Drive train for hybrid electric vehicle
A drive train for a hybrid electric vehicle has an engine, first and second motor/generators, a third motor, and a transmission in connecting relationships with the engine, the motor/generators, and the third motor. The transmission has planetary gear sets to be shifted among a plurality of running modes including a large driving force running mode. A controller controls surplus power caused by power balance between the first and second motor/generators to be supplied to the third motor when the surplus power is generated and the vehicle starts with the transmission being operated in the large driving force running mode.
Latest Patents:
1. Field of the Invention
The present invention relates to a drive train for a hybrid electric vehicle which combines a fuel combustion engine and a electric motor/generator as power sources to propel a motor vehicle in highly efficient driving performance.
2. Description of the Related Art
A drive train for a hybrid electric vehicle of this kind is disclosed in Japanese patent laying-open publication No. 2003-32808. This drive train has an engine, a first motor/generator, a second motor/generator, a differential device consisting of planetary gear sets connected with the engine, the first and second motor/generators, and a final drive. When vehicle starting, the drive train is shifted to a large driving force running mode, because large driving force is necessary for starting a motor vehicle. This running mode is set so that an amount of electricity generated by the first motor/generator at a low vehicle speed, for example 0 Km/h to about 30 Km/h, is larger than an amount of electricity supplied to the second motor/generator, because the first and second motor/generators are operated so as to absorb power corresponding to output power outputted from the engine when the large driving force for starting the vehicle is needed.
The above known conventional drive train, however, encounters a problem that when a battery is full-charged, surplus power generated by the first motor/generator is wasted into heat energy, resulting in degradation of fuel efficiency. Furthermore, this heat loss requires measures for cooling the first motor/generator.
It is, therefore, an object of the present invention to provide a drive train for a hybrid electric vehicle which overcomes the foregoing drawbacks and can efficiently use surplus power caused by a power balance between a first motor/generator and a second motor/generator for increasing driving force.
SUMMARY OF THE INVENTIONAccording to a first aspect of the present invention there is provided a drive train for a hybrid electric vehicle comprising: an engine that provides propulsion power by burning fuel; a first motor/generator that is selectively switched so as to act as either an electric motor to provide driving force or an electric generator to produce electric power; a second motor/generator that is selectively switched so as to act as either an electric motor to provide driving force or an electric generator to produce electric power; a third motor that provides driving force; a transmission equipped with planetary gear sets having rotatable elements that are in connecting relationships with an output shaft, the engine, and the first and second motor/generators; and a controller that controls the first and second motor/generators and the third motor so that surplus power caused by power balance between the first and second motor/generators is supplied to the third motor when the surplus power is generated.
According to a second aspect of the present invention there is provided a transmission for a hybrid electronic vehicle comprising: planetary gear sets with rotatable elements that are in connecting relationships with an output shaft, an engine, first and second motor/generators to be shifted among a plurality of running modes including a large driving force running mode, the planetary gear sets having velocity axes corresponding to the first motor/generator, the engine, an output shaft, the second motor/generator that are arranged in these order in a common velocity diagram of the transmission and controlled by a low brake to obtain transmission ratio in low transmission ratio range to have a hybrid-electronic-vehicle-variable-transmission-ratio (HEV-iVT) mode where the engine and the first and second motor/generators are in operation so as to obtain the variable transmission ratio in the low transmission ratio range, wherein surplus power caused by power balance between the first and motor/generators is supplied to a third motor in vehicle starting in the HEV-iVT mode.
According to a third aspect of the present invention there is provided a method of driving a hybrid electric vehicle comprising: providing propulsion power by an engine; switching first and second motor/generators selectively so as to act as either an electric motor to provide driving force or an electric generator to produce electric power; providing driving force by a third motor; providing a large driving force running mode of a transmission equipped with planetary gear sets with rotatable elements that are in connecting relationships with an output shaft, the engine, the first and second motor/generators to be shifted among a plurality of running modes including the large driving force running mode, controlling surplus power caused by power balance between the first and second motor/generators to be supplied to a third motor in the large driving force running mode when the surplus power is generated.
BRIEF DESCRIPTION OF THE DRAWINGSThe objects, features and advantages of the present invention will become apparent as the description proceeds when taken in conjunction with the accompanying drawings, in which:
Throughout the following detailed description, similar reference characters and numbers refer to similar elements in all figures of the drawings, and their descriptions are omitted for eliminating duplication.
Referring to
The drive train 100 has a mechanical and electric drive part 110 that selectively provides mechanical and electric power or electrical power so as to apply driving force to wheels of a motor vehicle, and a hydraulic and electronic control part 120 that hydraulically and electronically controls the mechanical and electric part 110 according to driving conditions.
The mechanical and electric part 110 includes an engine E that provides propulsion power by burning fuel, a first and second electric motor/generators MG1 and MG2 that each selectively act as a motor so as to provide driving power or as a generator so as to generate electric power, a third electric motor MG3 that provides driving power so as to propel the vehicle, and a driving force synthesizing transmission TM that synthesizes driving forces from the engine E and the motor/generators MG1 and MG2 and outputs the synthesized driving force to front wheels 14 through a front final drive 13. The drive train, therefore, has four power sources consisting of the engine E, the first and second motor/generators MG1 and MG2, and the third motor MG3. The driving force synthesizing transmission TM corresponds to a transmission of the present invention.
The control part 120 has a hydraulic control unit 5 that contains control valves and electromagnetic solenoids therein, which are not shown, so as to control hydraulic fluid flow to and/or from friction elements of the transmission TM. The friction elements consists of an engine clutch EC, a high clutch HC, a high and low brake HLB, and a low brake LB, which bring the transmission TM a plurality of transmission ratios by engagement and/or disengagement thereof so as to shift running modes of the drive train. The clutch HC and the brakes LB and HLB are multi-plate type friction elements that are hydraulically operated.
The control part 130 further has an engine controller 1 that controls operation of the engine E, a motor controller 2 that controls an inverter 3 that supplies electric currents to the first and second motor/generators MG1 and MG2 and the third motor MG3 and charges a battery 4 with electric current generated by the first motor/generator MG1 and/or the second motor/generator MG2, and an integration controller 6 that synthetically controls the engine controller 1, the motor controller 2, and the electromagnetic solenoids in the hydraulic control unit 5. The integration controller 6 acts as a controller of the present invention.
First, the construction of the mechanical and electric part 110 will be described in detail.
The engine E employs a fuel combustion engine, which includes an internal combustion engine, such as a gasoline engine, a diesel engine or an alcohol engine, and an external combustion engine, such as a gas turbine.
The first and second motor/generators MG1 and MG2 act as either a motor or a generator, switching between functions according to the driving conditions. The third motor MG3 is connected with rear wheels 16 through a rear final drive 15. The front and rear wheels correspond to first and second sets of wheels of the present invention, respectively.
The driving force synthesizing transmission TM is equipped with a first planetary gear set PG1, a second planetary gear set PG2, and a third planetary gear set PG3, all of which are of a single pinion type.
The first planetary gear set PG1 has a first sun gear S1, a first ring gear R1, a plurality of first pinions P1 meshed with the first sun gear S1 and the first ring gear R1, and a first pinion carrier PC1 rotatably supporting the first pinions PC1.
The second planetary gear set PG2 has a second sun gear S2, a second ring gear R2, a plurality of second pinions P2 meshed with the second sun gear S2 and the second ring gear R2, and a second pinion carrier PC2 rotatably supporting the second pinions PC2.
The third planetary gear set PG3 has a third sun gear S3, a third ring gear R3, a plurality of third pinions P3 meshed with the third sun gear S3 and the third ring gear R3, and a third pinion carrier PC3 rotatably supporting the third pinions PC3.
The first and second sun gears S1 and S2 are connected with the second motor/generator MG2 through a first rotatable member M1. The first rotatable member M1 can be connected with the first carrier PC1 by engaging the high clutch HC and fixed to the transmission case TC by engaging the high clutch HC and the low brake LB. The first ring gear R1 is connected with the third sun gear S3 through a second rotatable member M2. The first pinion carrier PC1 can be connected with the first rotatable member M1 by engaging the high clutch HC and fixed to a transmission case TC by applying the low brake LB.
The second ring gear R2 is connected with the first motor/generator MG1 through a fourth rotatable member M4 which can be fixed to the transmission case TC by applying the high and low brake HLB. The second carrier PC2 is connected with the third ring gear R3 through a third rotatable member M3 that can be connected with an output shaft SFT1 of the engine E by engaging the engine clutch EC.
The third carrier PC3 is connected with an output shaft SFT2 of the transmission TM. The output shaft SFT2 of the transmission TM is arranged in coaxial with the output shaft SFT1 of the engine E, which enables the transmission TM to be applied to both of front engine/front wheel drive vehicles and front engine/rear wheel drive vehicles.
Next, the construction of the hydraulic and electronic control part 120 will be described in detail.
The hydraulic control part 120 includes the hydraulic control unit 5 that receives a shift command CPR from the integration controller 6 to energize or deenergize the electromagnetic solenoids, thereby controlling hydraulic fluid flow to and/or from the clutches EC and HC and the brakes LB and HLB.
The engine controller 1 is electrically connected to the integration controller 6 so as to receive a target engine torque request C
The motor controller 2 is electrically connected to the inverter 3 and the integration controller 6 to receive target motor/generator torque request C
The inverter 3 is electrically connected to stator coils, not shown, of the first and second motor/generators MG1 and M2 and the third motor MG3, and produces to supply driving currents respectively to the motor/generators MG1 and MG2 and the third motor MG3 according to the current control command outputted from the motor controller 2. The inverter 3 is also electrically connected to the battery 4 and controls the battery 4 to discharge electricity to at least one of the motor/generators MG1 and MG2 and the third motor MG3 or to be charged by electricity generated by at least one of the motor/generators MG1 and MG2.
The integration controller 6 is electrically connected to an accelerator sensor 7, a vehicle speed sensor 8, an engine speed sensor 9, a first motor/generator speed sensor 10, a second motor/generator speed sensor 11, the engine controller 1, the motor controller 2, and the hydraulic control unit 5. The integration controller 6 receives information on accelerator opening degree AP outputted from the accelerator sensor 7, vehicle speed VSP outputted from the vehicle speed sensor 8, engine rotational speed Ne outputted from the engine speed sensor 9, first motor/generator rotational speed N1 outputted from the first motor/generator rotational speed sensor 10, the second motor/generator rotational speed N2 outputted from the second motor/generator rotational speed sensor 11, the information on the S.O.C outputted from the motor controller 2 so as to output requests for controlling the engine controller 1, motor controller 2, and the hydraulic control unit 5. The integration controller 6 outputs the target engine torque request C
The battery monitor 12 is electrically connected to the battery 4 and the motor controller 2 and monitors the S.O.C. based on voltage, current, temperature and the like of the battery 4 to output information on the S.O.C. to the integration controller 6 through the motor controller 2.
The operation of the above-constructed drive train 100 will be described with reference to the accompanying drawings.
The drive train 100 can be shifted between two different modes: electric vehicle (EV) mode and hybrid electric mode (HEV) mode. The EV mode can be obtained by disengaging the engine clutch EC and driving at least one of the first and second motor/generators MG1 and MG2, and the third motor MG3 with the engine E being stopped, while HEV mode can be obtained by engaging the engine clutch EC and operating the first and second motor/generators MG1 and MG2, the third motor MG3, and the engine E.
In addition, as shown in a table of
The LOW mode denotes a running mode in which the transmission TM is operated at a low gear ratio, the LOW-iVT mode denoting a running mode in which the transmission TM is operated at a variable ratio in a low transmission ratio area, the 2nd mode denoting a running mode in which the transmission TM is operated at a second gear ratio that is smaller than that of the low gear ratio, the High-iVT mode denoting a running mode in which the transmission TM is operated at a variable ratio in a high transmission ratio area that is smaller than that of the low transmission ratio area, and the High mode denoting a running mode in which the transmission TM is operated at a high gear ratio that is smaller than that of the second gear.
In order to obtain the LOW mode, the brakes LB and HLB are applied and the high clutch HC is disengaged. In order to obtain the LOW-iVT mode, the low brake LB is applied and the high clutch HC and the high and low brake HLB are disengaged. In order to obtain the 2nd mode, the low brake LB and the high clutch HC are engaged and the high and low brake HLB is disengaged. In order to obtain the High-iVT mode, the low brake LB and the high and low brake HLB are released and the high clutch HC is engaged. In order to obtain the High mode, the low brake LB is released and the high clutch HC and the high and low brake HLB are engaged.
These five running modes can be obtained with respect to each of the EV mode and HEV mode, which enables the drive train to be operated in 10 different running modes as shown in a table of
In order to obtain the five transmission ratios corresponding to the running modes, the transmission TM is set to have six rotatable elements: the first to fourth rotatable members M1 to M4, the first pinion carrier PC1, and the third pinion carrier PC3. These connecting relationships are changed according to combinations of engagement and/or disengagement of the clutch HC and the brakes LB and HLB. The rotational velocity relationships among these six rotatable elements M1 to M4, PC1, and PC3 can be schematically illustrated by using a common velocity diagram for easily understanding.
The common velocity diagram is often used to show relationships among velocities of three rotatable members of a planetary gear set consisting of a sun gear, a ring gear, and a pinion carrier. The diagram has a plurality of vertical axes that correspond to the sun gear, the ring gear, and the pinion carrier to indicate their rotational velocities and a horizontal axis that is positioned at a velocity of zero r.p.m. The vertical axes are arranged along the horizontal axis at positions according to a teeth ratio TR determined by (the teeth number of the sun gear)/(the teeth number of the ring gear) of the planetary gear set. Namely, the vertical axes are positioned so that when the interval between the axes of the pinion carrier and the sun gear is set to be 1, the interval between the axes of the ring gear and the pinion carrier is set to be the teeth ratio TR. If the rotatable element rotates in a driving direction, its velocity point on its vertical axis is in the upper zone over the horizontal axis, while if the rotatable element rotates in a driven direction, its velocity point on its vertical axis is in the lower zone under the horizontal axis. The velocity points, ordinates representing velocities on the respective vertical axes, are always positioned on a straight line, because meshing relationships between the sun gear and the pinions and between the pinions and the ring gear is linear.
In the transmission TM, the ratios of the first to third planetary gear sets PG1 to PG3 are respectively set to be α, β, and δ, values of which are smaller than 1, where α is a ratio of (the teeth number of the first sun gear S1)/(the teeth number of the first ring gear R1), β is a ratio of (the teeth number of the second sun gear S2)/(the teeth number of the second ring gear R2), and δ is a ratio of (the teeth number of the third sun gear S3)/(the teeth number of the third ring gear R3).
First, the operation of the drive train in the EV modes will be described with reference to the accompanying drawings of
In the EV-LOW mode, as shown in
In the EV-LOW-iVT mode, as shown in
In the EV-2nd mode, as shown in
In the EV-High-iVT mode, as shown in
In the EV-High mode, as shown in
Next, the operation of the drive train 100 in the HEV modes will be described with reference to the drawings of
In the HEV modes, in addition to operations of the first motor/generator MG1 and/or the second motor/generator MG2 in the EV mode, the engine clutch EC is engaged and the engine E is operated to provide the third rotatable member M3 with driving force. Accordingly, the member M3 is rotated at a speed of Ne in the driving direction.
HEV-iVT modes includes the HEV-LOW-iVT mode and the HEV-HIGH-iVT mode, which cover all transmission ratio used in the transmission TM, complementing the ratio with each other. Accordingly, the motor/generators MG1 and MG2 are sufficient to produce their output that is under about 20% of that of the engine E.
The integration controller 6 has running mode maps in which the ten running modes are allocated to three dimensional space defined by the accelerator opening degree AP, the vehicle speed VSP, and the S.O.C. of the battery 4. The integration controller 6 selects an optimum running map from the maps based on a detected S.O.C. and an operating point of the power sources determined from a detected accelerator opening degree AP and a detected vehicle speed VSP.
The shift from one running mode to another running mode is performed by predetermined sequence control of the friction elements HC, LB, and HLB so that operation points of the motor/generators MG1 and MG2 and the engine E are smoothly changed.
Next, a process of driving force control executed by the integration controller 6 will be described with reference to the accompanying drawings of FIGS. 6 to 10.
At step S1, the integration controller 6 reads a vehicle speed VSP outputted from the vehicle speed sensor 8, and then the flow goes to step S2.
At the step S2, the controller 6 reads an accelerator opening degree AP of the accelerator pedal outputted from the accelerator sensor 7, and then the flow goes to step S3.
At the step S3, target driving force Ft is computed based on the vehicle speed VSP and the accelerator opening degree AP, and then the flow goes to step S4. The target driving force Ft is, as shown in
At the step S4, The controller 6 judges whether or not driving force F1 at the time when the first and second motor/generators MG1 and MG2 generates surplus power is smaller than the target driving force Ft computed at the step S3. If YES, the flow goes to step S5, while, if NO, the flow goes to RETURN.
At the step S5, the amount of the surplus power generated by the first and second motor/generators MG1 and MG2 is computed, and then the flow goes to step S6. The surplus power caused by power balance between the motor/generators MG1 and MG2 can be obtained only when an electricity amount generated by the first motor/generator MG1 and/or the second motor/generator MG2 exceeds an electricity amount consumed by the first motor/generator MG1 or the second motor/generator MG2: This surplus power is caused in the following three cases shown in FIGS. 8 to 10, where T1, Te, T2, and T0 denote torque generated by the first motor/generator MG1, torque outputted from the engine E, torque outputted from the second motor/generator MZG2, and output torque of the transmission TM, respectively. In these cases, the drive train 100 is operated in the HEV-LOW-iVT mode. The HEV-LOW-IVT mode corresponds to a large driving force running mode of the present invention.
The first case is shown in a common velocity diagram of
The second case is shown in a common velocity diagram of
The third case is shown in a common velocity diagram of
At the step S6, the integration controller 6 reads the S.O.C. of the battery 4 from the battery monitor 12 through the motor controller 2, and then the flow goes to step S7.
At the step S7, the controller 6 judges whether or not battery is in a chargable state. If, YES, the flow goes to step S8, while, if NO, the flow goes to step S9.
At the step S8, the battery 4 is charged, and then the flow goes to RETURN.
At the step S9, target motor torque TMG3 of the third motor MG3 is computed, and then the flow goes to step S10. The target motor torque TMG3 is calculated by subtracting the driving force F1 obtained at the time of generation of the surplus power from the target driving force Ft obtained at the step S3.
At the step S10, the third motor MG3 is supplied with the surplus power through the inverter 3 controlled by the motor controller 2 and the integration controller 6 to drive the right and left rear wheels, and then the flow goes to RETURN.
Next, the driving force control in vehicle starting will be described in detail.
In a rapid starting when the HEV-Low-iVT mode is selected with the acceleration opening degree AP being equal to or more than ⅜, a driving force F1 obtained when the first motor/generator MG1 generates surplus power being smaller than the target driving force Ft, and the battery 4 being not in a chargeable state, at least one of the engine E, the first and second motor/generators MG1 MG2 drives the front wheels 14 through the transmission TM, and the third motor MG3, supplied with the surplus power, drives the rear wheels 16. This process is executed according to the steps S1 to S7 and the steps S9 to S10 in
In the rapid starting when the HEV-Low-iVT mode is selected with the acceleration opening degree AP being equal to or more than ⅜, the driving force F1 outputted through the transmission TM when the first motor/generator MG1 generates the surplus power being smaller than the target driving force Ft, and the battery 4 being in the chargable state, the electric power generated by the first motor/generator MG1 is charged to the battery 4 and the third motor MG3 does not drive the rear wheels 16. This process is executed according to the steps S1 to S8 in
In a slow starting when the HEV-Low-iVT mode is selected with the acceleration opening degree AP being equal to or less than ⅛ and a driving force F1 obtained when the first motor/generator MG1 generates the surplus power being equal to or more than the target driving force Ft, the engine E and the first and second motor/generators MG1 and MG2 drives the front wheels 14 through the transmission TM so as to accelerate the vehicle slowly, while the third motor MG3 does not drive the rear wheels 16. This process is executed according to the steps S1 to S4 in
In the common velocity diagram in the HEV-Low-iVT mode when the vehicle starts, balance between input power and output power is expressed by the following equation:
Te·Ne+T1·N1+T2·N2+To·No=0 (1)
In this equation (1), a vehicle speed is 0 Km/h at starting, thereby No=0, so that the next equation is obtained:
Te·Ne=−T1·N1−T2·N2 (2)
This equation (2) shows that an output power outputted from the engine E needs to be absorbed by the first and second motor/generators MG1 and MG2 when the vehicle starts at the variable ratio in the low transmission ratio area, in the HEV-Low mode. In this state, the generation amount of the first motor/generator MG1 is larger than the consumption amount of the second motor/generator MG2. Therefore, the surplus power caused by power balance between the first and second motor/generators MG1 and MG2 can be charged to the battery 4 when the battery 4 is in the chargable state, while the surplus power is supplied to the third motor MG3 to increase driving force when the battery 4 is in a full-charged state and the driving force outputted through the transmission TM is smaller than the target driving force Ft determined based on the accelerator opening degree AP and the vehicle speed VSP.
For example, in the rapid starting when the surplus power is generated from the power balance between the first and second motor/generators MG1 and MG2 and the engine E is operated at full-opening degree (AP=8/8), as shown in
In a starting when the surplus power is generated from the power balance between the first and second motor/generators MG1 and MG2 and the engine E is operated at partly opening degree (AP=3/8), as shown in
In the slow starting when the engine E is operated at small opening degree (AP=1/8), as shown in
As described above, the drive train 100 of the embodiment has advantages in that surplus power caused by the power balance between the first and second motor/generators MG1 and MG2 can be supplied to the third motor MG3 to drive wheels so as to use the surplus power to increase fuel efficiency and remove measures for cooling the first motor/generator MG1.
The integration controller 6 can supply the surplus power to the third motor MG3 based on a judgment on the possibility of obtaining the surplus power caused by the power balance between the first and second motor/generators MG1 and MG2.
The integration controller 6 can supply the surplus power to the third motor MG3 based on a judgment on the fact that one of the first and second motor/generators MG1 and MG2 generates electricity and output of the other is zero.
The integration controller 6 can supply the surplus power to the third motor MG3 based on a judgment on the fact that both of the first and second motor/generators MG1 and MG2 generate electricity.
The drive train 100 can drive four front and rear wheels 14 and 16 by propulsion powers outputted through the transmission TM and third motor MG3 that is supplied with the surplus power caused by the power balance of the first and second motor/generators MG1 and MG2, thereby obtaining high acceleration and traction performance. It is desirable for the front wheels 14 to be driven by the driving force F1 outputted through the transmission TM in order to obtain excellent traction performance at normal running, because the front portion of the vehicle with this drive train 100 is heavy. In addition, it is desirable for the rear wheels 16 to be driven by the driving force outputted from the third motor MG3 that is supplied with the surplus power when the vehicle accelerates, because a vehicle body is declined rearward by acceleration, increasing load acting on the rear wheels 16 to increase their traction.
The integration controller 6 computes the target driving force Ft based on the accelerator opening degree AP and the vehicle speed VSP in vehicle starting and judges whether or not the driving force outputted through the transmission TM is smaller than the target driving force Ft. When its judgment is YES and the surplus power is generated, the surplus power is supplied to the third motor MG3 to propel the vehicle, increasing driving force in a rapid starting at the large accelerator opening degree.
The integration controller 6 receives information on S.O.C. of the battery 4 from the battery monitor 12 and determines whether or not the battery 4 is in a chargable state. Then it control surplus power to be supplied to the battery 4 when the battery 4 is in the chargable state, while it controls the surplus power for obtaining necessary torque to be supplied to the third motor MG3 when the battery 4 in not in the chargable state.
The transmission TM is equipped with planetary gear sets having axes corresponding to the first motor/generator MG1, the engine E, the output shaft SFT2 connected with the third pinion carrier PC3, the second motor/generator MG2 which are arranged in these order in the common velocity diagram of the transmission TM, and controlled by the low brake LB to obtain the variable ratio in low transmission ratio range. In this mode, the transmission TM can provide the vehicle with high acceleration performance by using the surplus power caused by the power balance between the first and second motor/generators MG1 and MG2 in vehicle starting in the High-Low-iVT mode.
While there have been particularly shown and described with reference to preferred embodiments thereof, it will be understood that various modifications may be made therein, and it is intended to cover in the appended claims all such modifications as fall within the true spirit and scope of the invention.
For example, the third motor MG3 may drive the front wheels 14 so as to assist the first and second motor/generators MG1 and MG2, and the engine E and the first and second motor/generators MG1 and MG2 may drive the rear wheels 16 through the transmission TM.
The first motor/generator GM1 and/or the second motor/generator MG2 may supply the surplus power to the third motor MG3 to drive when the vehicle starts rearward or accelerates at middle or high speed.
The first motor/generator GM1 and/or the second motor/generator MG2 may supply the surplus power to the third motor MG3 to drive despite of the S.O.C. of the battery 4, full-charged or not.
The entire contents of Japanese Patent Application No. 2003-355010 filed Oct. 15, 2003 is incorporated herein by reference.
Claims
1. A drive train for a hybrid electric vehicle comprising:
- an engine that provides propulsion power by burning fuel;
- a first motor/generator that is selectively switched so as to act as either an electric motor to provide driving force or an electric generator to produce electric power;
- a second motor/generator that is selectively switched so as to act as either an electric motor to provide driving force or an electric generator to produce electric power;
- a third motor that provides driving force;
- a transmission equipped with planetary gear sets having rotatable elements that are in connecting relationships with an output shaft, said engine, and said first and second motor/generators; and
- a controller that controls said first and second motor/generators and said third motor so that surplus power caused by power balance between said first and second motor/generators is supplied to said third motor when the surplus power is generated.
2. A drive train for a hybrid electric vehicle as set forth in claim 1, in which said controller detects existence of the surplus power when an electricity amount generated by one of said first and second motor/generators exceeds an electricity amount consumed by the other of said first and second motor/generators.
3. A drive train for a hybrid electric vehicle as set forth in claim 1, in which said controller detects existence of the surplus power when one of said first and second motor/generators generates electricity and an output of the other of said first and second motor/generators is zero.
4. A drive train for a hybrid electric vehicle as set forth in claim 1, in which said controller detects existence of the surplus power when both of said first and second motor/generators generates electricity.
5. A drive train for a hybrid electric vehicle as set forth in claim 1, which further has a first set of wheels and a second set of wheels, the first set of wheels being driven by driving force outputted through said transmission, and the second set of wheels being driven by driving force outputted from said third motor.
6. A drive train for a hybrid electric vehicle as set forth in claim 5, wherein the first set of wheels is front wheels and the second set of wheels being rear wheels.
7. A drive train for a hybrid electric vehicle as set forth in claim 1, wherein said controller receives information on an accelerator opening degree of an accelerator pedal and a vehicle speed to compute target driving force and supplies the surplus power to said third motor when driving force outputted through said transmission is smaller than the target driving force and the surplus power is generated.
8. A drive train for a hybrid electric vehicle as set forth in claim 7, which further comprises a battery and a battery monitor that detects state of charge of said battery, and wherein said controller supplies the surplus power to said battery when battery-charging is possible, while said controller supplies the surplus power to said third motor when the battery-charging is impossible.
9. A drive train for a hybrid electric vehicle as set forth in claim 1, wherein the planetary gear sets of said transmission has velocity axes corresponding to said first motor/generator, said engine, the output shaft, said second motor/generator that are arranged in these order in a common velocity diagram of said transmission, and said transmission being controlled by a low brake to obtain transmission ratio in low transmission ratio range to have a hybrid-electronic-vehicle-variable-transmission-ratio (HEV-iVT) mode where said engine and said first and second motor/generators are in operation so as to obtain variable transmission ratio in the low transmission ratio range, and said controller controlling the surplus power to be supplied to said third motor in vehicle starting in the HEV-iVT mode.
10. A drive train for a hybrid electric vehicle as set forth in claim 9, wherein said controller receives information on an accelerator opening degree of an accelerator pedal and a vehicle speed to compute target driving force and supplies the surplus power to said third motor when driving force outputted through said transmission is smaller than the target driving force and the surplus power is generated.
11. A drive train for a hybrid electric vehicle as set forth in claim 10, which further comprises a battery and a battery monitor that detects state of charge of said battery, and wherein said controller supplies the surplus power to said battery when battery-charging is possible, while said controller supplies the surplus power to said third motor when the battery-charging is impossible.
12. A drive train for a hybrid electric vehicle as set forth in claim 1, which further comprises a battery and a battery monitor that detects state of charge of said battery, and wherein said controller supplies the surplus power to said battery when battery-charging is possible, while said controller supplies the surplus power to said third motor when the battery-charging is impossible.
13. A transmission for a hybrid electronic vehicle comprising:
- planetary gear sets with rotatable elements that are in connecting relationships with an output shaft, an engine, first and second motor/generators to be shifted among a plurality of running modes including a large driving force running mode, the planetary gear sets having velocity axes corresponding to said first motor/generator, said engine, an output shaft, said second motor/generator that are arranged in these order in a common velocity diagram of said transmission and controlled by a low brake to obtain transmission ratio in low transmission ratio range to have a hybrid-electronic-vehicle-variable-transmission-ratio (HEV-iVT) mode where said engine and said first and second motor/generators are in operation so as to obtain the variable transmission ratio in the low transmission ratio range, wherein surplus power caused by power balance between said first and motor/generators is supplied to a third motor in vehicle starting in the HEV-iVT mode.
14. A method of driving a hybrid electric vehicle comprising:
- providing propulsion power by an engine;
- switching first and second motor/generators selectively so as to act as either an electric motor to provide driving force or an electric generator to produce electric power;
- providing driving force by a third motor;
- providing a large driving force running mode of a transmission equipped with planetary gear sets with rotatable elements that are in connecting relationships with an output shaft, said engine, said first and second motor/generators to be shifted among a plurality of running modes including the large driving force running mode,
- controlling surplus power caused by power balance between said first and second motor/generators to be supplied to a third motor in the large driving force running mode when the surplus power is generated.
Type: Application
Filed: Oct 14, 2004
Publication Date: Apr 21, 2005
Patent Grant number: 7053566
Applicant:
Inventors: Takeo Aizawa (Atsugi-shi), Taiichi Onoyama (Atsugi-shi), Taiichi Onoyama (Yokohama-shi)
Application Number: 10/963,789