Device and method of isolating deleterious body tissue located within healthy body tissue
The invention provides for treating deleterious body tissue located within healthy body tissue by isolating the deleterious tissue from blood, air, and fluid communication. The device includes two structures, each having a corresponding circumferential surface arranged to circumscribe the deleterious body tissue. When the first and second circumferential surfaces are brought together in an aligned relationship with the deleterious body tissue between the structures, the two circumferential surfaces co-act to isolate the deleterious body tissue from communication with the healthy body tissue. The deleterious tissue is resected according to the invention by allowing it to become ischemic and necrotic, or by excision.
This application is a continuation of U.S. application Ser. No. 10/061,755, filed Feb. 1, 2002, the entirety of which is incorporated herein by reference.
BACKGROUND OF THE INVENTIONThe present invention is generally directed to a device for and method of treating deleterious body tissue located within healthy body tissue by isolating the deleterious body tissue from fluid, air, and blood communication. Once isolated, the deleterious body tissue may be resected by allowing it to become ischemic and necrotic, or excised.
Cancer is a form of deleterious body tissue. Pulmonary cancer is the leading cause of cancer deaths in the United States. Early detection and proper treatment of cancerous tissue significantly improves survival rates. Asymptomatic, spherical, intrapulmonary lesions are found in about 1 of every 500 chest films. Solitary lesions having a diameter of 3 cm or less are presently defined as pulmonary nodules. Larger lesions are defined as masses. Currently, a pulmonary nodule proves to be a malignant tumor in about 40% of the cases, most often bronchogenic carcinoma but occasionally a solitary metastasis of carcinoid tumor.
A number of different procedures, techniques, and apparatus are available to treat pulmonary nodules, each having morbidity and mortality considerations that must be evaluated along with the operable risk to the patient. Any procedure involving the lungs is invasive and fraught with potential complications, including bleeding and lung air leaks. Lung tissue is very thin and fragile, and hence difficult to suture together without bleeding and air leaks. After a lung is resectioned, current procedures and techniques often restructure the remaining lung portion with suture staples.
Current techniques and related apparatus do not adequately address the potential complications caused by resectioning pulmonary tissue, particularly bleeding and air leaks. When bleeding and air leaks occur, a more invasive procedure is often indicated with possible increased morbidity and mortality. In addition, current techniques and related apparatus often unnecessarily require removal of a significant amount of lung tissue to resection a nodule, and are not as effective when a nodule is located away from an edge.
In view of the foregoing, there in a need in the art for a new and improved apparatus and method of treating pulmonary nodules that minimizes potential complications and risks of other procedures, including removal of excessive tissue, air leaks, and bleeding. The present invention is directed to such an improved apparatus and method.
SUMMARY OF THE INVENTIONThe present invention provides a device for treating deleterious body tissue located within healthy body tissue. The device isolates deleterious body tissue from the healthy tissue by limiting blood, air, and fluid communication with the deleterious body tissue. The device includes a first structure having a first circumferential surface arranged to circumscribe the deleterious body tissue. The device also includes a second structure having a second circumferential surface corresponding to the first circumferential surface. When the first and second circumferential surfaces are brought together in an aligned relationship with the deleterious body tissue between the first and second structures, the first and second circumferential surfaces co-act to isolate the deleterious body tissue from communication with the healthy body tissue. When the first and second circumferential surfaces of the device are together in an aligned relationship, the first structure and the second structure may define a chamber arranged to contain the deleterious body tissue.
In another version of the invention, the device may include a bias element coupled to the first structure and the second structure. The bias element brings the circumferential surfaces of the first and second structures together in an aligned relationship. The bias element may further include bringing the first and second circumferential surfaces together with sufficient force that the deleterious body tissue becomes ischemic and necrotic. The first and second structures may each further include a first and second aperture respectively, so that when the circumferential surfaces are brought together in an aligned relationship, the first aperture and second aperture expose the deleterious body tissue for resection.
In a further version of the invention, the device includes the capability to excise the deleterious body tissue. The circumferential surface of at least one of the first and second structures of the device includes a cutting edge that resects deleterious body tissue when the first and second circumferential surfaces are brought together in an aligned relationship. One of the first and second structures of the device may also include a cutting surface arranged to engage at least a portion of the cutting edge on the other one of the first and second structures when the first and second circumferential surfaces are brought together in an aligned relationship. Bringing the cutting edge against the cutting surface resects the deleterious body tissue. The device may further include a bias element coupled to the first structure and the second structure. The bias element brings the circumferential surfaces of the first and second structures together in an aligned relationship with sufficient force such that the deleterious body tissue enclosed therein is resected.
In yet another version of the invention, the device may include interlocking surfaces to maintain the co-action of the circumferential surfaces to isolate the deleterious body tissue. The first structure includes a first interlocking surface, and the second structure includes a second interlocking surface. The interlocking surfaces are arranged to interlock with the deleterious body tissue between. Upon bringing the first and second circumferential surfaces together to a point of interlocking, the circumferential surfaces of the first and second structures will compress tissue surrounding a perimeter of the deleterious body tissue enclosed therein with sufficient force such that the deleterious body tissue will be isolated from communication with the healthy body tissue, and become ischemic and necrotic. The interlocking surfaces may be urged together by an external force. The first structure and the second structure may define a chamber arranged to contain at least the pulmonary nodule when the interlocking surfaces are interlocked. Further, the device may include a bias element coupled to the first structure and the second structure that brings the first structure and second structure together in the aligned relationship.
In another version of the invention, a device is provided that includes two structures that move together in a shearing manner and that compress the deleterious body tissue between to limit blood, air, and fluid communication. The device includes a first structure having a first partial circumferential surface, and a second structure having a second partial circumferential surface corresponding to the first circumferential surface. The first and second partial circumferential surfaces are arranged to encircle the deleterious body tissue when the first structure and the second structure are brought toward each other in a shearing manner with the deleterious body tissue encircled between the first and second partial circumferential surfaces. When brought together in this manner, the first and second circumferential surfaces co-act to isolate the deleterious body tissue from communicating with the healthy body tissue. The device may include a bias element coupled to the first structure and the second structure. The bias element brings the circumferential surfaces of the first and second structures toward each other in the shearing manner with sufficient force such that deleterious body tissue enclosed therein becomes ischemic and necrotic.
In still another version of the invention, a method is provided for isolating deleterious body tissue located within healthy body tissue from the healthy body tissue by limiting blood, air, and fluid communication with the deleterious body tissue. The method includes several steps. One step includes providing a device having a first structure that includes a first circumferential surface arranged to circumscribe the deleterious body tissue, and a second structure that includes a second circumferential surface corresponding to the first circumferential surface. Another step includes placing the deleterious body tissue to be isolated between the first circumferential surface and the second circumferential surface of the device. A further step includes bringing the first and second circumferential surfaces of the device together in an aligned relationship with the deleterious body tissue between the first and second structures. The first and second circumferential surfaces co-act to isolate the deleterious body tissue from communication with the healthy body tissue. The method may include the further step of bringing the first circumferential surface and the second circumferential surface together against the healthy body tissue immediately surrounding the deleterious body tissue with sufficient force that the deleterious body tissue becomes ischemic and necrotic. The device of the method may include a bias element coupled to the first structure and the second structure that brings the circumferential surfaces of the first and second structures together. The first and second structures of the device may include a first and second aperture arranged so that when the circumferential surfaces are brought together in the aligned relationship, the first aperture and second aperture expose the deleterious body tissue for excision. The exposed deleterious body tissue may then be resected.
In yet still another version of the invention, a device is provided for isolating deleterious body tissue located within healthy body tissue from the healthy body tissue by limiting blood, air, and fluid communication with the deleterious body tissue. The device includes a confining means having at least two circumferential surfaces, the circumferential surfaces being arranged in combination to circumscribe the deleterious body tissue and to be brought together in an aligned, co-acting relationship to isolate the deleterious body tissue. The device may include a means arranged for maintaining the circumferential surfaces together with sufficient force that deleterious body tissue confined therein will be isolated from communication with healthy body tissue.
BRIEF DESCRIPTION OF THE DRAWINGSThe features of the present invention which are believed to be novel are set forth with particularity in the appended claims. The invention, together with further objects and advantages thereof, may best be understood by making reference to the following description taken in conjunction with the accompanying drawings, in the several figures of which like referenced numerals identify identical elements, and wherein:
Briefly stated, the invention treats deleterious body tissue within healthy body tissue by bringing two circumferential surfaces together and compressing the deleterious body tissue between them. The compression isolates the deleterious tissue from blood and fluid communication with surrounding healthy body tissue. The deleterious tissue is resected by allowing it to become ischemic and necrotic due to its isolation, or by excision.
The respiratory system 20 includes the trachea 28, the left mainstem bronchus 30, the right mainstem bronchus 32, the bronchial branches 34, 36, 38, 40, and 42 and sub-branches 44, 46, 48, and 50. The respiratory system 20 further includes left lung lobes 52 and 54 and right lung lobes 56, 58, and 60. Each bronchial branch and sub-branch communicates with a respective different portion of a lung lobe, either the entire lung lobe or a portion thereof. The sub-branches end in terminal bronchioles 45, and alveoli clusters 47.
Characteristic of a healthy respiratory system is the arched or inwardly arcuate diaphragm 26. As the individual inhales, the diaphragm 26 straightens to increase the volume of the thorax 22. This causes a negative pressure within the thorax. The negative pressure within the thorax in turn causes the lung lobes and alveoli to fill with air. When the individual exhales, the diaphragm returns to its original arched condition to decrease the volume of the thorax. The decreased volume of the thorax causes a positive pressure within the thorax which in turn causes exhalation of the lung lobes.
While pulmonary nodule 70 is illustrated in left lung lobe 54, pulmonary nodules may be located in any portion and in any structure of a lung. Pulmonary nodules are defined in current practice as lesions having a diameter of approximately 3 cm or less. They may have any contour (smooth, lobulated, or speculated) and may or may not be calcified. Larger lesions are called masses. Pulmonary nodules receive blood and fluid communication from surrounding healthy body tissue.
First structure 82 and second structure 86 may be made from any material suitable for use in a human body that is capable of transmitting compressive force to healthy body tissue surrounding a pulmonary node, as described in additional detail below. First circumferential surface 83 and second circumferential surface 87 may be any shape and width suitable for enclosing pulmonary nodule 70 and applying pressure to the surrounding tissue. Their shape is generally circular in this embodiment. While
The first circumferential surface 83 and the second circumferential surface 87 do not need to be in a single plane. In this and all other embodiments, they may be any configuration that, when placed in alignment, will isolate a pulmonary nodule from fluid and blood communication with surrounding healthy body tissue.
In operation, the pulmonary nodule for treatment is located in a lung. Device 80 may be used in the middle of a lung as well as on an edge. An appropriately sized pulmonary nodule isolation device 80 is selected that will engage a predetermined amount of healthy lung tissue surrounding nodule 70. This will spare other lung tissue by removing only a very small amount of tissue. The selected pulmonary nodule isolation device 80 is readied for resection. The first structure 82 and the second structure 86 are separated against the force of bias element 81. The first circumferential surface 83 and the second circumferential surface 87 are placed over nodule 70 and healthy body tissue immediately surrounding it. Bias element 81 then is allowed to bring the first circumferential surface 83 and the second circumferential surface 87 together in an aligned relationship and compress the healthy body tissue immediately surrounding the perimeter of pulmonary nodule 70.
The first structure chamber 84 and the second structure chamber 89 may be configured to retain a necrotized pulmonary nodule. Device 80 is arranged to be fast and easy to place on the lung tissue surrounding pulmonary nodule 70. Its use significantly reduces the possibility of bleeding and air leaks.
The elements of pulmonary nodule isolation device 90 are made and arranged in a manner similar to spherical pulmonary nodule isolation device 80.
The first structure 92 and the second structure 96 are horseshoe or elliptically shaped, lie in a plane, arranged to enclose a pulmonary nodule and its surrounding tissue, and apply pressure by movement in a shearing manner. The first structure 92 and the second structure 96 may be configured to form any shape suitable for enclosing a perimeter of a pulmonary nodule. Bias element 91 couples first structure 92 and second structure 96. Bias element 91 provides a movable compressive force bringing first structure stops 93 and second structure stops 97 in an aligned relationship. The first stops 93a and 93b, and the second stops 97a and 97b, may be any configuration to limit the movement of first structure 92 in the direction of second structure 96, and thus define a minimum area enclosed (the combined areas of first structure enclosure 94 and second structure enclosure 99). In this preferred embodiment, bias element 91 employs spring characteristics of a metal to bring the structures together in an aligned relationship and to exert a compressive force. In an alternative embodiment, first structure 92 and second structure 96 may be arranged to move past each other in a shearing manner without the range of shearing movement being limited by first stops 93a and 93b, and second stops 97a and 97b.
The operation of pulmonary isolation device 90 is substantially similar to spherical pulmonary nodule isolation device 80. First structure 92 and second structure 96 are separated against the force of bias element 91. The first structure circumferential inner surface 94 and the second structure circumferential inner surface 98 are placed over nodule 70 and tissue immediately surrounding it. Bias element 91 urges the first structure circumferential inner surface 95 and the second structure circumferential inner surface 98 toward each other in a shearing manner. The first stops 93a and 93b, and the second stops 97a and 97b are available to limit the range of movement. The tissue immediately surrounding the perimeter of the pulmonary nodule is enclosed and compressed thereby, and is isolated from communication with surrounding healthy body tissue, including blood, air, and fluid. The nodule 70 will then become ischemic and necrotic.
The elements of pulmonary nodule isolation device 100 are made and arranged in a manner similar to spherical pulmonary nodule isolation device 80 as described in conjunction with
Pulmonary nodule isolation device 100 operates in a manner similar to spherical pulmonary nodule isolation device 80 described in conjunction with
The elements of the pulmonary nodule isolation device 120 are made and arranged in a manner similar to pulmonary nodule isolation device 80 disclosed in conjunction with
The elements of pulmonary nodule isolation device 130 are made and arranged in a manner similar to the pulmonary nodule isolation device 80 disclosed in conjunction with
As can thus be seen from the foregoing, the present invention provides a new and improved device and method of treating pulmonary nodules that minimizes removal of excessive lung tissue, air leaks, and bleeding. This is achieved by an device that compresses tissue around the periphery of a pulmonary nodule or other tissue, isolating it from blood and fluid communication and causing it to become ischemic and necrotic, or allowing it to be excised.
While particular embodiments of the present invention have been shown and described, modifications may be made, and it is therefore intended in the appended claims to cover all such changes and modifications which fall within the true spirit and scope of the invention.
Claims
1. A device for isolating deleterious body tissue located within healthy body tissue from the healthy body tissue by limiting blood and fluid communication with the deleterious body tissue, the device comprising:
- a first structure, including a first circumferential surface arranged to circumscribe the deleterious body tissue; and
- a second structure, including a second circumferential surface corresponding to the first circumferential surface, and when the first and second circumferential surfaces are brought together in an aligned relationship with the deleterious body tissue between the first and second structures, the first and second circumferential surfaces co-act to isolate the deleterious body tissue from communication with the healthy body tissue.
2. The device of claim 1, further comprising a bias element coupled to the first structure and the second structure that brings the circumferential surfaces of the first and second structures together in an aligned relationship.
3. The device of claim 2, wherein the bias element brings the first and second circumferential surfaces together with sufficient force that the deleterious body tissue becomes ischemic and necrotic.
4. The device of claim 2, wherein the first and second structures each further comprise a first and second aperture respectively so that when the circumferential surfaces are brought together in an aligned relationship, the first aperture and second aperture expose the deleterious body tissue for excision.
5. The device of claim 1, wherein the circumferential surface of at least one of the first and second structures includes a cutting edge that resects deleterious body tissue when the first and second circumferential surfaces are brought together in an aligned relationship.
6. The device of claim 5, further comprising a bias element coupled to the first structure and the second structure that brings the circumferential surfaces of the first and second structures together in an aligned relationship with sufficient force such that the deleterious body tissue enclosed therein is resected.
7. The device of claim 5, wherein one of the first and second structures includes a cutting surface arranged to engage at least a portion of the cutting edge on the other one of the first and second structures when the first and second circumferential surfaces are brought together in an aligned relationship and to resect the deleterious body tissue.
8. The device of claim 2, wherein, when the first and second circumferential surfaces are together in an aligned relationship, the first structure and the second structure define a chamber arranged to contain the deleterious body tissue.
9. The device of claim 1, wherein the first structure further includes a first interlocking surface, and the second structure further includes a second interlocking surface, the interlocking surfaces being arranged to interlock with the deleterious body tissue between such that, upon bringing the first and second circumferential surfaces together to a point of interlocking, the circumferential surfaces of the first and second structures will compress tissue surrounding a perimeter of the deleterious body tissue enclosed therein with sufficient force such that the deleterious body tissue will be isolated from communication with the healthy body tissue, and become ischemic and necrotic.
10. The device of claim 9, wherein the interlocking surfaces are urged together by an external force.
11. The device of claim 9, wherein, when the interlocking surfaces are interlocked, the first structure and the second structure define a chamber arranged to contain at least the pulmonary nodule.
12. The device of claim 9, further including a bias element coupled to the first structure and the second structure that brings the first structure and second structure together in the aligned relationship.
13. A device for isolating deleterious body tissue located within healthy body tissue from the healthy body tissue by limiting blood and fluid communication with the deleterious body tissue, the device comprising:
- a first structure, including a first partial circumferential surface; and
- a second structure, including a second partial circumferential surface corresponding to the first circumferential surface, the first and second partial circumferential surfaces being arranged to encircle the deleterious body tissue when the first structure and the second structure are brought toward each other in a shearing manner, the first and second circumferential surfaces co-act to isolate the deleterious body tissue from the health body tissue.
14. The device of claim 13, further comprising a bias element coupled to the first structure and the second structure that brings the circumferential surfaces of the first and second structures toward each other with sufficient force such that deleterious body tissue enclosed therein becomes ischemic and necrotic.
15. A method of isolating deleterious body tissue located within healthy body tissue from the healthy body tissue by limiting blood and fluid communication with the deleterious body tissue, the method comprising the steps of:
- providing a device comprising: a first structure, including a first circumferential surface arranged to circumscribe the deleterious body tissue; and a second structure, including a second circumferential surface corresponding to the first circumferential surface;
- placing the deleterious body tissue to be isolated between the first circumferential surface and the second circumferential surface of the device; and
- bringing the first and second circumferential surfaces of the device together in an aligned relationship with the deleterious body tissue between the first and second structures, the first and second circumferential surfaces co-act to isolate the deleterious body tissue from communication with the healthy body tissue.
16. The method of claim 15, further including the step of bringing the first circumferential surface and the second circumferential surface together against the healthy body tissue immediately surrounding the deleterious body tissue with sufficient force that the deleterious body tissue becomes ischemic and necrotic.
17. The method of claim 16, wherein the device further comprises a bias element coupled to the first structure and the second structure that brings the circumferential surfaces of the first and second structures together.
18. The method of claim 15, wherein the first and second structures of the device further respectively comprise a first and second aperture arranged so that when the circumferential surfaces are brought together in the aligned relationship, the first aperture and second aperture expose the deleterious body tissue for resection, and wherein the method includes the further step of resecting the deleterious body tissue.
19. A device for isolating deleterious body tissue located within healthy body tissue from the healthy body tissue by limiting blood and fluid communication with the deleterious body tissue, the device comprising:
- confining means having at least two circumferential surfaces, the circumferential surfaces being arranged in combination to circumscribe the deleterious body tissue and to be brought together in an aligned, co-acting relationship to isolate the deleterious body tissue; and
- means arranged for maintaining the circumferential surfaces together with sufficient force that deleterious body tissue confined therein will be isolated from communication with healthy body tissue.
Type: Application
Filed: Dec 2, 2004
Publication Date: Apr 14, 2005
Inventor: Brandon Shuman (Kirkland, WA)
Application Number: 11/004,686