Extendable tube
An automatically operative medical insertion device (12) and method including an insertable element (18) which is adapted to be inserted within a living organism in vivo, a surface following element (20), physically associated with the insertable element and being arranged to follow a physical surface within the living organism in vivo, a driving subsystem (15) operative to at least partially automatically direct the insertable element along the physical surface and a navigation subsystem (274) operative to control the driving subsystem based at least partially on a perceived location of the surface following element along a reference pathway stored in the navigation subsystem.
Latest INTUMED LTD. Patents:
Applicants hereby claim priority of PCT Application No. PCT/IL01/01121 filed Dec. 5, 2001, entitled “Apparatus For Self-Guided Intubation”.
The following U.S. patents are believed to represent the current state of the art:
-
- U.S. Pat. Nos. 6,248,112; 6,236,875; 6,235,038; 6,226,548; 6,211,904; 6,203,497; 6,202,646; 6,196,225; 6,190,395; 6,190,382; 6,189,533; 6,174,281; 6,173,199; 6,167,145; 6,164,277; 6,161,537; 6,152,909; 6,146,402; 6,142,144; 6,135,948; 6,132,372; 6,129,683; 6,096,050; 6,096,050; 6,090,040; 6,083,213; 6,079,731; 6,079,409; 6,053,166; 5,993,424; 5,976,072; 5,971,997; 5,957,844; 5,951,571; 5,951,461; 5,885,248; 5,720,275; 5,704,987; 5,592,939; 5,584,795; 5,506,912; 5,445,161; 5,400,771; 5,347,987; 5,331,967; 5,307,804; 5,257,636; 5,235,970; 5,203,320; 5,188,111; 5,184,603; 5,172,225; 5,109,830; 5,018,509; 4,910,590; 4,672,960; 4,651,746
Reference is also made to: http://www.airwaycam.com/system.html
BACKGROUND OF THE INVENTION FIELD OF THE INVENTIONThe present invention relates to systems and methods for automatic insertion of an element into a living organism in vivo and to an extendable insertable element and a method of insertion thereof.
SUMMARY OF THE INVENTIONThe present invention seeks to provide improved systems and methods for automatic insertion of an element into a living organism in vivo.
There is thus provided in accordance with a preferred embodiment of the present invention an automatically operative medical insertion device including an insertable element which is adapted to be inserted within a living organism in vivo, a surface following element, physically associated with the insertable element and being arranged to follow a physical surface within the living organism in vivo, a driving, subsystem operative to at least partially automatically direct the insertable element along the physical surface and a navigation subsystem operative to control the driving subsystem based at least partially on a perceived location of the surface following element along a reference pathway stored in the navigation subsystem.
There is also provided in accordance with a preferred embodiment of the present invention an automatically operative medical insertion method, which includes inserting an insertable element within a living organism in vivo, physically associating a surface following element with the insertable element and causing the surface following element to follow a physical surface within the living organism in vivo, directing the insertable element along the physical surface using a driving subsystem and controlling direction of the insertable element based at least partially on a perceived location of the surface following element along a reference pathway stored in a navigation subsystem.
Further in accordance with a preferred embodiment of the present invention the driving subsystem is operative to fully automatically direct the insertable element along the physical surface. Alternatively, the driving subsystem is operative to automatically and selectably direct the insertable element along the physical surface.
Additionally in accordance with a preferred embodiment of the present invention the navigation subsystem receives surface characteristic information relating to the physical surface from the surface following element and employs the surface characteristic information to perceive the location of the surface following element along the reference pathway.
Preferably, the surface characteristic information includes surface contour information. Additionally, the surface characteristic information includes surface hardness information. Preferably, the surface contour information is three-dimensional. Alternatively, the surface contour information is two-dimensional.
In accordance with a further preferred embodiment of the present invention, the insertable element is an endotracheal tube and the physical surface includes surfaces of the larynx and trachea. Alternatively, the insertable element is a gastroscope and the physical surface includes surfaces of the intestine. In accordance with another preferred embodiment, the insertable element is a catheter and the physical surface includes interior surfaces of the circulatory system.
Further in accordance with a preferred embodiment of the present invention the insertion device also includes a reference pathway generator operative to image at least a portion of the living organism and to generate the reference pathway based at least partially on an image generated thereby.
Preferably, the reference pathway includes a standard contour map of a portion of the human anatomy. Additionally, the standard contour map is precisely adapted to a specific patient. Alternatively, the standard contour map is automatically precisely adapted to a specific patient.
Further in accordance with a preferred embodiment of the present invention the reference pathway is operator adaptable to designate at least one impediment.
Additionally in accordance with a preferred embodiment of the present invention the insertable element includes a housing in which is disposed the driving subsystem, a mouthpiece, a tube inserted through the mouthpiece and a flexible guide inserted through the tube, the surface following element being mounted at a front end of the guide.
Preferably, the mouthpiece includes a curved pipe through which the tube is inserted. Additionally, the driving subsystem is operative to move the guide in and out of the housing, through the curved pipe and through the tube. Preferably, the driving subsystem also operates to selectably bend a front end of the guide. Additionally or alternatively, the driving subsystem is operative to move the insertable element in and out of the living organism. Additionally, the driving subsystem is also operative to selectably bend a front end of the insertable element.
Further in accordance with a preferred embodiment of the present invention the surface following element includes a tactile sensing element.
Preferably, the surface following element includes a tip sensor including a tip integrally formed at one end of a short rod having a magnet on its other end, the rod extends through the center of a spring disk and is firmly connected thereto, the spring disk being mounted on one end of a cylinder whose other end is mounted on a front end of the insertable element.
Further in accordance with a preferred embodiment of the present invention the tip sensor also includes two Hall effect sensors, which are mounted inside the cylinder on a support and in close proximity to the magnet, the Hall effect sensors being spaced in the plane of the curvature of the curved pipe. Each Hall effect sensor includes electrical terminals operative to provide electric current representing the distance of the magnet therefrom. The tip sensor operates such that when a force is exerted on the tip along an axis of symmetry of the cylinder, the tip is pushed against the spring disk, causing the magnet to approach the Hall effect sensors and when a force is exerted on the tip sideways in the plane of the Hall effect sensors, the tip rotates around a location where the rod engages the spring disk, causing the magnet to rotate away from one of the Hall effect sensors and closer to the other of the Hall effect sensors.
Still further in accordance with a preferred embodiment of the present invention the driving subsystem operates, following partial insertion of the insertable element into the oral cavity, to cause the guide to extend in the direction of the trachea and bend the guide clockwise until the surface following element engages a surface of the tongue, whereby this engagement applies a force to the surface following element
Additionally in accordance with a preferred embodiment of the present invention the navigation subsystem is operative to measure the changes in the electrical outputs produced by the Hall effect sensors indicating the direction in which the tip is bent.
Moreover in accordance with a preferred embodiment of the present invention the navigation subsystem operates to sense the position of the tip and the past history of tip positions and to determine the location of the tip in the living organism and relative to the reference pathway.
In accordance with yet another preferred embodiment, the navigation subsystem operates to navigate the tip according to the reference pathway. Additionally, the navigation subsystem operates to sense that the tip touches the end of the trough beneath the epiglottis. Additionally or alternatively, the navigation subsystem is operative to sense that the tip reaches the tip of the epiglottis. In accordance with another preferred embodiment, the navigation subsystem operates to sense that the tip reached the first cartilage of the trachea Additionally, the navigation subsystem operates to sense that the tip reached the second cartilage of the trachea Additionally or alternatively, the navigation subsystem is operative to sense that the tip reached the third cartilage of the trachea. Preferably, the navigation subsystem operates to load the reference pathway from a memory.
Further in accordance with a preferred embodiment of the present invention the driving subsystem is operative to push the tube forward.
Still further in accordance with a preferred embodiment of the present invention the driving subsystem includes a first motor which operates to selectably move the insertable element forward or backward, a second motor which operates to selectably bend the insertable element and electronic circuitry operative to control the first motor, the second motor and the surface following element
Preferably, the electronic circuitry includes a microprocessor operative to execute a program, the program operative to control the first and second motors and the surface following element and to insert and bend the insertable element inside the living organism along the reference pathway.
Further in accordance with a preferred embodiment of the present invention the driving subsystem is operative to measure the electric current drawn by at least one of the first and second motors to evaluate the position of the surface following element.
Still further in accordance with a preferred embodiment of the present invention the reference pathway is operative to be at least partially prepared before the insertion process is activated. Preferably, the medical insertion device includes a medical imaging system and wherein the medical imaging system is operative to at least partially prepare the reference pathway. Preferably, the medical imaging subsystem includes at least one of an ultrasound scanner, an X-ray imager, a CAT scan system and an MRI system.
Further in accordance with a preferred embodiment of the present invention the medical imaging system operates to prepare the reference pathway by marking at least one contour of at least one organ of the living organism.
In accordance with another preferred embodiment, the medical imaging system operates to prepare the reference pathway by creating an insertion instruction table including at least one insertion instruction. Preferably, the insertion instruction includes instruction to at least one of extend, retract and bend the insertable element.
Further in accordance with a preferred embodiment of the present invention the navigation subsystem is operative to control the driving subsystem based at least partially on a perceived location of the surface following element and according to the insertion instruction table stored in the navigation subsystem.
Additionally in accordance with a preferred embodiment of the present invention the operative medical insertion device operates to at least partially store a log of a process of insertion of the insertable element. Additionally, the operative medical insertion device transmits the log of a process of insertion of the insertable element.
Further in accordance with a preferred embodiment of the present invention the computer operates to aggregate the logs of a process of insertion of the insertable element. Additionally, the computer prepares the reference pathway based at least partially on the aggregate.
Still further in accordance with a preferred embodiment of the present invention the computer transmits the reference pathway to the medical insertion device.
Further in accordance with a preferred embodiment of the present invention the insertable element includes a guiding element and a guided element. Additionally, the driving subsystem operates to direct the guiding element and the guided element at least partially together. Additionally or alternatively, the driving subsystem is operative to at least partially automatically direct the guide in a combined motion comprising a longitudinal motion and lateral motion.
In accordance with yet another preferred embodiment, the mouthpiece includes a disposable mouthpiece.
In accordance with still another preferred embodiment of the present invention, the insertable element is extendable. In accordance with yet another preferred embodiment, the insertable element includes a mounting element which is arranged to be removably engaged with an intubator assembly and an extendable tube operatively associated with the mounting element Preferably, the extendable tube is arranged to be pulled by a flexible guide operated by the intubator assembly.
In accordance with yet another preferred embodiment of the present invention, the extendable tube includes a coil spring. Additionally or alternatively, the extendable tube also includes a forward end member, on a distal end thereof.
Preferably, the forward end member includes a diagonally cut pointed forward facing tube end surface. Additionally or alternatively, the medical insertion device also includes a forward end member mounted inflatable and radially outwardly expandable circumferential balloon.
Preferably, the forward end member mounted inflatable and radially outwardly expandable circumferential balloon receives inflation gas through a conduit formed in a wall of the forward end member and continuing through the tube to a one way valve.
In accordance with another preferred embodiment, the medical insertion device also includes a flexible guide having mounted at a distal end thereof a tip sensor. Preferably, the flexible guide is formed with an inflatable and radially outwardly expandable guide mounted balloon. Additionally, the inflatable and radially outwardly expandable guide mounted balloon receives inflation gas through a conduit formed in the flexible guide and extending therealong. Preferably, the conduit is connected to a source of pressurized inflation gas. Additionally or alternatively, the source of pressurized inflation gas is located within the intubator assembly. Preferably, the inflation gas comprises pressurized air.
It is appreciated that the distances and angles referenced in the specification and claims are typical values and should not be construed in any way as limiting values.
BRIEF DESCRIPTION OF THE DRAWINGS AND APPENDICESThe present invention will be understood and appreciated more fully from the following detailed description, taken in conjunction with the drawings and appendices in which:
Appendices 1 to 3 are computer listings which, taken together, form a preferred software embodiment of the present invention.
DETAILED DESCRIPTION OF PREFERRED EMBODIMENTS Reference is now made to
It is appreciated that the general configuration of the mouth and trachea is generally the same for all humans except for differences in scale, such as between an infant, a child and an adult. In a preferred implementation of the present invention, a standard contour map 10 of the human mouth and trachea is employed. The scale of the map 10 may be further precisely adapted to the specific patient, preferably automatically. Alternatively, the scale of the map 10 is adapted to the specific patient semi-automatically. In this alternative the operator can select the scale of the map 10, for example by selecting between a child and an adult. Thereafter the scale of the map 10 is automatically adapted to size of the specific patient as a part of the intubation process. As a further alternative or in addition the operator is enabled to designate one or more typical impediments such as: a tumor, a swelling, an infection and an injury. Selecting an impediment preferably creates a suitable variation of the general map 10.
As seen in
It is appreciated that some of the components comprising the intubator assembly 12 may be disposable, for example, the tube 18 and the mouthpiece 16.
The guide driver 15 is operative to move the guide 20 in and out of the housing 14, through the curved pipe 24 and through the tube 18. The guide driver 15 is also operative to selectably bend the distal end of the guide 20 clockwise and counterclockwise in the plane of the curvature of the curved pipe 24 in the sense of
Referring now to an enlargement of the tip sensor 11, it is seen that tip sensor 11 preferably comprises a tip 28 preferably integrally formed at one end of a short rod 30 having a magnet 32 on its other end. The rod 30 preferably extends through the center of a spring disk 34 and is firmly connected thereto. The spring disk 34 is preferably mounted on one end of a cylinder 36 whose other end is mounted on the distal end of the guide 20, Preferably, the tip sensor 11 also comprises two Hall effect sensors, 38 and 40, which are mounted inside the cylinder 36 on a support 41 and in close proximity to the magnet 32. The Hall effect sensors 38 and 40 are preferably spaced in the plane of the curvature of the curved pipe 24. Typically, each Hall effect sensor has electrical terminals operative to provide electric current representing the distance of the magnet 32 therefrom.
When a force is exerted on the tip 28 along the axis of symmetry 42 of cylinder 36, the tip 28 is pushed against the spring disk 34, causing the magnet 32 to approach the Hall effect sensors 38 and 40. Since the distance between the magnet 32 and each of the Hall effect sensors 38 and 40 decreases, both Hall effect sensors 38 and 40 produce an increase in their output electric current When a force is exerted on the tip 28 sideways in the plane of the Hall effect sensors 38 and 40, the tip 28 rotates around the location where the rod 30 engages the spring disk 34, as is shown in
It is appreciated that sensors other than Hall effect sensors can be used to measure the direction and the amplitude of the force exerted on the tip 28, or otherwise to measure the proximity and the orientation of the adjacent surface.
During automatic operation of the system, following partial insertion of the intubator assembly 12 into the oral cavity, as shown in
By sensing the position of the tip and employing the past history of tip positions, the system of the present invention determines the location of the tip sensor 11 in the oral cavity and relative to the map 10. This location is employed in order to navigate the intubator correctly, as described hereinbelow.
Reference is now made to
As seen in
As seen in
As seen in
As seen in
As seen in
As seen in
As seen in
As seen in
Reference is now made to
In step 100 of
In step 102 the intubator loads an intubation pattern map 10 from its memory.
In steps 104, 106 and 108 the intubator enables the operator to set the scale of the intubation pattern map to the corresponding size of the patient by selecting between an infant a child and an adult.
In steps 110, 112 and 114 the intubator enables the operator to adapt the intubation pattern map 10 to a type of intubation impediment, preferably by selecting from a menu. As seen in
As seen in
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Reference is now made to
Preferably, the guide driver 15 comprises a first motor 210 that drives a gearbox 212 that rotates a threaded rod 214. A floating nut 216 is mounted on the threaded rod 214. As the motor 210 rotates the threaded rod 214, the floating nut 216 is moved forward or backward according to the direction of the rotation. The floating nut 216 is operative to move a carriage 218 along a bar 220 and thus to push or pull the guide 20. When the carriage 218 touches a stopper 222 the stopper 222 moves with the carriage 218 along the bar 220 and pushes the tube 18 forward.
A second motor 224 is connected to a disk 226 to which two guide angulation wires 228 are attached at first end thereof. The guide angulation wires 228 are threaded inside the guide 20 and their other ends are connected to the distal end of the guide just short of the tip sensor 11. When the motor 224 rotates the disk 226 clockwise one of the wires 228 is pulled and the second wire is loosened. The wire that is pulled pulls and bends the distal end of the guide 20 counterclockwise in the sense of
Electronic circuitry 229 is provided within the housing 14 and is preferably electrically connected to operating switches 230, a display 232, the motors 210 and 224 and to the Hall effect sensors 38 and 40 (
It is appreciated that the term “microprocessor” also includes inter alia a “microcontroller”.
Electrical batteries (not shown) are preferably provided within the housing 14 to supply electric power to the electronic circuitry, the tip sensor 11, the motors 210 and 224, the display 232 and all other elements of the present invention that consume electricity. It is appreciated that external sources of electricity can also be employed to provide power to the intubator assembly 12.
Communication interface (not shown), preferably employing infra-red communication technology, is provided to enable communication with external data processing equipment.
Preferably, a balloon 234 is provided at the distal end of the tube 18 and a thin pipe (not shown) is inserted through the pipe IS and is connected, through the side of the pipe, to the balloon. The thin pipe enables an operator to inflate the balloon when the distal end of the pipe 18 reaches the appropriate place in the trachea, thus securing the distal end of the pipe to the trachea.
Reference is now made to
At the other end of the guide 20, the tip sensor 11 measures the proximity and orientation of an adjacent surface. In a preferred embodiment of the present invention the tip sensor 11 performs the proximity and orientation measurements by measuring the force applied to a tactile tip by a surface of an adjacent tissue. A tip sensor software driver module 260, operative to receive input signals from the tip sensor 11, provides two input functions: a counterclockwise tip rotation function 262 and a clockwise tip rotation function 264. The measurements of the tip positions as provided by the tip sensor software driver module 260 are collected and stored by a sensor log module 266.
The map 10 is loaded into memory and serves as an updatable map 268. A comparator 270 compares the accumulated measurements from the tip sensor 11 with the updated reference map 268. The results of the comparisons are calculated by an update scale module 272 to provide a scaling factor that is applied to update the updated map 268. Consequently a navigation module 274 employs the updated map information to instruct the propagation control 256 to execute the next step of the insertion program.
It is appreciated that a measurement of the electric current drawn by at least one of the longitudinal guide drive and the bending guide drive can also serve as an input to the comparator 270 to evaluate the position of the tip sensor.
Reference is now made to
Reference is now made to
It is appreciated that some of the organ systems of a living organism are generally similar up to a scale factor, such as the mouth and trachea system Other organs, such as the intestine system, are generally different from one human body to the other. Therefore, in order to employ the present invention to insert a medical device or apply a medicine to a specific location within a generally variable organ, a map of the organ, at least from the entry point and until the required location, is prepared before the insertion process is activated. The required map is preferably prepared by employing an appropriate medical imaging system, such as an ultrasound scanner, an x-ray imager, a CAT scan system or a MRI system. The map can be a two dimensional map or a three-dimensional map as appropriate for the specific organ. Typically for the intestine system a three dimensional map is required.
It is appreciated that an inserter according to a preferred embodiment of the present invention for use in organs that are variable in three dimensions is similar to the intubator assembly 12, preferably with the following modifications:
-
- (1) The tube 18 may be replaced with a different insertable device;
- (2) An additional guide bending system employing elements similar to motor 222, disk 224 and wires 226 is added and mounted perpendicularly to the first system of motor 222, disk 224 and wires 26, so that it is possible to bend the end of the guide in three dimensions. It is appreciated that three-dimensional manipulation is possible also by employing three or more motors; and
- (3) The tip sensor 11 preferably comprises four Hall effect sensors to sense the motion of the tip 28 in three dimensions. It is appreciated that it is possible to operate the tip sensor in a three-dimensional space also by employing three Hall effect sensors. It is also appreciated that other types of sensors can be employed to measure the proximity and orientation of an adjacent surface in three dimensions.
In a preferred embodiment of the present invention, when the guide 20 performs longitudinal motion, such as insertion or retraction, the guide 20 also performs a small and relatively fast lateral motion. The combined longitudinal and lateral motions are useful for sensing the surface of the organ in three dimensions and hence to better determine the location of the tip sensor 11 in the organ and relative to the map 10.
Due to limitations of the graphical representation, a two-dimensional imaging and map is shown in
As seen in
In
Reference is now made to
-
- (a) Initial bend 294 contains two values for bending the guide from a straight position, in two perpendicular planes.
- (b) Initial insertion 295 contains a longitudinal value for extending or retracting the guide in centimeters.
- (c) Initial sensor measurements 296 contains expected output values of four sensors such as four Hall effect sensors, for example, Hall effect sensors 38 and 40 of
FIG. 1A . The initial sensors measurements 296 are expected to be measured by the time the guide reaches the value of the initial insertion 295. - (d) Insert distance 297 contains a longitudinal value for further extending or retracting the guide in centimeters. Typically the initial sensor measurements 296 are expected to be preserved, while the guide is extended or retracted, by adapting the bending of the guide.
- (e) Final sensor measurements 298 contain expected output values of the four sensors of step (c). The initial sensor measurements 298 are expected to be measured by the time the guide reaches the value of the insert distance 297.
It is appreciated that the path drawn in
Referring to
The preferred flowchart shown in
Preferably, the initial values of the sensors are measured and then the program continues to extend or retract the guide 20 (step 312) until the sensors produce the final sensors measurements 298 values (step 314), while keeping in contact with the surface (steps 316 and 318) or until at least one of predefined limits is surpassed (step 320) where the program is stopped (step 310). If the final sensor measurements 298 values are measured the program proceeds to step 320 and loops through steps 302 and 320 until all the rows 292 of the table are processed. Then the program displays an insertion success message on the display 232 and halts (step 322).
As indicated by row No. 1 of
As indicated by row No.2 of
As indicated by row No.3 of
In accordance with row 4 of
As indicated by row No.5 of
As indicated by row No.6 of
As indicated by row No.7 of
As indicated by row No.8 of
As indicated by row No.9 of
In a preferred embodiment of the present invention the system and the method are operative for automatic operation. Alternatively the present invention can be operated manually, by providing to the operator the information collected by the sensor log 266 form the tip sensor 11 and enabling the operator to control manually the guide 20. In another alternative part of the procedure is performed automatically and another part is performed manually. For example, the guide 20 may be inserted automatically and a medical device, such as the tube 18 may be inserted manually.
It is appreciated that a log of the process of insertion of an insertable element into a living organism such as a human body is preferably stored in an internal memory of the present invention and that this log can be transmitted to a host computer. It is appreciated that the host computer can aggregate insertion process logs and thereby continuously improve relevant insertion pattern maps such as the standard contour map 10. Thereafter, from time to time or before starting an insertion process, the present invention is capable of loading an updated map such as standard contour map 10.
It is also appreciated that the accumulated logs of processes of insertions can be employed to improve the algorithm for processing the maps, such as the algorithms shown and described with reference to
Reference is now made to
Turning to
Upstream of end surface 414, forward end member 412 is preferably provided with an inflatable and radially outwardly expandable circumferential balloon 416, which receives inflation gas, preferably pressurized air, preferably through a conduit 418 embedded in a wall of forward end member 412 and continuing through tube 410 to a one way valve 419.
It is noted that the extendable endotracheal tube assembly 400 may comprise an integrally formed mouthpiece assembly and an integrally formed insertable extendable tube assembly. The integrally formed mouthpiece assembly may comprise the mouthpiece 404 and the rigid curved pipe 406. The integrally formed extendable tube assembly may comprise the extendable tube 410, the mounting element 402, the mounting base 408, the coil spring 411, the forward end member 412 with the end surface 414 and the circumferential balloon 416, the conduit 418 and the one way valve 419.
Extending slidably through forward end member 412, tube 410, mounting base 408 and mounting element 402 is a flexible guide 420, which preferably corresponds in function inter alia to guide 20 in the embodiment of
As distinct from that described hereinabove with reference to
Reference is now made to
Turning to
Fixedly mounted onto the mounting element, interiorly of rigid curved pipe 506, is a mounting base 508 onto which is, in turn, mounted, an extendable tube 510, preferably including a coil spring 511 (
Upstream of end surface 514, forward end member 512 is preferably provided with an inflatable and radially outwardly expandable circumferential balloon 516, which receives inflation gas, preferably pressurized air, preferably through a conduit 518 embedded in a wall of forward end member 512 and continuing through tube 510 to a one way valve 519.
It is noted that the extendable endotracheal tube assembly 500 may comprise a mouthpiece assembly and an extendable tube assembly, which is inserted therein. The mouthpiece assembly comprises the mouthpiece 504, which is integrally formed with the rigid curved pipe 506. The extendable tube assembly comprises the extendable tube 510, which is integrally formed together with the mounting element, the mounting base 508, the coil spring 511, the forward end member 512 with the end surface 514 and the circumferential balloon 516, the conduit 518 and the one way valve 519.
Extending slidably through forward end member 512, tube 510, mounting base 508 and the mounting element is a flexible guide 520, which preferably corresponds in function inter alia to guide 20 in the embodiment of
As distinct from that described hereinabove with reference to
The source of pressurized inflation gas may be an automatic inflator/deflator 526. Additionally or alternatively, a one way valve 528 may be provided for manual inflation. The automatic inflator/deflator 526 may be fixed within intubator assembly 503 or alternatively may be mounted therewithin for motion together with flexible guide 520.
Reference is now made to
Turning to
Fixedly mounted onto mounting element 602 is a mounting base 608 onto which is, in turn, mounted, an extendable tube 610, preferably including a coil spring 611, typically formed of metal. Fixedly mounted onto a distal end of extendable tube 610 there is preferably provided a forward end member 612, preferably presenting a diagonally cut pointed forward facing tube end surface 614.
Upstream of end surface 614, forward end member 612 is preferably provided with an inflatable and radially outwardly expandable circumferential balloon 616, which receives inflation gas, preferably pressurized air, preferably through a conduit 618 embedded in a wall of forward end member 612 and continuing through tube 610 to a one way valve 619.
It is noted that the extendable endotracheal tube assembly 600, comprising at least one of mounting element 602, mouthpiece 604, mounting base 608, tube 610, coil spring 611, forward end member 612, end surface 614, circumferential balloon 616, conduit 618 and one way valve 619, may also be integrally formed as a unified structure.
Extending slidably through forward end member 612, tube 610, mounting base 608 and mounting element 602 is a flexible guide 620, which preferably corresponds in function inter alia to guide 20 in the embodiment of
As distinct from that described hereinabove with reference to
Reference is now made to
Turning to
Fixedly mounted onto the mounting element is a mounting base 708 onto which is, in turn, mounted, an extendable tube 710, preferably including a coil spring 711 (
Upstream of end surface 714, forward end member 712 is preferably provided with an inflatable and radially outwardly expandable circumferential balloon 716, which receives inflation gas, preferably pressurized air, preferably through a conduit 718 embedded in a wall of forward end member 712 and continuing through tube 710 to a one way valve 719.
It is noted that the extendable endotracheal tube assembly 700, comprising at least one of mounting element, mouthpiece 704, mounting base 708, tube 710, coil spring 711 (
Extending slidably through forward end member 712, tube 710, mounting base 708 and the mounting element is a flexible guide 720, which preferably corresponds in function inter alia to guide 20 in the embodiment of
As distinct from that described hereinabove with reference to
The source of pressurized inflation gas may be an automatic inflator/deflator 726. Additionally or alternatively, a one way valve 728 may be provided for manual inflation. The automatic inflator/deflator 726 may be fixed within intubator assembly 703 or alternatively may be mounted therewithin for motion together with flexible guide 720.
Appendices 1 to 3 are software listings of the following computer files:
-
- Appendix 1: containing file intumed.asm.
- Appendix 2: containing file c8cdr.inc.
- Appendix 3: containing file ram.inc.
The method for providing the software functionality of the microprocessor 278, in accordance with a preferred embodiment of the present invention, includes the following steps:
- 1. Provide an Intel compatible computer with a Pentium II CPU or higher, 128 MB RAM, a Super VGA monitor and an available serial port.
- 2. Install Microsoft Windows 95 or Microsoft Windows 98 Operating System.
- 3. Install the Testpoint Development kit version 40 available from Capital Equipment Corporation, 900 Middlesex Turnpike, Building 2, Billereca, Mass. 0821, USA.
- 4. Connect a flash processor loading device COP8EM Flash, COP8 In Circuit Emulator for Flash Based Families to the serial port of the Intel compatible computer. The COP8EM flash processor loading device is available from National Semiconductors Corp. 2900 Semiconductor Dr., P.O. Box 58090, Santa Clara, Calif. 95052-8090, USA
- 5. Place a COP8CDR9HVA8 microcontroller available from National Semiconductors Corp., 2900 Semiconductor Dr., P.O. Box 58090, Santa Clara, Calif. 95052-8090, USA in the COP8EM Flash.
- 6. Copy the files intumed.asm, c8cdr.inc, and ram.inc, respectively labeled Appendix 1, Appendix 2 and Appendix 3 to a temporary directory.
- 7. Load the file intumed.asm by using the operating software available with the COP8EM Flash device from National Semiconductors.
- 8. To run the intumed.asm; Install the COP8CDR9HVA8 microcontroller in its socket in the electrical circuit, which detailed electronic schematics are provided in
FIGS. 5A to 5H, where the microcontroller is designated by reference numeral 278.
It is appreciated that the software components of the present invention may, if desired, be implemented in ROM (read-only memory) form. The software components may, generally, be implemented in hardware, if desired, using conventional techniques.
It is appreciated that the particular embodiment implemented by the Appendix is intended only to provide an extremely detailed disclosure of the present invention and is not intended to be limiting.
It is appreciated that various features of the invention which are, for clarity, described in the contexts of separate embodiments may also be provided in combination in a single embodiment Conversely, various features of the invention which are, for brevity, described in the context of a single embodiment may also be provided separately or in any suitable subcombination.
It will be appreciated by persons skilled in the art that the present invention is not limited by what has been particularly shown and described hereinabove. Rather the scope of the present invention includes both combinations and subcombinations of the various features described hereinabove as well as variations and modifications which would occur to persons skilled in the art upon reading the specification and which are not in the prior art.
Claims
1. An automatically operative medical insertion device comprising:
- an extendable insertable element which is adapted to be inserted within a living organism in vivo;
- a surface following element, physically associated with said insertable element and being arranged to follow a physical surface within said living organism in vivo;
- a driving subsystem operative to at least partially automatically direct said insertable element along said physical surface; and
- a navigation subsystem operative to control said driving subsystem based at least partially on a perceived location of said surface following element along a reference pathway stored in said navigation subsystem.
2-9. (canceled)
10. An automatically operative medical insertion device according to claim 1 and wherein said insertable element is a gastroscope and wherein said physical surface comprises surfaces of the intestine.
11. An automatically operative medical insertion device according to claim 1 and wherein said insertable element is a catheter and wherein said physical surface comprises interior surfaces of the circulatory system.
12. An automatically operative medical insertion device according to claim 1 and also comprising a reference pathway generator operative to image at least a portion of said living organism and to generate said reference pathway based at least partially on an image generated thereby.
13-41. (canceled)
42. An automatically operative medical insertion device according to claim 1 and wherein said also comprising a medical imaging subsystem comprises including at least one of an ultrasound scanner, an X-ray imager, a CAT scan system and an MRI system.
43-56. (canceled)
57. An automatically operative medical insertion device according to claim 1 and wherein said insertable element comprises: a mounting element which is arranged to be removably engaged with an intubator assembly; and an extendable tube operatively associated with said mounting element.
58. An automatically operative medical insertion device according to claim 57 and wherein said extendable tube is arranged to be pulled by a flexible guide operated by said intubator assembly.
59. An automatically operative medical insertion device according to claim 57 and wherein said extendable tube comprises a coil spring.
60. An automatically operative medical insertion device according to clam 57 and wherein said extendable tube also comprises a forward end member, on a distal end thereof.
61-64. (canceled)
65. An automatically operative medical insertion device according to claim 57 and also comprising a flexible guide having mounted at a distal end thereof a tip sensor, wherein said flexible guide being formed with an inflatable and radially outwardly expandable guide mounted balloon.
66. An automatically operative medical insertion device according to claim 65 and wherein said inflatable and radially outwardly expandable guide mounted balloon receives inflation gas through a conduit formed in said flexible guide and extending therealong.
67. An automatically operative medical insertion device according to claim 66 and wherein said conduit is connected to a source of pressurized inflation gas.
68. An automatically operative medical insertion device according to claim 67 and wherein said source of pressurized inflation gas is located within said intubator assembly.
69. (canceled)
70. An automatically operative medical insertion device according to claim 66 and wherein said inflation gas comprises pressurized air.
71. An automatically operative medical insertion method comprising:
- inserting an insertable element within a living organism in vivo by extending said insertable element;
- physically associating a surface following element with said insertable element and causing said surface following element to follow a physical surface within said living organism in vivo;
- directing said insertable element along said physical surface using a driving subsystem; and
- controlling direction of said insertable element based at least partially on a perceived location of said surface following element along a reference pathway stored in a navigation subsystem.
72-127 (canceled)
128. An automatically operative medical insertion method according to claim 71 and also comprising:
- removably engaging said insertion insertable element with an intubator assembly; and
- operatively associating an extendable tube with said insertion insertable element.
129. An automatically operative medical insertion method according to claim 128 and wherein said extending comprises:
- operating a flexible guide; and
- pulling said extendable tube by said flexible guide.
130. An automatically operative medical insertion method according to claim 128 and wherein said extending comprises at least one of expanding and contracting a coil spring.
131. An automatically operative medical insertion method according to claim 129 and also comprising forming a forward end member, on a distal end of said extendable tube.
132-139. (canceled)
140. An automatically operative medical insertion method according to claim 131 and also comprising:
- forming an inflatable and radially outwardly expandable guide balloon on said flexible guide; and
- inflating said guide meted balloon to tightly engage the interior of said forward end member to provide extension of said tube in response to forward driven movement of said flexible guide.
141-142. (canceled)
Type: Application
Filed: May 2, 2002
Publication Date: Apr 14, 2005
Applicant: INTUMED LTD. (Beer Sheva)
Inventors: Shlomo Besharim (Beer sheva), Eliyahu Besharim (Beer Sheva)
Application Number: 10/496,857