of 50 to 80° C. using the conductive layer 6 provided on the element-formed portion 11 of the first semiconductor chip as a power supply electrode. For example, a plated film formed by the electroplating includes a layer such as a copper (Cu) layer provided in consideration of electrical properties, a nickel (Ni) layer acting as a barrier metal, and a gold (Au) layer providing a good adhesion to external connection terminals. The Cu layer in the plated film may not be provided so long as the electrical properties can be ensured only with the conductive layer 6.
As shown in
Then, as shown in
Then, as shown in
Then, as shown in
In this embodiment, the electroplating is used to form the aforementioned plated film, however, the electroless plating may also be employed. In this case, the conductive layer 6 or the power supply electrode is not required. Employing the electroless plating to form the plated film would cause an unnecessary sidewall to be formed along the edges of the lead wires 21, 22 upon forming the group of wires 16. The sidewall is therefore removed after the second semiconductor chip 12 has been bonded to the element-formed portion 11 of the first semiconductor chip.
As described above, according to this embodiment, the group of wires 16 that bonds the first semiconductor chip 18 and the second semiconductor chip 12 together and extends on the first semiconductor chip 18 is formed of a single plated film through plating in one continuous process. This makes it possible to bond the second semiconductor chip 12 to the first semiconductor chip 18 at relatively low temperatures without applying a pressure therebetween. Accordingly, this makes it possible to simplify the manufacturing process and reduce the turnaround time, thereby reducing costs. This also makes it possible to prevent damage (break) to the microstructure such as the lead wires 21, 22 and damage to the insulating film 2, thereby providing a semiconductor package that readily ensures the improvement of transmission characteristics.
MODIFIED EXAMPLENow, a modified example of this embodiment is explained below. Like the aforementioned embodiment, this modified example also discloses a semiconductor package having one semiconductor chip bonded onto another, but is slightly different in what manner both the semiconductor chips are bonded together.
First, generally the same steps as those of
Then, the second semiconductor chip 12 is connected to the element-formed portion 11 of each first semiconductor chip.
The second semiconductor chip 12 has a predetermined semiconductor element fabricated thereon, and is provided with the pad electrode 13 bonded to the first semiconductor chip and the adhesive resin 14 used for temporary fixation. The pad electrode 13 is provided with a bump 15 in advance so as to cover the pad electrode 13.
The second semiconductor chip 12 is placed oppositely in alignment with the element-formed portion 11 of each first semiconductor chip. The adhesive resin 14 is bonded to the patterned resist 32 on the element-formed portion 11, thereby fixing temporarily the second semiconductor chip 12 to the element-formed portion 11 of the first semiconductor chip.
Then, electroplating is conducted at temperatures of 50 to 80° C. using the conductive layer 6 provided on the element-formed portion 11 of the first semiconductor chip as a power supply electrode. A plated film formed by the electroplating includes a layer such as a copper (Cu) layer provided in consideration of electrical properties, a nickel (Ni) layer acting as a barrier metal, and a gold (Au) layer providing a good adhesion to external connection terminals. The Cu layer in the plated film may not be provided so long as the electrical properties can be ensured only with the conductive layer 6.
As shown in
Then, as shown in
Then, through the steps such as of removing the unnecessary conductive layer 6 and forming external connection terminals using solder balls, a semiconductor package is completed.
As described above, according to the modified example, the wires 34 that bond the first semiconductor chip 18 and the second semiconductor chip 12 together are formed of a single plated film through plating in one continuous process. This makes it possible to bond the second semiconductor chip 12 to the first semiconductor chip 18 at relatively low temperatures without applying a pressure therebetween. Accordingly, this makes it possible to simplify the manufacturing process and reduce the turnaround time, thereby reducing costs. This also makes it possible to prevent damage (break) to the microstructure and damage to the insulating film 2, thereby providing a semiconductor package that readily ensures the improvement of transmission characteristics.
In a semiconductor device having semiconductor chips stacked in layers, implemented is the highly reliable semiconductor device that provides a simplified manufacturing process and reduced turnaround time, thereby realizing reduced manufacturing costs. The semiconductor device can also prevent breaks in the wires and readily ensure the improvement of transmission characteristics.
Claims
1. A semiconductor device comprising:
- a first semiconductor chip,
- a second semiconductor chip bonded onto the first semiconductor chip, and
- a single electrically conductive film, extending on an element-formed surface of the first semiconductor chip, electrically connecting between the first semiconductor chip and the second semiconductor chip.
2. The semiconductor device according to claim 1, wherein the conductive film is a plated film.
3. The semiconductor device according to claim 1, wherein the conductive film also serves as a lead wire of the first semiconductor chip.
4. The semiconductor device according to claim 1, wherein an adhesive resin that has been used for temporarily fixing both the semiconductor chips remains on a surface of the second semiconductor chip opposite to the first semiconductor chip.
Type: Application
Filed: Feb 17, 2004
Publication Date: Apr 7, 2005
Applicant: FUJITSU LIMITED (Kawasaki)
Inventors: Masamitsu Ikumo (Kawasaki), Hirohisa Matsuki (Kawasaki)
Application Number: 10/778,152