Method and apparatus for manufacturing pressure sensitive adhesive label stocks with printing under adhesive and product produced thereby
A method and apparatus for making adhesive-backed labels. Glassine paper stock is unwound from a roll, coated with photo-cationic silicone and exposed to wavelength-controlled illumination to cure. Hot melt adhesive is applied over the silicone. Simultaneously, label stock is fed with the coated glassine paper to laminating rollers where the two are joined. Illumination is provided by a dichroic reflector.
This invention relates to self-adhesive labels and the like and, more particularly, to a method and apparatus for efficiently manufacturing pressure sensitive self-adhesive label stock in such a way as to allow printing on the adhesive side. This application is a divisional of U.S. Ser. No. 10/210,212, filed Aug. 1, 2002, and claims priority thereto.
BACKGROUND OF THE INVENTIONIt is known in the art to apply printed adhesive-backed labels to containers for products such as liquid soap and detergent, shampoo, food products and vitamins to name only a few. Self-adhesive labels are generally made in such a way as to require the removal of a “release paper” from the adhesive side of the label before it is applied to the container. Removal of the release paper exposes the pressure sensitive adhesive, permitting the label to be applied to the container. Slight pressure is then applied to create the adhesive bond.
The term “pressure sensitive adhesive,” as used herein, refers to an adhesive which bonds to an application surface as a result of applied pressure as opposed to the evaporation or absorption of a solvent to form a solid material bond.
Adhesive-backed labels and the like typically comprise the laminated combination of a printable face stock, a pressure sensitive adhesive on the back or reverse side of the face stock, a silicone layer and a backing paper to which the silicone layer is relatively strongly bonded. The face stock can be transparent or opaque. Opaque stock can be printed on both sides while transparent stock can typically only be printed on one side. Double-side printing is desirable where, for example, the printed label is applied to a transparent container such as a plastic bottle filled with a relatively transparent fluid such as liquid soap or detergent; i.e., the printing on the back or reverse side of the finished, applied label can be viewed through the container and the product to provide a pleasing effect or additional information about the product and/or its manufacturer.
The adhesive which constitutes a layer between the face stock and the silicone is typically water based and, therefore, requires relatively long air drying time. The backing paper is usually “glassine paper,” a material which, like the face stock, is available in rolls and accepts the silicone layer which is necessary to produce the release effect. The laminated combination of glassine paper and cured silicone is referred to as a “release paper.”
The prior art method of manufacturing pressure sensitive adhesive labels and/or face stock typically involves the step of coating a glassine paper with silicone and hanging the de-reeled, silicone coated paper on a suitable support to cure.
After this first step, the cured release paper is re-reeled and taken back to the entry point of a second lamination process in which the adhesive is applied. Once again the de-reeled, adhesive coated release paper is hung out in the 200 ft. structure to cure. After curing it is re-wound and again subjected to a lamination step to add the printable label stock.
After this manufacturing process has been completed, the re-reeled laminated label stock is provided to a printer who again de-reels the stock to print on the indicia necessary to create a label.
The prior art manufacturing method described has a number of drawbacks. In the first place, the process described above requires a relatively large structure with a controlled atmosphere; i.e., adequate systems to control humidity and temperature within the curing structure. Secondly, the prior art method described above requires numerous de-reeling and re-reeling or re-winding steps and multiple lamination steps.
Thirdly, the prior art method described above makes it particularly difficult to print on the reverse side of the label stock; i.e., the side to which the adhesive is relatively strongly bonded. Where reverse-side printing is desired, the completed, pressure sensitive adhesively-backed label stock must be de-laminated and the printing must typically be applied over the adhesive. This gives rise to blurry, less definite printing and typically requires protection of the printed adhesive through the addition of, for example, UV varnish or UV glued film.
SUMMARY OF THE INVENTIONAccording to a first aspect of the present invention, a method for manufacturing pressure sensitive adhesive labels or label stock is provided, which method is simpler and more expeditious to carry out than the prior art manufacturing method described above. In particular, the method of the present invention eliminates the need for multiple lamination passes, long curing times and the associated de-reeling and re-reeling or re-winding steps described above.
In general the method of the present invention is achieved by providing a reel or roll of backing material such as glassine paper, applying a fast-curing silicone to the backing material as it is de-reeled, curing the silicone on-line, applying hot melt adhesive over the cured silicone, providing a reeled face stock in a size match for the backing paper, and laminating the face stock to the adhesive-coated release paper to form a fully laminated product in what is essentially a single pass. The laminated product can be made in multiple-label widths, in which case it may be slit into single label widths before being removed for shipment and/or further processing.
In the preferred form hereinafter described in detail, the silicone which is used to form the release paper is a photo-cationic silicone which cures rapidly when exposed to ultraviolet light. Accordingly the silicone can be rapidly cured before the adhesive is applied. Further according to the preferred style of carrying out the inventive method, the adhesive is a commercially available “hot melt” adhesive which is applied in a carefully controlled thickness and is quickly cooled by water-cooled rollers and partially re-solidified in or immediately prior to the final lamination step.
One of the numerous advantages which obtains from the inventive method is the ability to preprint on the reverse side of the face stock before the adhesive is applied thereby to eliminate the need for subsequently de-laminating the pressure sensitive adhesive label stock at a point downstream in the overall manufacturing process. Moreover the preprinted label stock is laminated with the adhesive after printing, thus eliminating the likelihood for blurred printing on the reverse side of the label stock.
According to a second aspect of the invention, an apparatus is provided for producing multiple-layer laminated pressure sensitive label stock in what is essentially a single pass operation and without the need for curing substantial lengths of partially laminated material in an atmosphere controlled structure. In general this is achieved by providing an apparatus which applies a thin layer of photo-cationic silicone to the interior surface of a backing-paper such as glassine paper, means for rapidly curing the silicone by exposure to a controlled illumination source, means for applying a controlled layer of hot-melt adhesive to the silicone, and means for laminating a face stock to the adhesive-coated release paper.
In the preferred form the subject apparatus includes a special wave length discriminating UV reflector, hereinafter called a “dichroic” reflector to control the wave length content of the illumination applied to the photo-cationic silicone. Similarly the apparatus comprises means for applying a carefully thickness-controlled layer of hot melt adhesive over the cured silicone. Finally the apparatus comprises a pair of rollers through which the release paper and face stock are simultaneously passed to form the end product.
Further and additional features and advantages of the method and apparatus inventions will be described in the following detailed specification which is to be read in conjunction with the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The structure 10 further comprises a glassine paper layer 14 which constitutes a primary component of the releasable backing. The inside surface of the glassine paper 14 is first coated with a layer 16 of photo-cationic silicone to form the second component of what is typically referred to as a “release paper.” A layer 18 of hot melt adhesive is disposed atop the silicone layer 16 and between the silicone layer and the label stock 12.
The adhesive 18 forms a strong bond with the inside surface of the stock 12 whether or not such inside surface is printed, and a relatively weak bond with the cured silicone layer 16. Accordingly, it is possible in use to separate the combination of the stock 12 and the adhesive 18 from the combination of glassine paper 14 and silicone layer 16. Thereafter the label stock, properly trimmed into individual labels, is ready to be applied to an application surface such as a plastic detergent bottle. Pressure is applied to the label to create the adhesive bond between the label and the application surface through the medium of the adhesive layer 18.
Referring now to
Step 24 is to provide the gassine paper 14 in a form suitable for automated processing in substantial quantities. This is typically carried out by providing a roll of glassine paper and mounting the roll on a de-reeling system for further processing as hereinafter described.
Step 26 is the first step in further treatment of the glassine backing paper 14. This step involves pumping photo-cationic silicone to a chambered doctor blade hereinafter described using a peristaltic pump to eliminate foaming. Thereafter step 28 is carried out to coat a porous ceramic roller such as an “ANILOX®” roller with a carefully controlled layer of the silicone material. In this step the layer of silicone material is smoothed to ensure that all of the pores of the ANILOX® ceramic roller are filled.
Step 30 is carried out to transfer the silicone material from the ANILOX® roller to a coating roller which is preferably a rubber cylinder running somewhat faster than the glassine paper and in the opposite direction to eliminate low spots in the applied silicone.
Step 32 involves the application of the silicone material by the rubber cylinder to the glassine paper 14 at a rate of approximately 1.6 grams per square meter to form layer 16. The applied coat is smoothed using a smoothing roller which runs approximately 4% slower than the paper.
Step 34 is carried out to immediately cure the applied silicone layer 16. As hereinafter described this step is preferably carried out using a dichroic filter to apply a balance of ultraviolet and infrared rays to the silicone material on the glassine paper to cure it prior to the carrying out of the adhesive application steps hereinafter described.
Step 36 involves the application of a hot melt adhesive layer 18 over the cured silicone layer 16. This step is preferably carried out using a slot die to apply hot melt adhesive at a rate of approximately 15 grams per square inch.
At this point the stock 12 provided in step 20 as a first element and the three-layer release paper consisting of glassine paper 14, cured silicone layer 16 and hot melt adhesive layer 18 are fed to laminating rollers to carry out step 38 of joining the two elements into the four layer laminated product 10 shown in
Referring now to
The glassine paper 14 is provided on a double-wide roll 50 mounted on a de-reeling or un-winding apparatus below the face stock roll 42. The glassine paper 14 is threaded through a series of rollers as shown to the in-feed station 52 and thereafter to the silicone coating head 54 where the steps 26, 28, 30 and 32 are carried out. From the silicone coating head 54 the backing paper proceeds to the curing and post curing stations 56 where a combination of ultraviolet and infrared rays are directed to the photocationic silicone layer to cure it as described with reference to step 34 in
With reference to
Referring now to
Referring back to
Following the curing step, the layer of silicone 16 is provided with a predetermined amount of dwell time prior to the application of the adhesive 18. The dwell time can provided by using a plurality of idler rollers 138. The idler rollers 138 provide for a serpentine path of travel between the silicone workstation 112 and the adhesive workstation 58 where the adhesive 18 is applied. The dwell time can be modified based on the requirements of the applied layer of silicone 16 to cure sufficiently by modifying the number of idler rollers 138 placed in the path of the web of release paper 136. For this particular application using hot melt adhesive, approximately 2.5 seconds of dwell time is preferred after the applied layer of silicone 16 goes through the curing process.
The lamination 48 and adhesive workstations 58 are shown in context of the entire apparatus in
In order to apply hot melt adhesive to transparent film, a different slot die with a rotating cylindrical rod is typically used. The slot die provides a more even application as a result of the rotating rod. The face stock 12 in this embodiment can be preprinted on the inside surface, the outside surface, or both surfaces for application as pressure sensitive labels. Alternatively, or additionally, the face stock can be printed just prior to entering the lamination workstation.
The hot melt adhesive will transmit heat into the release paper 136 and into the laminated product 10. The release paper 136 and subsequently the laminated product 10 can be cooled down at a cooling workstation 116. The cooling workstation 116 cools the release paper 136 after the hot melt adhesive is applied, with the first cooling roller 144 and then cools the laminated product 10 with a second cooling roller 146. The first roller 144 has an internal passage for receiving a continuous stream of coolant. The first roller 144 is located downstream of the adhesive workstation 58 for cooling the release paper 136. The face stock and the release paper are laminated together as the two strips or webs are passed between the first cooling roller 144 and a lamination roller 142. Both rollers have exactly the same diameter and width to avoid a curling effect. Lamination occurs immediately after the application of the hot melt adhesive since the release paper coated with adhesive cannot engage with other idler rollers uncovered and the desired temperature for lamination of the hot melt adhesive is a temperature achieved after being cooled by the rubber roller but while still warm enough for good lamination. Once both layers have been laminated together, the web engages a second cooling roller 146 to complete the lamination of the laminated product 10. The second roller 146 also includes an internal passage for receiving a continuous stream of coolant. The second roller 146 is located downstream of the lamination workstation 48 for cooling the final laminated product 10. The product can then be slit or cut into multiple separate webs to obtain material with a narrower width. After cutting into the desired widths, the final product is rewound into a roll.
The cooling workstation 116 includes a pump 150 for pumping the continuous stream of coolant through the first cooling roller 144 and the second cooling roller 146. A heat exchanger 152 removes heat from the coolant after passing through the cooling rollers. Following the cooling process, the laminated product 10 is wound on a final roll and is ready for processing or storage. The laminated product roll can be removed and cut to proper size so that the face stock 12 can be peeled from the release paper and will retain the adhesive on the inside surface for attaching to an end product. The apparatus can be equipped with an in-line rotary die-cutter to obtain final labels in one simple operation.
Using the present invention, the label manufacturers print the face stock and produce the laminated product with the apparatus described in the preferred embodiment instead of buying the prefabricated laminated product and subsequently printing on the face stock. An additional benefit is achieved with the present invention when the clear face stock is printed on the reverse surface prior to lamination because the print is then protected by the clear face stock. When the face stock is delaminated and applied to a container, the print is protected with the clear film, eliminating the requirement of protection with an additional pressure sensitive film, UV varnish, or UV glued film.
Savings on the raw material start at thirty percent and can go up to 90%. Furthermore, savings are generated by a reduction of waste due to the fact that only face stock is being processed through the printing press. There are no limitations on printing methods. The choice of printing methods can be digital, flexo-graphic, offset, letterpress, silk screen, etc. and can convert custom materials into a final label. Furthermore, speed limitations on presses are eliminated since the die cutting operation is transferred to the apparatus rather than on the presses as found in the prior art.
The present invention using the above-mentioned apparatus allows an operator to create standard applications, multiple layer applications, or complex applications. Standard applications include any kind of face stock: semigloss, thermal direct, Kromecote, PP, PE, PET, carton, metallized papers, etc. The standard application includes backing materials which can include glassine paper or film. The multiple layer applications include piggyback, back-to-back, dry peel piggyback and dry peel cards, coupon labels, and booklets and leaflets. The complex applications include film labels with reverse printing, no label look, no label touch, pressure sensitive shrink sleeves, electronic chips and spiral antennas insertion for RF/ID, labels with detachable parts, scratch off and reveal, embossed, Braille and tactile labels, and fragrance or scratch'n'sniff labels.
While the invention has been described in connection with what is presently considered to be the most practical and preferred embodiment, it is to be understood that the invention is not to be limited to the disclosed embodiments, but on the contrary, is intended to cover various modifications and equivalent arrangements included within the spirit and scope of the appended claims, which scope is to be accorded the broadest interpretation so as to encompass all such modifications and equivalent structures as is permitted under the law.
Claims
1. A method for manufacturing a product comprising the steps of:
- feeding a continuous web of release paper to a lamination workstation;
- applying adhesive to the release paper at an adhesive application workstation prior to entering the lamination workstation;
- laminating a continuous strip of face stock to the release paper with the applied adhesive in a continuous single pass cycle at the lamination workstation;
- contacting the release paper downstream of the adhesive application step with a first cooling roller having an internal passage for receiving a continuous stream of coolant thereby to cool the release paper;
- pressing the face stock and the release paper between the first cooling roller and a pressure roller to laminate the face stock and release paper together; and
- contacting the lamination with a second cooling roller having an internal passage for receiving a continuous stream of coolant downstream of the lamination step for the purpose of cooling the face stock lamination wherein:
- the release paper has a first surface and a second surface;
- a hot melt adhesive layer is applied to the second surface of the release paper; and
- the face stock has a first surface and a second surface, the first surface of the face stock being laminated to the second surface of the layer of hot melt adhesive.
2. The product of claim 1 further comprising:
- a continuous strip of face stock preprinted directly on the first surface prior to coating with adhesive.
3. The product of claim 1, wherein the release paper further comprises:
- a layer of photo-cationic silicone having a first surface and a second surface;
- a backing sheet having a first surface and a second surface in contact with the second surface of the layer of silicone.
4. The product of claim 1 further comprising:
- a layer of face stock preprinted on the first surface and/or on the second surface prior to final lamination.
5. A product comprising:
- a layer of release paper having a first surface and a second surface;
- a hot melt adhesive layer connected to the second of surface the release paper; and
- a layer of face stock having a first surface and a second surface, the first surface of the face stock laminated to the second surface of the layer of hot melt adhesive.
6. The product of claim 5 further comprising:
- the layer of face stock printed directly on the first surface and in contact with the coating of adhesive.
7. The product of claim 5, wherein the release paper further comprises:
- a layer of photo-cationic silicone having a first surface and a second surface; and
- a backing sheet having a first surface and a second surface in contact with the second surface of the layer of silicone.
8. The product of claim 5 further comprising:
- the layer of face stock printed on the first surface and/or on the second surface, the first surface in contact with the coating of adhesive.
9. An apparatus for manufacturing a product comprising:
- means for applying a layer of photo-cationic silicone at a silicone workstation onto a continuous roll of backing paper; and
- means for curing the layer of silicone on the backing paper to define a continuous web of release paper.
10. The apparatus of claim 9, wherein the silicone applying means further comprises:
- a close chambered doctor blade positioned upstream of the silicone applying means for forming the applied layer of silicone into a constant thickness on the backing paper.
11. The apparatus of claim 10, wherein the close chambered doctor blade further comprises:
- an enclosed chamber for eliminating a silicone foam effect;
- a first reverse angle blade for coating an ANILOX® roller with foamless silicone; and
- a second reverse angle blade for smoothing the silicone application to ensure every pore of the ANILOX® roller is properly filled with silicone.
12. The apparatus of claim 11, wherein the enclosed chamber further comprises:
- a first section for allowing the silicone to enter therethrough and a second section for allowing the silicone and foam to exit the enclosed chamber.
13. The apparatus of claim 11, wherein the ANILOX® roller is a ceramic 440 lines ANILOX® roller.
14. The apparatus of claim 11, wherein the silicone coated ANILOX® roller transfers the silicone to a silicone coating roller.
15. The apparatus of claim 14, wherein the silicone coating roller is made of rubber, the coating roller having a hardness of 30 duros to 50 duros inclusive.
16. The apparatus of claim 14, wherein the silicone coating roller spins in the opposite direction and at a faster speed relative to the speed of the web for spreading the silicone evenly on the backing paper, the silicone coating roller being positioned a constant distance from a drive roller for allowing the web of release paper to pass between the silicone coating roller and the drive roller.
17. The apparatus of claim 16, wherein a smoothing roller completes the silicone spreading process by smearing the silicone coated backing paper, the smoothing roller being positioned a constant distance from the drive roller for allowing the web of release paper to pass between the smoothing roller and the drive roller, and the smoothing roller being located downstream of the drive roller.
18. The apparatus of claim 17, wherein the smoothing roller rotates at a slower speed than the speed of the web driven by the drive roller.
19. The apparatus of claim 9, wherein the silicone applying means further comprises:
- means for smearing the silicone evenly on the backing paper.
20. The apparatus of claim 19, wherein the smearing means further comprises:
- a drive roller for contacting the backing paper for driving the web in steady continuous motion;
- a silicone coating roller contacting the backing paper with an applied layer of silicone, the silicone coating roller rotating faster and in the opposite direction to the web of release paper; and
- a smoothing roller contacting the applied layer of silicone after the silicone coating roller and rotating slower than the web of release paper for smearing the silicone evenly on the backing paper downstream of a close chambered doctor blade.
21. The apparatus of claim 9, wherein the silicone workstation further comprises:
- at least one source of ultraviolet light spaced at a distance from the release paper for curing the applied layer of silicone.
22. The apparatus of claim 21, wherein the source of ultraviolet light further comprises:
- a dichroic reflector having a cavity with a parabolic shape; and
- a plurality of mirrors made of non-finished aluminum and supported from the cavity of the reflector to allow a desired amount of infrared rays to pass through and to reflect a desired amount of ultraviolet rays onto the layer of silicone for curing.
23. The apparatus of claim 9, wherein the silicone workstation further comprises:
- means for pressurizing the silicone for pumping the silicone to a close chambered doctor blade.
24. The apparatus of claim 23, wherein the pressurizing means further comprises:
- a peristaltical pump for pumping silicone from a receptacle to a chamber for discharging the silicone onto the backing paper.
25. The apparatus of claim 9, wherein the silicone workstation further comprises:
- means for increasing dwell time to allow the layer of silicone to cure prior to applying adhesive to the release paper.
26. The apparatus of claim 25, wherein the dwell time increasing means further comprises:
- a plurality of idler rollers operably engaging the release paper to define a serpentine path of travel from the silicone workstation to provide adequate dwell time for curing.
27. A method for manufacturing a product comprising the steps of:
- applying a layer of photo-cationic silicone onto a continuous roll of backing paper at a silicone workstation; and
- curing the layer of silicone on the backing paper to define the continuous web of release paper.
28. The method of claim 27 further comprising the step of:
- pumping silicone with a peristaltical pump for application to a close chambered doctor blade.
29. The method of claim 28 further comprising the steps of:
- discharging foamless silicone from the close chambered doctor blade onto an ANILOX® roller though a reverse angle blade; and
- transferring the silicone from the ANILOX® roller onto the backing paper.
30. The method of claim 27 further comprising the step of:
- spreading the applied layer of silicone to a constant thickness with a silicone coating roller prior to curing.
31. The method of claim 27 further comprising the step of:
- smearing the silicone on the backing paper evenly to a specified thickness with a smoothing roller prior to curing.
32. The method of claim 27 further comprising the steps of:
- driving the web in steady continuous motion with a drive roller in contact with the backing paper; and
- spreading the applied layer of silicone with the silicone coating roller rotating slower than the drive roller.
33. The method of claim 32 further comprising the step of:
- spreading the applied layer of silicone with the smoothing roller rotating faster than the drive roller.
34. The method of claim 27, wherein the curing step further comprises the step of:
- exposing the applied layer of silicone to ultraviolet light spaced at a distance from the release paper.
35. The method of claim 27 further comprising the step of:
- increasing dwell time to allow the applied layer of silicone to cure prior to applying adhesive to the cured layer of silicone.
36. The method of claim 35, wherein the dwell time increasing step further comprises the step of:
- passing the release paper through a serpentine path of travel between the curing workstation and an adhesive application workstation.
37. A product manufactured according to the method of claim 27 comprising:
- a layer of backing sheet having a first surface and a second surface; and
- a layer of photo-cationic silicone in contact with the second surface of the backing sheet.
38. The product of claim 37, wherein the layer of photo-cationic silicone is a layer of ultraviolet light cured silicone.
39. A product comprising:
- a backing sheet having a first surface and a second surface;
- a layer of photo-cationic silicone applied to the second surface of the backing sheet.
40. The product of claim 39, wherein the layer of photo-cationic silicone is a layer of ultraviolet light cured silicone.
Type: Application
Filed: Dec 9, 2004
Publication Date: Apr 28, 2005
Inventors: Francois Bayzelon (Chambly), Frederic La Brie (Boucherville), Daniel Brochu (Montreal)
Application Number: 11/008,301