Apparatus for the improvement of rowing technique
A position reference device for rowing indicates the relative hip and hand positions of the rower over the course of each rowing stroke. The position reference device provides a reference for kinesthetic learning through constant feedback about torso and hand position. Embodiments of the feedback device can be used on either a boat or on a rowing machine. The embodiments for boats in particular provide the immediate on-water feedback that enables a rower to improve technique in a way that conventional feedback devices generally do not. The rowing machine embodiments enable rowers to improve skill while off the water thus enabling the rower to learn better technique even when it is not possible to row on water.
This application claims priority of U.S. provisional application Ser. No. 60/511,876 filed Oct. 15, 2003 and titled “The Rower's Shadow”.
BACKGROUNDRowing is a sport where one or more people (“rowers”) propel a narrow boat through water using oars. The narrow boat, also referred to as a “shell” may be a “single” carrying a single rower or may be a boat that typically carries two, four, eight, or another number of rowers. Each rower typically sits on a sliding seat mounted inside the shell.
Two basic oar configurations are employed in rowing. In one asymmetric configuration referred to as “sweeping”, each rower uses a single oar dedicated to one side, port or starboard side of the boat. In another configuration, referred to as “sculling”, each rower mans two oars which are symmetrically paired and extend from each side of the boat. The rower moves the boat by stroking the oars while sliding forward and back in the seat.
There are four main parts to the stroke: the catch, the drive, the release and the recovery. The catch is point of the rowing cycle at which the blade enters the water after the rower has prepared for the stroke by sliding forward on the seat (described later in the definition of recovery). The catch is accomplished by an upward motion of the arms and hands. The drive is that part of the rowing cycle when the rower applies power to the oar. This is typically a blended sequence of the rower applying power primarily with a leg extension, then with the rower's back and finally the rower's arms. The release is a sharp downward and away motion of the hands from the body which serves to remove the oar blade from the water at the end of the drive. At this point, the rower has slid the seat back to his or her biometrically physical limit and finished applying power. The recovery is the series of activities preparing for the catch and drive including sliding the seat forward combined with gradual rolling of the oar blade from a position parallel to the water to a position substantially perpendicular to the surface of the water (called “squaring the oar”). Squaring the oar blade is done in preparation for the catch.
“Rowing” may also be done on land on a rowing machine. A rowing machine is typically used to improve rowing and general fitness off the water or when it is not possible to row on water. In general, a rowing machine includes a sliding seat attached to a standing frame and an oar-simulation portion such as short oars or a pulley attached to a resistance device. The pulley-type rowing machine is also referred to as an “erg” because it often includes an ergometer to measure the power of the rower's stroke. One example of a rowing machine is the Indoor Rower from Concept 2, Inc. of Vermont. Generally, the rower does not receive feedback on their rowing technique from the machine. Feedback for rowing technique may be provided, for example, by external cues from either a coach or trained individual prompting the rower with proper rowing etiquette.
In order to row efficiently on water (and in some cases, to avoid injury), precise and subtle technique is required of the rower. The positions of the rower's body including the torso and the hands at each point during the stroke are important to effectively move the boat. Even minor deviations from proper body or hand position can negatively impact the rower's ability to move the boat. For example, it is important for the rower's arms and upper body to be properly positioned for the drive early in the recovery portion of the stroke in order to make a smoother transition into the drive and to avoid the arms hitting the legs or any excess motion of the arms and body before the drive begins. A rower should avoid over reaching which is a further compression of the upper body at the end of the recovery in order to add length to the oar stroke. Over reaching places the rower's back in a weak position which may lead to injury. Over reaching also tends to weaken the drive because the drive sequence from the overly compressed position is generally initiated by the rower's back rather then the rower's leg. Another example of poor rowing technique is called “skying” where the rower's hands are too low just before the start of the drive. As a result, the rower must excessively lift the oar handles in order to make a proper catch. In the case of “skying,” the rower will typically start the leg extension without the oar firmly anchored in the water while raising the hands to make the catch causing the rower to miss water at the catch. Similarly, the rower's hands may be too high at the finish of the drive which causes the oar blade(s) to go deep in the water making it difficult to pull the oar out of the water at the release. Hands may also be too low at the finish of the drive, shortening the power phase of the stroke, placing the oar partially in the water allowing the rower to tear away at the surface of the water (“washing out”), and causing imbalance on the side of the boat opposite the oar washed out. Using the back before the legs on the drive also decreases the power of the stroke. “Grabbing” is another example of poor rowing technique. In grabbing, the rower initiates the drive sequence with his or her arms rather than legs (or legs and back). A rower may also “shoot the slide” in which the rower initiates the drive with the legs but leans forward failing to bring the oars back in concert with the legs. There are many other examples of poor rowing technique.
Because rowing technique is so precise and subtle, it is difficult for the rower himself or herself to know what deviations from proper rowing technique are causing problems in the boat. The reaction of the oars and the boat in the water provides some feedback to the rower, but that feedback is not complete. When rowing on a typical rowing machine, the ergometer provides feedback in the form of power exerted, however, all of the feedback provided by the action of the oars, the boat on water, and traditional coaching and/or coxswain observation are absent. Typical ways of receiving more feedback in order to improve rowing technique include the use of coaching, videotaping and mirrors. Coaching a rower on each stroke is not practical or generally desirable for a rower. Video tapes are typically shown after a practice session and are generally not as helpful as if the feedback were more immediate, such as if the feedback were provided immediately during the act of taking an oar stroke in a boat on the water. Additionally, though the rower can view his or her own stroke on the videotape, the rower may not have a clear idea of what the oar stroke should be in action on the water. Mirrors provide more immediacy than video tape but the rower cannot get a profile view without turning his or her head thus altering body position and, therefore, also the stroke. Finally, with any of the solutions described above, it is difficult to determine the spatial relationship of the rower's hips (or the seat) to the rower's hands which are important indicators of whether the rowing is using proper technique.
Information relevant to attempts to address the problem of training rowers in proper rowing technique can be found in U.S. Pat. No. 4,984,986. This reference, however, suffers from the disadvantage that the outputs of the device indicate the results of poor rowing technique rather than the actual deviations from proper rowing technique.
For the foregoing reasons, it remains desirable to have a device that provides immediate feedback to rowers in order to learn and to improve body mechanics for rowing.
SUMMARYThe present invention is directed to a position reference device that provides immediate and constant feedback to a rower. The position reference device indicates the body positions of the rower over the course of each rowing stroke. The position reference device thus provides a reference for kinesthetic learning through constant feedback about hip, torso and hand position. Embodiments of the feedback device can be used on either a boat or on a rowing machine. The embodiments for boats in particular provide the immediate on-the-water feedback that enables a rower to improve technique in a way that conventional feedback devices generally do not. The rowing machine embodiments enable rowers a means to improve skill while off the water thus enabling the rower to learn better technique even when it is not possible to row on water.
A first embodiment of the position reference device include a seat locator attached to the rowing apparatus where the seat locator indicates the hip location of a rower positioned on a seat of the rowing apparatus and a hand locator attached to the rowing apparatus where the hand locator indicates hand position of the rower. The seat locator and hand locator are positioned relative to each other according to biometric data of the rower such that the position reference device indicates the rower's body position during at least one selected stroke point. The rowing apparatus may be either in a boat on the water or on a rowing machine.
In an alternative embodiment of the position reference device, the seat locator is an adjustable guide bar having a first end and a second end, the adjustable guide bar attached to the seat at the first end and the hand locator is a cross bar attached substantially perpendicular to the second end of the guide bar. In a further alternative embodiment of the invention, the guide bar is shaped and configured to prevent axial rotation of the guide bar. A first example of such a shape and configuration is a guide bar that is oval in cross-section. A second example of such a shape and configuration is a guide bar that is rectangular in cross-section. The seat locator further includes an adjustment assembly attached to the seat. The adjustment assembly holds the guide bar and enables a tilt adjustment and an extension adjustment so that the position reference device may be fitted to the rower according to the rower's biometric data. The guide bar includes additional embodiments such as a further adjustment device to enable a height adjustment so that the cross bar may be raised or lowered according to the rower's biometric data.
A first embodiment of the adjustment assembly includes an adjustment frame that saddles a rowing machine rail. The adjustment frame attaches to the side of the seat carriage for example via the axle bolts. In alternative embodiments of the invention, the adjustment frame attaches under the seat top, above the seat carriage. In one embodiment, the guide bar is attached at one side of the adjustment frame. The guide bar in one embodiment is attached to the adjustment frame with clamps. The adjustment frame further includes a slot and a hole configured to receive the clamps to allow for a tilt adjustment of the guide bar. In an alternative embodiment, the position reference device has two guide bars, one attached symmetrically on either side of the adjustment frame and the cross bar is attached between the two guide bars. The adjustment frame that symmetrically saddles the rowing machine rail provides balance to the position reference device. The second guide bar provides further balance and stability to the position reference device.
In a further alternative embodiment of the adjustment frame, the adjustment assembly is a half saddle attached to the seat where the guide bar is attached to the half saddle in similar fashion as in the full saddle. This embodiment is less bulky and lighter than the full saddle embodiment.
In a rowing machine embodiment of the position reference device, the cross bar is extended in length so that this extension spans across a second rowing machine located next to the rowing machine with the attached position reference device. The extended cross bar enables a second rower on the second rowing machine to operate the second rowing machine in synchronization with the rower on the rowing machine with the attached position reference device. Alternatively, a first and a second rowing machine are fitted with position reference devices where each position reference device includes an extension. The extensions are configured so that they are in proximity when the rowers row synchronously.
In another rowing machine embodiment of the position reference device, the rowing machine includes a cable attached at a first end to a resistance wheel and a handle attached at a second end of the cable, the handle to be held by the rower. The seat includes rollers and the rowing machine further includes a rail along which the seat rolls. The seat locator has a first sensor to detect location of the seat relative to the rowing machine the hand locator has a second sensor to sense the handle position relative to the rowing machine. The sensors are coupled to a transmitter to transmit the data to a receiver. The transmitters may, for example, be for wired transmission or broadcast transceivers for wireless transmission. This embodiment also typically includes a display device coupled to the receiver to collect the data generated by all of the sensors. Batteries are included to power the sensors in a first embodiment. In an alternative embodiment, a power scavenging device, such as a solar collector, is included in the configuration to provide further energy. The power scavenging device can either augment battery power or replace it all together. The sensor embodiment allows the rower's position to be determined electronically and generates data that can be studied later as well as immediate feedback to the rower. Sensors and transmitters are similarly applied to a boat where the hand sensors are mounted such to sense the movement of the oar handle(s).
In the embodiments of the position reference device in which sensors are used, the position reference device includes a computation device storing the biometric data of the rower, hand and seat locations for selected stroke points for specific rowers. This biometric data, such as height, inseam, and arm length for example, coupled with typical data covering the physical variation range of rowers adequately describes the body position of the rower. The computation device correlates sensor data with biometric data to determine the body position relative to the rowing device and the oar handle relative to the rowing device, processes this correlated data to classify the deviation and degree from proper rowing technique, such as over-reaching at the catch, grabbing, skying, shooting the slide as described above, and sending this classified and degreed data to the display device to display output of this correlated data in order to provide specific position feedback data to the rower.
Various types of sensors may be used to determine provide hand and seat location. A first embodiment includes a gyroscope and an accelerometer combination. Typically a first gyroscope and first accelerometer is located in the seat and a second gyroscope and a second accelerometer is located in the rowing machine handle or in the oar attached to a boat. The gyroscope and accelerometer combination could instead be replaced by a global positioning sensor (GPS) in communication with global positioning satellites. On a rowing machine, the handle location may be detected by a chain length sensor, such as chain tooth counter or sprocket rotation counter, combined with chain angle sensor on the rowing machine chain. The position of the seat on either a rowing machine or a boat may be detected by a linear position encoder or by a rotation encoder using the rotation of the seat wheels.
Another alternative embodiment of the position reference device includes a seat locator where the seat locator is a guide bar attached at a first end to the seat at the center front of the seat and where the hand locator is a transparent plate (alternatively, a screen) attached at the second end of the guide bar where the transparent plate has markings to indicate hand position. The transparent plate is centered with respect to the seat. The transparent plate includes indicator marking so that the rower can determine his or her proper hand position. One embodiment the transparent plate has markings for sculling while other embodiments have markings for sweep rowing. The guide bar is extendible forward and backward from the seat and the transparent plate may be raised or lowered on the guide bar thus providing adjustability according to the biometric characteristics of the rower.
A further alternative boat embodiment of the position reference device includes a camera attached to the oarlock and facing the rower, the camera adjusted to encompass the rower in its field of view. The camera communicates with a display mounted within the confines of the boat. The display in one example embodiment is mounted at the rower's feet. Alternatively, the display is suitably mounted, permitting the rower clear view, to another rower in front of the rower being viewed by the camera. The camera further transmits data to a processing device that together with the rower's biometric data produces information about the rower's deviation from proper rowing technique. This information is in some embodiments displayed to the rower while rowing. Alternatively, the data is stored for later examination. A second camera also mounted on the oar lock and facing out provides a view of the oar position.
The present invention together with the above and other advantages may best be understood from the following detailed description of the embodiments of the invention illustrated in the drawings, wherein:
DRAWINGS
The position reference device of the present invention includes a hand locator and a seat locator positioned relative to each other according to the rower's biometric data to indicate torso and hand positions of the rower over the course of the rowing stroke. The immediate feedback to the rower enables the rower to improve rowing technique while rowing. Embodiments for the rowing machine enable the rower to learn proper rowing technique when “rowing” off the water.
In operation, a rower on the rowing machine 100 sits on the sliding seat 105 with his or her feet in the foot stretchers 140 and holds the handle 125. The rower “rows” on the rowing machine 100 while sliding on the sliding seat 105 and pulling on the handle 125.
The guide bar 205 in
The guide bar 205 is adjustable in length in the present embodiment at a clamp 230 on the adjustment bracket 245, which attached to the mounting frame 215 by adjustment screws 235, that enables the guide bar 205 to be adjusted forward or backward according to the rower's biometric data. Other ways of adjusting the guide bar 205 are possible. One example of an alternative length adjustment scheme is a telescoping joint. The invention is not limited to the clamp 230 shown here. The present embodiment provides height adjustment of the cross bar 210 with respect to the seat 225 by a tilt adjustment of the guide bar 205, which connects to the cross bar 210 at one end, according to the rower's biometric data. This tilt adjustment is accommodated by the tilt slot 240 in the adjustment bracket 245. The guide bar 205, which is attached to the adjustment bracket 245 with clamp 230, is tilted by rotation of the adjustment bracket 245 about hole 250 with screw 235 through hole 250 acting as rotational pin guided by the arced slot 240 and the corresponding screw 235 acting as a slot guide pin. An alteration in the tilt of the guide bar 205 raises or lowers the cross bar 210 as needed to indicate hand position of the rower according to the rower's biometric data. Once the desired height is achieved in this described tilting motion, the screws 235 are tightened to maintain the height adjustment. The height adjustment scheme shown in the present embodiment is merely exemplary. Other height adjustment schemes are possible within the scope of the invention. For example, an additional adjustment joint could be added to the guide bar itself to provide variation in height of the cross bar 210. The guide bar 205 may also include a breakaway joint for safety purposes. Alternatively, the guide bar 205 may be made of a flexible material maintain appropriate stiffness to shape and affix clamps.
In alternative embodiments of the invention, the guide bar 205 is shaped and configured to prevent rotation of the guide bar 205 with respect to the adjustment bracket 245. For example, the guide bar 205 could be oval-shaped in cross-section. Alternatively, the guide bar 205 could be rectangular in cross-section. These alternative embodiments are merely exemplary. Alternative guide bar cross-sectional shapes are contemplated within the scope of the invention. A further alternative embodiment to prevent the rotation of the guide bar with respect to the adjustment bracket 245 is a pin inserted through the guide bar 205 and adjustment bracket 245.
While the mounting frame 215 shown in
In a further alternative embodiment of the invention, the length of the cross bar 210 is extended so that the cross bar 210 extends over a second rowing machine positioned next to and aligned parallel to the first rowing machine 100. This embodiment enables a second rower operating the second rowing machine to row in synchronization with the first rower operating the first rowing machine. This embodiment further includes a breakaway joint in the cross bar 210 for safety purposes. In a still further embodiment of the invention, the extension extends to within close proximity of a similar extension from the second rowing machine having its own position reference device so that each rower can see whether or not rowing is being performed in synchronicity.
The indicators provided by the position reference device are merely examples. The position reference device can be used to indicate other proper or improper rowing technique. Additionally, the cross bar 210 could be positioned below the rower's hands and effectively indicate proper or improper rowing technique. In a further alternative embodiment of the invention, there are two cross bars, one above the rower's hands and one below the rower's hands. In a still further embodiment of the invention, additional indicators extending from the guide bar 205 indicate other joint and body centers such as head and shoulders.
In an alternative embodiment of the gyroscope and accelerometer combination is replaced by a global position reference device sensor sensing the location of the oar handle.
To measure the length of the rowing machine chain 130, an illumination device 800 shown in
To measure the angle of the rowing machine chain 130, illumination devices 820 shown in
The hand locator sensors and seat locator sensors described above may be similarly applied to the rowing machine 100.
It is to be understood that the above-identified embodiments are simply illustrative of the principles of the invention. Various and other modifications and changes may be made by those skilled in the art which will embody the principles of the invention and fall within the spirit and scope thereof. For example, one alternative embodiment for a rowing machine includes a display device mounted to the cross bar so that the rower may view the data while rowing on the rowing machine without turning his or her head to the side.
Claims
1. A position reference device for a rowing apparatus, comprising:
- a seat locator attached to the rowing apparatus, the seat locator to indicate hip location of a rower positioned on a seat on the rowing apparatus; and
- a hand locator attached to the rowing apparatus to indicate hand position of the rower, the seat locator and hand locator positioned relative to each other according to biometric data of the rower such that the position reference device indicates the rower's body position during at least one selected stroke point.
2. The position reference device of claim 1 wherein the seat locator further comprises an adjustable guide bar having a first end and a second end, the adjustable guide bar attached to the seat at the first end; and
- wherein the hand locator further comprises a cross bar attached substantially perpendicular to the second end of the guide bar.
3. The position reference device of claim 2 wherein the adjustable guide bar is shaped and configured to prevent axial rotation of the guide bar.
4. The position reference device of claim 2 wherein the rowing apparatus is a rowing machine.
5. The position reference device of claim 4 wherein the seat locator further comprises an adjustment assembly attached to the rowing apparatus at the seat, the adjustment assembly to hold the guide bar at the first end, the adjustment assembly configured to enable an extension adjustment of the guide bar.
6. The position reference device of claim 5 wherein the adjustment assembly is further configured to enable a tilt adjustment of the guide bar.
7. The position reference device of claim 6 wherein the guide bar is extendible to enable height adjustment of the hand locator.
8. The position reference device of claim 7 wherein the guide bar has a telescoping portion that enables the height adjustment of the hand locator.
9. The position reference device of claim 5 wherein the adjustment assembly further comprises an adjustment frame holding a seat top while saddling a rail positioned underneath the seat on which the seat slides, the adjustment frame having two sides positioned on either side of the rail, one of the sides of the adjustment frame configured to adjustably hold the guide bar.
10. The position reference device of claim 5 wherein the guide bar is a first guide bar attached to one side of the seat;
- wherein the position reference device further comprises a second guide bar substantially similar to the first guide bar similarly attached to an opposing side of the seat from the first guide bar; and
- wherein the cross bar is attached between the first guide bar and the second guide bar.
11. The position reference device of claim 5 wherein the seat rolls on the rail on wheels having bearings and wherein the adjustment assembly further comprises a single-side adjustment frame that is a half saddle attached to the seat at the seat bearings, the half saddle hanging over one side of the rail and wherein the guide bar is attached to the half saddle.
12. The position reference device of claim 9 wherein the side holding the adjustment assembly includes two clamps configured to receive and retain the guide bar and a slot and a hole to receive the clamps, the clamps configured to be tightened in position in the slot and the hole, the slot, the hole, and clamps providing tilt and extension adjustment of the guide bar.
13. The position reference device of claim 9 wherein the cross bar is extended such that a second rower on the second rowing machine can operate the second rowing machine in synchronicity with the rowing machine holding the position reference device.
14. The position reference device of claim 4 wherein the rowing machine includes a cable attached at a first end to a resistance wheel and including a handle attached at a second end of the cable, the handles to be held by the rower, and the seat further includes rollers and the rowing machine further comprises a rail along which the seat rolls,
- wherein the seat locator comprises a first sensor to detect location of the seat relative to the rowing machine; and
- wherein the hand locator comprises a second sensor to sense the handle position relative to the rowing machine.
15. The position reference device of claim 14 further comprising a display device coupled to a receiver and wherein the first sensor is coupled to a first transmitter that transmits first sensor data to the receiver and wherein the second sensor is coupled to a second transmitter that transmits second sensor data to the receiver, the display device to display the first sensor data and the second sensor data.
16. The position reference device of claim 15 wherein the first transmitter and the second transmitter and the receiver are wireless.
17. The position reference device of claim 15 wherein the display device is coupled to a computation device storing the biometric data of the rower and hand and seat locations for selected stroke points for specific rowers, the computation device to correlate sensor data with biometric data and the display device to display output of the correlated sensor and biometric data.
18. The position reference device of claim 14 wherein the second sensor is a chain position sensor
- wherein at least one light source illuminates the link openings of a chain and at least one detector senses the light passing through the chain and the transitions in the detector signal are counted; and
- wherein at least one light source illuminates the solid side of a chain and a plurality of detectors sense the light pattern detected by the plurality of detectors and the minimum in the detected light pattern indicates the position of the chain relative to the plurality of detectors.
19. The position reference device of claim 14 wherein the first sensor is a linear position encoder.
20. The position reference device of claim 14 wherein the first sensor is a rotation encoder.
21. The position reference device of claim 14 wherein the first sensor is a gyroscope and an accelerometer.
22. The position reference device of claim 14 wherein the second sensor is a gyroscope and an accelerometer.
23. The position reference device of claim 14 wherein the first sensor is a first GPS device.
24. The position reference device of claim 2 where the rowing apparatus is a boat.
25. The position reference device of claim 24 wherein the seat locator further comprises
- a guide bar having a first end and a second end, the guide bar attached at the first end to the seat at the center front of the seat; and
- the hand locator further comprises a transparent plate attached at the second end of the guide bar, the transparent plate having markings to indicate hand position.
26. The position reference device of claim 25 wherein the transparent plate is centered with respect to the seat.
27. The position reference device of claim 25 wherein the transparent plate is positioned off- center with respect to the seat.
28. The position reference device of claim 25 wherein the transparent plate is a screen.
29. The position reference device of claim 25 wherein the guide bar is flexible.
30. The position reference device of claim 29 wherein the guide bar further comprises at least one flexible joint.
31. The position reference device of claim 25 wherein the boat further includes at least one seat that slides along rails attached to the boat and wherein the rower rows with at least one oar having a handle,
- wherein the seat locator comprises a first sensor to indicate the position of the seat relative to the boat; and
- wherein the hand locator comprises a second sensor to indicate the position of the oar relative to the boat.
32. The position reference device of claim 31 wherein the hand locator further comprises a battery and a wireless transmitter to transmit data to a rower feed back device.
33. The position reference device of claim 32 wherein the hand locator further comprises a solar collector to power the hand locator.
34. The position reference device of claim 32 wherein the hand locator is configured inside the oar handle.
35. The position reference device of claim 32 wherein the hand locator is configured inside a torus-shaped form that is configured to fit over the oar handle.
36. The position reference device of claim 31 wherein the rower rows with two oars wherein each of the oars includes a hand locator.
37. The position reference device of claim 31 wherein the first sensor is a linear position encoder.
38. The position reference device of claim 31 wherein the first sensor is a rotation encoder.
39. The position reference device of claim 31 wherein the first sensor is a gyroscope and an accelerometer.
40. The position reference device of claim 31 wherein the second sensor is a gyroscope and an accelerometer.
41. The position reference device of claim 31 wherein the second sensor is a GPS device.
42. The position reference device of claim 31 wherein the second sensor comprises an angle sensor to measure the sweep angle of the oar and angle sensor to measure the tilt of the oar.
43. A position reference device for a rowing boat, comprising:
- a fixed reference on the rowing apparatus;
- a camera located at the fixed reference, the camera to take a plurality of sequential images of a rower operating the rowing boat; and
- a display device located in the rowing boat to receive the images from the camera, the display device viewable by the rower.
44. The position reference device of claim 43 further comprising:
- a computer to receive and process the sequential images from the camera and to detect hand position and seat position of the rower with regard to the fixed reference point.
45. The fixed reference of claim 43 is the oar lock.
46. The fixed reference of claim 43 is the rigger.
47. The position reference device of claim 43 further comprising:
- a second camera located at the fixed reference, the second camera to take a plurality of sequential images of an oar used by the rower.
48. The position reference device of claim 31 further comprising a display device coupled to a receiver and wherein the first sensor is coupled to a first transmitter that transmits first sensor data to the receiver and wherein the second sensor is coupled to a second transmitter that transmits second sensor data to the receiver, the display device to display the first sensor data and the second sensor data.
49. The position reference device of claim 48 wherein the first transmitter and the second transmitter and the receiver are wireless.
50. The position reference device of claim 48 wherein the display device is coupled to a computation device storing the biometric data of the rower and hand and seat locations for selected stroke points for specific rowers, the computation device to correlate sensor data with biometric data and the display device to display output of the correlated sensor and biometric data.
Type: Application
Filed: Oct 15, 2004
Publication Date: Apr 21, 2005
Inventors: Thomas Kiefer (Wayland, MA), Vernon Shrauger (Carlisle, MA)
Application Number: 10/966,253